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Abstract

For any AND-OR formula of size N , there exists a
bounded-error N

1
2+o(1)-time quantum algorithm, based on

a discrete-time quantum walk, that evaluates this formula
on a black-box input. Balanced, or “approximately bal-
anced,” formulas can be evaluated in O(

√
N) queries,

which is optimal. It follows that the (2 − o(1))th power of
the quantum query complexity is a lower bound on the for-
mula size, almost solving in the positive an open problem
posed by Laplante, Lee and Szegedy.

1 Introduction

Consider a formula ϕ on N inputs x1, . . . , xN , using
the gate set S either {AND, OR, NOT} or equivalently
{NAND}. That is, the formula ϕ corresponds to a tree
where each internal node is a gate from S on its children.
If the same variable is fed into different inputs of ϕ, we
treat each occurrence separately, so that N counts variables
with multiplicity. The variables xi are accessed by query-
ing a quantum oracle, which we can take to be the unitary
operator Ox : |b, i〉 7→ (−1)bxi |b, i〉, for b ∈ {0, 1} and
i ∈ {1, . . . , N} the control qubit and query index, respec-
tively. We will show:

Theorem 1. After efficient preprocessing (i.e., preprocess-
ing taking poly(N) steps) of the formula ϕ independent of
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x, ϕ(x) can be evaluated with error < 1/3 using N
1
2+o(1)

time and queries to Ox.

Our algorithm is inspired by the recent N
1
2+o(1)-time al-

gorithm of Farhi, Goldstone and Gutmann [11] for the case
in which S = {NAND}, each NAND gate in ϕ has ex-
actly two inputs and ϕ is balanced—i.e., N = 2n and ϕ has
depth n. Our algorithm requires no preprocessing in this
special case of a balanced binary NAND tree. For a bal-
anced, or even an “approximately balanced” NAND tree,
our algorithm requires only O(

√
N) queries (Theorem 8),

which is optimal. The correctness of our algorithm will turn
on spectral analysis of a Hamiltonian similar to that intro-
duced by Farhi et al., except in general weighted according
to the formula’s imbalances.

Our algorithm (almost) solves in the positive the open
problem posed by Laplante, Lee and Szegedy [16], whether
the quantum query complexity squared is a lower bound on
the formula size. Theorem 1 implies that the formula size
of a function f is at least Q2(f)2−o(1). Note also that evalu-
ating an AND-OR tree is the decision version of evaluating
a MIN-MAX tree, and the latter can be solved using any
algorithm for the former with a log factor slow down.

History of the problem

Grover showed in 1996 [12, 13] how to search a gen-
eral unstructured database of size N , represented by a
black-box oracle function, in O(

√
N) oracle queries and

O(
√

N log log N) time on a quantum computer. His search
algorithm can be used to compute the logical OR of N
bits in the same time; simply search for a 1 in the in-
put string. Since Grover search can be used as a subrou-
tine, even within another instance of Grover search, one can
speed up the computation of more general logical formulas.
For example, a two-level AND-OR tree (with one AND gate
of fan-in

√
N and

√
N OR gates of the same fan-in as its

children) can be computed in O(
√

N log N) queries. Here



the log factor comes from amplifying the success probabil-
ity of the inner quantum search to be polynomially close to
one, so that the total error is at most constant. By iterating
the same argument, regular AND-OR trees of depth d can be
evaluated with constant error in time

√
N ·O(log N)d−1 [7].

Høyer, Mosca and de Wolf [14] showed that Grover
search can be applied even if the input variables are noisy,
so the log factor is not necessary. Consequently, a depth-
d AND-OR tree can be computed in O(

√
N · cd) queries,

where c is a constant that comes from their algorithm. It fol-
lows that constant-depth AND-OR trees can be computed
in O(

√
N) queries. Unfortunately, their algorithm is too

slow for the balanced binary AND-OR tree of depth log2 N
(although it does give some speedup for sufficiently large
constant fan-ins).

Classically, one can compute the value of a balanced
binary AND-OR tree with zero error in expected time
O(N log2[(1+

√
33)/4]) = O(N0.754) [19, 17] using a tech-

nique called alpha-beta pruning, and this is optimal even
for bounded-error algorithms [18].

For a long time, no quantum algorithm was known that
performed better than the classical zero-error algorithm,
despite the fact that the best known lower bound, from
the adversary method, is only Ω(

√
N) [3]. Very recently,

Farhi, Goldstone and Gutmann [11] presented a ground-
breaking quantum algorithm for the balanced case, based
on continuous-time quantum walks. Their algorithm runs in
time O(

√
N) in an unconventional, continuous-time query

model. Childs, Cleve, Jordan and Yeung [8] shortly after
pointed out that this algorithm can be discretized into the
conventional oracle query model with a small slowdown, to
run in time N

1
2+o(1).

This paper is a merged version of technical reports [9, 2].

2 Summary of results and methods

We design an algorithm whose running time depends on
the structure of the NAND tree. For arbitrary balanced trees,
the algorithm uses O(

√
N) queries.

More generally, if the fanin of each NAND gate in
our formula is bounded by a constant, our algorithm uses
O(
√

Nd) queries, where d is the depth of the formula. If
the depth is large, we use a rebalancing procedure of [6, 5]
to construct an equivalent formula with depth 2O(

√
log N).

This implies that any NAND formula of size N can be eval-
uated using N1/2+O(1/

√
log N) queries.

