
Lecture 13 (summary)

In this lecture, we want to discuss the following theorem, which concerns a gener-
alization of constant graphons to step graphons; we remark that for step graphons W ,
W -random graphs correspond to the stochastic block model studied in statistics.

A graphon W is a step graphon if there exist measurable sets A1, . . . , Ak that partition
the interval [0, 1] and reals pi,j ∈ [0, 1], 1 ≤ i ≤ j ≤ k, such that W (x, y) = pi,j for all
(x, y) ∈ Ai × Aj, 1 ≤ i ≤ j ≤ k; we will usually write ai for the measure of the set Ai,

i ∈ [k]. For a particular choice of a⃗ ∈ [0, 1]k and p⃗ ∈ [0, 1](
k+1
2 ), the step graphon with

these parameters such that A1, . . . , Ak are consecutive intervals of measures a1, . . . , ak will
be denoted by W a⃗,p⃗.

Similarly as constant graphons, step graphons are determined by finitely many densities
of graphs.

Theorem (Lovász and Sós, 2008). For every k ∈ N, a⃗ ∈ [0, 1]k and p⃗ ∈ [0, 1](
k+1
2 ) such

that a1 + · · · + ak = 1, there exists N ∈ N such that if a graphon W satisfies d(H,W ) =
d(H,W a⃗,p⃗) for all graphs H with at most N vertices, then there exists a partition of the
interval [0, 1] to measurable sets A1, . . . , Ak such that the measure of Ai is ai and W (x, y) =
pi,j for almost every (x, y) ∈ Ai × Aj, 1 ≤ i ≤ j ≤ k.

We sketch a proof of the theorem for k = 2 and a1 = a2 = 1/2; set p = p11, q = p22
and r = p12. Throughout the proof, we will present various flag algebra identities that the
graphon W (1/2,1/2),(p,r,q) satisfies and use them to derive the structure of a given (unknown)
graphon W . The proof concludes by saying that any graphon satisfying these identities,
in particular, any graphon W with the same density of every graph H appearing in these
identities as W (1/2,1/2),(p,r,q), must have the structure that we have deduced.

We first prove the theorem in the case when p ̸= q. The first identity
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implies that ∫
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for almost every x ∈ [0, 1]. Let A be the set of those x such that the above integral is equal
to p+r
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and B = [0, 1] \ A. The second identity
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yields that the measure of A is 1/2. The third identity
t(

+ − q + r

2

)2(
+ − q + r

2

)2(
− p2 + r2

2

)2
|

= 0



implies that ∫
[0,1]

W (x1, y)W (x2, y) dy =
p2 + r2

2

for almost every (x1, x2) ∈ A2. This implies using the proposition from the previous lecture
that ∫

[0,1]

W (x, y)2 dy =
p2 + r2

2
,

which yields that there exists a function FA : [0, 1] → [0, 1] such that W (x, y) = FA(y) for
almost every (x, y) ∈ A× [0, 1]. In particular, the set

{(x1, x2, y) ∈ A3,W (x1, y) ̸= W (x2, y)}

has measure zero, which implies that there exists p′ such that W (x, y) = p′ for almost
every (x, y) ∈ A2. Along the same lines, we deduce from the identity
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that there exists a function FB : [0, 1] → [0, 1] such that W (x, y) = FB(y) for almost every
(x, y) ∈ B × [0, 1], which then yields that there exist q′ and r′ such that W (x, y) = q′ for
almost every (x, y) ∈ B2 and W (x, y) = r′ for almost every (x, y) ∈ A × B. Note that
p+ r = p′ + r′ and q + r = q′ + r′. Finally, the identity
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yields that p′ = p and so q′ = q and r′ = r.
It remains to consider the case when p = q; we may assume r ̸= p (if r = p, we use the

result from the previous lecture). The first identity
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implies that ∫
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for almost every (x1, x2) ∈ [0, 1]2. Define an auxiliary graphon W ′(x1, x2) = 1 if the value

of the above integral is p2+r2

2
and 0 otherwise. The identity
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yields that d(K2,W
′) = 1/2 and the identity
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yield that d(K3,W
′) = 0. It follows that there exist sets A ⊆ [0, 1] and B = [0, 1] \A such

that ∫
[0,1]

W (x1, y)W (x2, y) dy =
p2 + r2

2

for almost all (x1, x2) ∈ A2 ∪B2 and∫
[0,1]

W (x1, y)W (x2, y) dy = pr

for almost all (x1, x2) ∈ A × B. It follows that there exist functions FA : [0, 1] → [0, 1]
and FB : [0, 1] → [0, 1] such that W (x, y) = FA(y) for almost every (x, y) ∈ A × [0, 1]
and W (x, y) = FB(y) for almost every (x, y) ∈ B × [0, 1], which implies that there exist
p′, q′ and r′ such that W (x, y) = p′ for almost every (x, y) ∈ A2, W (x, y) = q′ for almost
every (x, y) ∈ B2 and W (x, y) = r′ for almost every (x, y) ∈ A × B. It follows that
p2 + r2 = (p′)2 + (r′)2 = (q′)2 + (r′)2 and pr = p′r′ = q′r′, which implies that p′ = q′ and
{p, r} = {p′, r′}. Finally, the identity
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yields that p = p′ and so r = r′.
We remark that in the case p ̸= q we could use the “degrees” of x ∈ [0, 1] in the

unknown graphon to identify which part of the graphon x belongs to; in the case p = q,
this is not possible, however, once we have established the existence of the partition, we
are able to identify whether two roots belong to the same part or to two different parts of
the graphon.


