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Abstract

Discrepancy is a versatile bound in communication com-
plexity which can be used to show lower bounds in ran-
domized, quantum, and even weakly-unbounded error mod
els of communication. We show an optimal product theo-
rem for discrepancy, namely that for any two Boolean func-
tions f, g, disc(f @ g) = O(disc(f)disc(g)). As a conse-
guence we obtain a strong direct product theorem for distri-
butional complexity, and direct sum theorems for worst-case

complexity, for bounds shown by the discrepancy method.

Our results resolve an open problem of Shaltiel (2003)
who showed a weaker product theorem for discrepancy
with respect to the uniform distributiolisc;ex (f*) =
O(discy (f))*/3. The main tool for our results is semidefi-
nite programming, in particular a recent characterization of
discrepancy in terms of a semidefinite programming quan-
tity by Linial and Shraibman (2006).

*Work supported in part by a National Science Foundation Mathemat-
ical Sciences Postdoctoral Fellowship, a Rubicon grant from the Nether-

1 Introduction

A basic question in complexity theory is how the diffi-
culty of computingk independent instances of a functign

scales with the difficulty of computing. If a randomized
algorithm for f usesc units of resources and is correct with
probability p, then an obvious approach to computinm-
dependent instances pfwould be to independently run the
algorithm on each instance. This approach usesmany
resources and achieves success probabifity A strong
direct product theorem states that this naive algorithm is
essentially the best possible—any algorithm using:c)
many resources will succeed in correctly computinm-
dependent instances @fwith probability at mosp*. One
may also consider a variant of this problem where instead
of computing the vector of solutionsf(x1), ..., f(zk)),
we just want to knowf (z,) @ - - - @ f(xx). Notice that here
one can always succeed with probability at lelg&t. Here
one ideally wishes to show that if to computewith suc-
cess probabilityl /2 + €/2 requiresc resources, then even
with O(kr) resources any algorithm computing the parity
of k& independent copies of will have success probability
at most1/2 + €*/2. Such a result is known as a strong
XOR lemma. Taking a somewhat dual view, a direct sum
theorem shows th&(kc) resources are required to achieve
the same success probability in computingndependent
instances of a function as can be done witlesources on
one copy off.

Besides being a very natural question, such product the-
orems have many applications in complexity theory: as an
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Strong direct product theorems are known for certain ~ The main tool for our results is semidefinite program-
models of computation and functions, for example for the ming, in particular a recent characterization of discrepancy
qguantum query complexity of symmetric functions][10, 2]. interms of a semidefinite quantity° by Linial and Shraib-
For other models like circuit complexity, however, we only man [16]. Linial and Shraibman also introduce a bounded-
have much weaker results. Probably the most famous prod-error version of the same semidefinite quantity, known as
uct theorem is Yao’s XOR lemma, which states that if any ~§, which can be used to show lower bounds on bounded-
circuit of sizes errs with non-negligible probability when error randomized and quantum communication complexity.

computingf, then any circuit of some smaller sizé < s It remains an interesting open question if a product theo-
will have very small advantage over random guessing whenrem also holds for this quantity. Ag}' is able to prove an
computingF(z1,...,xx) = @, f(z;). Notice that here  Q(/n) lower bound on the quantum communication com-
the algorithm actually gets fewer resources to compute  plexity of disjointness, such a theorem would reprove a re-
copies off than it did for a single instance. sult of Klauck,Spalek, and de Wolf[10].

While proving strong product results for Boolean circuits
seems quite far off, a good testing grounds for our intuition 2 preliminaries
about such theorems is communication complexity. Such a
project was initiated in a systematic way by Shaltiell[24]. In this section we will introduce some basic matrix nota-
Shaltiel showed a general counterexample where a stronq. X ) . ; .
direct product theorem does not hold for average-case com~on, ourmain quantity of interest i.e. the discrepancy and

plexity. He further showed that bounds by the discrepancy I(js relter\1t|on to comnd11.1tn|cat|'on tcon;]plﬁxny. Wet also intro-
method under the uniform distribution, a common way to uce they; horm and Its variants which we use o prove our

show lower bounds on average-case communication comMamn result.

plexity, do obey a XOR lemma. He left as an open question
if an XOR lemma or direct product theorem also holds for 2-1 ~Matrix preliminaries
discrepancy under arbitrary distributions.