Idea of the algorithm

Our algorithm can be described in terms of discrete-time
quantum walks. With any NAND formula ϕ, we associate
a tree T = T (ϕ). Figure 1 gives an example for the case of
the balanced binary tree of depth 3.

r

Figure 1: The balanced binary NAND formula of depth 3,
ϕ =

`
(x1 ∧x2)∧(x3 ∧x4)

´
∧

`
(x5 ∧x6)∧(x7 ∧x8)

´
—where

a∧ b = (a ∧ b)—is represented by the balanced subtree rooted
at r. The input is fed in at the leaves (top row), and internal ver-
tices are evaluated as NAND gates on their children. Here a vertex
v is filled or not according to whether its evaluation ∧(v) is 1 or
0, respectively; in this example, the input is x = 00010111 and
overall, ϕ(x) = ∧(r) = 1. Below r, we have additionally at-
tached two vertices, r′ and r′′. Modify the classical uniform ran-
dom walk on this tree by marking leaf vertices evaluating to 1 as
probability sinks, and adding a certain bias to the transition prob-
abilities at r′. Then the corresponding quantum walk can be used
to evaluate the formula in O(

√
N) time.

Consider the classical uniform random walk on this tree;
at vertex v with degree d(v), flip an unbiased d(v)-sided
coin to decide which neighbor to step to next. (The coin
at r′ will have a certain bias, as will all coins in the case
of an unbalanced tree.) Incorporate the input into the walk
by making all vertices evaluating to 1 into probability sinks.
The corresponding discrete-time quantum walk U works on
a vertex register and a coin register. Instead of randomizing
the coin register between steps, a Grover diffusion opera-
tor is applied to the coin. This quantum walk U , started at
r′′, can be used with phase estimation to evaluate a general
NAND formula in only N

1
2+o(1) time, or O(

√
N) queries in

the balanced or approximately balanced case. The general
algorithm is described in Section 7, while Figure 2 presents
the full algorithm for the balanced case.

The correctness proof uses Szegedy’s correspondence
between classical random walks and discrete-time quantum
walks (Theorem 6). Note that Szegedy’s formulation can
also be viewed as establishing a correspondence between
discrete- and continuous-time quantum walks (Remark 2).
In particular, the spectrum and eigenvectors of the unitary
operator describing the discrete-time quantum walk can be
related to those of the Hamiltonian for a continuous-time
quantum walk on a closely related tree. We use this by first
designing a continuous time quantum walk algorithm and
then converting it into a discrete-time algorithm.



1. Initialization. Let T = 320b
√

Nc. Prepare three
quantum registers in the state

( 1√
T

T−1∑
t=0

(−i)t|t〉
)
⊗ |r′′〉|left〉 .

The first register is a counter for quantum phase esti-
mation, the second register holds a vertex index, and
the third register is a qutrit “coin” holding ‘down’,
‘left’ or ‘right’ in this order.

2. Quantum walk. If the first register is |t〉, perform t
steps of the following discrete-time quantum walk U .
Denote the last two registers by |v〉|c〉.

• Diffusion step.
(a) If v is a leaf, apply a phase flip (−1)xv using

one controlled call to the input oracle.
(b) If v is an internal degree-three vertex, apply

the following diffusion operator on coin |c〉:

Reflection|u〉 = 2|u〉〈u| − 1 ,

where |u〉 = 1√
3
(|down〉+ |left〉+ |right〉).

(c) If v = r′, apply the following diffusion opera-
tor on |c〉:

Reflection|u′〉 = 2|u′〉〈u′| − 1 ,

where |u′〉 = 1
4√

N
|down〉+

√
1− 1√

N
|left〉.

(d) If v = r′′, do nothing.

• Walk step.
(a) If c = ‘down’, then walk down to the parent of

v and set c to either ‘left’ or ‘right’ depending
on which child v is.

(b) If c ∈ {‘left’, ‘right’}, then walk up to the cor-
responding child of v and set c to ‘down’.

Note that the walk step operator is a permuta-
tion that simply flips the direction of each oriented
edge.

3. Quantum phase estimation. Apply the inverse
quantum Fourier transform (modulo T ) on the first
register and measure it in the computational basis.
Return 0 if and only if the outcome is 0 or T

2 .

Figure 2: An optimal quantum algorithm to evaluate the balanced
binary NAND formula using O(

√
N) queries. The algorithm runs

quantum phase estimation on top of the quantum walk of Figure 1.

Organization

The presentation of the algorithm and the proof of its
correctness are organized as follows. Section 3 defines and
puts weights on the tree T (ϕ), where the weights of edges to
the leaves depend on the input x. Section 4 shows that when
ϕ(x) = 0, there exists a zero-energy eigenstate (i.e., eigen-
vector with eigenvalue zero) of the weighted adjacency ma-
trix of T (ϕ) and a short tail, having substantial overlap with
a known initial state. Conversely, if ϕ(x) = 1, then any
zero-energy eigenstates can be neglected, as they have no
overlap on the initial state. In the case ϕ(x) = 1, Sec-
tion 5 shows that eigenvectors with small nonzero eigenval-
ues can also be neglected. This is argued by connecting the
NAND formula’s evaluation to the ratio of amplitudes from
a child to its parent. We then construct an algorithm us-
ing the observations of Sections 4 and 5. Section 6 reviews
Szegedy’s theorem relating the spectrum and eigenvectors
of a discrete-time quantum walk to those of the Hamilto-
nian for a continuous-time quantum walk. We apply this
relationship in Section 7 to show that phase estimation on a
certain discrete-time quantum walk can be used to evaluate
ϕ.

