Lecture 14 (summary)

In this lecture, we show how to set up an SDP program to search for a flag algebra
proof. We will demonstrate the approach on the following specific example: show that
'+ ¥ > «a for a as large as possible. We first fix a number of vertices n € N, which is the
size of graphs that we work with. In our example, n = 3 (the choice of n corresponds to the
computational power that we may use). List all graphs G, ..., Gk with that n vertices. We
can combine the following three types of expression to get the desired inequality: G; > 0,
Gi1+...+Gg =1, and HUTAU]] where A is a positive semidefinite matrix and v is a vector
with entries from AP for some root graph R, e.g, R=cor R=o=. AsG,+...+Gr =1
can be viewed as G1+ ...+ Gg > 1 and —G; — ... — G > —1, we are then searching for
non-negative coefficients for the inequalities and suitable positive semidefinite matrices.

Recall that a semidefinite program is an optimization problem that asks to maximize
(C|X) subject to (A1]X) = by, ..., (Ak|X) = by over all positive semidefinite matrices X,
where (M|N) for two matrices M, N € R™" is the sum M3 Ny3 + M1oNio+ ...+ M Npy.
Note that if X is positive semidefinite matrix, then every diagonal entry of X is non-
negative and more generally every principal submatrix is positive semidefinite. So, we
dedicate some of the diagonal entries of X to be the sought coefficients for the inequalities
and some of the principal submatrices to be the sought positive semidefinite matrices. The
constraints (A;|X) = by, ..., (Ax|X) = by will then enforce the left hand side to as desired.
Hence, we set k = K and the i-th constraint will force the coefficient at Gj.

In our example, we have the following inequalities to combine:
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where A is positive semidefinite. Let v, 77, 71,...,74 be the sought coefficients for the
first inequality, we will think of the matrix X as
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., by and the matrix C will set as follows.
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Running the program, we obtain that an optimal solution is the following matrix X:

[1/4 0 0000 0 0
0 00000 0 0
0 00000 0 0
v_|0 00000 0 0
0 00000 0 0
0 00000 0 0
0 00000 3/4 —3/4
0 00000 —3/4 3/4]

, which yields that the sum of the following two inequalities

o< [T B 5 )

gives the desired inequality, *°,* + ¥ > 1/4.



