
Adversary Lower Bound for the Orthogonal Array Problem

Robert Špalek∗

spalek@google.com

Abstract

We prove a quantum query lower bound Ω(n(d+1)/(d+2)) for the problem of deciding
whether an input string of size n contains a k-tuple which belongs to a fixed orthogonal
array on k factors of strength d ≤ k − 1 and index 1, provided that the alphabet size is
sufficiently large. Our lower bound is tight when d = k − 1.

The orthogonal array problem includes the following problems as special cases:

• k-sum problem with d = k − 1,

• k-distinctness problem with d = 1,

• k-pattern problem with d = 0,

• (d− 1)-degree problem with 1 ≤ d ≤ k − 1,

• unordered search with d = 0 and k = 1, and

• graph collision with d = 0 and k = 2.

1 Introduction

1.1 History

One of two main techniques for proving lower bounds on quantum query complexity of Boolean
functions is the adversary method developed by Ambainis [Amb02, Amb06] and independently
by Barnum, Saks, and Szegedy [BSS03] as a generalization of the “hybrid argument” introduced
by Bennett, Bernstein, Brassard, and Vazirani [BBBV97] for the Or function.

The adversary bound was strengthened by Høyer, Lee, and Špalek [HLŠ07] to the negative-
weight adversary lower bound, which we define in Section 2. This stronger version was proved
to be optimal by Reichardt [Rei11], and shown to apply to non-Boolean functions and also to
the more general setting of state generation and conversion by Lee, Mittal, Reichardt, Špalek,
and Szegedy [LMR+11]. Although the negative-weight adversary lower bound is known to be
tight, for a long time it had not been used to prove lower bounds for explicit functions. Vast
majority of lower bounds by the adversary method used the old positive-weight version of this
method, and the only bounds which utilized the power of negative weights were for functions on
a constant number of bits and their compositions, and these bounds were obtained by numeric
optimization.

The other main technique for quantum query lower bounds is the polynomial method de-
veloped by Beals, Buhrman, Cleve, Mosca, and de Wolf [BBC+01]. This method is in general
incomparable to the adversary method. Ambainis showed several iterated functions for which
the adversary method gives polynomially larger bounds [Amb06]. On the other hand, the
polynomial method gives stronger bounds for low-error and zero-error algorithms [BCWZ99].

∗Google, Inc.

1

Another example where the polynomial method used to give stronger bounds than the
adversary method is the element distinctness function. The input to the function is a string
of length n of symbols in an alphabet of size q, i.e., x = (x1, . . . , xn) ∈ [q]n. We use notation
[q] to denote the set {1, . . . , q}. The element distinctness function evaluates to 0 if all symbols
in the input string are pairwise distinct, and to 1 otherwise. The quantum query complexity
of element distinctness is O(n2/3) with the algorithm given by Ambainis [Amb07]. Tight lower
bounds were given by Aaronson and Shi [AS04], Kutin [Kut05], and Ambainis [Amb05] using
the polynomial method.

The positive-weight adversary bound, however, fails for element distinctness. The reason
is that this function has 1-certificate complexity 2, and the so-called certificate complexity bar-
rier [ŠS06, Zha05] implies that for any function with 1-certificate complexity bounded by a
constant, the positive-weight adversary method cannot achieve anything better than Ω(

√
n).

The negative-weight adversary bound is not limited by this barrier [HLŠ07], but showing an
explicit adversary lower bound breaking the certificate complexity barrier for this function or,
in fact, for any function on more than a constant number of bits was open for a long time.

Belovs and Špalek [BŠ13] were the first to show such an explicit lower bound. They re-
proved the Ω(n2/3) lower bound for element distinctness using the negative-weight adversary
method, and generalized it to the following problem. Let G be a finite Abelian group, t ∈ G
its arbitrary element, and k an arbitrary but fixed constant. The k-sum problem consists in
deciding whether the input string x1, . . . , xn ∈ G contains a subset of k elements that sums up
to t. This problem was first posed by Childs and Eisenberg [CE05], who noted that it is the
hardest problem among all problems with 1-certificate complexity k, because knowledge of any
k − 1 input values doesn’t reveal any information about whether that (k − 1)-tuple can be a
part of a 1-certificate or not, and they conjectured that its complexity is Ω(nk/(k+1)). Belovs
and Špalek [BŠ13] resolved this conjecture in the positive.

The Ω(nk/(k+1)) lower bound for the k-sum problem is tight thanks to the quantum algorithm
based on quantum walks on the Johnson graph [Amb07]. This algorithm was first designed
to solve the k-distinctness problem. This problem asks for detecting whether the input string
x ∈ [q]n contains k elements that are all equal. Element distinctness is the same as 2-distinctness.
Soon enough it was realized that the same algorithm works for any function with 1-certificate
complexity k [CE05], in particular, for the k-sum problem. The quantum query complexity of
this algorithm is O(nk/(k+1)), and the algorithm is thus optimal for the k-sum problem.

