
Quantum Algorithms for Matching
and Network Flows

Andris Ambainis1,? and Robert Špalek2,??

1 Institute for Quantum Computing and University of Waterloo.
ambainis@math.uwaterloo.ca

2 CWI and University of Amsterdam. sr@cwi.nl

Abstract. We present quantum algorithms for some graph problems:
finding a maximal bipartite matching in time O(n

√
m log n), finding a

maximal non-bipartite matching in time O(n2(
p

m/n+log n) log n), and

finding a maximal flow in an integer network in time O(min(n7/6√m ·
U1/3,

√
nUm) log n), where n is the number of vertices, m is the number

of edges, and U ≤ n1/4 is an upper bound on the capacity of an edge.

1 Introduction

Network flows is one of the most studied problems in computer science. We are
given a directed graph with two designated vertices: a source and a sink. Each
edge has assigned a capacity. A network flow is an assignment of flows to the
edges such that the capacity of an edge is never exceeded and the total incoming
and outgoing flow are equal for each vertex except for the source and the sink.
A size of the flow is the total flow going from the source. The task is to find a
flow of maximal size.

After the pioneering work of Ford and Fulkerson [1], many algorithms have
been proposed. Let n denote the number of vertices and let m denote the number
of edges. For networks with real capacities, the fastest algorithms run in time
O(n3) [2, 3]. If the network is sparse, one can achieve a faster time O(nm(log n)2)
[4]. If all capacities are integers bounded by U , the maximal flow can be found in
time O(min(n2/3m,m3/2) log(n2/m) log U) [5]. For unit networks, the log-factor
is not necessary and the fastest algorithm runs in time O(min(n2/3m,m3/2)) [6].
For undirected unit networks, the fastest known deterministic algorithm runs in
time O(n7/6m2/3) and the fastest known probabilistic algorithm runs in time
O(n20/9) [7].

Another well studied problem is finding a matching in a graph. We are given
an undirected graph. A matching is a set of edges such that every vertex is con-
nected to at most one other vertex. The task is to find a matching of maximal
size. The simplest classical algorithm based on augmenting paths runs in time
O(n3) [8, 9]. If the graph is bipartite, then the simple algorithm finds a maximal
? Supported by NSERC, ARDA, CIAR and IQC University Professorship.

?? Supported in part by the EU fifth framework project RESQ, IST-2001-37559. Work
conducted while visiting University of Waterloo and University of Calgary.

matching in faster time O(n5/2) [10]. Finding a bipartite matching can be re-
duced to finding a maximal flow in a directed unit network, hence one can apply
the same algorithms and achieve a running time O(min(n2/3m,m3/2)) [6]. The
fastest known algorithm for general sparse graphs runs in time O(

√
nm) [11].

Recently, Mucha and Sankowski published a new algorithm [12] based on matrix
multiplication that finds a maximal matching in general graphs in time O(nω),
where 2 ≤ ω ≤ 2.38 is the exponent of the best matrix multiplication algorithm.

In our paper, we analyze the quantum time complexity of these problems.
We use Grover’s search [13, 14] to speed up searching for an edge. A similar
approach has been successfully applied by Dürr et al. [15] to the following graph
problems: connectivity, strong connectivity, minimum spanning tree, and single
source shortest paths. Our bipartite matching algorithm is polynomially faster
than the best classical algorithm when m = Ω(n1+ε) for some ε > 0, and
the network flows algorithm is polynomially faster when m = Ω(n1+ε) and U
is small. Out non-bipartite matching algorithm is worse than the best known
classical algorithm [11].

There is an Ω(n3/2) quantum adversary lower bound for the bipartite match-
ing problem [16, 17]. Since the bipartite matching problem is a special case of
the other problems studied in this paper, this implies an Ω(n3/2) quantum lower
bound for all problems in this paper.

2 Preliminaries

An excellent book about quantum computing is the textbook by Nielsen and
Chuang [18]. In this paper, we only use two quantum sub-routines and oth-
erwise our algorithm are completely classical. The first one is a generalization
of Grover’s search that finds k items in a search space of size ` in total time
O(
√

k`) [13, 14]. An additional time O(
√

`) is needed to detect that there are
no more solutions; this term is only important when k = 0. The second one
is quantum counting that estimates the number of ones in a string of length n
within additive constant

√
n with high probability in time O(

√
n) [19, Theorem

13].
Each of those algorithms may output an incorrect answer with a constant

probability. Our algorithms may use a polynomial number nc of quantum sub-
routines. Because of that, we have to repeat each quantum subroutine O(log n)
times, to make sure that the probability of an incorrect answer is less than
1/nc+1. Then, the probability that all quantum subroutines in our algorithm
output the correct answer is at least 1− 1/n. This increases the running time of
all our algorithms by a log n factor. We omit the log-factors in the proofs, but
we state them in the statements of our theorems.

