
Lecture 9 (summary)

In this lecture, we show that every convergent sequence of graphs has a limit graphon. To
be able to do so, we will need two following statements, whose proofs are left as exercises.
We say that a partition V1∪̇ · · · ∪̇Vk is an equipartition if |Vi − Vj| ≤ 1 for all 1 ≤ i, j ≤ k.

Exercise. For every ε > 0 and k0 ∈ N, there exists K0 ∈ N such that for every graph G and
every equipartition of V (G) into at most k0 parts, there exists an equipartition V1∪̇ · · · ∪̇Vk

of V (G) that refines the given equipartition of V (G), has at most K0 parts, i.e. k ≤ K0,
and all pairs of parts Vi and Vj, 1 ≤ i < j ≤ k, except for at most εk2 pairs are ε-regular,
i.e. they satisfy that ∣∣∣∣e(A,B)

|A| |B|
− e(Vi, Vj)

|Vi| |VJ |

∣∣∣∣ ≤ ε

holds for all subsets A ⊆ Vi and B ⊆ Vj with |A| ≥ ε|Vi| and |B| ≥ ε|Vj|.

We will refer to the decomposition (equipartition) of the vertex set of a graph G with
the properties given in the first exercise as an ε-regular decomposition of G; for technical
reasons, we will always assume that all parts of in an ε-regular decomposition are non-
empty.

Exercise. For every δ > 0 and every graph H, there exists ε > 0 such that every ε-regular
decomposition V1∪̇ · · · ∪̇Vk of any graph G satisfies that∣∣∣∣∣∣t(H,G)− 1

k|V (H)|

∑
f :V (H)→[k]

∏
vw∈E(H)

df(v)f(w)

∣∣∣∣∣∣ ≤ δ

where dij =
e(Vi,Vj)

|Vi| |Vj | if i ̸= j, and dii =
2 |E(G[Vi])|

|Vi|2 if i = j.

We next sketch the main steps of the proof of the following theorem; we follow the lines
of a proof given by Lovász and Szegedy in 2006.

Theorem. Every convergent sequence (Gn)n∈N of graphs has a limit graphon.

Sketch of proof. We first construct a sequence of mutually refining regular partitions in a
suitably chosen subsequence of (Gn)n∈N. Let εm = 2−m. We will describe the construction
iteratively. To launch the iterative construction, we set k0 = 1 and V 0

n,1 = V (Gn), and
view V 0

n,1 as an equipartition of V (Gn) to a single part.
Fix m ∈ N. Apply the version of Szemerédi Regularity Lemma from the first exercise

with εm and k0 = km−1/εm to get K0. Split the equipartitions from the previous step to
equipartitions with km−1/εm parts arbitrarily and apply Szemerédi Regularity Lemma for
each graph Gn to obtain an εm-regular decomposition V m

n,1∪̇ · · · ∪̇V m
n,kn

of each graph Gn;

we can assume that V m−1
n,1 was split into the first kn/k

m−1 parts, V m−1
n,2 to the next kn/k

m−1

parts, etc. By taking a subsequence, we may assume that kn is equal to the same value for
all sufficiently large n (note that kn ≤ K0); let k

m be this value.



Define a matrix Am
n ∈ [0, 1]k

m×km to be the matrix such that its entry in the i-th row
and the j-th column is equal to dij as defined in the second exercise with respect to the
εm-regular decomposition V m

n,1∪̇ · · · ∪̇V m
n,km of Gn. By taking a subsequence, we assume that

the matrices Am
n converge entrywise; let Am be the limit matrix. We now proceed to the

next iteration (for m+ 1).
Based on Am, we define a graphon Wm by splitting [0, 1] to km equal length intervals

and setting the value of Wm on the product of the i-th interval and j-th interval to be Am
ij .

Note that the sequence (Wm)m∈N can be viewed as a martingale on [0, 1]2. By Doob’s First
Martingale Convergence Theorem (or by Bounded Convergence Theorem), the sequence
has a pointwise limit almost everywhere; let W be this limit function [0, 1]2 → [0, 1], which
we may assume to be symmetric. By Doob’s Second Martingale Convergence Theorem,
the sequence (Wm)m∈N converges to W in L1[0, 1]2.

Define t(H,A) for a graph H and a matrix A ∈ [0, 1]s×s as

t(H,A) =
1

s|V (G)|

∑
f :V (G)→[s]

∏
vw∈E(G)

Af(v)f(w).

Next observe that t(H,Am) = t(H,Wm). The second exercise implies that for every δ > 0,
there exists m0 and n0 such that |t(H,Gn) − t(H,Am

n )| ≤ δ for all m ≥ m0 and n ≥ n0,
which implies that

|t(H,Am)− lim
n→∞

t(H,Gn)| = |t(H,Wm)− lim
n→∞

t(H,Gn)| ≤ δ

for every m ≥ m0. It follows that

lim
n→∞

t(H,Gn) = lim
m→∞

t(H,Wm).

Since Wm converge to W in L1[0, 1]2, W is a limit graphon by the lemma stated at the
end of this summary.

Lemma. Let W1 and W2 be two graphons and H a graph. It holds that |t(H,W1) −
t(H,W2)| ≤ |E(H)| · ∥W1 −W2∥1.

The lemma can be proven along the following lines. Letm = |E(H)|, let v1w1, . . . , vmwm

be the edges of H, and define τk for k = 0, . . . , |E(H)| as

τk =

∫
[0,1]V (H)

k∏
i=1

W1(xvi , xwi
)

m∏
i=k+1

W2(xvi , xwi
) dxV (H).

Observe that τ0 = t(H,W2), τm = t(H,W1) and the following holds for every k ∈ [m]:

|τk−1 − τk| =

∣∣∣∣∣
∫
[0,1]V (H)

(W2(xvk , xwk
)−W1(xvk , xwk

))
∏
i ̸=k

W (xvi , xwi
) dxV (H)

∣∣∣∣∣
≤

∫
[0,1]V (H)

|W2(xvk , xwk
)−W1(xvk , xwk

)|
∏
i ̸=k

W (xvi , xwi
) dxV (H)

≤
∫
[0,1]V (H)

|W2(xvk , xwk
)−W1(xvk , xwk

)| dxV (H) = ∥W1 −W2∥1.