Quantum walk on the Johnson graph is not optimal for the k-distinctness problem when k >
2. Belovs and Lee showed a ground-breaking quantum algorithm for a certain promise version
of this problem based on learning graphs running in O(n1−2k−2/(2k−1)) = o(n3/4) queries [BL11],
which Belovs then improved to an algorithm for full k-distinctiness [Bel12] with the same query
complexity. However, none of these two algorithms is time-efficient. Very recently, Belovs
and independently Childs, Jeffery, Kothari, and Magniez described two new quantum walk
algorithms for 3-distinctness, not based on learning graphs, running in time Õ(n5/7) [Bel13b,
CJKM13]. The best known lower bound for the k-distinctness problem is just Ω(n2/3), by a
reduction from element distinctness.

1.2 Our result

In this paper, we generalize k-distinctness, k-sum, and several other problems, and express
them as special cases of a general family of functions, characterized by orthogonal arrays. Let
us define orthogonal arrays first. We use the following notation. For an x = (x1, . . . , xn) ∈ Xn

and S ⊆ [n], let xS denote the projection of x on S, i.e., the vector (xs1 , . . . , xs`) where s1, . . . , s`
are the elements of S in the increasing order.

2

Definition 1 (Orthogonal array [Rao47, HSS99]). Let X be an alphabet. Assume T is a subset of
Xk of size λ · |X|d for integers 0 ≤ d ≤ k−1 and λ ≥ 1. We say that T is a d-(X, k, λ) orthogonal
array iff, for every subset of indices D ⊂ [k] of size d and for every vector (y1, . . . , yd) ∈ Xd,
there exist exactly λ strings (x1, . . . , xk) ∈ T such that xD = y. We call d the strength, k the
number of factors, λ the index of the array, and |X| the alphabet size. We call T linear if X is
a finite field, and the elements of T form a subspace of the vector space Xk.

In this paper, we restrict ourselves to orthogonal arrays of index λ = 1.

Definition 2 (Consistent collection of orthogonal arrays). Assume that each subset S of [n] of
size k is equipped with a d-(X, k, 1) orthogonal array TS . A collection {TS}S of orthogonal
arrays is called consistent iff, for every pair of subsets S1, S2 ⊂ [n] of size k with |S1 ∩ S2| ≥ d,
their corresponding orthogonal arrays are consistent. We say that TS1 is consistent with TS2 iff,
for every D ⊆ S1 ∩ S2 of size d and every vector (y1, . . . , yd) ∈ Xd, the unique vectors x1 ∈ TS1

and x2 ∈ TS2 satisfying x1
D = x2

D = y are consistent on the whole intersection S1 ∩ S2, i.e.,
x1
S1∩S2

= x2
S1∩S2

.

Definition 3 (Orthogonal array problem). Let {TS}S be a collection of d-(X, k, λ) orthogonal
arrays. The d-(X, k, λ) orthogonal array problem consists in finding an element of any of the
orthogonal arrays in the input string. More precisely, the input x ∈ Xn evaluates to 1 iff there
exists a subset S ⊆ [n] of size k such that xS ∈ TS . If the collection is consistent, we call the
problem a consistent orthogonal array problem.

The orthogonal array problem was first defined by Belovs and Špalek [BŠ13] as a convenient
tool to prove a tight lower bound for the k-sum problem, and it was also used by Belovs
and Rosmanis [BR12] to prove a lower bound on the quantum query complexity of certificate
structures. Both these papers only use a special case of orthogonal arrays with strength k − 1,
whereas we allow for any strength d ≤ k − 1.

Consider the following orthogonal array problems. The first three examples have been widely
studied before. The last two examples are new, at least in the context of this paper.

Example 1 (k-distinctness problem [Amb07, Bel12]). Let X be any alphabet. T = {xk : x ∈ X}
is a 1-(X, k, 1) orthogonal array. A collection of these arrays is consistent.

Example 2 (k-sum problem [CE05, BŠ13]). Let G be an Abelian group and t ∈ G. T =
{(x1, . . . , xk) ∈ Gk :

∑k
i=1 xi = t} is a (k − 1)-(G, k, 1) orthogonal array. A collection of these

arrays is consistent.

Example 3 (Unordered search [BBBV97, Gro97]). Let X be any alphabet and x ∈ X. T = {x}
is a 0-(X, 1, 1) orthogonal array. Unordered search is equal to the 1-sum problem.

Example 4 (k-pattern problem). Let X be any alphabet. For each k-tuple S, fix a string
yS ∈ Xk. TS = {yS} is a 0-(X, k, 1) orthogonal array.

If the collection {TS}S of the orthogonal arrays is consistent, then the k-pattern problem is
equivalent to k unordered searches without replacement, because there exists a unique vector
y ∈ Xn such that yS = yS . If the collection is inconsistent, then the k-pattern problem is more
general than unordered search. For example, the graph collision problem [MSS07] is a special
case of the 2-pattern problem. See our open problems for a more detailed discussion.

Example 5 (d-degree problem). Let F be a finite field and 0 ≤ d ≤ k − 2. For each k-tuple S,
let TS = {xS ∈ Fk : ∃α0, . . . αd ∈ F : ∀s ∈ S : xs =

∑d
i=0 αis

i}. TS is a linear (d + 1)-(F, k, 1)
orthogonal array.