A very good book about network flows is the classical book by Ahuja, Mag-
nanti, and Orlin [20]. It, however, does not contain most of the newest algorithms
that we compare our algorithms to. We use the following concepts: A layered net-
work is a network whose vertices are ordered into a number of layers, and whose
edges only go from the i-th layer to the (i + 1)-th layer. A residual network is a

network whose capacities denote the residual capacity of the edges in the original
network. When an edge has a capacity c and carries a flow f , then its residual
capacity is either c − f or c + f depending on the direction. An augmenting
path in a network is a path from the source to the sink whose residual capacity
is bigger than 0. An augmenting path for the matching problem is a path that
consists of alternated non-edges and edges of the current matching, and starts
and ends in a free vertex. A blocking flow in a layered residual network is a
maximal flow with respect to inclusion. A blocking flow cannot be increased by
one augmenting path. A cut in a network is a subset of edges such that there is
no path from the source to the sink if we remove these edges. The size of a cut
is the sum of the capacities of its edges. Any flow has size smaller or equal to
the size of any cut.

Let us define our computational model. Let V be a fixed vertex set of size
n ≥ 1 and let E ⊆ (V

2) be a set of edges. E is a part of the input. Let m denote
the number of edges. We assume that m ≥ n, since one can eliminate zero-degree
vertices in classical time O(n). We consider the following two black-box models
for accessing directed graphs:

– Adjacency model: the input is specified by an n×n Boolean matrix A, where
A[v, w] = 1 iff (v, w) ∈ E.

– List model: the input is specified by n arrays {Nv : v ∈ V } of length 1 ≤
dv ≤ n. Each entry of an array is either a number of a neighbor or an hole,
and {Nv[i] : i = 1, . . . , dv} − {hole} = {w : (v, w) ∈ E}.

The structure of the paper is as follows: In Section 3, we present a quantum
algorithm for computing a layered network from a given network. It is used as
a tool in almost all our algorithms. In Section 4, we present a simple quantum
algorithm for bipartite matching. In Section 5, we show how to quantize the clas-
sical algorithm for non-bipartite matching. In Section 6, we present a quantum
algorithm for network flows.

3 Finding a layered subgraph

We are given a connected directed black-box graph G = (V,E) and a starting
vertex a ∈ V , and we want to assign layers ` : V → N to its vertices such that
`(a) = 0 and `(y) = 1 + minx:(x,y)∈E `(x) otherwise. The following quantum
algorithm computes layer numbers for all vertices:

1. Set `(a) = 0 and `(x) = ∞ for x 6= a.
Create a one-entry queue W = {a}.

2. While W 6= ∅,
– take the first vertex x from W ,
– find by Grover’s search all its neighbors y with `(y) = ∞,

set `(y) := `(x) + 1, and append y into W ,
– and remove x from W .

Theorem 1. The algorithm assigns layers in time O(n3/2 log n) in the adja-
cency model and in time O(

√
nm log n) in the list model.

Proof. The algorithm is a quantum implementation of breadth-first search. The
initialization costs time O(n). Every vertex is processed at most once. In the
adjacency model, every vertex contributes by time at most O(

√
n), because

finding a vertex from its ancestor costs time at most O(
√

n) and discovering
that a vertex has no descendant costs the same.

In the list model, processing a vertex v costs time O(
√

nvdv +
√

dv + 1),
where nv is the number of vertices inserted into W when processing v. Let
f ≤ min(n, m) be the number of found vertices. Since

∑
v nv ≤ f ≤ n and∑

v(dv + 1) ≤ m + f = O(m), the total running time is upper-bounded by the
Cauchy-Schwarz inequality as follows:∑

v

√
nvdv ≤

√∑
v

nv

√∑
v

dv = O(
√

nm),

and
∑

v

√
dv + 1 ≤

√
f
√

m + f is upper-bounded in the same way.

4 Bipartite matching

We are given an undirected bipartite black-box graph G = (V1, V2, E) and we
want to find a maximum matching among its vertices. This can be done classi-
cally in time O(n5/2) [10] as follows:

1. Set M to an empty matching.
2. Let H = (V ′, E′) denote the following graph:

V ′ = V1 ∪ V2 ∪ {a, b}
E′ = {(a, x) : x ∈ V1, x 6∈ M}

∪ {(x, y) : x ∈ V1, y ∈ V2, (x, y) ∈ E, (x, y) 6∈ M}
∪ {(y, x) : x ∈ V1, y ∈ V2, (x, y) ∈ E, (x, y) ∈ M}
∪ {(y, b) : y ∈ V2, y 6∈ M},
where the shortcut x 6∈ M means that x is not matched.

