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Abstract. The quantum adversary method is one of the most versatile
lower-bound methods for quantum algorithms. We show that all known
variants of this method are equal: spectral adversary [1], weighted adver-
sary [2], strong weighted adversary [3], and the Kolmogorov complexity
adversary [4]. We also present a few new equivalent formulations of the
method. This shows that there is essentially one quantum adversary
method. From our approach, all known limitations of all versions of the
quantum adversary method easily follow.

1 Introduction

1.1 Lower-bound methods for quantum query complexity

In the query complexity model, the input is accessed using oracle queries and
the query complexity of the algorithm is the number of calls to the oracle. The
query complexity model is helpful in obtaining time complexity lower bounds,
and often this is the only way to obtain time bounds in the random access model.

The first lower-bound method was the hybrid method of Bennett, Bernstein,
Brassard, and Vazirani [5] to show an Ω(

√
n) lower bound on the quantum

database search. Their proof is based on the following simple observation: If the
value of function f differs on two inputs x, y, then the output quantum states of
any bounded-error algorithm for f on x and y must be almost orthogonal. On
the other hand, the inner product is 1 at the beginning, because the computation
starts in a fixed state. By upper-bounding the change of the inner product after
one query, we lower bound the number of queries that need to be made.

The second lower-bound method is the polynomial method of Beals, Buhrman,
Cleve, Mosca, and de Wolf [6]. It is based on the observation that the measure-
ment probabilities can be described by low-degree polynomials in the input bits.
If t queries have been made, then the degree is at most 2t. Since the measurement
probabilities are always inside [0, 1], one can apply some degree lower bounds for
polynomials and thus obtain good lower bounds for quantum query complexity.

The third lower-bound method is the quantum adversary method of Ambai-
nis [7]. It extends the hybrid method. Instead of examining a fixed input pair,
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Ambainis takes an average over many pairs of inputs. In this paper, we study
different variants of the quantum adversary method.

The fourth lower-bound method is the semidefinite programming method of
Barnum, Saks, and Szegedy [1]. It exactly characterizes quantum query com-
plexity by a semidefinite program. The dual of this program gives a lower bound
that encompasses the quantum adversary bound.

1.2 The variants of the quantum adversary method

The original quantum adversary method, let us call it unweighted, was invented
by Ambainis [7]. It was successfully used to obtain the following tight lower
bounds: Ω(

√
n) for Grover search [8], Ω(

√
n) for two-level And-Or trees (see [9]

for a matching upper bound), and Ω(
√

n) for inverting a permutation.
Some functions, such as sorting or ordered search, could not be well lower-

bounded by the unweighted method. Høyer, Neerbek, and Shi used a weighting
argument [10] to obtain tight bounds for these problems. Barnum, Saks, and
Szegedy proposed a general method [1] that gives necessary and sufficient con-
ditions for the existence of a quantum query algorithm. They also described
a special case, so-called spectral method, which gives a lower bound in terms
of spectral norms of an adversary matrix. Ambainis also published a weighted
version of his adversary method [2]. He applied it to get a lower bound for sev-
eral iterated functions. Zhang observed that Ambainis had generalized his oldest
method [7] in two independent ways, so he unified them, and published a strong
weighted adversary method [3]. Finally, Laplante and Magniez used Kolmogorov
complexity in an unusual way and described a Kolmogorov complexity method [4].

A few relations between the methods are known. The strong weighted adver-
sary is clearly at least as good as the weighted adversary. Laplante and Magniez
showed [4] that the Kolmogorov complexity method is at least as strong as all the
following methods: the Ambainis unweighted and weighted method, the strong
weighted method, and the spectral method. The method of Høyer et al. [10] is
a special case of the weighted adversary method.

In addition it was known that there were some limitations for lower bounds
obtained by the adversary method. Szegedy observed [11] that the weighted ad-
versary method is limited by min(

√
C0n,

√
C1n), where C0 is the zero-certificate

complexity of f and C1 is the one-certificate complexity of f . Laplante and
Magniez proved the same limitation for the Kolmogorov complexity method [4],
which implies that all other methods are also bounded. Finally, this bound was
improved to

√
C0C1 for total f by Zhang [3] and independently by us.

