
Lecture 4 (summary)

In this lecture, we introduce the regularity method, focusing on regularity decompositions
of graphs. Szemerédi Regularity Lemma, which we will prove later, states that every
graph can be decomposed into a bounded number of parts such that most them interact
in a quasirandom way.

Lemma (Szemerédi Regularity Lemma, 1978). For every ε > 0 and k0 ∈ N, there exists
K0 ∈ N such that every graph G has a vertex partition V0∪̇V1∪̇ · · · ∪̇Vk, k0 ≤ k ≤ K0, such
that

� |V0| ≤ ε|V (G)| and |V1| = · · · = |Vk|, and

� all pairs of parts Vi and Vj, 1 ≤ i < j ≤ k, except for at most εk2 pairs satisfy that∣∣∣∣e(A,B)
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holds for all subsets A ⊆ Vi and B ⊆ Vj with |A| ≥ ε|Vi| and |B| ≥ ε|Vj|,

where e(X, Y ) denotes the number of edges between sets X and Y .

The pairs Vi and Vj that satisfy the property given in the second bullet point of the lemma
are referred to as ε-regular.

To illustrate the statement of Szemerédi Regularity Lemma, we prove the Graph Re-
moval Lemma for triangles. In its full generality, the Graph Removal Lemma reads as
follows.

Lemma (the Graph Removal Lemma). For every ε > 0 and every graph H, there exists
δ > 0 such that every n-vertex graph G satisfies (at least) one of the following:

� G contains at least δn|V (H)| copies of H, or

� there exists a set F ⊆ E(G) such that |F | ≤ εn2 and G \ F is H-free.

We proved the Graph Removal Lemma when H = K3 in the lecture and we include a
proof sketch here.

Sketch of proof for H = K3. Fix ε ∈ (0, 1), and apply Szemerédi Regularity Lemma with
εR = ε/100 and k0 = ⌈ε−1

R ⌉ to get K0. Let G be an n-vertex graph, and apply Szemerédi
Regularity Lemma to get a partition of V (G) to V0∪̇V1∪̇ · · · ∪̇Vk as in the statement of
Szemerédi Regularity Lemma. Let d0 = ε/10 and construct an auxiliary graph R with
vertices corresponding to the parts V1, . . . , Vk; a pair vertices corresponding to Vi and Vj

is joined by an edge if Vi and Vj is an ε-regular pair and e(Vi, Vj) ≥ d0|Vi| |Vj|.
If R has no triangle, then set F to contain all edges incident with a vertex of V0, all

edges inside the parts V1, . . . , Vk, all edges between any pair of parts Vi and Vj such that



Vi and Vj is not an ε-regular pair or e(Vi, Vj) < d0|Vi| |Vj|. Note that the graph G \ F has
no triangle. A simple counting argument shows that |F | ≤ εn2.

If R has a triangle, we may assume by changing the indices of the parts that every pair of
the parts V1, V2 and V3 is an ε-regular pair and e(Vi, Vj) ≥ d0|Vi| |Vj| for all 1 ≤ i < j ≤ 3.
Using that V1 and Vi for i ∈ {2, 3}, we show that all but ε|V1| vertices of V1 have at least(
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)
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neighbors in Vi. Consider a vertex w of V1 with at least d0
2
|V2| neighbors in V2 and at least

d0
2
|V3| neighbors in V3, and let A and B be the neighbors of w in V2 and V3, respectively.

Since |A| ≥ εR|V2| and |B| ≥ εR|V3|, we obtain that e(A,B) ≥ (d0 − ε)|A| |B|, i.e., w is in
at least e(A,B) triangles. Since the size of each set V1, V2 and V3 is at least (1− εR)n/K0,

it follows that the statement of the lemma holds with δ =
d30

32K3
0
.

Proving the Graph Removal Lemma in full generality as an exercise, which is split into
two steps (each including a different technical challenge to overcome).

Exercise. Prove the Graph Removal Lemma when H is any complete graph.

Exercise. Prove the Graph Removal Lemma for all graphs H.


