Lecture 9 (summary)

In this lecture, we show that every convergent sequence of graphs has a limit graphon. To
be able to do so, we will need two following statements, whose proofs are left as exercises.
We say that a partition V4U---UVj is an equipartition if |V; — V| <1 for all 1 <i,j < k.

Exercise. For everye > 0 and ky € N, there exists Ky € N such that for every graph G and
every equipartition of V(G) into at most ko parts, there exists an equipartition V1U - - - UV
of V(G) that refines the given equipartition of V(G), has at most Ky parts, i.e. k < K,
and all pairs of parts V; and V;, 1 <i < j <k, except for at most ck? pairs are e-regular,

i.e. they satisfy that
e(A,B) e(Vi,Vj)

<e
[ALBL Vil V)]
holds for all subsets A CV; and B C V; with |A| > ¢|Vi| and |B| > ¢|V}|.

We will refer to the decomposition (equipartition) of the vertex set of a graph G with
the properties given in the first exercise as an e-reqular decomposition of G; for technical
reasons, we will always assume that all parts of in an e-regular decomposition are non-
empty.

Exercise. For every 6 > 0 and every graph H, there exists € > 0 such that every e-reqular
decomposition V,U - - -UVy, of any graph G satisfies that

1
t(H,G) — TV Z H dp(ypw)| <0
£V (H)—[k] vwe E(H)

where d;; = Ie\(/:/\ll‘%? if 1 # j, and d;; = % ifi=17.

We next sketch the main steps of the proof of the following theorem; we follow the lines
of a proof given by Lovasz and Szegedy in 2006.

Theorem. FEvery convergent sequence (G,)nen of graphs has a limit graphon.

Sketch of proof. We first construct a sequence of mutually refining regular partitions in a
suitably chosen subsequence of (G,,)nen. Let £, = 27™. We will describe the construction
iteratively. To launch the iterative construction, we set k° = 1 and V), = V(G,), and
view V,gl as an equipartition of V(G,,) to a single part.

Fix m € N. Apply the version of Szemerédi Regularity Lemma from the first exercise
with ,, and ky = k™1 /e, to get Ky. Split the equipartitions from the previous step to
equipartitions with k™! /e, parts arbitrarily and apply Szemerédi Regularity Lemma for
each graph G, to obtain an g,,-regular decomposition ,TlU e UVn’f}% of each graph G,;
we can assume that Vﬂ_l was split into the first k, /™! parts, V,T{l to the next k, /k™~!
parts, etc. By taking a subsequence, we may assume that k,, is equal to the same value for
all sufficiently large n (note that k, < Kj); let k™ be this value.



Define a matrix A™ € [0, 1]*"*¥" to be the matrix such that its entry in the i-th row
and the j-th column is equal to dz] as defined in the second exercise with respect to the
em-regular decomposition V;"jU- J.--yym tm of G, By taking a subsequence, we assume that
the matrices A" converge entrywise; let A™ be the limit matrix. We now proceed to the
next iteration (for m + 1).

Based on A™, we define a graphon W™ by splitting [0, 1] to £™ equal length intervals
and setting the value of W™ on the product of the i-th interval and j-th interval to be Af}.
Note that the sequence (WW™),,en can be viewed as a martingale on [0, 1]2. By Doob’s First
Martingale Convergence Theorem (or by Bounded Convergence Theorem), the sequence
has a pointwise limit almost everywhere; let W be this limit function [0, 1> — [0, 1], which
we may assume to be symmetric. By Doob’s Second Martingale Convergence Theorem,
the sequence (W™),,en converges to W in L]0, 1]2.

Define t(H, A) for a graph H and a matrix A € [0,1]*** as

t(H,A):ﬁ > II Arwr

f:V(G)—[s] vweE(G)

Next observe that t(H, A™) = t(H,W™). The second exercise implies that for every § > 0,
there exists mg and ng such that |t(H,G,) — t(H, A")| < § for all m > mg and n > ny,
which implies that

t(H, A™) — Tim t(H, Gy)| = [t(H,W™) — lim t(H,G,)| < 6
n—oo

n—o0

for every m > mg. It follows that

lim ¢(H,G,) = lim t(H,W™).

n—oo m—r0o0
Since W™ converge to W in L'[0,1]?, W is a limit graphon by the lemma stated at the
end of this summary. O

Lemma. Let Wi and Wy be two graphons and H a graph. It holds that |t(H,W;) —
tH,Wa)| < [E(H)| - [[Wy = Wally.

The lemma can be proven along the following lines. Let m = |E(H)|, let vjwy, . .., Uy,
be the edges of H, and define 7, for k =0,...,|E(H)| as

The :/ HW1 Ty Tap; ) H WoZu,, Tw,) doy(m
[0,1]V(H) %

i=k+1

Observe that 7o = t(H, Ws), 7., = t(H, W) and the following holds for every k € [m]:

|Tk—1 - Tk| =

/[0 1V (W2(ka7 xwk) o Wl (x“k’ xwk)) H W(xvm xwi) de(H)
’ i+k

< / W ) — Wi, 2)| [T W (s 20,) dav
[0,1]V (H) itk

< / |W2($vk,$wk) - W1($vk,$wk)| d$V(H) = ||W1 - W2||1-
[0,1]V ()