We conclude the paper by describing some applications
to evaluating iterated functions in Section 8, and by present-
ing some open problems in Section 9.

3 Weighted NAND formula tree

Consider a NAND formula of size N—i.e., on N vari-
ables, counting multiplicity. (The NAND gate on inputs
y1, . . . , yk ∈ {0, 1} evaluates to 1 −

∏k
i=1 yi. In partic-

ular, the NAND gate on a single input is simply the NOT
gate.)

Represent the formula ϕ by a rooted tree T = T (ϕ), in
which the leaves correspond to variables, and other vertices
correspond to NAND gates on their children. (Because ϕ is
a formula, not a circuit, each gate has fan-out one, so there
are no loops in the associated graph.) Attach below the root
r a “tail” of two vertices r′ and r′′ as in Figure 1.

Definition 1. For a vertex v, let sv be the number of inputs
of the subformula under v, counting multiplicity (in partic-
ular, sr = sr′ = sr′′ = N ). Let ∧(v) denote the value of
the subformula at v (∧(r) = ∧(r′′) = ϕ(x)).

Definition 2. Let H be a symmetric, weighted adjacency
matrix of the graph consisting of T and the attached tail:

H|v〉 = hpv|p〉+
∑

c

hvc|c〉 , (1)

where p is the parent of v and the sum is over v’s children.
(If v has no parent or no children, the respective terms are



zero.) The edge weights depend on the structure of the tree,
and are given by

hpv =
(sv

sp

)1/4

, (2)

with two exceptions:

1. If a leaf v evaluates to ∧(v) = 1, set hpv = 0, i.e.,
effectively remove the edge (p, v) by setting its weight
to zero.

2. Set hr′′r′ = 1/(
√

σ−(r)N1/4) (see Definition 3).

Definition 3. To track error terms through the analysis, it
will be helpful to define

σ−(v) = max
ξ

∑
w∈ξ:

∧(w)=0

1
√

sw

σ+(v) = max
ξ

∑
w∈ξ:

∧(w)=1

sw

(3)

with the maximum in each case taken over all paths ξ from
v up to a leaf. Letting dr be the depth of r, clearly σ−(v) ≤
σ−(r) ≤ dr and σ+(v) ≤ σ+(r) ≤ Ndr.1 We call formula
ϕ “approximately balanced” if σ−(r) = O(1), σ+(r) =
O(N) and ‖H‖ = O(1), where ‖·‖ denotes the spectral
norm.

The simplest example of an approximately balanced tree
is the balanced binary tree. More generally, a tree is approx-
imately balanced if sv decreases sufficiently rapidly from
the root toward the leaves (see Section 7).

Our algorithm will depend on the following properties of
H , which we will prove in the next two sections:

Theorem 2. If ϕ(x) = 0, then there exists a zero-energy
eigenvector |a〉 of H with ‖|a〉‖ = 1 and overlap |〈r′′|a〉| ≥
1/
√

2. If ϕ(x) = 1, then every eigenvector with sup-
port on r′ or r′′ has corresponding eigenvalue at least

1

9σ−(r)
√

σ+(r)
in absolute value.

Remark 1. For a leaf v evaluating to 0, it is sufficient that
hpv satisfies hpv ≥ 1/s

1/4
p .

One can also verify that Theorem 2 holds if the weights
hpv are defined by, for an arbitrary fixed β, hpv =
sv

β/sp
1
2−β and hr′′r′ = 1/(

√
σ−(r)N

1
2−β) with σ−(v) =

maxξ

∑
w∈ξ:∧(w)=0 sw

−2β . We fix β = 1/4 to simplify no-
tation.

α + β

α + β

−α− β

βα

γ γ −γ −γ0

γ−γ

Figure 3: An example NAND tree to illustrate Lemmas 3 and 4.
As in Figure 1, a vertex is filled or not according to whether it
evaluates to 1 or 0, respectively. The amplitudes 〈v|a〉 of a zero-
energy eigenstate |a〉 for the adjacency matrix H are also labeled,
with α, β, γ free variables, assuming hpv = 1 for every edge
(p, v). The amplitudes of the neighbors of any vertex sum to zero.
The existence of such an |a〉 is promised by Lemma 4. As required
by Lemma 3, 〈v|a〉 = 0 if ∧(v) = 1, so vertices evaluating to 1
are not labeled.

4 Zero-energy eigenstates of H

Recall that in a NAND tree T , internal vertices are in-
terpreted as NAND gates on their children. As Definition 2
puts zero weight on the parental edge of a leaf evaluating to
one, such leaves can be regarded as disconnected. Then all
leaves connected to the root component can be interpreted
as zeros.

Definition 4. By Tv , we mean the subtree of T consisting of
v and all its descendants. The restriction to Tv of a vector
|a〉 on T will be denoted |aTv 〉. That is, for a subset S of
the vertices, define the projector ΠS =

∑
s∈S |s〉〈s|; then

|aTv 〉 = ΠTv |a〉. We will also write av for 〈v|a〉. Finally,
let HS = ΠSH .

Lemma 3. For an internal vertex p in NAND tree T , if
∧(p) = 1 and HTp |a〉 = 0, then ap = 0.

Proof. Since ∧(p) = 1, there exists a child v of p having
∧(v) = 0. If v is a leaf, then 0 = 〈v|H|a〉 = hpvap, as
asserted. Otherwise, all children c of v must have ∧(c) = 1,
implying by induction that ac = 0. Then

0 = 〈v|H|a〉 = hpvap +
∑

c

hvcac = hpvap ,

as asserted.
1In fact, σ−(r) = O(

√
dr), because sw must increase by at least

one every two levels down (two NOT gates in a row would be redundant).
Slightly stronger bounds can be given for trees preprocessed according to
the rebalancing procedure of Lemma 9, but poly(dr) and poly(log N)
factors here won’t significantly change the running time.