A collection of these orthogonal arrays is consistent thanks to the way we consistently use
the indices s ∈ S as the points at which the polynomials are evaluated. Had we, for example,
instead sorted the elements of S in an increasing order, indexed them by [k], and defined the

3

polynomial at these points, we would have obtained a different collection of (d + 1)-(F, k, 1)
orthogonal arrays, which is not consistent.

k-distinctness and k-sum represent two extreme examples of orthogonal array problems,
differing by their strength, and the d-orthogonal array problem naturally interpolates between
them. Given that the quantum query complexity of the k-sum problem is known and the
complexity of k-distinctness is open, it is natural to ask how large lower bound can one prove
for the d-orthogonal array problem, as a function of d. We address this question and prove the
following result.

Theorem 4 (Main result). For a fixed k and 0 ≤ d ≤ k− 1, an alphabet X, and any collection
of d-(X, k, 1) orthogonal arrays TS, the quantum query complexity of the d-(X, k, 1) orthogonal
array problem is Ω(n(d+1)/(d+2)) provided that |X| ≥ nk/(k−d). The constant behind the big-
Omega depends on k and d, but not on n, |X|, or the choice of TS. The collection of orthogonal
arrays may or may not be consistent.

The proofs in our paper are straightforward extensions of the corresponding proofs of the
quantum query lower bound for the k-sum problem [BŠ13].

Our lower bound for k-distinctness is direct, meaning that it doesn’t use reduction from
element distinctness, and it gives the same bound Ω(n2/3). The lower bound for the d-orthogonal
array problem grows with growing d until it reaches its maximal value Ω(nk/(k+1)) for the k-sum
problem, where the bound is optimal. We don’t know whether our bound is optimal for any
d < k − 1.

We conjecture that any consistent d-(X, k, 1) orthogonal array problem can be solved in
o(nk/(k+1)) quantum queries when d < k − 1, using learning graphs like in [Bel12]. That
includes the (d− 1)-degree problem. Finding such an algorithm is one of our open problems.

2 Adversary Lower Bound

In this paper we are interested in the quantum query complexity of the d-([q], k, 1) orthogonal
array problem. For the definitions and main properties of quantum query complexity refer to,
e.g., Ref. [BW02]. For the history, definitions, and relationships between various quantum query
lower-bound methods refer to, e.g., Ref. [HŠ05]. For the purposes of our paper, it is enough to
define the adversary bound, which we do in this section.

We use the formulation from Ref. [BŠ13]. Compared to the original formulation of the
negative-weight adversary bound [HLŠ07], this formulation is different in two aspects. First,
in order to simplify the notation, we call an adversary matrix a matrix with rows labeled by
positive inputs, and columns by negative inputs. It is a quarter of the original adversary matrix
that completely specifies the latter. Second, due to technical reasons, we allow several rows
to be labeled by the same positive input. All this is captured by the following definition and
theorem.

Definition 5. Let f be a function f : D → {0, 1} with domain D ⊆ [q]n. Let D̃ be a set of pairs
(x, a) with the property that the first element of each pair belongs to D, and D̃i = {(x, a) ∈
D̃ : f(x) = i} for i ∈ {0, 1}. An adversary matrix for the function f is a non-zero real D̃1 × D̃0

matrix Γ. For an i ∈ [n], let ∆i denote the D̃1 × D̃0 matrix defined by

∆i[[(x, a), (y, b)]] =

{
0, xi = yi;

1, otherwise.

4

Theorem 6 (Adversary bound [HLŠ07, BŠ13]). In the notation of Definition 5, Q2(f) =
Ω(Adv±(f)), where

Adv±(f) = max
Γ

‖Γ‖
maxi∈n ‖Γ ◦∆i‖

(1)

where the maximization is over all adversary matrices for f , ‖ · ‖ is the spectral norm, and
Q2(f) is the quantum query complexity of f .

3 Proof

In this section we prove Theorem 4 using the adversary lower bound, Theorem 6. The idea
of our construction is to embed the adversary matrix Γ into a slightly larger matrix Γ̃ with
additional columns. Then Γ ◦ ∆i is a sub-matrix of Γ̃ ◦ ∆i, hence, ‖Γ ◦ ∆i‖ ≤ ‖Γ̃ ◦ ∆i‖. (In
this section we use ∆i to denote all matrices defined like in Definition 5, with the size and the
labels of the rows and columns clear from the context.) It remains to prove that ‖Γ̃‖ is large,
and that ‖Γ‖ is not much smaller than ‖Γ̃‖.

The proof is organized as follows. In Section 3.1 we define Γ̃ depending on certain parameters
αm, in Section 3.2 we analyze its norm, in Sections 3.3 and 3.4 we calculate ‖Γ̃◦∆i‖, in Section 3.5
we optimize αm, and, finally, in Section 3.6 we prove that the norm of the true adversary matrix
Γ is not much smaller than the norm of Γ̃.

3.1 Adversary matrix

Matrix Γ̃ consists of
(
n
k

)
matrices G̃s1,...,sk stacked one on another for all possible choices of

subset S = {s1, . . . , sk} ⊂ [n]:

Γ̃ =


G̃1,2,...,k

G̃1,2,...,k−1,k+1

. . .