We answer this question here and tighten Shaltiel's re- We restrict ourselves to matrices over the real numbers.
sult to give a product theorem optimal up to a constant mul- We useA™ to denote the transpose of the mattixFor real
tip”cative factor. Name'y, we show thahSC(f fas) g) = matricesA, Bwe use< to refer to entryWise Comparison of
O(disc(f)disc(g)) for any Boolean functiong, g. Further- ~ matrices, thatisd < B iff A[i,j] < B[i, j] for all (i, j).
more, we show that for functions of the forfna ¢, the ~ For a scalar, we sometimes use the shorthaad> c to
discrepancy bound is rea”zed’ up to a constant mu]tip]ica_ indicate that all entries of are at least as Iarge asBesides
tive factor, by a distribution of the for® @ Q, whereP is entry-wise comparison we will also make use of the positive

a distribution overf andQ is a distribution ovey, andg ~ Semidefinite partial ordering, where we say- Bif A—B
denotes tensor product. is symmetric and:” (A — B)z > 0 for all vectorsz. We

denote tensor product by, Hadamard (entrywise) product
by o and inner product by, -). We let||A||; be the sum of
the absolute values of the entriesAf

For a symmetric matrix4, let A\;(A) > Xy (4) >

As a consequence, we obtain a strong XOR lemma for
distributional complexity bounds shown by the discrepancy
method—If ac-bit protocol has correlation at most with
f, as shown by the discrepancy method, thém-dit pro- 4
tocol will have correlation at mogD(w*) with the parity -~ = An(4) denojtteh the eigenvalues of. Let o;(A)
of k independent copies gf. Via a reduction of Violaand vV Ai(ATA) be thei'® singular value ofA. We make use
Wigderson which shows quite generally that XOR lemmas of a few matrix norms. The Frobemus.normA)ﬁs thel,
imply direct product theorems, we also obtain a strong di- "°rm of A thought of as a vector—that is
rect product theorem for bounds shown by the discrepancy

method—If ac-bit protocol has success at masbn f, as lA|lF = \/m .

shown by the discrepancy method, the&@ 3-bit proto- i,

col will have success at mo&t(w") correctly computing:

independent instances ¢f Notice also thaf| A||% = Tr(ATA) = Y, 02(A). We also

Klauck [9] has shown that the discrepancy bound charac-use the trace normj,Al|,. = >, 0;(A). Finally, we denote
terizes the model of weakly-unbounded error complexity, a the spectral norm agA|| = o, (A).
communication complexity version of the complexity class  Since the singular values of the matrik @ B are
PP (formal definition given below jn Secfion P.2). As dis- o;(A)o;(B) whereo;(A),o;(B) range over the singular
crepancy characterizes this class, here we are able to obtaimalues of A and B respectively, all three of these matrix
an unconditional direct sum theorem for this model of com- norms are multiplicative under tensor products.
putation. Finally, we make use of the following simple fact



Fact 1. For any matricesA, B, C, D, whereA, C are of the The connection to discrepancy comes from the well

same dimension an, D are of the same dimension, known fact that a deterministiebit communication proto-
col partitions the communication matrix in26 many com-
(A@B)o(C@D)=(AcC)®(BoD) . binatorial rectangles. (See Kushilevitz and Nisan [12] for

this and other background on communication complexity.)
Let P be a probability distribution be a deterministic pro-
tocol, and letR[x, y] € {—1, 1} be the output o2 on input
(z,y). The correlation of? with f under the distributior

is

2.2 Communication complexity and dis-
crepancy

Let X,Y be finite setsang : X xY — {0,1} be a Corrp(My, R) = E(y ) p[R[z,y| My [z, y]] .
Boolean function. We associate witha | X |-by-|Y"| sign
matrix M known as the communication matrix/ is the
| X |-by-|Y| matrix where Corre,p(My) = max Corrp(My, R)

We then define the correlation withbit protocols as

My[z,y] = (,Df(z,y), where the max is taken over all deterministibit proto-

cols. With these definitions, it is straightforward to show
We will identify the communication matrix with the func-  the following:

tion, and use them interchangeably. Fact5

Discrepancy is defined as follows: Correp(M;) < 2discp (M)

Definition 2 (Discrepancy with respect tB). Let P be a
probability distribution on the entries a¥/¢. Discrepancy

with respect to the distributioR® is defined as: We can turn this equation around to get a lower bound

on D%(f). A protocol which has probability of error

discp(My) = max _ |27 (Myo P)y| . at moste has correlation at least — 2¢ with f, thus
xe{o,1}‘>y“ D% (f) > 1og1/((1—2¢)discp(My)). This, in turn, shows
ye{0, 131! how discrepancy can be used to lower bound randomized

