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Abstract: The quantum adversary method is one of the most versatile lower-bound meth-
ods for quantum algorithms. We show that all known variants of this method are equivalent:
spectral adversary (Barnum, Saks, and Szegedy, 2003), weighted adversary (Ambainis,
2003), strong weighted adversary (Zhang, 2005), and the Kolmogorov complexity adver-
sary (Laplante and Magniez, 2004). We also present a few new equivalent formulations of
the method. This shows that there is essentiatigquantum adversary method. From our

approach, all known limitations of these versions of the quantum adversary method easily
follow.
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1 Introduction

1.1 Lower-bound methods for quantum query complexity

In the query complexity model, the input is accessed using oracle queries and the query complexity of
the algorithm is the number of calls to the oracle. The query complexity model is helpful in obtaining
time complexity lower bounds, and often this is the only way to obtain time bounds in the random access
model.

The first lower-bound method on quantum computation was the hybrid method of Bennett, Bernstein,
Brassard, and Vaziran®] to show anQ(y/n) lower bound on the quantum database search. Their proof
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is based on the following simple observation: If the value of funcfiadiffers on two inputs,y, then

the output quantum states of any bounded-error algorithnii fom x andy must be almost orthogonal.

On the other hand, the inner product is 1 at the beginning, because the computation starts in a fixed
state. By upper-bounding the change of the inner product after one query, we lower bound the number
of queries that need to be made.

The second lower-bound method is the polynomial method of Beals, Buhrman, Cleve, Mosca, and
de Wolf [8]. It is based on the observation that the measurement probabilities can be described by low-
degree polynomials in the input bits.tl§ueries have been made, then the degree is at mdSirze the
measurement probabilities are always ingi@ld|, one can apply degree lower bounds for polynomials
to obtain good lower bounds for quantum query complexity.

The third lower-bound method is the quantum adversary method of Amb&inidt[extends the
hybrid method. Instead of examining a fixed input pair, Ambainis takes an average over many pairs of
inputs. In this paper, we study different variants of the quantum adversary method.

The fourth lower-bound method is the semidefinite programming method of Barnum, Saks, and
SzegedyT]. It exactly characterizes quantum query complexity by a semidefinite program. The dual of
this program gives a lower bound that encompasses the quantum adversary bound.

1.2 The variants of the quantum adversary method

The original version of the quantum adversary method, let us cafiviteightedwas invented by Am-

bainis P]. It was successfully used to obtain the following tight lower boun@$:/n) for Grover
search 12], Q(,/n) for two-level And-Or trees (sed B] for a matching upper bound), arg(/n) for
inverting a permutation. The method starts with choosing a set of pairs of inputs on fvta&hs dif-

ferent values. Then the lower bound is determined by some combinatorial properties of the graph of all
pairs chosen.

Some functions, such as sorting or ordered search, could not be satisfactorily lower-bounded by the
unweighted adversary method. Hgyer, Neerbek, and Shi used a novel argadjdnt ¢btain tight
bounds for these problems. They weighted the input pairs and obtained the lower bound by evaluating
the spectral norm of the Hilbert matrix. Barnum, Saks, and Szegedy proposed a general method [
that gives necessary and sufficient conditions for the existence of a quantum query algorithm. They also
described a special case, the so-catipdctral methodwhich gives a lower bound in terms of spectral
norms of an adversary matrix. Ambainis also publishegahtedversion of his adversary methog||
He showed that it is stronger than the unweighted method and successfully applied it to get a lower
bound for several iterated functions. This method is slightly harder to apply, because it requires one
to design a so-calledeight schemewhich can be seen as a quantum counterpart of the classichl
distributionon the inputs. Zhang observed that Ambainis had generalized his oldest mgthoto
independent ways, so he unified them, and publish&itbag weighted adversary methfitl]. Finally,
Laplante and Magniez used Kolmogorov complexity in an unusual way and describ@dagorov
complexity methofiL7].

All adversary lower-bound methods above except the Kolmogorov complexity method were defined
and proved only for Boolean functions, that is for functions with Boolean input bits and a Boolean
output.
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A few relations between the methods are known. Itis a trivial fact that the strong weighted adversary
is at least as good as the weighted adversary. Laplante and Magniez siojvd{ the Kolmogorov
complexity method is at least as strong as all the following methods: the Ambainis unweighted and
weighted method, the strong weighted method, and the spectral method. The method of Haybflet al. |
is a special case of the weighted adversary method. It seemed that there were several incompatible
variants of the quantum adversary method of different strength.