1.3 Our results

In this paper, we clean up the forest of adversary methods. We show that there
is essentially only one quantum adversary method and that all the former meth-
ods [1–4, 10] are just different formulations of the same method. This means that
the quantum adversary method is a very robust concept. Furthermore, we also



present a new simple proof of the min(
√

C0n,
√

C1n) limitation of the quantum
adversary method for partial f , resp.

√
C0C1 for total f .

This paper is an extended abstract with some proofs omitted. The full version
can be downloaded from http://arxiv.org/abs/quant-ph/0409116.

1.4 Separation between the polynomial and adversary method

The polynomial method and the adversary method are incomparable. There are
examples when the polynomial method gives better bounds and vice versa.

The polynomial method was successfully applied to obtain tight lower bound
Ω
(
n1/3

)
for the collision problem and Ω

(
n2/3

)
for the element distinctness prob-

lem [12] (see [13] for a matching upper bound). The adversary method is inca-
pable of proving such lower bounds due to the small certificate complexity of the
function. Furthermore, the polynomial method often gives tight lower bounds for
the exact and zero-error quantum complexity, such as n for the Or function [6].
The adversary method can only provide bounded-error lower bounds.

On the other hand, Ambainis exhibited some iterated functions [2], for which
the adversary method gives better lower bounds than the polynomial method.
The biggest proved gap between the two methods is n1.321. Furthermore, the
polynomial method did not yet succeed in proving several lower bounds that are
very simple to prove by the adversary method. A famous example is the two-
level And-Or tree. The adversary method gives a tight lower bound Ω(

√
n) [7],

whereas the best bound obtained by the polynomial method is Ω
(
n1/3

)
and it

follows from the element distinctness lower bound [12].
There are functions for which none of the methods is known to give a tight

bound. A long-standing open problem is the binary And-Or tree. The best known
quantum algorithm just implements the classical zero-error algorithm by Saks
and Wigderson [14] running in expected time O

(
n0.753

)
. Adversary lower bounds

are limited by
√

C0C1 =
√

n. Recently, Laplante, Lee, and Szegedy showed [15]
that this limitation

√
n holds for every read-once {∧,∨} formula. The best known

lower bound obtained by the polynomial method is also Ω(
√

n) and it follows
from embedding the parity function. The polynomial method might prove a
stronger lower bound. Another example is triangle finding. The best upper bound
is O

(
n1.3

)
[16] and the best lower bound is Ω(n). Again, the adversary method

cannot give better than a linear bound, but the polynomial method might.
The semidefinite programming method [1] gives an exact characterization of

quantum query complexity. However, it is too general to be applied directly. It
is an interesting open problem to find a lower bound that cannot be proved by
the adversary or polynomial method.

2 Preliminaries

2.1 Quantum query algorithms

We assume familiarity with quantum computing [17] and sketch the model of
quantum query complexity, referring to [18] for more details, also on the relation



between query complexity and certificate complexity. Suppose we want to com-
pute some function f . For input x ∈ {0, 1}N , a query gives us access to the input
bits. It corresponds to the unitary transformation, which depends on input x in
the following way: Ox : |i, b, z〉 7→ |i, b ⊕ xi, z〉. Here i ∈ [N ] = {1, . . . , N} and
b ∈ {0, 1}; the z-part corresponds to the workspace, which is not affected by the
query. We assume the input can be accessed only via such queries. A T -query
quantum algorithm has the form A = UT OxUT−1 · · ·OxU1OxU0, where the Uk

are fixed unitary transformations, independent of x. This A depends on x via
the T applications of Ox. The algorithm starts in initial S-qubit state |0〉. For a
Boolean function f , the output of A is obtained by observing the leftmost qubit
of the final superposition A|0〉, and its acceptance probability on input x is its
probability of outputting 1.

2.2 Kolmogorov complexity

An excellent book about Kolmogorov complexity is the book [19] by Li and
Vitányi. A deep knowledge of Kolmogorov complexity is not necessary to under-
stand this paper. Some results on the relation between various classical forms
of the quantum adversary method and the Kolmogorov complexity method are
taken from Laplante and Magniez [4], and the others just use basic techniques.

A set is called prefix-free if none of its members is a prefix of another mem-
ber. Fix a universal Turing machine M and a prefix-free set S. The prefix-
free Kolmogorov complexity of x given y, denoted by K(x|y), is the length of
the shortest program from S that prints x if it gets y on the input. Formally,
K(x|y) = min{|P | : P ∈ S, M(P, y) = x}.