The maximum absolute value of a bilinear form over communication complexity. Lef.(f) be the minimum
Boolean vectors is known as the cut norifn, ||c, thus it communication cost of a randomized protoébbkuch that
can be equivalently stated théitcp(A) = ||A o P||c. We Pr[{?[%y] # f(z,y)] < e forall z,y. Then, as by
will sometimes use this view in our proofs as our product Ya0's principle [28] R.(f) = maxp Dp(f), we find that

results hold more generally for the cut norm, and not just Fe(f) = log 1/((1 — 2e)disc(My)). _
discrepancy. Discrepancy is even more widely applicable to prov-

For showing lower bounds in communication complex- ing lower bounds on worst-case complexity. Kremer [11]

ity, one wishes to show that the discrepancy is small. We Shows that discrepancy can be used to lower bound quantum
will let disc(A) without a subscript refer tdisc(A) under communication with bounded-error, and Linial and Shraib-

the “hardest” distributiorP. man [16] extend this to show the discrepancy bound is
o _ _ valid even when the communicating parties share entangle-
Definition 3 (General discrepancy)The discrepancy of 2 ment. Klauck[[9] shows that discrepancy characterizes, up
sign matrixM is defined as to a small multiplicative factor, the communication cost of
) L weakly unbounded-error protocols. We state this latter re-
disc(My) = mindiscp(My) , sult for future use.

where the minimum is taken over all probability distribu- Definition 6 (Weakly unbounded-errar)Consider ac-bit
tions P. randomized communication protocd for a function f,

and denote(R) = min, , (Pr[R(z,y) = f(z,y)] — 1/2).

We will first see how discrepancy can be applied to com- The weakly unbounded-error cost & is UPCr(f) =

munication complexity in the distributional model. The cost .  1og(1/¢(R)). The weakly unbounded-error cost f
in this model is defined as follows: denotedUPC(f), is the minimal weakly unbounded-error

Definition 4 (Distributional complexity) Let f : X xY —  costofarandomized protocol g
{0,1} be a Boolean function an® a probability distribu- Theorem 7 (Klauck). Let f : {0,1}™ x {0,1}" — {0,1}
tion over the inputs{ x Y. For a fixed error ratee > 0, we be a Boolean function. Then
defineD< (f) to be the minimum communication of a deter- > . B
ministic protocolR whereE, , . p[R(z,y) # f(z,y)] < UPC(f) 2 log(1/disc(f)) = O(1)
’ UPC(f) < 3log(1/disc(f)) + logn + O(1) .

€.



As the rank of a matrix is equal to the number of non-

zero singular values, it follows from the Cauchy-Schwarz
The lower bound can be seen immediately fjom Fact 5, inequality that

while the upper bound requires more work. Forster et al. | All2.

[7] show a similar result characterizilgPC complexity in 1A]12 < tk(4) .
terms of a notion from learning theory known as the max-
imal margin complexity. Linial and Shraibman later show
that discrepancy and maximal margin complexity are equiv-
alent up to a constant factor.

A problem with this bound as a complexity measure is
that it is not monotone—the bound can be larger on a sub-
matrix of A than onA itself. As taking the Hadamard prod-
uct of a matrix with a rank one matrix does not increase its

rank, a way to fix this problem is to consider instead:
2.3 Definitions of ~, -
_ _ _ _ max HALUT”’;T <rk(4) .
The quantityy, was introduced i [14] in a study of com- lull=[ol=1 A o vuT||z
plexity measures of sign matrices. We give here a leisurely ) ) ] ] o .
introduction to this quantity, its relatives, and their many WhenA is a sign matrix, this bound simplifies nicely—for

equivalent forms. then,||A o vu™ || = ||ul|||v]| = 1, and we are left with

max [|[Ao vul ||?. < tk(A) .
2.3.1 Motivation l[ull=[lv]|=1

Matrix rank plays a fundamental role in communication This quantity turns out to be exactly(A), as we shall now
complexity. Many different models of communication com- S€€.

plexity have an associated rank bound which is usually the

best technique available for showing lower bounds. For 2.3.2 The many faces of,

deterministic complexity,D(f) > logrk(M,), and the . _ . R

long-standing log rpank gonj(egture asiert(s tlinc;t this bound isThe primary definition ofy; given in [14]is
tight up to polynomial factors. For randomized and quan- Definition 8.

tum communication complexity, one becomes concerned ]

not with the rank of the communication matrix, but of ma- 12(4) = X,Y?E%:A’“(X) oY)

trices close to the communication matrix. For 0/1-valued

matrices the usual notion of “closeness” heré_ s norm, wherer(X) is the largest,; norm of a row of X and

but as we are working with sign matrices we take the fol- Similarly ¢(Y') is the largest; norm of a column ot _
lowing notion of approximation rank: We now see that this quantity is the same as the one just

discussed. Note that this equivalence holdsafioy matrix
rko (My) = min{rk(M) : 1 < Mo M; < a} . A, not just a sign matrix.