In addition it was known that there were some limitations for lower bounds obtained by the adversary
method. Letf be Boolean. Szegedy observe2f] that the weighted adversary method is limited
by min(1/Con,+/Cin), whereCy is the zero-certificate complexity df andC; is the one-certificate
complexity of f. Laplante and Magniez proved the same limitation for the Kolmogorov complexity
method [L7], which implies that all other methods are also bounded. Finally, this bound was improved
to /CyC; for total f by Zhang R7] and independently by us.

1.3 Ourresults

In this paper, we clean up the forest of adversary methods. First, we extend all adversary lower bound
methods to general non-Boolean functions. Second, we show that there is essentially only one quantum
adversary method and that all the former methati3] 27, 17] are just different formulations of the
same method. Since one method can be defined in several seemingly unrelated ways and yet one always
obtains the same bound, it implies that the quantum adversary method is a very robust concept.

Third, we present a new simple proof of the limitation of the quantum adversary method. If we
order the letters in the output alphabet by their certificate complexities sudBgtha€; > ..., then all
adversary lower bounds are at most@n for partial f and/CoC; for total f.

1.4 Separation between the polynomial and adversary method

The polynomial method and the adversary method are generally incomparable. There are examples
when the polynomial method gives better bounds and vice versa.

The polynomial method has been successfully applied to obtain tight lower bounds for the following
problems: Q(n'/3) for the collision problem an®(n?/3) for the element distinctness problert] |
(see f] for a matching upper bound). The quantum adversary method is incapable of proving such
lower bounds due to the small certificate complexity of the function. Furthermore, the polynomial
method often gives tight lower bounds for the exact and zero-error quantum complexity, sufdr as
the Or function 8]. The adversary method completely fails in this setting and the only lower bound it
can offer is the bounded-error lower bound.

On the other hand, Ambainis exhibited some iterated functi8hfof which the adversary method
gives better lower bounds than the polynomial method. The largest established gap between the two
methods isn!32%, Furthermore, it is unknown how to apply the polynomial method to obtain several
lower bounds that are very simple to prove by the adversary method. A famous example is the two-
level And-Or tree. The adversary method gives a tight lower ba&ufdn) [2], whereas the best bound
obtained by the polynomial method Es(nl/3) and it follows B] from the element distinctness lower
bound f].
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There are functions for which none of the methods is known to give a tight bound. A long-standing
open problem is the binary And-Or tree. The best known quantum algorithm is just an implementation
of the classical zero-error algorithm by Srd] running in expected time @%°3), which is optimal
for both zero-error23] and bounded-erro?d] algorithms. The adversary lower bounds are limited by
v/CoC1 = y/n. In a recent development, Laplante, Lee, and Szegedy shdkthpt this limitation
v/n holds for every read-oncg\, v} formula. The best known lower bound obtained by the polynomial
method is als@(+/n) and it follows from embedding the parity function. It could be that the polynomial
method can prove a stronger lower bound. Two other examples are triangle finding and verification of
matrix products. For triangle finding, the best upper bound(ilslé) [20] and the best lower bound is
Q(n). For verification of matrix products, the best upper bound(iB5@) [10] and the best lower bound
is Q(n3/2). Again, the adversary method cannot give better bounds, but the polynomial method might.

The semidefinite programming method pives an exact characterization of quantum query com-
plexity. However, it is too general to be applied directly. It is an interesting open problem to find a lower
bound that cannot be proved by the adversary or polynomial method.

2 Preliminaries

2.1 Quantum query algorithms

We assume familiarity with quantum computirgf] and sketch the model of quantum query complex-
ity, referring to [L1] for more details, also on the relation between query complexity and certificate
complexity. Suppose we want to compute some funcfios — H, whereSC GN andG,H are some
finite alphabets. For input € S, aquerygives us access to the input variables. It corresponds to the
unitary transformation, which depends on ingun the following way:

Ox: li,b,2) — |i,(b+x)mod|G|,2) .

Herei € [N] ={1,...,N} andb € G; the z-part corresponds to the workspace, which is not affected by
the query. We assume the input can be accessed only via such quefieguéry quantum algorithm
has the formA = Ut OUr_1 - - - OxU10,Up, Where theJy are fixed unitary transformations, independent
of x. This A depends oix via the T applications ofO4. The algorithm starts in initiab-qubit state

|0). The output ofA is obtained by observing the first few qubits of the final superposhioh, and its
success probability on inputis the probability of outputting (x).

