
Lecture 15 (summary)

This lecture is devoted to identifying an explicit sequence of quasirandom graphs, which
are known as Paley graph (and are a specific instance of Cayley graphs). Fix a prime p such
that p mod 4 = 1 and consider Zp with addition and multiplication modulo p. Let S be the
set of non-zero quadratic residues, i.e. S = {t2, t ̸= 0, t ∈ Zp}. Note that |S| = (p − 1)/2
and −1 ∈ S. The graph Pp is the graph with vertex set Zp such that two vertices x and y
are adjacent if x − y ∈ S. We will show that the sequence of graphs (Pp) with p tending
to infinity is quasirandom. By the results that we have established earlier, it is enough to
show that t(K2, Pp) → 1/2 and t(C4, Pp) → 1/16. The former is trivial since the graph Pp

is |S|-regular.
Recall that the adjacency matrix A of a graph G is the zero-one matrix with rows and

columns indexed by the vertices of G such that the entry in a row which is indexed by v
and a column which is indexed by v′ is one iff vv′ is an edge of G. We will show that the
eigenvalues of the adjacency matrix of the graph Pp are the following:
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which implies t(C4, Pp) → 1/16 and so the sequence (Pp) is quasirandom.

Fix a prime p such that p mod 4 = 1. Let ω be the p-th root unity, i.e. ω = e
2πι
p , and

let vk ∈ Cp for k = 0, . . . , p− 1 be the vector such

(vk)i = ωki.

Observe that the vectors vk, k = 0, . . . , p− 1, are orthogonal:
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which is zero for all k ̸= k′. On the other hand, each vk, k = 0, . . . , p−1, is an eigenvector:
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It follows that the values
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are eigenvectors of the adjacency matrix of the graph Pp.
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Note that the inner sum is zero whenever τ ̸= 0 and so the whole double is equal to p. It
follows that
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Exercise. Show that ω(Pp) ≤
√
p for every prime p such that p mod 4 = 1.