G̃n−k+1,n−k+2,...,n

 . (2)

Each G̃S is a qn−k+d × qn matrix with rows indexed by inputs (x1, . . . , xn) ∈ [q]n such that
xS ∈ TS , and columns indexed by all possible inputs (y1, . . . , yn) ∈ [q]n.

We say that a column with index y is invalid if yS ∈ TS for some S ⊆ [n]. After removing all
invalid columns, G̃S will represent the part of Γ with the rows indexed by the inputs having an
element of the orthogonal array on S. Note that some positive inputs appear more than once
in Γ. More specifically, an input x appears as many times as many elements of the orthogonal
arrays it contains.

This construction may seem faulty, because there are elements of [q]n that are used as labels
of both rows and columns in Γ̃, and hence, it is trivial to construct a matrix Γ̃ such that the
value in (1) is arbitrarily large. However, we design Γ̃ in a specifically restrictive way so that it
still is a good adversary matrix after the invalid columns are removed.

Let Jq be the q × q all-ones matrix. Assume e0, . . . , eq−1 is an orthonormal eigenbasis of
Jq with e0 = 1/

√
q · (1, . . . , 1) being the eigenvalue q eigenvector. Consider the vectors of the

following form:
v = ev1 ⊗ ev2 ⊗ · · · ⊗ evn , (3)

where vi ∈ {0, . . . , q − 1}. These are eigenvectors of the Hamming Association Scheme on [q]n.
For a vector v from (3), the weight |v| is defined as the number of non-zero entries in (v1, . . . , vn).

Let E
(n)
k , for k = 0, . . . , n, be the orthogonal projector onto the space spanned by the vectors

5

from (3) having weight k. These are the projectors on the eigenspaces of the association scheme.

Let us denote Ei = E
(1)
i for i = 0, 1. These are q × q matrices. All entries of E0 are equal to

1/q, and the entries of E1 = I − E0 are given by

E1[[x, y]] =

{
1− 1/q, x = y;

−1/q, x 6= y.

Elements of S in G̃S should be treated differently from the remaining elements. For them,
we define a qd × qk matrix FS . It has rows labelled by the elements of TS and columns by the
elements of [q]k, and is defined as follows.

Definition 7. Let

E
(k)
≤d =

d∑
i=0

E
(k)
i =

∑
u=eu1⊗···⊗euk

|u|≤d

uu∗

be the projector onto the subspace spanned by the vectors of weight at most d. Let FS be

q(k−d)/2 times the sub-matrix of E
(k)
≤d consisting of only the rows from TS .

Finally, we define Γ̃ as in (2) with G̃S defined by

G̃S =
n−k∑
m=0

αmFS ⊗ E(n−k)
m , (4)

where FS acts on the elements in S and Em acts on the remaining n−k elements. The coefficients
αm will be specified later.

3.2 Norm of Γ̃

Lemma 8. Let Γ̃ be like in (2) with G̃S defined as in (4). Then

(a) ‖Γ̃‖ = Ω(α0n
k/2),

(b) ‖Γ̃‖ = O(maxm αmn
k/2).

Proof. Fix a subset S and denote T = TS and F = FS . Recall that E
(k)
≤d is the sum of uu∗ over

all u = eu1 ⊗· · ·⊗ euk
with at least k−d elements uj equal to 0, and F is the restriction of E

(k)
≤d

to the rows in T .
For u = eu1 ⊗ · · ·⊗ euk

and L ⊂ [k] of size |L| = k− d such that uL = e
⊗(k−d)
0 , let uL denote

the q(k−d)/2 multiple of u restricted to the elements in T . The reason for the superscript is that
we consider the following process of obtaining uL: we treat T as [q]d by erasing the elements
indexed by L in any string of T , then uL coincides on this set with u with the L-terms removed.

In this notation, the contribution from uu∗ to F equals uLuu∗, where Lu is any set of k− d
positions in u containing e0. In general, we do not know how the uL vectors relate for different
L. However, we know that, for a fixed L, they are all orthogonal; and for any L, (e⊗k0)L is the

vector 1/
√
qd · (1, . . . , 1).

Let us start with proving (a). We estimate ‖Γ̃‖ from below by w∗Γ̃w′, where w and w′ are
unit vectors with all elements equal. In other words, ‖Γ̃‖ is at least the sum of all its entries

divided by
√(

n
k

)
q2n+d−k. In order to estimate the sum of the entries of Γ̃, we rewrite (4) as

G̃S = α0e
⊗(n+d−k)
0 (e⊗n0)∗ +

∑
u,v

α|v|(u
Lu ⊗ v)(u⊗ v)∗ , (5)

6

where the summation is over all u and v such that at least one of them contains an element
different from e0. The sum of all entries in the first term of (5) is α0q

n+(d−k)/2. The sum of
each column in each of (uLu ⊗ v)(u ⊗ v)∗ is zero because at least one of uLu or v sums up to

zero. By summing over all
(
n
k

)
choices of S, we get that ‖Γ̃‖ ≥ α0

√(
n
k

)
= Ω(α0n

k/2).