2.2 Kolmogorov complexity

An excellent book about Kolmogorov complexity is the bot&][by Li and Vitanyi. Deep knowledge of
Kolmogorov complexity is not necessary to understand this paper. Some results on the relation between
various classical forms of the quantum adversary method and the Kolmogorov complexity method are
taken from Laplante and Magniet], and the others just use basic techniques.

A set is calledprefix-freeif none of its members is a prefix of another member. Fix a universal
Turing machineM and a prefix-free s The prefix-free Kolmogorov complexitf x giveny, denoted

THEORY OF COMPUTING, Volume 2 (2006), pp. 1-18 4



ALL QUANTUM ADVERSARY METHODS AREEQUIVALENT

by K(x]y), is the length of the shortest program fr@that printsx if it getsy on the input. Formally,

K(xly) = min{[P| : P« SM(Py) =X} .

2.3 Semidefinite programming

In this paper, we use the duality theory of semidefinite programniifly [There are various forms of
the duality principle in the literature. We use a semidefinite extension of Farkas'’s leb®nmehporem
3.4].

2.4 Notation

Let [n] = {1,2,...,n}. LetX* denote the set of all finite strings over alphaketAll logarithms are
binary. Letl denote thedentity matrix. LetAT denote thetransposeof A. Let diag(A) denote the
column vector containing theain diagonalf A. Let tr(A) be thetrace of A and letA- B be the scalar
product ofA andB, formally A-B = ¥, , Alx,y|B[x,y]. For a column vectox, let |x| denote the/>-norm
of x, formally [x| = vXTx. Let A (A) denote thespectral norrmof A, formally A (A) = max(x ..o |AX|/[X.
Let AB denote the usuahatrix productand letAo B denote theHadamard (point-wise) produg®i].
Formally, (AB)[x,y] = 5 A[x,i]B[i,y] and (Ao B)[x,y] = Alx,y]B[x,y]. Let A> B denote thepoint-wise
comparisorand letC = D denote tha€ — D is positive semidefiniteFormally, Vx,y : A[x,y] > B[X,Y]
andvv: v (C—D)v> 0. Letry(M) denote the/z-norm of the x-th row of M and letc,(M) denote the
£o-normof they-th column ofM. Formally,

M)= /S Mxy? and ¢(M)= /5 Mxy? .
y X

Letr(M) = maxry(M) andc(M) = max,cy(M).

Let SC G" be a set of inputs. We say that a functibnS— H is total if S= G". A general function
is calledpartial. Let f be a partial function. Aertificatefor an inputx € Sis a subset C [n] such that
fixing the input variables € | to x; determines the function value. Formally,

vye Syl =xi = f(y)=f(x) ,

wherex|; denotes the substring afindexed byl. A certificatel for x is calledminimalif |I| < |J] for
every certificatel for x. Let C;(x) denote the lexicographically smallesinimal certificatefor x. For
anh € H, letC(f) = max.tx—n|Ct ()| be theh-certificate complexitpf f.

3 Main result

In this section, we present several equivalent quantum adversary methods and a new simple proof of
the limitations of these methods. We can categorize these methods into two groups. Some of them
solve conditions on the primal of the quantum systéfin these are the spectral, weighted, strong
weighted, and generalized spectral adversary; and some of them solve conditions on the dual: these are
the Kolmogorov complexity bound, minimax, and the semidefinite version of minimax. Primal methods
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are mostly used to give lower bounds on the query complexity, while we can use the duals to give
limitations of the method.

The primal methods, that is the spectral, weighted, and strong weighted adversary, have been stated
only for Boolean functions. The generalization to the more general non-Boolean case is straightforward
and hence we state them here in the generalized form.

Theorem 3.1.Let SC G" and let f: S— H be a partial function. Let @ f) denote the-error quantum
guery complexity of f. Then

% > SA(f) = WA(F) = SWA(f) = MM (f) = SMM(f) = GSA(f) = O(KA(f)) ,

whereSA, WA, SWA, MM, SMM, GSA,andKA are lower bounds given by the following methods.

e Spectral adversary [7]. Let D, F be|S x |S zero-one valued matrices that satisfypDy] = 1 iff
xi # Vi fori € [n], and F[x,y] = 1iff f(X) # f(y). Letl" denote ang x |§ non-negative symmetric
matrix such that oF =T. Then

_ A(T)
SA(f) = mraxm : (3.1)

¢ Weighted adversary B].1 Let ww' denote a weight scheme as follows:
— Every pair (x,y) € & is assigned a non-negative weightxwy) = w(y,x) that satisfies
w(X,y) = 0 whenever fx) = f(y).