Lemma 3 constrains the existence of zero-energy eigen-
states supported on the root r when the NAND formula
evaluates to 1. However, there may be zero-energy eigen-
states that are not supported on the root (for example, con-
sider the right subtree in Figure 3).

Lemma 4. Consider a vertex p in NAND tree T . If ∧(p) =
0, then there exists an |a〉 = |aTp〉 with HTp |a〉 = 0,
‖|a〉‖ = 1, and ap ≥ 1/(

√
σ−(p)s1/4

p ).

Proof. Since ∧(p) = 0, for all children v of p, ∧(v) = 1.
So each v has a child cv satisfying ∧(cv) = 0.

Construct |a〉 as follows. Set av = 0 for all children v.
Set |aTc〉 = 0 for all grandchildren c /∈ {cv}. By induc-
tion, for each v construct |ãTcv 〉 satisfying ‖|ãTcv 〉‖ = 1,
HTcv |ãTcv 〉 = 0 and ãcv ≥ 1/(

√
σ−(cv)s1/4

cv ).
For each v, in order to satisfy 〈v|H|a〉 = 0, we need

hpvap = −hvcvacv . To satisfy all these equations, we
rescale the vectors |ãTv 〉. Let ap = 1, and let |aTcv 〉 =
− hpv

hvcv

1
ãcv

|ãTcv 〉. It only remains to verify that ‖|a〉‖2 ≤
√

spσ−(p), so that renormalizing, ap/‖|a〉‖ = 1/‖|a〉‖ is
still large. Indeed,

‖|a〉‖2 = a2
p +

∑
v

h2
pv

h2
vcv (ãcv )2

‖|aTcv 〉‖2

≤ 1 +
∑

v

h2
pv

h2
vcv

√
scvσ−(cv)

≤ 1 +
∑

v

sv√
sp

σ−(cv)

≤ √
sp

( 1
√

sp
+ max

v
σ−(cv)

)
≤ √

spσ−(p) .

(The key step in the above proof, which motivates the
choice of weights hpv , is

∑
v sv = sp.)

Lemma 4 is a strong converse of Lemma 3, as it does not
merely assert that ap can be set nonzero; it also puts a quan-
titative lower bound on the achievable magnitude. Lemma 4
lets us say that there exists an energy-zero eigenstate with
large overlap with the root r when ∧(r) = 0.

Now in the case ϕ(x) = ∧(r) = 0, let us extend |aTr
〉

from Lemma 4 into a zero-energy eigenvector |a〉 over the
whole graph, to see that the overlap |〈r′′|a〉|/‖|a〉‖ is large.
In order to satisfy H|a〉 = 0, we must have ar′ = 0 and
−ar′′ = hr′r

hr′′r′
ar =

√
σ−(r)N1/4ar ≥ 1. Therefore, we

lower bound

|〈r′′|a〉|
‖|a〉‖

≥ 1√
1 + ‖|aTr 〉‖2

=
1√
2

.

This completes the proof of the first half of Theorem 2.

5 Spectral gap of H in the case ϕ(x) = 1

To prove the second half of Theorem 2, we must con-
sider the case ϕ(x) = 1, and investigate the eigenvectors of
H corresponding to energies E close to zero. As T is a bi-
partite graph, the spectrum of H is symmetric around zero.
Let

|E〉 =
∑

v

αv|v〉

be an eigenvector of H with eigenvalue E > 0.
From Eq. (1) we obtain

〈v|H|E〉 = Eαv = hpvαp +
∑

c

hvcαc . (4)

The analysis depends on the fact that αv/αp is either large
or small in magnitude depending on whether ∧(v) = 0 or
1.

Lemma 5. Let 0 < E ≤ 1

5σ−(r)
√

σ+(r)
. For vertices v 6=

r′′ in T , define y0v and y1v by

y0v = (1 + kv)σ−(v) 4
√

svsp

y1v = (1 + kv)σ−(v)
s
3/4
v

s
1/4
p

,
(5)

where p is the parent of v, and kv is defined by

kv = 4E2σ2
−(v)σ+(v).

Then for every vertex v 6= r′′ in T , either αv = αp = 0, or

∧(v) = 0 ⇒ 0 < αp/αv ≤ y0vE
∧(v) = 1 ⇒ 0 > αv/αp ≥ −y1vE .

(6)

Note that, because of our assumption on E, we always
have kv ≤ 4

25 = 0.16.

Proof. By induction. Base case: for every leaf v, ∧(v) = 0
and by Eq. (4), Eαv = hpvαp. Thus either αv = αp = 0,
or

αp

αv
=

E

hpv
= 4

√
sp

sv
E = 4

√
spsvE ≤ y0vE .

Induction step:

• If ∧(v) = 0, then all children c evaluate to ∧(c) = 1.
First assume αv 6= 0. Dividing both sides of Eq. (4)
by αv , using the induction hypothesis, and rearranging
terms gives

αp

αv
=

1
hpv

(
E −

∑
c

hvc
αc

αv

)
≤ 1

hpv

(
1 +

∑
c

hvcy1c

)
E .



Using the inductive assumption about y1c and substi-
tuting the expressions for hpv, hvc in terms of αp, αv ,
αc, we can upper bound the coefficient of E by

1
hpv

+
∑

c

(1 + kc)σ−(c)
scs

1/4
p

s
3/4
v

.