2.3 Notation

Let [n] = {1, 2, . . . , n}. Let Σ∗ denote the set of all finite strings over alphabet
Σ. All logarithms are binary. Let I denote the identity matrix. Let AT denote
the transpose of A. Let diag (A) denote the column vector containing the main
diagonal of A. Let tr (A) be the trace of A and let A · B be the scalar product
of A and B. For a column vector x, let |x| denote the `2-norm of x. Let λ(A)
denote the spectral norm of A, formally λ(A) = maxx:|x|6=0 |Ax|/|x|. We say that
a matrix is Boolean, if it contains only zeroes and ones. Let AB denote the usual
matrix product and let A ◦ B denote the Hadamard (point-wise) product [20].
Let A ≥ B denote the point-wise comparison and let C � D denote that C −D
is positive semidefinite. Let rx(M) denote the `2-norm of the x-th row of M and
let cy(M) denote the `2-norm of the y-th column of M . Let r(M) = maxx rx(M)
and c(M) = maxy cy(M).

We call a function f : S → {0, 1} total, if S = {0, 1}n, otherwise it is called
partial. Let f be a partial function. A certificate for an input x ∈ S is a subset
I ⊆ [n] such that fixing the input bits i ∈ I to xi determines the function value.
Formally, ∀y ∈ S : y|I = x|I ⇒ f(y) = f(x), where x|I denotes the substring
of x indexed by I. A certificate I for x is called minimal, if |I| ≤ |J | for every



certificate J for x. Let Cf (x) denote the lexicographically smallest minimal cer-
tificate for x. Let C0(f) = maxx:f(x)=0 |Cf (x)| be the zero-certificate complexity
of f and let C1(f) = maxx:f(x)=1 |Cf (x)| be the one-certificate complexity of f .

3 Main result

In this section, we present several equivalent quantum adversary methods and
a new simple proof of the limitations of these methods. We can categorize these
methods into two groups. Some of them solve conditions on the primal of the
quantum system [1]: these are the spectral, weighted, strong weighted, and gen-
eralized spectral adversary; and some of them solve conditions on the dual: these
are the Kolmogorov complexity bound, minimax, and the semidefinite version
of minimax. Primal methods are mostly used to give lower bounds on the query
complexity, while we can use the duals to give limitations of the method.

Theorem 1. Let n ≥ 1 be an integer, let S ⊆ {0, 1}n, and let f : S → {0, 1} be
a partial Boolean function. Let Qε(f) be the ε-error quantum query complexity
of f . Then Qε(f)

1−2
√

ε(1−ε)
≥ SA(f) = WA(f) = SWA(f) = MM(f) = SMM(f) =

GSA(f) = Θ(KA(f)) , where SA, WA, SWA, MM, SMM, GSA, and KA are
lower bounds given by the following methods:

– Spectral adversary [1]. Let Di, F be |S|×|S| Boolean matrices that satisfy
Di[x, y] = 1 iff xi 6= yi for i ∈ [n], and F [x, y] = 1 iff f(x) 6= f(y). Let Γ
denote an |S| × |S| non-negative symmetric matrix with Γ ◦ F = Γ . Then

SA(f) = max
Γ

λ(Γ )
maxi λ(Γ ◦Di)

. (1)

– Weighted adversary [2].3 Let w,w′ denote a weight scheme as follows:
• Every pair (x, y) ∈ S2 is assigned a non-negative weight w(x, y) =

w(y, x) that satisfies w(x, y) = 0 whenever f(x) = f(y).
• Every triple (x, y, i) ∈ S2×[n] is assigned a non-negative weight w′(x, y, i)

that satisfies w′(x, y, i) = 0 whenever xi = yi or f(x) = f(y), and
w′(x, y, i)w′(y, x, i) ≥ w2(x, y) for all x, y, i such that xi 6= yi.

For all x, i, let wt(x) =
∑

y w(x, y) and v(x, i) =
∑

y w′(x, y, i). Then

WA(f) = max
w,w′

min
x,i

f(x)=0
v(x,i)>0

√
wt(x)
v(x, i)

· min
y,j

f(y)=1
v(y,j)>0

√
wt(y)
v(y, j)

. (2)

– Strong weighted adversary [3]. Let w,w′ denote a weight scheme as
above. Then

SWA(f) = max
w,w′

min
x,y,i

w(x,y)>0
xi 6=yi

√
wt(x)wt(y)
v(x, i)v(y, i)

. (3)

3 We use a different formulation [4] than in the original Ambainis papers [7, 2]. In
particular, we omit the relation R ⊆ A×B on which the weights are required to be
nonzero, and instead allow zero weights.