— Every triple (x,y,i) € $ x [n] is assigned a non-negative weight(wy,i) that satisfies
W(x,y,i) = 0 whenever x=y; or f(x) = f(y), and W(x,y,i)W (y,x,i) > w?(x,y) for all
X,Y,i such that x#£y; and f(x) # f(y).

For all x,i, let wt(x) = 3, w(x,y) and \(x,i) = 3, W (X,y,i). Then

_ - wt(x)wi(y)
WA(f) = max f({g{é}y) VY. (3.2)

V(x)v(y,j)>0

e Strong weighted adversary P7]. Let ww’ denote a weight scheme as above. Then

_ W ()wt(y)
SWA(f) = max W:?%ir:o VIV (3.3)
XA

lwe use a different formulatiorL ] than in the original Ambainis paperg,[3]. In particular, we omit the relatioR C Ax B
on which the weights are required to be nonzero, and instead allow zero weights. It is simple to prove that both formulations
are equivalent.
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e Kolmogorov complexity [17].? Leto € {0,1}* denote a finite string. Then

. 1
KA (f) =min max _ _ ) (3.4)
c f(x;;y“y) Zi:xﬁéyi \/ZfK(I|X,G)fK(I\y.G)

e Minimax over probability distributions [ 17]. Let p: Sx [n] — R denote a set of probability
distributions, that is p(i) > 0 and ¥ ; px(i) = 1 for every x. Then

MM (f) = min max 1 (3.5)

P iy Zian v/ Px() Py(i)
= 1/ max min 27: px(i) py(i) - (3.6)
) X #Yi

Xy
Pttty

e Semidefinite version of minimax. Let D, F be matrices as above. Th&MM(f) = 1/tmax,
wherepmax is the maximal solution of the following semidefinite program:

maximizep
subjectto Vi: R >0
YiRol =I
YiRoDj > uF .

3.7)

e Generalized spectral adversaryLet i, F be matrices as above. Th&BA(f) = 1/ tmin, Where
Umin IS the minimal solution of the following semidefinite program:

minimize u = trA
subject to Ais diagonal
Z>0 (3.8)
Z-F=1
Vi A—ZoDi =0 .

Before we prove the main theorem in the next sections, let us draw some consequences. We show
that there are limits that none of these quantum adversary methods can go beyond.

Theorem 3.2. Let SC G" and let f: S— H be a partial function. Let the output alphabet be=H
{0,1,...,|H| — 1} and order the letters k& H by their h-certificate complexities such thaf € C; >
-++ > Cjyj—1. Then the max-min bour(@.6)is upper-bounded bWM (f) < 2,/Cy(f)-n. If f is total,

that is if S= G", thenMM (f) < /Co(T)-Cy(f).

2We use a different formulation than Laplante and Magnig.[ They minimize over all algorithmA computingf and
substitutec = source code of\, whereas we minimize over all finite strings Our way is equivalent. One can easily argue
that any finite string> can be “embedded” into any algorithiBa Let C be the source code &with appended commeiat that
is never executed. Now, the prograBiandC are equivalent, ani(x|c) < K(x|C) + O(1) for everyx.
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Proof. The following simple argument is due to Ronald de Wolf. We exhibit two sets of probability

distributionsp such that
= min \/7 ) = , resp.
() i m;y. C1 \/CT

The max-min bound3.6)is MM (f) = 1/ max,m(p) and the statement follows.
Let f be partial. For everx € S distribute one half of the probability uniformly over any minimal
certificateCs (x), and one half of the probability uniformly over all input variables. Formally,

2|ef1( gy i€t and M(i)Z%forigef(x) ,

Take anyx,y such thatf (x) # f(y). Assume tha€, < Cy, and take the (x)-certificatel = C(x). Since
Yl # X|1, there is g € | such thak; # y;. Now we lower-bound the sum ¢8.6).

(i) =

1 1 l
3, VP =m0 2 i 0 2

Since this inequality holds for ary,y such thatf(x) # f(y), alsom(p) > 1/2,/Cin. Take the
reciprocal and conclude that MM) < 2,/Cn.