Since
∑

c sc = sv and kc ≤ kv for any c, this is at
most

(1 + kv)
(

4

√
sp

sv
+ max

c
σ−(c) 4

√
svsp

)
= (1 + kv) 4

√
svsp

(
max

c
σ−(c) +

1
√

sv

)
= (1 + kv)σ−(v) 4

√
svsp .

The induction hypothesis also gives that αp/αv ≥
E/hpv > 0. If αv = 0, then the induction hypothesis
gives that all αc are zero, so also αp = 0 by Eq. (4).

• If ∧(v) = 1, then there is at least one child c with
∧(c) = 0. We may assume αv 6= 0 since otherwise
αv/αp = 0 and the inequality holds trivially. Then,
again dividing Eq. (4) by αvhpv , using the induction
hypothesis, and multiplying by E,

αp

αv
=

E

hpv
−

∑
c

hvc

hpv

αc

αv

≤ E

hpv
+

∑
c:∧(c)=1

hvcy1c

hpv
E

−
∑

c:∧(c)=0

hvc

hpvy0cE
.

(7)

Because of the previous case, we can upper bound the
first sum by∑

c

hvcy1c

hpv
E ≤ max

c
(1 + kc)σ−(c) 4

√
svspE

≤ (1 + kv)σ−(v) 4
√

svspE . (8)

We lower bound the second sum by one of its terms
(since there is at least one c with ∧(c) = 0):

hvc

hpvy0cE
≥ s

1/4
p

(1 + kc)σ−(v)s3/4
v E

.

Finally, the first term on the right hand side of Eq. (7)
is E

hpv
= 4

√
sp

sv
E, which is less than the right hand side

of Eq. (8). Therefore, Eq. (7) is at most

2(1 + kv)σ−(v) 4
√

svspE − s
1/4
p

(1 + kc)σ−(v)s3/4
v E

=
−s

1/4
p

(
1− 2(1 + kv)(1 + kc)σ2

−(v)svE2
)

(1 + kc)σ−(v)s3/4
v E

.

Let δ = σ2
−(v)svE2. Since kc ≤ kv ≤ 0.16, we can

lower bound the expression in brackets by

1− 2 · 1.162δ ≥ 1− 2.7δ .

This means that

αp

αv
≤ −s

1/4
p

(1 + kc)σ−(v)s3/4
v E

(1− 2.7δ) .

To complete the proof that αp

αv
≤ − 1

y1vE (and, hence,
by taking inverses, αv

αp
≥ −y1vE), it suffices to show

that
1 + kc

1− 2.7δ
≤ 1 + kv .

We have

1 + kc

1− 2.7δ
= 1 + kc + (1 + kc)

(
1

1− 2.7δ
− 1

)
≤ 1 + kc + 1.16

(
1

1− 2.7δ
− 1

)
. (9)

We now observe that δ ≤ σ2
−(v)σ+(v)E2 ≤ 0.04. If

0 ≤ δ ≤ 0.04, the last term of (9) is always upper
bounded by 4δ. Therefore, the entire right hand side of
(9) is upper bounded by

1 + kc + 4δ = 1 + 4σ2
−(v)(σ+(c) + sv)E2

≤ 1 + kv .

Now we are ready to complete the proof of the second
half of Theorem 2. Assume |E〉 is an eigenvector of H with
energy E ∈ (0, 1

5σ−(r)
√

σ+(r)
]. We want to show αr′ =

αr′′ = 0. We have

Eαr′ = hr′r′′αr′′ + hrr′αr

≥ h2
r′r′′

E
αr′ − hrr′y1rEαr′ ,

with the inequality following from Eαr′′ = hr′r′′αr′ and
Lemma 5. If αr′ 6= 0, we can divide both sides by Eαr′ .
Then, moving the second term from the right hand side to
the left gives us

1 + hrr′y1r ≥
h2

r′r′′

E2
.

Substituting the values of hrr′ and hr′r′′ and applying the
assumed upper bound on E gives us

1 + y1r ≥
25σ−(r)σ+(r)√

N
≥ 25σ−(r)

√
N . (10)



By Lemma 5, we have

y1r = (1 + kr)σ−(r)
s
3/4
r′

s
1/4
r

≤ 1.16σ−(r)
√

N .

Substituting this into (10) gives a contradiction.
Therefore, αr′ = 0 and, because of Eαr′′ = hr′r′′αr′ ,

we also have αr′′ = 0. This completes the proof of Theo-
rem 2.

6 Discrete-time quantum walk

To construct an algorithm from Theorem 2, we first
briefly review Szegedy’s procedure for quantizing classical
random walks. Theorem 6, adapted from [20], relates the
eigensystem of the discrete-time quantum walk to that of
the original classical walk.

Theorem 6 ([20]). Let {|v〉 : v ∈ V } be an orthonor-
mal basis for HV . For each v ∈ V , let |ṽ〉 = |v〉 ⊗∑

w∈V

√
pvw|w〉 ∈ HV ⊗ HV , where pvw ≥ 0 and

〈ṽ|ṽ〉 =
∑

w pvw = 1. Let T =
∑

v |ṽ〉〈v| and Π = TT † =∑
v |ṽ〉〈ṽ| be the projection onto the span of the |ṽ〉s. Let

S =
∑

v,w |v, w〉〈w, v|, a swap. Let M = T †ST =∑
v,w |v〉〈ṽ|S|w̃〉〈w| =

∑
v,w

√
pvwpwv|v〉〈w| a real sym-

metric matrix, and take {|λa〉} a complete set of orthonor-
mal eigenvectors of M with respective eigenvalues λa.