– Kolmogorov complexity [4].4 Let σ ∈ {0, 1}∗ denote a finite string. Then

KA(f) = min
σ

max
x,y

f(x)6=f(y)

1∑
i:xi 6=yi

√
2−K(i|x,σ)−K(i|y,σ)

. (4)

– Minimax over probability distributions [4]. Let p : S× [n] → R denote
a set of probability distributions, that is px(i) ≥ 0 and

∑
i px(i) = 1 for every

x. Then

MM(f) = min
p

max
x,y

f(x)6=f(y)

1∑
i:xi 6=yi

√
px(i) py(i)

(5)

= 1
/

max
p

min
x,y

f(x)6=f(y)

∑
i:xi 6=yi

√
px(i) py(i). (6)

– Semidefinite version of minimax. Let Di, F be Boolean matrices as
above. Then SMM(f) = 1/µmax, where µmax is the maximal solution of
the following semidefinite program:

maximize µ
subject to ∀i : Ri � 0,∑

i Ri ◦ I = I,∑
i Ri ◦Di ≥ µF.

(7)

– Generalized spectral adversary. Let Di, F be Boolean matrices as above.
Then GSA(f) = 1/µmin, where µmin is the minimal solution of the following
semidefinite program:

minimize µ = tr ∆
subject to ∆ is diagonal

Z ≥ 0
Z · F = 1

∀i : ∆− Z ◦Di � 0.

(8)

Before we prove the main theorem in the next sections, let us draw some con-
sequences. We show that there are limits that none of these quantum adversary
methods can go beyond.

Theorem 2. Let S ⊆ {0, 1}n and let f : S → {0, 1} be a partial Boolean
function. The max-min bound (6) is upper-bounded by MM(f) ≤ min(

√
C0(f)n,√

C1(f)n). If f is total, then MM(f) ≤
√

C0(f)C1(f).

Proof. The following simple argument is due to Ronald de Wolf. We exhibit a
set of probability distributions p such that

m(p) = min
x,y

f(x)6=f(y)

∑
i:xi 6=yi

√
px(i) py(i) ≥ 1√

C0n
, resp.

1√
C0C1

.

4 We use a different formulation than Laplante and Magniez [4]. They minimize over
all algorithms A computing f and substitute σ = source code of A, whereas we
minimize over all finite strings σ.



The max-min bound is MM(f) = 1/ maxp m(p) and the statement follows.
Let f be partial. For every x ∈ f−1(0), distribute the probability uniformly

over any minimal certificate Cf (x), and for every y ∈ f−1(1), distribute the
probability uniformly over all input bits. Formally, px(i) = 1/|Cf (x)| iff i ∈ Cf (x),
px(i) = 0 for i 6∈ Cf (x), and py(i) = 1/n. Take any x, y such that f(x) = 0 and
f(y) = 1, and the zero-certificate I = Cf (x). Since y|I 6= x|I , there is a j ∈ I
such that xj 6= yj . Now we lower-bound the sum of (6):

∑
i:xi 6=yi

√
px(i) py(i) ≥

√
px(j) py(j) =

√
1

|Cf (x)|
· 1
n
≥ 1√

C0n
.

If f is total, then we can do even better. For every x ∈ {0, 1}n, distribute
the probability uniformly over any minimal certificate Cf (x). Formally, px(i) =
1/|Cf (x)| iff i ∈ Cf (x), and px(i) = 0 otherwise. Take any x, y such that f(x) 6=
f(y), and let I = Cf (x) ∩ Cf (y). There must exist a j ∈ I such that xj 6= yj ,
otherwise we could find an input z that is consistent with both certificates. (That
would be a contradiction, because f is total and hence f(z) has to be defined
and be equal to both 0 and 1.) After we have found a j, we lower-bound the sum
of (6) in the same way as above. ut

Some parts of the following statement have already been observed for indi-
vidual methods by Szegedy [11], Laplante and Magniez [4], and Zhang [3]. This
corollary rules out all adversary attempts to prove good lower bounds for prob-
lems with small certificate complexity, such as element distinctness [12], binary
And-Or trees [14, 21, 9], or triangle finding [16].