For Boolean output alphabet = {0, 1}, we can prove a slightly stronger bound MK < /Cin
as follows. Definep as a uniform distribution over some minimal certificate for all one-inputs, and a
uniform distribution over all input bits for all zero-inputs. The same computation as above gives the
bound.

If f is total, then we can do even better. For every G", distribute the probability uniformly
over any minimal certificat€; (x). Formally, px(i) = 1/|Cs(x)] iff i € C¢(X), andpx(i) = O otherwise.
Take anyx,y such thatf(x) # f(y), and letl = C¢(x) N C¢(y). There must exist § € | such that
Xj # Yj, otherwise we could find an inpuatthat is consistent with both certificates. (That would be a
contradiction, becausgis total and hencé (z) has to be defined and be equal to bétk) and f (y).)
After we have found g, we lower-bound the sum ¢8.6) by 1/, /Cy 5 Cy y) in the same way as above.
Since, /Ct(xCt(y) < vCoCi, the bound follows. O]

Some parts of the following statement have been observed for individual methods by SZ8&jedy [
Laplante and Magniezl[7], and Zhang 27]. This corollary rules out all adversary attempts to prove
good lower bounds for problems with small certificate complexity, such as element distincthess [
binary And-Or treesf, 13, triangle finding RQ], or verification of matrix productsi].

Corllary 3.3. All qguantum adversary lower bounds are at mm;'n(\/Co \/Cl n) for partial
Boolean functions ang/Co( f)Cy(f) for total Boolean functions.

4 Equivalence of spectral and strong weighted adversary

In this section, we give a linear-algebraic proof that the spectral borjndnd the strong weighted
bound R7] are equal. The proof has three steps. First, we show that the weighted [8ishdt[least as
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good as the spectral bound. Second, using a small combinatorial lemma, we show that the spectral bound
is at least as good as the strong weighted bound. The strong weighted bound is always at least as good
as the weighted bound, because every term in the minimizati@ ®fis included in the minimization

of (3.2) if w(x,y) > 0 andx #y;, thenf(x) # f(y) and bothw/(x,y,i) > 0 andw/(y,x,i) > 0. The
generalization of the weighted adversary method thus does not make the bound stronger, however its
formulation is easier to use.

4.1 Reducing spectral adversary to weighted adversary

First, let us state two useful statements upper-bounding the spectral norm of a Hadamard product of two
non-negative matrices. The first one is due to Mathzds [The second one is our generalization and its
proof is postponed téppendix A

Lemma 4.1. [2]] Let S be a non-negative symmetric matrix and let M and N be non-negative matrices
such that S<X MoN. Then

A(8) < r(M)c(N) = maxr,(M)cy(N) . (4.1)

Moreover, for every symmetric:S0 there exists an M> 0 such that SS MoMT and (M) = ¢(MT) =
A(S). This optimal matrix can be written as [My] = \/S[x,y] - d[y]/d[x], where d is the principal
eigenvector of S.

Lemma 4.2. Let S be a non-negative symmetric matrix and let M and N be non-negative matrices such
that S< MoN. Then
A(9) < maxr,(M)cy(N) . (4.2)

Sixyj>0

Now we use the first bound to reduce the spectral adversary to the weighted adversary.
Theorem 4.3. SA(f) < WA(f).

Proof. Letl” be a non-negative symmetric matrix withh F =T as in equatior§3.1) that gives the opti-
mal spectral bound. Assume without loss of generality A{&t) = 1. Letd be the principal eigenvector
of I', that islI" 6 = 9. Define the following weight scheme:

W(x,y) =w(y,x) =T[x,y]- §[x|5[y] -

Furthermore, for every, usingLemma 4.1 decomposé€&; = I o D; into a Hadamard product of two
non-negative matrices = M; o M" such that (M;) = 1/A(T;). Definew as follows:

V\/(X>yvi) =M [X,y]25[X]2 :

Let us verify thatw,w is a weight scheme. From the definitiom(x,y) = w'(x,y,i) = 0 if f(x) =
f(y), and alsav'(x,y,i) = 0 if x; = yi. Furthermore, iff (x) # f(y) andx #y;, then

W (XY, W (y,%,1) = (Mi[x, Y] 8[X)2(Mi[y, ] 8[y])? = (Ti[x,Y] S[X8[y])* = w(x,y)* .