In order to prove (b), express FS as
∑

L⊂[k]:|L|=k−d F
L
S with FL

S =
∑

u∈UL
uLu∗. Here {UL}

is an arbitrary decomposition of all u such that UL contains only u with e0 in the L-positions.
Define G̃L

S as in (4) with FS replaced by FL
S , and Γ̃L as in (2) with G̃S replaced by G̃L

S .
Since all uL vectors are orthogonal for a fixed L, we get that

(G̃L)∗G̃L =
∑

u∈UL,v

α2
|v|(u⊗ v)(u⊗ v)∗,

thus ‖(G̃L)∗G̃L‖ = maxm α
2
m. By the triangle inequality,

‖Γ̃L‖2 =
∥∥∥(Γ̃L)∗Γ̃L

∥∥∥ =

∥∥∥∥∥∑
S

(G̃L
S)∗G̃L

S

∥∥∥∥∥ ≤
(
n

k

)
max
m

α2
m.

Since Γ̃ =
∑

L⊂[k]:|L|=k−d Γ̃L and
(

k
k−d
)

= O(1), another application of the triangle inequality
finishes the proof of (b).

3.3 Action of ∆1

The adversary matrix is symmetric in all input variables and hence it suffices to only consider
the entry-wise multiplication by ∆1. Precise calculation of ‖Γ̃ ◦ ∆1‖ is very tedious, but one
can get an asymptotically tight bound using the following trick. Instead of computing Γ̃ ◦∆1

directly, we arbitrarily map Γ̃
∆17−→ Γ̃1 such that Γ̃1 ◦ ∆1 = Γ̃ ◦ ∆1, and use the inequality

‖Γ̃1 ◦ ∆1‖ ≤ 2‖Γ̃1‖ that holds thanks to γ2(∆1) ≤ 2 [LMR+11]. In other words, we change
arbitrarily the entries with x1 = y1. We use the mapping

E0
∆17−→ E0 , E1

∆17−→ −E0 . (6)

The projector E
(k)
≤d is mapped by ∆1 as

E
(k)
≤d

∆17−→ E0 ⊗ E(k−1)
d . (7)

It follows that

F
∆17−→ F1 =

∑
u=eu1⊗···⊗euk
u1=0,|u|=d

uLuu∗ , (8)

where uLu is defined like in the proof of Lemma 8. For a subset L ⊂ [k] of size |L| = k− d that
contains 1 ∈ L,

FL ∆17−→ (FL)1 =
∑
u∈UL
|u|=d

uLu∗ , (9)

where FL and UL is defined like in the proof of Lemma 8(b).

7

3.4 Norm of Γ̃1

Lemma 9. Let Γ̃ be like in (2) with G̃S defined as in (4), and map Γ̃
∆17−→ Γ̃1, G̃S

∆17−→ (G̃S)1,

and FS
∆17−→ (FS)1 using (6) and (8). Then

‖Γ̃1‖ = O
(

max
m

(
max(αmm

d/2n(k−1−d)/2, (αm − αm+1)nk/2)
))

.

Proof. In order to prove the upper bound, we express Γ̃1 =
∑

L Γ̃L
1 , (G̃S)1 =

∑
L(G̃L

S)1, and

(FS)1 =
∑

L⊂[k]:|L|=k−d(FL
S)1, like in the proof of Lemma 8(b), and upper-bound each ‖Γ̃L

1 ‖
separately. Note that even though L is a subset of [k] and not S, we can still use L to select
a subset of elements of S if each S is ordered in the ascending order. SL = {si : i ∈ L} for
S = {s1, . . . , sk}.

We have ‖Γ̃L
1 ‖2 = ‖(Γ̃L

1)∗Γ̃L
1 ‖ = ‖

∑
S(G̃L

S)∗1(G̃L
S)1‖. Decompose the set of all possible k-

tuples of indices into S1 ∪S2, where S1 are k-tuples containing 1 and S2 are k-tuples that don’t
contain 1. We upper-bound the contribution of S1 to ‖Γ̃L

1 ‖2 by maxm α
2
m

(
m+d
d

)(
n−m−d−1
k−1−d

)
and

the contribution of S2 by maxm(αm − αm+1)2
(
n−1
k

)
, and apply the triangle inequality.

Let v = ev1 ⊗ · · · ⊗ evn with |v| = m+ d, and let S ∈ S1. Then, by (9),

(G̃L
S)1v =

{
αmv

SL , v1 = 0, |vS | = d, and |vSL
| = 0

0, otherwise.

Here vS =
⊗

s∈S evs and vSL = q(k−d)/2
⊗

i∈[n]−SL
evi .

For different v, these are orthogonal vectors, and hence v is an eigenvector of (G̃L
S)∗1(G̃L

S)1

of eigenvalue α2
m if v1 = 0, |vS | = d, and |vSL

| = 0, and of eigenvalue 0 otherwise. For every v
with v1 = 0 and |v| = m + d, there are

(
m+d
d

)(
n−m−d−1
k−1−d

)
sets S ∈ S1 such that |vS | = d, and

hence at most as many sets S ∈ S1 such that (G̃L
S)1v 6= 0. We apply the triangle inequality,

and conclude that the contribution of S1 is as claimed.
Now consider an S ∈ S2, that means 1 6∈ S.