Corollary 1. All quantum adversary lower bounds are at most min(
√

C0(f)n,√
C1(f)n) for partial functions and

√
C0(f)C1(f) for total functions.

4 Equivalence of spectral and strong weighted adversary

In this section, we give a linear-algebraic proof that the spectral bound [1] and
the strong weighted bound [3] are equal. The proof has three steps. First, we
show that the weighted bound [2] is at least as good as the spectral bound.
Second, using a small combinatorial lemma, we show that the spectral bound is
at least as good as the strong weighted bound. The third step is trivial, since the
strong weighted bound is always at least as good as the weighted bound. The
generalization of the weighted adversary method thus does not make the bound
stronger, however its formulation is easier to use.

First, let us state two useful statements upper-bounding the spectral norm
of a Hadamard product of two non-negative matrices. The first one is due to
Mathias [20]. The second one is our generalization and its proof is omitted.

Lemma 1. [20] Let S be a non-negative symmetric matrix and let M and N
be non-negative matrices such that S ≤ M ◦ N . Then λ(S) ≤ r(M)c(N) =
maxx,y rx(M)cy(N). Moreover, for every S there exist M,N such that S = M◦N
and λ(S) = r(M)c(N).



Lemma 2. Let S be a non-negative symmetric matrix and let M and N be non-
negative matrices such that S ≤ M◦N . Let B(M,N) = max x,y

S[x,y]>0
rx(M)cy(N).

Then λ(S) ≤ B(M,N).

Now we reduce the spectral adversary to the weighted adversary.

Theorem 3. SA(f) ≤ WA(f).

Proof. Let Γ be any non-negative symmetric matrix with Γ ◦ F = Γ as in
equation (1). Assume without loss of generality that λ(Γ ) = 1. Let δ be the
principal eigenvector of Γ , that is Γδ = δ. Define the following weight scheme:
w(x, y) = w(y, x) = Γ [x, y] · δ[x]δ[y]. Furthermore, for every i, decompose every
Γi = Γ ◦Di into a Hadamard product of two non-negative matrices Γi = Mi ◦Ni

such that λ(Γi) = r(Mi)c(Ni). This is always possible by Lemma 1. We ensure
that r(Mi) = c(Ni) =

√
λ(Γi) by multiplying Mi and dividing Ni by the same

constant. Define w′:

w′(x, y, i) =

 (Mi[x, y] δ[x])2 iff f(x) = 0, f(y) = 1, and xi 6= yi,
(Ni[y, x] δ[y])2 iff f(x) = 1, f(y) = 0, and xi 6= yi,
0 otherwise.

Let us verify that w,w′ is a weight scheme. From the definition, w(x, y) =
w′(x, y, i) = 0 if f(x) = f(y), and also w′(x, y, i) = 0 if xi = yi. Furthermore, if
f(x) = 0, f(y) = 1, and xi 6= yi, then w′(x, y, i)w′(y, x, i) = (Mi[x, y] δ[x])2

(Ni[x, y] δ[y])2 = (Γi[x, y] δ[x]δ[y])2 = w(x, y)2. Finally, let us compute the
bound (2) given by the weight scheme. Let vb = max x,i

f(x)=b

v(x,i)
wt(x) . Then

wt(x) =
∑

y

w(x, y) = δ[x]
∑

y

Γ [x, y]δ[y] = δ[x] (Γδ)[x] = δ[x]2,

v0 = max
x,i

f(x)=0

∑
y w′(x, y, i)
wt(x)

≤ max
x,i

f(x)=0

∑
y(Mi[x, y])2 δ[x]2

δ[x]2
≤ max

i
(r(Mi))2,

and, analogously, v1 ≤ maxi(c(Ni))2. Since r(Mi) = c(Ni) =
√

λ(Γi), both
v0, v1 ≤ maxi λ(Γi). Hence 1/

√
v0v1 ≥ 1/ maxi λ(Γi), and the weight scheme

w,w′ gives at least as good bound as the matrix Γ . ut

Now we reduce the strong weighted adversary to the spectral adversary.

Theorem 4. SWA(f) ≤ SA(f).