THEORY OF COMPUTING, Volume 2 (2006), pp. 1-18 9
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Finally, let us compute the bour{d.2) given by the weight scheme.
=S wixy) =8 3 Txy18[y] = 8[x (F8)X] = 5[x? ,
y y

. WXV i,262
xx}zhmgfﬂzﬁMzé D M)2 < (M2 = A(T)

The weighted adversary lower bou(®i2)is thus at least

WA(f) > mm !ﬂﬁﬂﬁgz min l“) S =SA(f) .
V(X, )v(
Hence the weighted adversary is at least as strong as the spectral ad{&dsary O

4.2 Reducing strong weighted adversary to spectral adversary

Theorem 4.4. SWA(f) < SA(f).

Proof. Letw,w be a weight scheme as in Equati@?2)that gives the optimal weighted bound. Define
the following symmetric matriX onSx S

wixy)
WWL(Y)

Fxyl =
We also define column vectéron Ssuch that [x] = y/wt(x). LetW = S, wt(x). Then
AM)>8"r§/|8)°P=W/W=1.

Define the following matrix on the index s8tx S

W (X, Y1)
wt(x)

Mi[x,y] =

Every weight scheme satisfi@&(x,y, i)W (y,x,i) > w?(x,y) for all x,y,i such thak; # y;. Hence

. M. _ \/W(X7 Y, I)W(y7 X, l) W(X7y> -Dj [Xv y]
MDY MV =" oomy) — om0
This means that < MoMT. By Lemma 4.2and usingsy(MT) = ry(M),
‘ (X Ki) <« W(Y,2,i0) V(X )Vv(y,i)
A(T) < rrPy-;]ti Ix(M)ry( e )Z \/Z wly) = Wr(n;;joz WHOWY)

X 7Yi % 7Yi

THEORY OF COMPUTING, Volume 2 (2006), pp. 1-18 10
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The spectral adversary lower bouf&ll)is thus at least

A(T)

L [ wE(X)wi(y)
SA(f) > ——————>min min /—————%- =SWA(f) .
D= manary =M W e A
% #Yi
Hence the spectral adversary is at least as strong as the weighted ad{@®ary O

Remark 4.5. The strength of the obtained reduction depends on which statement is used for upper-
bounding the spectral norm 6f.

e Lemma 4.2has just given us SWA ) < SA(f).
e Lemma 4.1would give a weaker bound WA) < SA(f).

e Hgyer, Neerbek, and Shi used an explicit expression for the norm of the Hilbert matrix to get
a lower bound for ordered searct4]. Their method is thus also a special case of the spectral
method.

e Both versions of the original unweighted adversary metHjdafe obtained by using a spec-
tral matrix I' corresponding to a zero-one valued weight schemehe lower boundA (') >
d'rd/|d|?, andLemma 4.1 resp.Lemma 4.2

5 Equivalence of minimax and generalized spectral adversary

In this section, we prove that the minimax bound is equal to the generalized spectral bound. We first
remove the reciprocal by taking the max-min bound. Second, we write this bound as a semidefinite
program. An application of duality theory of semidefinite programming finishes the proof.

Theorem 5.1. MM (f) = SMM(f).

Proof. Let p be a set of probability distributions as in Equati@6). DefineRi[x,y] = /px(i) py(i).
Sincepy is a probability distribution, we get thdt R must have all ones on the diagonal. The condition
minf(x);yf(y) Yixy Ri[X Y] > 1 may be rewritten

wx,y: F(x) #£ fly) = 27! Rxyl>u,
i 7#Yi

which is to sayy; R oD; > uF. Each matrixR should be an outer product of a non-negative vector
with itself: R = rr[ for a column vector;[x] = \/px(i). We have, however, replaced that condition
by R = 0 to get semidefinite prograg8.7). Sincerir! = 0, the progran(3.7) is a relaxation of the
condition of(3.6)and SMM f) < MM ().

Let us show that every solutioR of the semidefinite program can be changed to an at least as
good rank-1 solutiorR. Take a Cholesky decompositié = X;X;". Define a column-vecto [x] =

yiXix j]2 and a rank-1 matrif = ¢q . Itis not hard to show that al¥ satisfy the same constraints
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asR,. First,R is positive semidefinite. Secon@[x,x| = ¥ ; Xi[x, > =R[x,X], hencey; R ol =1. Third,
by a Cauchy-Schwarz inequality,

Ri[xvy] = in[xa J]xl[yu J] < \/le[ka}z\/;xl[yvg]z = ql[x]ql[y] = RII[va] )
] 3

hencey;R oD; > 3R oD; > uF. We conclude that MNIf ) < SMM(f). O

The equivalence of the semidefinite version of minimax and the generalized spectral adversary is
proved using the duality theory of semidefinite programming. We use a semidefinite version of Farkas’s
lemma [L9, Theorem 3.4].