Theorem 9. Let A be anm-by-n matrix. Then
Then one hask.(f) > Q.(f) > ilogrka(M;) for ey

¢ = 4 and whereR,(f) is the private coin randomized  y3(A) = max [[AoQ| = max [[Aovu" || .
complexity of f and Q.(f) the quantum complexity of Qilleli=t ull=lvll=1

without shared entanglement [3]. As— 1/2 one obtains
unbounded-error complexity, where one simply has to ob- d dualizi F idefini .
tain the correct answer with probability strictly greater than gram and duafizing. For semide '|n|te programming we nec-
1/2. This class is characterized up to one bit by the log of essarily need to work with matrices which are symmetric,

sign rank, the minimum rank of a matrix which agrees in yet the matrixA might not even be square. Fortunately,
sign everywhere withZ; [20] there is a simple trick to deal with this. This trick is so use-

In the case of approximation rank and sign rank, a diffi- ful that we devote some notation to it. Foranby-n matrix

culty arises as such rank minimization problems are difficult ]r:f t\r/;lxevlver:i]\ﬁ ::)e”t]he“(giz +r'3t)-t\)/y-r(T : &beNa ;yrlnmetnc
to solve. While we do not know if approximation rank it- a chis the "bipartite versio - Namely,
self is NP-hard, one can show this for closely related rank . { 0 M ]

Proof. We obtain this by writingy, as a semidefinite pro-

minimization problems. A (now) common approach to deal M= MT 0

with NP-hard problems is to consider a semidefinite pro-

gramming relaxation of the problem. The quantityf /) We will also need an auxiliary matri¥' = jm,n where
can very naturally be viewed as a semidefinite relaxation of .J,,, ,, is them-by-n matrix all of whose entries are equal to
rank. one.



With these definitions in hand, one can see thats Theorem 10(Linial-Shraibman([15]) Let f be a Boolean

equivalent to the following program: function andM [z, y] = (—1)7@¥). Then
min 7 2logv2(My) < D(f) .
X|[i,1] < nforall:
X=0 2.3.3 Dual norm of~,
XoF=A The norm dual tey, will also play a key role in our study of

, . o discrepancy. By definition of a dual norm, we have
Here X > 0 means theX is positive semidefinite. Dual-

izing this program we obtain: y2(A) = max (A,B) .
~ B:v;(B)<1 ’

max (@, A) Q)

lafl = 1 @) Since the dual norm is uniquely defined, we can read off
P the conditions fory; (B) < 1 from Equations[(R)£(5) in the

diag(a) = @ ®) formulation ofy2(A). This tells us
QoF=Q 4 .
a>0 (5) Y3 (B) = min {2(1Ta) - diag(a) — B = 0} (6)

As diag(a) — @ > 0, it follows that if any entryo; = 0 ) )
then the corresponding row and column@fmust be all We can interpret the value of this program as follows:
zero. As we can then simply delete this row and column Theorem 11.
without changing the value of the program, we may assume
without loss of generality that > 0.

* . 1 2 2
In light of this observation, we can bring this program 72(B) = I)?}? 2 (HX”F + ”Y”F)
into a particularly nice form by letting[i] = 1/+/«[i], and X'y=B
Q' = Qo BT, Then the conditiom: > () can be rewritten = in | X rlIYlF ,
asl = Q'. AsQ'oF = @', the spectrum af)’ is symmetric xTy—p
about zero and so we can in fact conclude Q" > 0. This o .
can be nicely rewritten g’ || < 1. Letting~[i] = \/afi], where the min is taken oveé¥, Y with orthogonal columns.

the objective function then becomes Proof. Let a be the optimal solution t¢ [6). Adiag(a) —