G̃L
S =

n−k∑
m=0

αmF
L
S ⊗ E(n−k)

m

=
n−k∑
m=0

αmF
L
S ⊗ (E0 ⊗ E(n−k−1)

m + E1 ⊗ E(n−k−1)
m−1)

∆17−→
n−k∑
m=0

αmF
L
S ⊗ E0 ⊗ (E(n−k−1)

m − E(n−k−1)
m−1)

= (G̃L
S)1 =

n−k∑
m=0

(αm − αm+1)FL
S ⊗ E0 ⊗ E(n−k−1)

m .

Therefore (G̃L
S)1 is of the same form as G̃L

S , but with coefficients (αm − αm+1) instead of αm

and on one dimension less. We get the required estimate from Lemma 8(b).
There are

(
k

k−d
)

sets L ⊂ [k] of size |L| = k − d. Since k, d = O(1), one more application of
the triangle equality gets the claimed bound.

8

3.5 Optimization of αm

To maximize the adversary bound, we maximize ‖Γ̃‖ while keeping ‖Γ̃1‖ = O(1). That means,
we choose the coefficients {αm} to maximize α0n

k/2 (Lemma 8) so that, for every m, αm ≤
m−d/2n(d+1−k)/2 and αm ≤ αm+1 + n−k/2 (Lemma 9).

For every r ∈ [n], α0 ≤ αr+rn−k/2 ≤ r−d/2n(d+1−k)/2 +rn−k/2. The expression on the right-
hand side achieves its minimum, up to a constant, α0 = 2 n(d+1)/(d+2)−k/2 for r = n(d+1)/(d+2).
This corresponds to the following solution:

αm = max
{

2− m

n(d+1)/(d+2)
, 0
}
n(d+1)/(d+2)−k/2 (10)

With this choice of αm, ‖Γ̃‖ = Ω(α0n
k/2) = Ω(n(d+1)/(d+2)).

3.6 Constructing Γ from Γ̃

The matrix Γ̃ gives us the desired ratio of norms of Γ̃ and Γ̃ ◦ ∆i. Unfortunately, Γ̃ cannot
directly be used as an adversary matrix, because it contains invalid columns y with f(y) = 1,
that is, y that contain an element of the orthogonal array on S ⊂ [n] : |S| = k, i.e., yS ∈ TS .
We show that after removing the invalid columns the adversary matrix Γ is still good enough.

Lemma 10. Let Γ be the sub-matrix of Γ̃ with the invalid columns removed. Then ‖Γ ◦∆1‖ ≤
‖Γ̃ ◦∆1‖, and ‖Γ‖ is still Ω(α0n

k/2) when q ≥ nk/(k−d).

Proof. We estimate ‖Γ‖ from below by w∗Γw′ using unit vectors w,w′ with all elements equal.
Recall Equation (5):

G̃S = α0e
⊗(n+d−k)
0 (e⊗n0)∗ +

∑
u,v

α|v|(u
Lu ⊗ v)(u⊗ v)∗ ,

where the summation is over all u and v such that at least one of them contains an element
different from e0. The sum of each column in each of (uLu ⊗ v)(u⊗ v)∗ is still zero because at
least one of uLu or v sums up to zero. Therefore the contribution of the sum is zero regardless
of which columns have been removed.

By summing over all
(
n
k

)
choices of S, we get

‖Γ‖ ≥ w∗Γw′ =

√(
n

k

)
α0 (e⊗n0)∗V w

′ ,

where eV denotes the sub-vector of e restricted to V , and V is the set of valid columns. Since
both e0 and w′ are unit vectors with all elements equal, and w′ is supported on V , (e⊗n0)∗V w

′ =√
|V |/qn.
Let us estimate the fraction of valid columns. The probability that a uniformly random

input y ∈ [q]n contains an orthogonal array at any given k-tuple S is qd−k. By the union bound,
the probability that there exists such S is at most

(
n
k

)
qd−k. Therefore the probability that a

random column is valid is |V |/qn ≥ 1−
(
n
k

)
qd−k, which is Ω(1) when q ≥ nk/(k−d).

Thus, with the choice of αm from (10), we have Adv±(f) = Ω(α0n
k/2) = Ω(n(d+1)/(d+2)).

This finishes the proof of Theorem 4.

9

4 Open problems

• Our lower bound Ω(n(d+1)/(d+2)) for the d-(X, k, 1) orthogonal array problem is only known
to be optimal when the strength d = k − 1. This variant corresponds to the k-sum
problem [BŠ13], for which one can prove a matching O(nk/(k+1)) upper bound by quantum
search on the Johnson graph [Amb07]. For the k-distinctness problem, which lies at the
other end of the spectrum with the strength d = 1, there is a quantum algorithm running
in O(n1−2k−2/(2k−1)) = o(n3/4) queries [Bel12], which is polynomially faster for k ≥ 3.
Can one close the gap, say, in the simplest case d = 1 and k = 3, whose complexity lies
between Ω(n2/3) and O(n5/7)?