Proof. Let w,w′ be any weight scheme as in equation (2). Define the following
symmetric matrix Γ on S × S: Γ [x, y] = w(x,y)√

wt(x)wt(y)
. We also define column

vector δ on S such that δ[x] =
√

wt(x). Let W =
∑

x wt(x). Then λ(Γ ) ≥
δT Γδ/|δ|2 = W/W = 1. Next, we show that, for every i, we have λ(Γi) ≤

√
ui

for ui = max x,y
w(x,y)>0,xi 6=yi

v(x,i)v(y,i)
wt(x)wt(y) . Once we prove this, we are done, since the



strong weighted bound (3) is 1/ maxi
√

ui. Let A = f−1(0) and B = f−1(1). Fix
i and define the following rectangular matrices on the index set A×B:

Mi[x, y] =

√
w′(x, y, i)

wt(x)
, Ni[x, y] =

√
w′(y, x, i)

wt(y)
.

Every weight scheme satisfies w′(x, y, i)w′(y, x, i) ≥ w2(x, y) for all x, y, i such
that xi 6= yi. It follows that if we reorder Γi to put A first and B last, then

Γi = Γ ◦Di ≤
(

0 Mi ◦Ni

MT
i ◦NT

i 0

)
=

(
0 M i

N i
T

0

)
◦

(
0 N i

M i
T

0

)
,

where M i =
√

c(Ni)
r(Mi)

Mi and N i =
√

r(Mi)
c(Ni)

Ni. This is done for balancing the row

norm of Mi and column norm of Ni: r(M i) = c(N i) =
√

r(Mi)c(Ni). Evaluate

B(Mi, N
T
i ) = max

x,y
Γi[x,y]>0

√∑
k

w′(x, k, i)
wt(x)

∑
`

w′(y, `, i)
wt(y)

= max
x,y

w(x,y)>0
xi 6=yi

√
v(x, i)v(y, i)
wt(x)wt(y)

.

By Lemma 2, λ(Γi) ≤ B(M i, N i
T
) = B(Mi, N

T
i ) =

√
ui, as claimed. ut

5 Equivalence of minimax and generalized spectral
adversary

In this section, we prove that the minimax bound is equal to the generalized
spectral bound. We first get rid of the reciprocal by taking the max-min bound.
Second, we write this bound as a semidefinite program. An application of duality
theory of semidefinite programming finishes the proof.

Theorem 5. MM(f) = SMM(f).

Proof. Let p be a set of probability distributions as in equation (6). Define
Ri[x, y] =

√
px(i) py(i). Since px is a probability distribution, we get that

∑
i Ri

must have all ones on the diagonal. The condition min x,y
f(x)6=f(y)

∑
i:xi 6=yi

Ri[x, y] ≥
µ is rewritten into ∀x, y : f(x) 6= f(y) =⇒

∑
i:xi 6=yi

Ri[x, y] ≥ µ, which is∑
i Ri ◦ Di ≥ µF . However, the matrices Ri are rank-1 and they have non-

negative entries. We have replaced that condition by Ri � 0 to get semidefinite
program (7). Hence the program (7) is a relaxation of the condition of (6) and
SMM(f) ≤ MM(f).

Let us show that every solution Ri of the semidefinite program can be
changed to an at least as good rank-1 solution R′

i. Take a Cholesky decomposition
Ri = XiX

T
i . Define a column-vector qi[x] =

√∑
j Xi[x, j]2 and a rank-1 matrix

R′
i = qiq

T
i . It is not hard to show that all R′

i satisfy the same constraints as



Ri. First, R′
i is positive semidefinite. Second, R′

i[x, x] =
∑

j Xi[x, j]2 = Ri[x, x],
hence

∑
i Ri ◦ I = I. Third, by a Cauchy-Schwarz inequality,

Ri[x, y] =
∑

j

Xi[x, j]Xi[y, j] ≤
√∑

k

Xi[x, k]2
√∑

`

Xi[y, `]2 = R′
i[x, y],

hence
∑

i R′
i ◦Di ≥

∑
i Ri ◦Di ≥ µF . We conclude that MM(f) ≤ SMM(f). ut

Theorem 6. SMM(f) = GSA(f).

Proof. Omitted; it only uses the duality theory of semidefinite programming.

6 Equivalence of generalized spectral and spectral
adversary

In this section, we prove that the generalized spectral adversary bound is equal
to the spectral adversary bound. The main difference between them is that the
generalized method uses a positive diagonal matrix ∆ as a new variable.

Theorem 7. GSA(f) = SA(f).