Theorem 5.2. SMM(f) = GSA(f).

Proof. Let us compute the dual of a semidefinite program without converting it to/from the standard
form, but using Lagrange multipliers. Take the objective functioiof the semidefinite version of
minimax (3.7)and add negative penalty terms for violating the constraints.

po+ YV R+D(YRol-1)+Z (TRoD—uF) =
| I I
forY; = 0, unconstraine®, andZ > 0
= R-(Y+Dol+ZoDj)+u(1—-2-F)-D-1 .
SR (W+Dol+2oD) +u(1-2F)

Its dual system is formed by the constraintsYgrD, andZ plus the requirements that both expression in
the parentheses are zero. The duality princip Theorem 3.4] says that any primal solution is smaller
than or equal to any dual solution. Moreover, if any of the two systems has a strictly feasible solution,
then the maximal primal solution equals to the minimal dual solution.

SinceY; = 0 only appears once, we get rid of it by requiring tBat| +Z o D;j < 0. We substitute
A= —Dol and obtainA — Zo D; = 0. The objective function is-D-| = trA. We have obtained the
generalized spectral adversgBy8). Let us prove its strong feasibility. Assume that the functias not
constant, hencE # 0. TakeZ a uniform probability distribution over nonzero entriesFoind a large
enough constarlt. This is a strictly feasible solution. We conclude thabx = tUmin- O

6 Equivalence of generalized spectral and spectral adversary

In this section, we prove that the generalized spectral adversary bound is equal to the spectral adversary
bound. The main difference between them is that the generalized method uses an arbitrary positive
diagonal matrixA as a new variable instead of the identity matrix

Theorem 6.1. GSA(f) = SA(f).

Proof. Let Z,A be a solution 0{3.8). First, let us prove thah > 0. Since bothZ > 0 andD; > 0, it
holds that diag—Z o D;) < 0. We know thaf\ — Z o D; = 0, hence diaghA — Zo D;) > 0, and diagA) > 0
follows. Moreover, diagA) > 0 unlessZ contains an empty row, in which case we delete it (together
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with the corresponding column) and continue. Second, since positive semidefinite real matrices are
symmetricA —Z o D; = 0 implies thatZ o D;j is symmetric (for every). For everyx # y there is a bii
such that; # y;, henceZ must be also symmetric.

Take a column vector = diag(A~/?) and a rank-1 matridA = aa’ > 0. It is simple to prove that
Ao X = 0 for every matrixX = 0. SinceA—ZoD; = 0, alsoAo (A—ZoDj)=1—-ZoDjoA > 0 and
henced(ZoDjoA) < 1. Now, define the spectral adversary matffix ZoF o A. Since 0< ZoF < Z,
it follows that

A(ToDj)=A(ZoFoAoDj) <A(ZoDjoA)<1.
It remains to show that (") > 1/trA. Letb = diag(+/A) andB = bb". Then

1=Z-F=T-B=b"Th<A(N):|b2=A()-trA .

It is obvious thatl is symmetricT > 0, andl oF =T. The bound3.1) given byT is bigger than or
equal to ¥trA, hence SAf) > GSA(f).

For the other direction, Idt be a non-negative symmetric matrix satisfyingF =I. Let 6 be
its principal eigenvector withé| = 1. Assume without loss of generality thafl) = 1 and letu =
maxA(T;). TakeA=88T,Z=ToA andA=puloA ThenZ-F=T-A=8"T§=1and tiA = p.
For everyi, A(I"i) < u, henceul —T oD; = 0. It follows that 0< Ao (ul =T oDj) =A—ZoD;. The
semidefinite prograr(B.8)is satisfied and hence its optimumigin < ut. We conclude that GSX) >
SA(f). O

7 Proof of the main theorem

In this section, we close the circle of reductions. We use the results of Laplante and Magniez, who
recently proved 17] that the Kolmogorov complexity bound is asymptotically lower-bounded by the
weighted adversary bound and upper-bounded by the minimax bound. The upper bound is implicit in
their paper, because they did not state the minimax bound as a separate theorem.

Theorem 7.1.[17, Theorem 2] KA f) = Q(WA(T)).
Theorem 7.2. KA(f) = O(MM (f)).