(Q, A) = (Q" oyyT, A) = 4T(Q 0 A)y . B = 0, we have a factorizatiotiag(a) — B = MT M.
Write M as
The conditioriTr(«) = 1 means thay is a unit vector. Asy M=[X Y|
is otherwise unconstrained, we obtain the first equivalence
! wise d ) ! W I ! quiv Then we see thak”Y = —B and the columns o, Y
of the theorem: A L
are orthogonal a® is block anti-diagonal. The value of the
2(4) = max Qo Al program is simply(1/2)([| X |3 + [|Y|%). .
Q| In the other direction, foX, Y such thatX'Y = —B,
This shows thats | valent t fity K _ we define the vecton asalfi] = || XT||? if i < m and
IS shows tha, Is equivalent to a quantity known in ali] = ||Yi_n|* otherwise. A similar argument to the

the matrix analysis literature as thladamard product op-
erator norm[18]. The duality of the spectral norm and trace
norm easily gives that this is equivalent to the Hadamard
product trace norm:

above shows thatiag(a) — B > 0, and the objective func-
tionis % (| X% + [[Y]%).

To see the equivalence between the additive and multi-
plicative forms of the bound, notice thatX, Y is a feasi-

Qo Al ble solution, then so i8X, (1/¢)Y for a constant. Thus
72(A) = max = we see that in the additive form of the bound, the optimum
" can be achieved withX ||2 = ||Y||%, and similarly for the
One can further show that the maximum in this expression multiplicative form. The equivalence follows. |
will be obtained for a rank-one matriy:
a(A) = Hnﬁa)ﬁ - 14 0 vuT ||y O 2.3.4 Approximate versions ofy;

To talk about randomized communication models, we need
The fact that(y2(A))? < rk(A) implies its usefulness  to go to an approximate versiongf. Linial and Shraibman
for communication complexity: [16] define



Definition 12. Let A be a sign matrix, andx > 1. objective function. Similarly, iQ; [z, y] — Q2[z,y] = a <
' 0 we setQ] [z,y] = 0 andQj[z,y] = —a < Q2[z,y] and
V3 (A4) = min r(X)e(Y) . increase the objective function.
X,Y:a>(XYo0A)>1 . . .
Lete = a — 1. In light of this observation, we can let
An interesting limiting case is whef€Y simply has every- @ = Q1 — Q2 be unconstrained and our objective function

where the same sign a& becomeg(1 + ¢/2)Q — (¢/2)|Q|, F), as the entrywise ab-
solute value of) in our case iISQ| = Q1 + Q2. As with
152 (A) = min r(X) e(Y) v2 above, we can reformulatgy(A) in terms of spectral

T X Yi(XYoA)>1
(X¥od)= norms. O

As we did with v2, we can representy and~3° as
semidefinite programs and dualize to obtain equivalent max
formulations, which are more useful for proving lower
bounds. We start withs® as it is simpler.

Linial and Shraibmar [16] show that' can be used to
lower bound quantum communication complexity with en-
tanglement.

Theorem 15(Linial and Shraibman)Let A be a sigh ma-

Theorem 13. Let A be a sign matrix. trix. ande > 0. Then

) |40Q] ) .
A = e o Q:(4) > log5*(4) ~logae —2

wherea, = 1
Notice that this is the same as the definitionngfA)
except for the restriction tha) o A > 0. We similarly

obtain the following max formulation ofg".

In his seminal result showing af(,/n) lower bound
on the quantum communication complexity of disjointness,
Razborov|[[28] essentially used a “uniform” versiongf.
Theorem 14. Let A be a sign matrix and > 0. Namely, if A is an|X|-by-|Y| mat.rix, we can in particular
lower bound the spectral norm in the numeratof of Equa-
I(14+€/2)Q o0 A—(¢/2)|Q]]l - by considering uniform unit vectors of length
QI (D |X| andy of length|Y'| wherez[i] = 1/,/]X]| andy[i] =
1/+/]Y|. Then we have

I(1+€/2)Q 0 A—(e/2)|Q]]

H(A) = max

where| Q| denotes the matrix whose, y) entry is|Q[z, y]|.

Proof. The theorem is obtained by writing the definition of

v as a semidefinite programming and dualizing. The pri- > 2" ((1+€/2)Q o0 A—(¢/2)|Q))y
mal problem can be written as (1 +€/2)Q, A) — (¢/2)[|Q]1
min 5 VIXY]
X[i,i] <n and so
X=0 e (1+¢/2)Q, 4) — ¢/2