Proof. Let Z,∆ be a solution of (8). First, let us prove that ∆ � 0. Since both
Z ≥ 0 and Di ≥ 0, it holds that diag (−Z◦Di) ≤ 0. We know that ∆−Z◦Di � 0,
hence diag (∆ − Z ◦Di) ≥ 0, and diag (∆) ≥ 0 follows. Moreover, diag (∆) > 0
unless Z contains an empty row, in which case we delete it (together with the
corresponding column) and continue. Second, ∆−Z ◦Di � 0 implies that Z ◦Di

is symmetric for every i. It follows that Z must be also symmetric.
Take a column vector a = diag (∆−1/2) and a rank-1 matrix A = aaT � 0. It

is simple to prove that A◦X � 0 for every matrix X � 0. Since ∆−Z ◦Di � 0,
also A ◦ (∆− Z ◦Di) = I − Z ◦Di ◦ A � 0 and hence λ(Z ◦Di ◦ A) ≤ 1. Now,
define the spectral adversary matrix Γ = Z ◦ F ◦ A. Since 0 ≤ Z ◦ F ≤ Z, it
follows that

λ(Γ ◦Di) = λ(Z ◦ F ◦A ◦Di) ≤ λ(Z ◦Di ◦A) ≤ 1.

It remains to show that λ(Γ ) ≥ 1/ tr∆. Let b = diag (
√

∆) and B = bbT . Then

1 = Z · F = Γ ·B = bT Γb ≤ λ(Γ ) · |b|2 = λ(Γ ) · tr∆.

Γ is clearly symmetric, Γ ≥ 0, and Γ ◦ F = Γ . The bound (1) given by Γ is
bigger than or equal to 1/ tr∆, hence SA(f) ≥ GSA(f).

For the other direction, let Γ be a non-negative symmetric matrix satisfying
Γ ◦F = Γ . Let δ be its principal eigenvector with |δ| = 1. Assume without loss of
generality that λ(Γ ) = 1 and let µ = maxi λ(Γi). Take A = δδT , Z = Γ ◦A, and
∆ = µI ◦A. Then Z ·F = Γ ·A = δT Γδ = 1 and tr∆ = µ. For every i, λ(Γi) ≤ µ,
hence µI − Γ ◦ Di � 0. It follows that 0 � A ◦ (µI − Γ ◦ Di) = ∆ − Z ◦ Di.
The semidefinite program (8) is satisfied and hence its optimum is µmin ≤ µ. We
conclude that GSA(f) ≥ SA(f). ut



7 Proof of the main theorem

In this section, we close the circle of reductions. We use the results of Laplante
and Magniez, who recently proved [4] that the Kolmogorov complexity bound
is asymptotically lower-bounded by the weighted adversary bound and upper-
bounded by the minimax bound. The upper bound is implicit in their paper,
because they did not state the minimax bound as a separate theorem.

Theorem 8. [4, Theorem 2] KA(f) = Ω(WA(f)).

Theorem 9. KA(f) = O(MM(f)).

Proof. Take a set of probability distributions p as in equation (5). The query
information lemma [4, Lemma 3] says that K(i|x, p) ≤ log 1

px(i) +O(1) for every
x, i such that px(i) > 0. This is true, because any i of nonzero probability can
be encoded in dlog 1

px(i)e bits using the Shannon-Fano code of distribution px,
and the Shannon-Fano code is prefix-free. Rewrite the inequality as px(i) =
O
(
2−K(i|x,p)

)
. The statement follows, because the set of all strings σ in (4)

includes among others also the descriptions of all probability distributions p. ut

Proof (of Theorem 1). We have to prove that Qε(f)

1−2
√

ε(1−ε)
≥ SA(f) = WA(f) =

SWA(f) = MM(f) = SMM(f) = GSA(f) = Θ(KA(f)). Put together all known
equalities and inequalities:

– SA(f) = WA(f) = SWA(f) by Theorem 3 and Theorem 4,
– MM(f) = SMM(f) by Theorem 5,
– SMM(f) = GSA(f) by Theorem 6,
– GSA(f) = SA(f) by Theorem 7,
– KA(f) = Θ(WA(f)) by Theorem 8 and Theorem 9.

Finally, one has to prove one of the lower bounds. For example, Ambainis
proved [2] that Q2(f) ≥ (1− 2

√
ε(1− ε))WA(f). ut
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