Let U = (2Π − 1)S, a swap followed by reflection
about the span of the |ṽ〉s. Then the spectral decompo-
sition of U is determined by that of M as follows: Let
Ra = span{T |λa〉, ST |λa〉}. Then Ra ⊥ Ra′ for a 6= a′;
let R = ⊕aRa. U fixes the spaces Ra and is −S on R⊥.
The eigenvalues and eigenvectors of U within Ra are given
by βa,± = −λa ± i

√
1− λ2

a and (1 + βa,±S)T |λa〉, re-
spectively.

Proof. First assume a 6= a′, and let us show Ra ⊥ Ra′ .
Indeed, 〈λa|T †T |λa′〉 = 〈λa|λa′〉 = 0, as T †T = 1. Since
S2 = 1, similarly, ST |λa〉 is orthogonal to ST |λa′〉. Fi-
nally, 〈λa|T †ST |λa′〉 = 〈λa|M |λa′〉 = 0. Therefore, the
decomposition HV ⊗HV = (⊕aRa)⊕R⊥ is well-defined.

R is the span of the images of ST and T . 2Π − 1 is +1
on the image of T and −1 on its complement; therefore U
is −S on R⊥.

Finally, ΠT = TT †T = T and ΠST = TT †ST =
TM , so

U(ST |λa〉) = (2Π− 1)T |λa〉 = T |λa〉
U(T |λa〉) = (2Π− 1)ST |λa〉 = (2λa − S)T |λa〉 ;

U fixes the subspaces Ra. To determine its eigenvalues
on Ra, let |β〉 = (1 + βS)T |λa〉. Then U |β〉 = (2λa +
β)T |λa〉 − ST |λa〉 is proportional to |β〉 if β(2λa + β) =
−1; i.e., β ∈ {−λa ± i

√
1− λ2

a}. (If λa = ±1, note that
T |λa〉 = ±ST |λa〉, so Ra is one-dimensional, correspond-
ing to a single eigenvector of U .)

To connect this theorem to classical and quantum walks,
start with an undirected graph G = (V,E). Choose the pv,w

to be the transition probabilities v → w of a classical ran-
dom walk on this graph (i.e., with the constraint pv,w = 0
if (v, w) /∈ E). Then U = (2Π − 1)S can be considered
a quantization of the classical walk, taking place on the di-
rected edges of G. First the swap S switches the direction
of an edge. Then, for the first register fixed to be |v〉, 2Π−1
acts as a reflection about |ṽ〉 = |v〉⊗

∑
w∼v

√
pv,w|w〉; it is

a “coin flip” that mixes the directed edges leaving v. There-
fore, although U acts onHV ⊗HV , it preserves the subspace
spanned by |v, w〉 and |w, v〉 for (v, w) ∈ E. An alternative
basis for this subspace is to give a vertex v together with
an edge index to describe an edge leaving v. If the graph
has maximum degree D, then U can be implemented on
HV ⊗ CD instead of HV ⊗HV .

Discretization of continuous-time quantum
walks

Szegedy’s Theorem 6 relates the eigenvalues and eigen-
vectors of the quantum walk U to that of the matrix M =∑

v,w

√
pv,wpw,v|v〉〈w|. If P =

∑
v,w

√
pv,w|v〉〈w| is the

elementwise square root of the transition matrix of a clas-
sical random walk, then M is the elementwise product
P ◦ PT . But M can also be regarded as the Hamiltonian
for a continuous-time quantum walk on the vertices of the
underlying graph.

In our case, we are given H , and desire a factorization
H = P ◦ PT such that P has all row norms exactly one.
Then Theorem 6 with M = H applies to relate the eigen-
system of H to that of a certain discrete-time quantum walk.
Such a factorization is possible for a large class of Hamilto-
nians:

Claim 7. Let H =
∑

v,w Hv,w|v〉〈w| be the positive-
weighted symmetric adjacency matrix of a connected graph
G. Let |δ〉 be the principal eigenvector of H , with 〈v|δ〉 =
δv > 0 for every v. Assume ‖H‖ = 1. Then H = P ◦ PT ,

where P =
∑

v,w

√
Hv,w

δw

δv
|v〉〈w| has all row norms

equal to 1.

Proof. Since H is nonnegative, its principal eigenvector
|δ〉 is also nonnegative, by the Perron-Frobenius Theorem.
Since H is connected, δv > 0 for every v; hence P is
well-defined. By construction, Pv,wPw,v = Hv,w, i.e.,
P ◦PT = H . Furthermore, the squared norm of the vth row
of P is

∑
w P 2

v,w = 1
δv

∑
w Hv,wδw = (Hδ)v

δv
= ‖H‖ = 1,

so P corresponds to a classical random walk.

Remark 2. Szegedy’s Theorem 6, with Claim 7, serves as
a general method for relating an arbitrary continuous-time
quantum walk on the vertices of G to a discrete-time quan-
tum walk on directed edges of G. In particular, the eigenval-



ues of the discrete walk −iU are given by ±
√

1− λ2
a + iλa

(i.e., ei arcsin λa and −e−i arcsin λa ), whereas the continuous
walk eiM has eigenvalues eiλa . The spectral gaps from zero
of the continuous walk and the discrete walk are equal up
to third order.