A) > max
()2 1QIIXTTY]
Again in a straightforward way we can form the dual of Sherstov [[25] also uses the same bound in simplifying
this program: Razborov's proof, giving an extremely elegant way to
choose the matrig) for a wide class of sign matrices.
max (Q1 — Q2, F) — (a — 1)(Q2, F)

aF >XoA>F

Tr(F) =1 3 Relation of v, to discrepancy
B=(Q1—Q2)0A
B,Q1,Q2 >0, In looking at the definition ofliscp(A), we see that it is

a quadratic program with quadratic constraints. Such prob-
where 3 is a diagonal matrix. Notice that as — oo in lems are in general NP-hard to compute. A (now) common
the optimal solution; — 0 and so we recover the dual approach for dealing with NP-hard problems is to consider
program fory3°. a semidefinite relaxation of the problem. In fact, Alon and
We can argue that in the optimal solution to this program, Naor [1] do exactly this in developing a constant factor ap-

Q1, Q2 will be disjoint. For if @1 [z, y] — Q2[z,y] =a >0 proximation algorithm for the cut norm. While we do not

then we set) [z, y] = a andQ}[z,y] = 0 and increase the  need the fact that semidefinite programs can be solved in



polynomial time, we do want to take advantage of the fact

that semidefinite programs often have the property of be-

having nicely under product of instances. While not always

the case, this property has been used many times in com-

puter science, for example [17,[6, 5].

As shown by Linial and Shraibmain_[15], it turns out
that the natural semidefinite relaxations difcp(A) and
disc(A) are given byy; (Ao P) and1/v5°(A), respectively.

Theorem 16(Linial and Shraibman)Let A be a sigh ma-
trix, and P a probability distribution. Then
S93(A0 P) < discp(4) < 5(A o0 P)
1

11
875°(A)

< disc(A) < @

oN

4 Product theorems for~,

In this section, we show thak, v5, and~3° all behave
nicely under the tensor product of their arguments. This,

together witl] Theorem 16, will immediately give our main

results.
Theorem 17. Let A, B be real matrices. Then
1. 12(A® B) = 72(A4) 2(B),
2. 13°(A® B) = 75°(A)15°(B),
3. 13(A® B) =75(A)y3(B).
Item (3) has been previously shown by [5]. The follow-
ing easy lemma will be useful in the proof of the theorem.

Lemma 18. Let|| - || be a norm on Euclidean space. If for
everyr € R,y € R”

lz @yl <zl Iyl

then, for everyx € R™ and € R"

la® BII* > Nl 181"
where|| - ||* is the dual norm off - |

Proof. For a vectory denote byx., a vector satisfying
|l ]| = 1 and

max

,T) = .
meRMIxH:l(v )=l

<7ax'y> =
Then, for everyy € R™ andg € R™
le® 8"

= <O¢®ﬁ7l‘>

max
2R lo]=1
> <O‘®67x0¢ ®Ig>
= (@, a) (8, 7p)
= llal*IB01" -

For the firstinequality recall th@jte, @z || < [|za|/l|zs|l =
1. O

Now we are ready for the proof 17.

Proof of Theorem 17We will first show items 1 and 2.

To seey(A ® B) > v2(A)v2(B), let Q4 be a matrix
with [|Q || = 1, suchthatys(A) = ||AoQ 4], and similarly
let @ satisfy||Qp| = 1 andy2(B) = [|B o @p||. Now
consider the matrig) 4, ® @ 5. Notice thal|Q 4 2 Qp|| = 1.
Thus

72(A®B) 2 [[(A® B) o (Qa @ @)l
[(AoQa)® (BoQg)|
=[[AcQall- B Qsll -

Furthermore, the same proof shows thgit(A ® B) >
~5°(A)~$° (B) with the additional observation thatdj 4 o
A>0and@QpoB >0then(Qa®Qp)o (A® B) > 0.

For the other directionys (A ® B) < v2(A)y2(B), we
use the min formulation ofi;. Let X 4,Y4 be two ma-
trices such thatX, Y4 = A and~2(A) = r(Xa)e(Ya)
and similarly letXz,Yp be such thatXzYpz = B and
v2(B) = r(Xg)c(Yg). Then

(Xa®Xp)Ya®Yp)=A®B

gives a factorization ofA ® B, andr(X4 ® Xg)
r(Xa)r(Xp) and similarlyc(Ya ® Yp) = ¢(Ya)c(YB).

Furthermore, the same proof also shows #igt(A ®
B) < ~5°(A)~5°(B) with the additional observation that if
XaYp0A>1andXgYgoB > 1then(XA ®XB)(YA®
Yg)o(A® B) > 1.

We now turn to item 3. As we have already shown
Y2(A® B) < 72(A)v2(B), thus by Lemma 18 it suffices to
show thaty; (A ® B) < 75 (A)73(B).