Our lower bound only depends on d but not on k, as long as k = O(1). This seems unlikely
to be optimal. Can one strengthen the lower bound for larger k?

• Consider the k-pattern problem, i.e., the 0-(X, k, 1) orthogonal array problem. If the
patterns are consistent, then the problem is equivalent to k repeated unordered searches
without replacement, and its complexity is Θ(

√
n). If the patterns are inconsistent, then

our lower bound stays Ω(
√
n), but the best known upper bound is just O(nk/(k+1)).

The inconsistent k-pattern problem includes several interesting problems as special cases.
For example, graph collision [MSS07] is a 2-pattern problem and finding an `-clique is an(
`
2

)
-pattern problem [Bel13a]. Given a fixed graph (V,E) on n vertices and an n-bit input

x, the graph collision problem is to decide whether there exists an edge {i, j} ∈ E with
xi = xj = 1. Given a fixed vertex set V , and edges E specified by an input black-box,
the `-clique problem is to decide whether the graph (V,E) contains a clique of size `.
Both these problems look solely for input variables labeled by 1, and the hardness of the
problem comes from the fact that not every subset of input variables is admissible. The
patterns specified for non-edges resp. non-cliques of the graphs are labeled by a dummy
symbol that is not a part of the input alphabet.

Our lower bound works regardless of whether the orthogonal arrays are consistent or not,
which means that it might not be strong enough for inconsistent orthogonal arrays. Can
one prove an ω(

√
n) lower bound for the inconsistent k-pattern problem? Proving this

would be a good step towards proving an ω(
√
n) lower bound for graph collision.

It is conceivable that the query complexity of the k-pattern problem can be anything
between Ω(

√
n) and O(nk/(k+1)), depending on the combinatorial structure of the collec-

tion of patterns. For a consistent collection, we get Θ(
√
n), and the more “inconsistent”

the orthogonal arrays are the larger the lower bound might be. Can one lower-bound
the query complexity of the inconsistent k-pattern problem in terms of some positive
semidefinite program simpler than the full negative-weight adversary bound? Using du-
ality of semidefinite programming, can one then find a matching quantum algorithm, like
in Ref. [Rei11]?

• It is conceivable that the learning graph for k-distinctness [Bel12] can be “interpolated”
with the learning graph for the k-sum problem, and solve the consistent d-(X, k, 1) orthog-
onal array problem. (Essentially, one would load the first d elements normally, and the
remaining k−d elements with only partial uncovering of loaded elements.) Unfortunately,
there are many subtle details in the analysis of the learning graph for k-distinctness, which
makes the task of generalizing it difficult. If one addresses all issues, what would the com-
plexity of the learning graph for the consistent d-(X, k, 1) orthogonal array problem be,
as a function of d? It will probably not match our lower bound, since there is currently a
gap even for k-distinctness (with d = 1), but can one at least design a quantum algorithm

10

that for a fixed d > 1 runs faster than n1−Ω(1) for all k, i.e., whose complexity doesn’t
approach Ω(n1−o(1)) when k grows?

The o(n3/4)-complexity learning graph for k-distinctness [Bel12] can be cast as a learning
graph for the consistent 1-(X, k, 1) orthogonal array problem. The learning graph crucially
depends on the consistency of the orthogonal sets. Can one generalize this learning graph
to not require consistent orthogonal sets? This is likely to be hard, witnessed by the rich
combinatorial structure of the inconsistent k-pattern problem.

• Belovs and Rosmanis have recently generalized the Ω(nk/(k+1)) lower bound for the k-sum
problem [BŠ13] to a more general framework of certificate structures [BR12]. Roughly
speaking, they show strong lower bounds for the learning graph complexity of several
common certificate structures (for example, Ω̃(n9/7) for triangle finding) and then they
show that for each certificate structure there exists a black-box function with that cer-
tificate structure whose query complexity satisfies the same lower bound. Their functions
are based on orthogonal arrays of strength k − 1 when the 1-certificate size is k. Their
collections of orthogonal arrays are consistent, because any collection of (k − 1)-(X, k, 1)
orthogonal sets is necessarily consistent. In the case of triangle finding, their method gives
a nearly tight lower bound for the triangle sum problem. Can their method be combined
with our result to obtain nontrivial quantum query lower bounds for functions based on
orthogonal arrays of smaller strengths?

• Our technique relies crucially on the nk/(k−d) lower bound on the alphabet size. Can
one relax this bound? This will probably require an entirely new design of the adversary
matrix.

• We have only proved a lower bound for the d-(X, k, λ) orthogonal array problem with
index λ = 1. Extending our proof to larger λ seems straightforward. Is there a natural
problem with λ > 1 for which one can prove a nontrivial lower bound?

Acknowledgments

We thank Aleksandrs Belovs and Ansis Rosmanis for valuable discussions.
Most of our proofs are very similar to the corresponding proofs for the quantum query lower

bound of the k-sum problem [BŠ13]. We thank Aleksandrs Belovs for agreeing to use their
proofs as the basis of our paper.

