
Lecture 10 (summary)

In this lecture, we introduce basic formalism of the flag algebra method in the setting of
graphs. While we will use graph limits to define the formalism, it should be emphasized that
the flag algebra method is independent of a chosen analytic representation of a convergent
sequence.

Let A be the algebra of formal linear combinations of graphs with real coefficients with
the natural operations of addition and multiplication by a scalar. For a graphon W , we
define tW : A → R as tW (G) = d(G,W ) for each single graph G and extend the definition
to A linearly. It is clear that tW (a + a′) = tW (a) + tW (a′ and tW (αa) = αtW (a) for any
elements a, a′ ∈ A and any real α ∈ R. We next define multiplication of elements from A
in a way that commutes with tW (for every graphon W ). For two graphs G and G′, set
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and extend the definition × to A linearly. For example, it holds that
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We obtain that tW (a× a′) = tW (a)tW (a′) for any two elements a, a′ ∈ A.
We will use the shorthand notation a = a′ to represent tW (a) = tW (a′), for all graphons

W and a ≥ a′ to represent tW (a) ≥ tW (a′) for all graphons W (where a, a′ ∈ A). Similarly,
for a ∈ A and α ∈ R, we write a = α and a ≥ α if tW (a) = α and tW (a) ≥ α for all
graphons W . It is easy to show that if G is a graph and k ≥ v(G), then

G−
∑

H, v(H)=k

d(G,H)H = 0.

Let A• to be the algebra of formal linear combinations of rooted graphs, i.e., graphs
with a single distinguished vertex referred to as the root. For a graphon W , we define a
probabilistic distribution on maps t•W : A• → R as follows: pick x0 ∈ [0, 1] uniformly at
random, define

tx0
W =

k!

|Aut•(H)|

∫
[0,1]k

∏
vivj∈E(H)

W (xi, xj)
∏

vivj ̸∈E(H)

(1−W (xi, xj)) dx[k]

for every rooted graph H (where Aut•(H) is the group of automorphisms of H fixing the
root), and extend tx0

W to A• linearly. We would like to emphasize that while t•W (a) is a
random variable, it is good to keep in mind that the choice of the root determine the
values of t•W for all elements a ∈ A at once. Similarly as in the unrooted case, we define
G × G′ for two rooted graphs G and G′ as the linear combination of rooted graphs H



with v(G) + v(G′) − 1 vertices with coefficients equal to the number of partitions of the
v(G) + v(G′)− 2 non-root vertices of H to the parts with v(G)− 1 and v(G′)− 1 vertices
inducing G and G′ divided by

(
v(G)+v(G′)−2

v(G)−1

)
. We extend the definition of the product

from pairs of rooted graphs to all elements of A• linearly and observe that t•W (a × a′) =
t•W (a)t•W (a′) for any a, a′ ∈ A•. In particular, it holds that
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As in the unrooted case, every k-vertex rooted graph can be expressed as a linear combi-
nation of ℓ-vertex rooted graphs for every ℓ ≥ k.

Our next goal is to relate the expected value of t•W (a) to values of tW . Specifically,
we seek to define an operation JaK such that Ext

x
W (a) = tW (JaK) for every graphon W .

Following the definition of txW and Ext
x
W (a), we deduce that JHK for a rooted graph H

should be αH ′ where H ′ is the graph H with no vertex distinguished as the root and α
is the the probability that H ′ becomes H when rooting at a random vertex, and we then
extend J·K linearly to all elements of A•. For example, J K = 1

3
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3
.

As an example of the use of the just introduced formalism, we deduce the following
asymptotic version of Mantel’s Theorem.

Theorem. If W is a graphon with d(K3,W ) = 0, then d(K2,W ) ≤ 1/2.

Observe that 0 ≤ J( − )2K as the right side of the inequality is the expected value
of a square and so always non-negative. Expanding the right side, we obtain that 0 ≤
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Hence, if tW (K3) = d(K3,W ) = 0, then t(K2,W ) = d(K2,W ) ≤ 1/2 as desired. Moreover,
if t(K2,W ) = 1/2 (when tW (K3) = 0), then all inequalities are equalities and we obtain
that tW ( ) = 0 and txW ( − ) = 0 for almost all x ∈ [0, 1], i.e., txW ( ) = 1/2 for almost
all x ∈ [0, 1]. We leave as an exercise to deduce the structure of graphons that attain the
equality.

Exercise. Show that if W is a graphon with d(K2,W ) = 1/2 and d(K3,W ) = 0, then there
exists a partition of [0, 1] to two disjoint measurable sets A and B such that W (x, y) = 0 for
almost every (x, y) ∈ A2 ∪B2 and W (x, y) = 1 for almost every (x, y) ∈ [0, 1]2 \ (A2 ∪B2).

The asymptotic version of Mantel’s Theorem shown earlier in this lecture implies that
every n-vertex K3-free graph has at most 1

2

(
n
2

)
+ o(n2) edges. The following statement is

left an exercise of another simple use of the flag algebra method.

Exercise. Show that any 2-edge-coloring of Kn contains at least 1
4
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)
+ o(n3) monochro-

matic triangles.