7 The algorithm

Recall from Definition 3 that a NAND formula is “ap-
proximately balanced” if σ−(r) = O(1), σ+(r) = O(N)
and ‖H‖ = O(1). These conditions are satisfied, for ex-
ample, by a balanced binary NAND tree, as σ−(r) < 2 and
σ+(r) < 2N will then both be geometric series. The def-
inition is also satisfied if for a fixed ε ∈ (0, 1

2 ], for every
vertex p and every grandchild c of p, sc ≤ (1− ε)sp. Under
this condition, σ−(r) = O( 1

ε ) and σ+(r) = O(N
ε ).

Theorem 8. After efficient (i.e., poly(N) time) classical
preprocessing, independent of the input x, of an arbitrary
formula ϕ of size N , ϕ(x) can be evaluated with error
< 1/3 using N

1
2+O(1/

√
log N) queries to Ux. The running

time is also N
1
2+O(1/

√
log N) assuming unit-cost coherent

access to the preprocessed string. For a formula that is ap-
proximately balanced according to Definition 3, the query
complexity is only O(

√
N) and the running time is only√

N(log N)O(1).

Proof. Preprocessing:

If σ−(r)
√

σ+(r)‖H‖ = N
1
2+Ω(1), then preprocess the for-

mula in two ways. First, expand out gates so each NAND
gate has O(1) fan-in. Since the edge weights are all ≤ 1,
this ensures that ‖H‖ = O(1). Also, apply the formula
rebalancing procedure of [6, 5] with parameter k to be de-
termined:

Lemma 9 ([5, Theorem 4]). For all k ≥ 2, one can effi-
ciently construct an equivalent NAND formula ϕ with gate
fan-ins at most two and satisfying2

depth(ϕ) ≤ (9 ln 2)k log2 N

size(ϕ) ≤ N1+1/ log2 k .

Let H be the Hamiltonian corresponding to a weighted
adjacency matrix of the graph according to Definition 2.
Compute a discrete-time quantum walk operator U that cor-
responds to M = H/n(H) via Theorem 6 (where n(H)
is some upper bound on ‖H‖, to ensure that all eigenval-
ues of M have |λa| ≤ 1). Obtaining U takes a little care,

2The constant in the depth bound is 9 ln 2 instead of the 3 ln 2 in [5,
Theorem 4] because we lose a constant converting an {AND, OR, NOT}
formula to a NAND formula.

since H depends on the oracle. Consider H0N the Hamil-
tonian from Definition 2 assuming that all leaves evalu-
ate to 0. By applying Claim 7 as part of the preprocess-
ing, we obtain a U0N corresponding to H0N /‖H0N ‖. Let
U = OxU0N , where Ox is the input phase-flip oracle; con-
ditioned on the current vertex being a leaf i, Ox adds a
phase of (−1)xi . Then we claim that applying Theorem 6
to U gives M = H/‖H0N ‖. Indeed, the only difference
between U and U0N is on the |̃i〉s for leaf vertices i with
xi = 1; in U0N , |̃i〉 = |i, p〉 (p being i’s parent), whereas in
U , |̃i〉 = |i, i〉 (i.e., pi,i = 1). Therefore the M from U only
differs from H0N in the coefficients involving leaves i with
xi = 1, and 〈i|M |p〉 = 〈̃i|S|p̃〉 = 0, so M = H/‖H0N ‖ as
claimed.

Algorithm:

1. Prepare |r̃′′〉 = |r′′, r′〉.

2. “Measure the energy according to H .” In other words,
apply quantum phase estimation to −iU = −iOxU0N .
Use precision δp = 1/(10σ−(r)

√
σ+(r)) and error

probability δe any constant less than 1/4.

3. Output zero if and only if the measured phase is 0 or
π.

Figure 2 lays out the steps of the algorithm in complete
detail for the case of a balanced binary NAND tree. We
did not use Claim 7 to derive U in Figure 2, because in this
special case it is clear that applying Theorem 6 to U gives
H , except with larger weights to leaves evaluating to 0 (see
Remark 1).

Correctness:

The correctness follows from Theorems 2 and 6. If ϕ(x) =
0, then there exist two eigenvectors of U given by (1 ±
iS)T |a〉, with eigenvalues ±i, respectively. Their over-
laps with the initial state |r̃′′〉 are |〈r̃′′|(1 ± iS)T |a〉| =
|ar′′ ± iar′

hr′′r′
‖H‖ | ≥ 1/

√
2 − O(1/N1/4). Since the norm

of (1 ± iS)T |a〉 is at most 2‖|a〉‖ = 2, we find that the
probability of outputting 0 is at least 2

(
1
2 ( 1√

2
− o(1))

)2 =
1/4− o(1).

Conversely, if ϕ(x) = 1, then every eigenstate of H with
support on r′ or r′′ has energy at least 1/(5σ−(r)

√
σ+(r))

in magnitude. Every eigenstate of U with support on
|r′′, r′〉 = |r̃′′〉 = T |r′′〉 must be of the form (1 +
βa,±S)T |λa〉 = (1 + (−λa ± i

√
1− λ2

a)S)T |λa〉. The
terms which can overlap T |r′′〉 are either 〈r′′|λa〉 (via T )
or 〈r′|λa〉 (via ST ). But for |λa| < 1/(10σ−(r)

√
σ+(r)),

both coefficients must be zero. Therefore, our algorithm
outputs 0 with probability less than δe < 1/4. This con-
stant gap can be amplified as usual.



Query and time complexity:

Phase estimation requires applying O(‖H0N ‖/(δpδe)) =
O(σ−(r)

√
σ+(r)‖H0N ‖) controlled-U evolutions [10].