References

[Amb02] A. Ambainis. Quantum lower bounds by quantum arguments. Journal of Computer
and System Sciences, 64(4):750–767, 2002. Earlier version in STOC’00.

[Amb05] A. Ambainis. Polynomial degree and lower bounds in quantum complexity: Collision
and element distinctness with small range. Theory of Computing, 1:37–46, 2005.

[Amb06] A. Ambainis. Polynomial degree vs. quantum query complexity. Journal of Com-
puter and System Sciences, 72(2):220–238, 2006. Earlier version in FOCS’03.

[Amb07] A. Ambainis. Quantum walk algorithm for element distinctness. SIAM Journal on
Computing, 37(1):210–239, 2007. Earlier version in FOCS’04.

[AS04] S. Aaronson and Y. Shi. Quantum lower bounds for the collision and the element
distinctness problems. Journal of the ACM, 51(4):595–605, 2004.

11

[BBBV97] H. Bennett, E. Bernstein, G. Brassard, and U. Vazirani. Strengths and weaknesses
of quantum computing. SIAM Journal on Computing, 26(5):1510–1523, 1997.

[BBC+01] R. Beals, H. Buhrman, R. Cleve, M. Mosca, and R. de Wolf. Quantum lower
bounds by polynomials. Journal of the ACM, 48(4):778–797, 2001. Earlier version
in FOCS’98.

[BCWZ99] H. Buhrman, R. Cleve, R. de Wolf, and Ch. Zalka. Bounds for small-error and
zero-error quantum algorithms. In Proc. of 40th IEEE FOCS, pages 358–368, 1999.

[Bel12] A. Belovs. Learning-graph-based quantum algorithm for k-distinctness.
arXiv:1205.1534 [quant-ph], 2012.

[Bel13a] A. Belovs. Personal communication, March 2013.

[Bel13b] A. Belovs. Quantum walks and electric networks. arXiv:1302.3143 [quant-ph], 2013.

[BL11] A. Belovs and T. Lee. Quantum algorithm for k-distinctness with prior knowledge
on the input. arXiv:1108.3022 [quant-ph], 2011.

[BR12] A. Belovs and A. Rosmanis. On the power of non-adaptive learning graphs.
arXiv:1210.3279 [quant-ph], 2012.

[BŠ13] A. Belovs and R. Špalek. Adversary lower bound for the k-sum problem. In Proc.
of 4th ACM ITCS, pages 323–328, 2013.

[BSS03] H. Barnum, M. Saks, and M. Szegedy. Quantum decision trees and semidefinite
programming. In Proc. of 18th IEEE Complexity, pages 179–193, 2003.

[BW02] H. Buhrman and R. de Wolf. Complexity measures and decision tree complexity:
A survey. Theoretical Computer Science, 288(1):21–43, 2002.

[CE05] A.M. Childs and J.M. Eisenberg. Quantum algorithms for subset finding. Quantum
Information & Computation, 5(7):593–604, 2005.

[CJKM13] A. M. Childs, S. Jeffery, R. Kothari, and F. Magniez. A time-efficient quantum walk
for 3-distinctness using nested updates. arXiv:1302.7316 [quant-ph], 2013.

[Gro97] L. K. Grover. Quantum mechanics helps in searching for a needle in a haystack.
Physical Review Letters, 79(2):325–328, 1997. Earlier version in STOC’96.

[HLŠ07] P. Høyer, T. Lee, and R. Špalek. Negative weights make adversaries stronger. In
Proc. of 39th ACM STOC, pages 526–535, 2007.

[HŠ05] P. Høyer and R. Špalek. Lower bounds on quantum query complexity. EATCS
Bulletin, 87:78–103, October, 2005.

[HSS99] A. S. Hedayat, N. J. A. Sloane, and J. Stufken. Orthogonal arrays: theory and
applications. Springer, 1999.

[Kut05] S. Kutin. Quantum lower bound for the collision problem with small range. Theory
of Computing, 1:29–36, 2005.

[LMR+11] T. Lee, R. Mittal, B. W. Reichardt, R. Špalek, and M. Szegedy. Quantum query
complexity of state conversion. In Proc. of 52nd IEEE FOCS, pages 344–353, 2011.

12

[MSS07] F. Magniez, M. Santha, and M. Szegedy. Quantum algorithms for the triangle
problem. SIAM Journal on Computing, 37(2):413–424, 2007. Earlier version in
SODA’05.

[Rao47] C. R. Rao. Factorial experiments derivable from combinatorial arrangements of
arrays. Supplement to the Journal of the Royal Statistical Society, 9(1):128–139,
1947.

[Rei11] Ben W. Reichardt. Reflections for quantum query algorithms. In Proc. of 22nd
ACM-SIAM SODA, pages 560–569, 2011.

[ŠS06] R. Špalek and M. Szegedy. All quantum adversary methods are equivalent. Theory
of Computing, 2(1):1–18, 2006. Earlier version in ICALP’05.

[Zha05] S. Zhang. On the power of Ambainis’s lower bounds. Theoretical Computer Science,
339(2–3):241–256, 2005. Earlier version in ICALP’04.

13