To this end, letX4,Y4 be an optimal factorization
for A and similarly Xz, Yp for B. That is, X£YA =

A, XLTYp = B, the columns ofX 4, Y4, X, Yp are or-
thogonal, andy;(A) = [ XallpllYalr and~3(B) =
1XBllrFIYsF

Now consider the factorizationX i @ X%)(Ya®Y5)
A ® B. ltis easy to check that the columns &fy ® Xpg
andY, ® Y remain orthogonal, and so

Y5(A® B) < || Xa® XB||lr|Ya®Ys|r
= | Xallrl|Yallr I XBlFIYBIF
=7 (A)3(B) .

5 Direct product theorem for discrepancy

Shaltiel showed a direct product theorem for discrepancy
under the uniform distribution as follows:

discyor (A®F) = O(discy (A)F/3)



Our first result generalizes and improves Shaltiel’s result to Proof. By[Theorem 1p and Theorem|17 we have
give an optimal product theorem, up to constant factors.

1 3 1
15 (A® B)  75°(A)y5°(B)

Theorem 19. For any sigh matricesA, B and probability dise(4 ® B) <

distributions on their entrie®, < 64 disc(A)disc(B)
discp(A) discg(B) < discpgg(A ® B) Similarly
< 64 discp(A) discg(B)
disc(A® B) > E 1 _ 1 !
T 875°(A®B)  873°(A)y5°(B)
Proof. It follows directly from the definition of discrepancy > édisc(A)disc(B) . O

that

These two theorems taken together mean that for a tensor
productA ® B there is a tensor product distributidgh® Q
that gives a nearly optimal bound for discrepancy. We state
this as a corollary:

discp(A)discq(B) < discpgo(A® B) .
For the other inequality, we have
discpeo(A® B) < % ((A® B) o (P®Q))
2((AeP)® (BoQ))
5 (

gl
. 1

V3(Ao P)y3(BoQ) = discraq(A ® B) < disc(A @ B)

< 64 discp(A)discg(B) - O

Corollary 21. Let A, B be sign matrices. Then

< 64 discpgo(A® B)

A simple example shows that we cannot expect a perfect

product theorem. LeH be the2-by-2 Hadamard matrix whereP is the optimal distribution fodisc(A) andQ is the

optimal distribution fordisc(B).

g1 1
[ I T I 5.1 Applications

which also represents the communication problem inner
product on one bit. Itis not too difficult to veritjisc(H) =
discy (H) = 1/2, whereU represents the uniform distri-
bution. On the other handiscy gy (H ® H) > 5/16 as
witnessed by the vectar = [1,1, 1, 0].

Shaltiel also asked whether a direct product theoremTheorem 22. Let f : X x Y — {0,1}" be a Boolean
holds for general discrepandyisc(A) = minpdiscp(A).  function andP a probability distribution overX x Y. If

The function inner product can also be used here to show wec oy, p(M;) < wis proved by the discrepancy method
cannot expect a perfect product theorem. As stated above), then

for the inner product function on one bitisc(H) = 1/2.

Thus if discrepancy obeyed a perfect product theorem, then, Corry, P@k(M}@’“) < (8w)* .

disc(H®*) = 27%. On the other handys°(H®*) = ’

2k/2_for the upper bound look at the trivial factorization proof. By generalizind Theorem 19 to tensor products of

IH®*, and for the lower bound take the matix to be more matrices,

H®F itself. Thus we obtain a contradiction for sufficiently

largek as~5°(A) and1/disc(A) differ by at most a multi- Corty, por (MJ@’“) < 2’fcdiscp®k(MJ§’k)

plicative factor ofS. < 9%(8.. disep (M;))*
k

Now we discuss some applications of our product theo-
rem for discrepancy. We first show how our results give a
strong XOR lemma in distributional complexity, for bounds
shown by the discrepancy method.

Our next theorem shows that this example is nearly the

largest violation possible. < (8-2°iscp(My)) O
Theorem 20. Let A, B be sign matrices. Then Viola and Wigderson (Proposition 1.1 ii_27]) show
1 quite generally that upper bounds on the correlation an algo-
3 disc(A) disc(B) < disc(A®B) < 64 disc(A) disc(B) . rithm obtains withf©* imply upper bounds on the success

probability an algorithm obtains in computing the vector of
solutionsf(*). This gives us the following corollary.