Proof. Take a set of probability distributionsas in Equatior{3.5). The query information lemma.f,

Lemma 3] says thd (i|x, p) < log ﬁ +0(1) for everyx,i such thafp(i) > 0. This is true, because any

i of nonzero probability can be encoded|ing p%(iﬂ bits using the Shannon-Fano code of distribution

px, and the Shannon-Fano code is a prefix-free code. Rewrite the inequaliiflas O(2-K(xP)). The
statement follows, because the set of all strings (3.4) includes among others also the descriptions
of all probability distributionsp. O

Remark 7.3. The constant in the equality KA) = ©(WA(f)) depends on the choice of the universal
Turing machine and the prefix-free set.
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Proof of Theorem 3.1 We have to prove that

QD sarf)— WA(F) = SWA(T) = MM (1) = SMM() = GSA(f) = O(KA(f)) .
1-2\/e(1—¢)

Put together all known equalities and inequalities.

e SA(f)=WA(f)=SWA(f) by Theorem 4.3andTheorem 4.4
e MM (f)=SMM(f) by Theorem 5.1
e SMM(f) = GSA(f) by Theorem 5.2
e GSA(f)=SA(f) by Theorem 6.1
(

e KA(f)=0(WA(f)) by Theorem 7.-andTheorem 7.2

Finally, one has to prove one of the lower bounds. For example, Ambainis préMba{Qo(f) > (1—
2,/€(1—¢€))WA(f) for every Boolearf. Laplante and Magniez proved] that Qx(f) = Q(KA(f))
for generalf. Hayer andépalek present in their surveyq] an alternative proof of the spectral adversary
bound that can easily be adapted to the non-Boolean case. O

A Proof of the upper bound on the spectral norm
Proof ofLemma 4.2 Let S= M o N. Define a shortcut

B(M,N) = max rx(M)cy(N) .

Sxy]>0

Without loss of generality, we assume thaix,y] = 0 < N[x,y] = 0 < §x,y] = 0. Let us prove the
existence of matricedl’, N’ with B(M’,N’) =r(M’)c(N’) such that

MoN =M oN’, andB(M,N) =B(M’,N’) . (A.1)
We then appljLemma 4.1and obtain
A(S) <A(MoN)=A(M'oN’) <r(M)c(N')=B(M',N)=B(M,N) .
Take agVl’,N’ any pair of matrices that satisfiés.1) and the following constraints:
e b=r(M’)c(N’) is minimal, that is there is no pail”,N” giving a smallem,

e and, among those, the s&tof maximum-norm rows oM’ and the seC of maximum-norm
columns ofN’ are both minimal (in the same sense).

Let (r,c) be any “maximal” entry, that i§r,c| > 0 andr,(M")cc(N') = B(M’,N’). Let R denote the
complementf Rand letSR, C| denote thesub-matrixof Sindexed byR x C. Then one of the following
cases happens:
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1. (r,c) € RxC: ThenB(M’,N’) =r(M’)c(N’) and we are done. If this is not the case, then we know
thatSR,C] = 0.

2. (r,c) e RxC: ThenSR C] = 0, otherwise we get a contradiction with one of the minimality
assumptions. I§x,y] # 0 for some(x,y) € Rx C, multiply M’[x,y] by 1+ & and divideN’[x,y]
by 1+ & for some smalk > 0 such that the norm of theth row of M’ is still smaller tharr (M’).
Now, we have either deleted tlyeth column fromC or, if |C| = 1, decreased(N’). Both cases
are a contradiction. Finally, R C] = 0, thenc(N’) = 0 due toS|R,C] = 0 and the fact that
are the maximum-norm columns. Her8& a zero matrix, and we are done.

3. (r,c) € Rx C: This case is similar to the previous case.

4. (r,c) € Rx C: First, note thatSR, c] = 0, otherwise(r,c) would not be “maximal”. Now we
divide all entries inV’[R,C] by 1+ & and multiply all entries ilN’[R,C] by 1+ ¢ for some small
€ > 0 such that the “maximal” entries are unchanged. SB&eC] = 0, it follows that either
SR,C] = 0 andSis a zero matrix, or there is a nonzero number in every roM'éR C|. Therefore,
unlessSis a zero matrix, we have preservi@@V’,N’) andc(N’), and decreasedM’), which is a
contradiction.

We conclude thatr,c) € Rx C, B(M’,N) =r(M’)c(N’), and hencd (S) < B(M,N). O
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