For an approximately balanced graph, this is O(
√

N). For
a general graph, the number of controlled-U applications is
O(
√

srd
3/2
r ‖H0N ‖) due to the bounds on σ±(r) from Def-

inition 3. For a rebalanced formula from Lemma 9 with

parameter k, this is O(N
1
2+

1
2 log2 k (k log2 N)3/2) since

‖H‖ = O(1). Set k = 2
q

log2 N
3 to optimize this bound

to be N
1
2+
√

(3+o(1))/ log N queries to Ox.
During the preprocessing phase, for each vertex v we

compute a sequence of O((log N)2 log log N) elementary
gates that approximate to within 1/N the coin diffusion op-
erator at v, by applying the Solovay-Kitaev Theorem [15].
(Using these approximations, the algorithm’s total error
probability will only increase by o(1).) Store the descrip-
tions of these gate sequences in a classical string, which
we assume the algorithm can access coherently at unit cost.
The algorithm at vertex v looks up the corresponding gate
sequence and applies it to the coin register |c〉. The total
running time is thus only polylogarithmically larger than
the number of queries.

8 Evaluating iterated functions

Our algorithm can be used to evaluate an arbitrary
Boolean function by first writing a NAND formula for the
function and then evaluating that formula. Of course, this
approach will only be advantageous when the formula size
is sufficiently small. This strategy is particularly natural in
the case of a recursively defined function. In particular, it
gives improved upper bounds for an iterated function stud-
ied in [1].

Define a function “all equal” as follows: f(x1, x2, x3) =
1 if x1 = x2 = x3 and f(x1, x2, x3) = 0 otherwise. We
define a sequence of iterated functions f1, f2, . . ., with fn

being a function of 3n variables. Let f1 = f , and

fn(x1, . . . , x3n) = f
(
fn−1(x1, . . . , x3n−1),
fn−1(x3n−1+1, . . . , x2·3n−1),

fn−1(x2·3n−1+1, . . . , x3n)
)

.

The functions fn have attracted interest in the context of
relating polynomial degree and quantum query complexity
of Boolean functions. The polynomial degree of a Boolean
function f is always a lower bound on its quantum query
complexity [4]. The function fn is one of the known func-
tions for which this lower bound is not optimal. The poly-
nomial degree of fn is 2n, while the quantum query com-
plexity of fn is lower bounded by Ω(( 3√

2
)n) = Ω(2.12n)

[1].

So far, there has been no quantum algorithm for fn using
o(3n) queries. Our approach gives the first non-trivial quan-
tum algorithm for this function. To see this, note that both
f and its negation can be represented by NAND formulas
of size 6 as follows:

f(x1, x2, x3) = ∧(∧(x1, x2, x3),∧(x̄1, x̄2, x̄2))
f̄(x1, x2, x3) = ∧(∧(x1, x̄2),∧(x2, x̄3),∧(x3, x̄1)) .

Using these formulas, we can inductively construct NAND
formulas for fn and f̄n of size 6n. Namely, given NAND
formulas for fn−1 and f̄n−1 of size 6n−1, we can substi-
tute those instead of variables into the NAND formulas for
f and f̄ to obtain NAND formulas for fn and f̄n of size
6n. Thus, using our algorithm for NAND tree evaluation,
we can evaluate fn using O(

√
6n) = O(2.45n) quantum

queries.
Another interesting function for which our algorithm

gives an improved upper bound is the majority function:
g(x1, x2, x3) = 1 if and only if x1 + x2 + x3 ≥ 2.
The majority function can be expressed as g(x1, x2, x3) =
(x1 ∧x2)∨ ((x1 ∨x2)∧x3), hence the iterated function gn

can be evaluated in O(
√

5n) = O(2.24n) queries.

9 Open problems

We conclude by mentioning some open problems.

• Our algorithm needs to know the full structure of the
formula beforehand to determine the quantum walk
transition amplitudes (i.e., the biases of the “quantum
coin”) at each internal vertex. (The transition ampli-
tudes are determined by the principal eigenvector of
the graph’s weighted adjacency matrix; they can also
be solved for recursively from the leaves to r.) How-
ever, these coefficients need not be computed exactly,
because there is some freedom in the recurrence on
y0v and y1v . It would be interesting to know if a dif-
ferent choice of coefficients, or a relaxed calculation
thereof, would allow for faster preprocessing. Further-
more, it would be interesting to know on what kinds
of structured inputs the preprocessing can be done in
time N

1
2+o(1).

• Numerical simulations indicate that the formula can
be evaluated by running the quantum walk from the
initial state, and measuring whether the final quantum
state has large overlap with 1√

2
(|r′, r′′〉 + |r′′, r′〉) or

1√
2
(|r′, r′′〉−|r′′, r′〉). If this is true, then we can avoid

the phase estimation on top of the quantum walk, sim-
plifying the algorithm.

• What kinds of noisy oracles can this algorithm, or an
extended version, tolerate? For example, [14] extends



Grover search to the case where input values are com-
puted by a bounded-error quantum subroutine.

• Are there hard instances of formulas for which the re-
balancing provided by Lemma 9 is tight? Are these
also hard instances for our algorithm? For exam-
ple, the most unbalanced formula, ϕ(x1 . . . xN ) =
x1 ∧(x2 ∧(x3 ∧(. . .∧xN ))), is not a hard instance.
It can be rebalanced by a different procedure, giv-
ing an equivalent formula with depth O(log N) and
size O(N log N), and can be evaluated with O(

√
N)

queries.
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