Corollary 23. Letf : X xY — {0,1}" be a Boolean  z to Alice and question to Bob. The provers Alice and Bob
function andP a probability distribution overX x Y. If are all powerful, but cannot communicate. Alice and Bob
Corr. p(My) < w is proved by the discrepancy method send responses,,b, € {—1,1} back to the verifier who
(Fact §), then the success probability under distribution checks ifa, - b, = f(z,y). Here we see that a strategy of
P®) of anykc/3 bit protocol computing the vector of so-  Alice is given by a sign vectai of length| X |, and similarly
lutions f(¥) satisfies for Bob. Thus the maximum correlation the provers can
achieve withf is
SUCCkc/:s,P@k(f(k)) < (8w)k .
max a’(M;o P)b
This is a strong direct product theorem as even Wijth ac{-1,1}XI,be{—1,1}I|

times the original amount of communication, the success
probability still decreases exponentially. Note, however,
that we can only show this for bounds shown by the discrep-
ancy method. Indeed, Shaltiel's counter-example shows
that some assumptions on the functiprare necessary in

which is exactly|| M o P|loo—1.

Two-prover XOR games have also been studied where
the provers are allowed to share entanglement. In this
case, results of Tsirelsoh [26] show that the best correla-
order to show a strong direct product theorem for the distri- 10N achievable can be described by a semidefinite program
butional complexity off. [4]. In fact, the.be_st qorrelanon achlevable. by entangled

provers under distributio® turns out to be given exactly

For weakly-unbounded error protocols, on the other ) X e
hand, we can show an unconditional direct sum theorem.PY 73 (Mo P). In studying a parallel repetition theorem for

This follows from our product theorem plus results of XOR games with e*ntanglemert,*[S] halve already shown, in
Klauck (stated in o Theoren 7) which show that discrep- OU" 1anguage, that; (A @ B) = 5 (A)y3(B).

ancy captures the complexity of weakly-unbounded error Th?s connectﬁon to XOR games also gives another pos-
protocols. sible interpretation of the quantitys®(A). The best corre-

lation the provers can achieve willi; under the “hardest”
Theorem 24. Let f; : {0,1}" x {0,1}" — {0,1} be probability distributionP is given byl /~5°(A).

Boolean functions, fot < ¢ < k. Then Finally, inspired by the work of [5], Mittal and Szegedy
. . [19] began to develop a general theory of when semidefi-
1 k nite programs obey a product theorem. They give a general
UPC (@ fi) = 3 (Z UPC(fi)) - §10gn—0(1) ) condition which captures many instances of semidefinite
i=1 i=1

progam product theorems in the literature, includipg@nd

Similarly one also obtains direct sum results for lower 73, but that does not handle programs with non-negativity
bounds on randomized or quantum communication com-constraints likey5°. Lee and Mittal[[13] extend this work to

plexity with entanglement that are shown via the discrep- also include programs with non-negativity constraints like
ancy method. ~5° and the semidefinite relaxation of two-prover games

due to Feige and L@sz [6].

5.2 Connections to recent work

6 Conclusion
There have been several recent papers which discuss is-

sues related to those here. We now explain some of the \ye have shown a tight product theorem for discrepancy
connections between our work and these results. by looking at semidefinite relaxation of discrepancy which
Viola and Wigderson [27] study direct product theorems gjyes a constant factor approximation, and which composes
for, among other things, multi-party communication com- perfectly under tensor product. With the great success of
plexity. For the two-party case, they are able to recover semidefinite programming in approximation algorithms we
Shaltiel's result, with a slightly worse constant in the ex- fee| that such an approach should find further applications.
ponent. The quantity which they bound is correlation with Many open questions remain. Can one show a product

two-bit protocols, which they remark is equal to discrep- tneorem foryg? We have only been able to show a very
ancy, up to a constant factor. One may compare this with\yeak result in this direction:

the infinity-to-one norm, as the maximum correlation of a
sign matrix A with a two-bit simultaneousprotocol under %”62/(2(1“))(14 ® A) > 1T (A)nT(4)
distribution P is exactly|| A o P||co—1-

The infinity-to-one norm also plays an important role in Finally, an outstanding open question which remains is if
a special class of two-prover games known as XOR gamesa direct product theorem holds for the randomized commu-
Here the verifier wants to evaluate some functfon X x nication complexity of disjointness. Razborov’s [22] proof
Y — {-1, 1}, and with probabilityP[z, y], sends question  of the Q(n) lower bound for disjointness uses a one-sided



version of discrepancy under a non-product distribution. [18] R. Mathias. The Hadamard operator norm of a circulant and
Could a similar proof technigue apply by first characteriz-
ing one sided discrepancy as a semidefinite program?
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