Find a maximal (with respect to inclusion) set S of vertex-disjoint augment-
ing paths of minimal length. This is done as follows: First, construct a layered
subgraph H ′ of H. Second, perform a depth-first search for a maximal set of
vertex-disjoint paths from a to b in H ′. Every such a path is an augmenting
path in M , and they all have the same minimal length.

3. Augment the matching M by S.
4. If S 6= ∅, go back to step 2, otherwise output the matching M .

The algorithm is correct because (1) a matching is maximal iff there is no
augmenting path, and (2) the minimal length of an augmenting path is increased

by at least one after every iteration. The construction of H ′ classically and the
depth-first search both cost O(n2). The maximal number of iterations is O(

√
n)

due to the following statement:

Lemma 1. [10] If M1 and M2 are two matchings of size s1 and s2 with s1 < s2,
then there exist s2 − s1 vertex-disjoint augmenting paths in M1.

Let s be the size of the maximal matching M in G, and let si be the size of
the found matching Mi after the i-th iteration. Let j be the number of the first
iteration with sj ≥ s −

√
n. The total number of iterations is at most j +

√
n,

because the algorithm finds at least one augmenting path in every iteration. On
the other hand, by Lemma 1, there are s− sj ≥

√
n vertex-disjoint augmenting

paths in Mj . Since all augmenting paths in the j-th iteration are of length at
least j + 2, it must be that j <

√
n, otherwise the paths would not be disjoint.

We conclude that the total number of iterations is at most 2
√

n.

Theorem 2. Quantumly, a maximal bipartite matching can be found in time
O(n2 log n) in the adjacency model and O(n

√
m log n) in the list model.

Proof. We present a quantum algorithm that finds all augmenting paths in one
iteration in time O(n3/2), resp. O(

√
nm), times a log-factor for Grover’s search.

Since the number of iterations is O(
√

n), the upper bound on the running time
follows. Our algorithm works similarly to the classical one; it also computes the
layered graph H ′ and then searches in it.

The intermediate graph H is generated on-line from the input black-box
graph G and the current matching M , using a constant number of queries as
follows: the sub-graph of H on V1 × V2 is the same as G except that some
edges have been removed; here we exploit the fact that the lists of neighbors can
contain holes. We also add two new vertices a and b, add one list of neighbors of
a with holes of total length n, and at most one neighbor b to every vertex from
V2. Theorem 1 states how long it takes to compute H ′ from H. It remains to
show how to find the augmenting paths in the same time.

This is simple once we have computed the layer numbers of all vertices. We
find a maximal set of vertex-disjoint paths from a to b by a depth-first search.
A descendant of a vertex is found by Grover’s search over all unmarked vertices
with layer number by one bigger. All vertices are unmarked in the beginning.
When we find a descendant, we mark it and continue backtracking. Either the
vertex will become a part of an augmenting path, or it does not belong to any
and hence it needs not be tried again. Each vertex is thus visited at most once.

In the adjacency model, every vertex costs time O(
√

n) to be found and
time O(

√
n) to discover that it does not have any descendant. In the list model,

a vertex v costs time O(
√

nvdv +
√

dv), where nv is the number of unmarked
vertices found from v. The sum over all vertices is upper-bounded like in the
proof of Theorem 1. Note that

∑
v dv has been increased by at most 2n.

5 Non-bipartite matching

We are given an undirected graph G = (V,E) and we want to find a maximal
matching among its vertices. There is a classical algorithm [8, 9] running in total
time O(n3) in n iterations of time O(n2).

Each iteration consists of searching for an augmenting path. The algorithm
performs a breadth-first search from some free vertex. It browses paths that
consist of alternated non-edges and edges of the current matching. The matching
is specified by pointers mate. Let us call a vertex v even if we have found such
an alternated path of even length from the start to v; otherwise we call it odd.
Newly discovered vertices are considered to be odd. For each even vertex, we
store two pointers link and bridge used for tracing the path back, and a pointer
first to the last odd vertex on this path. The algorithm works as follows and its
progress on an example graph is outlined in Figure 1:

1. Initialize a queue of even vertices W = {a} with some free vertex a.
2. Take the first vertex v from W and delete it from W .
3. If there exists an free vertex w connected to v, then augment the current

matching by the path a → v plus the edge (v, w), and quit. A general subpath
ρ : b → v is traced recursively using v’s pointers as follows:
– If bridge is nil, then link points to the previous even vertex on ρ. Output

2 edges from v to mate and link, and trace ρ from link to b.
– Otherwise v was discovered via a bridge, link points to v’s side of the

bridge, and bridge to the other side. Trace ρ from link to v in the opposite
direction, and then from bridge to b in the normal direction.

4. For every odd vertex w connected to v, do the following:
– Let w be connected to a mate w′. If w′ is even, do nothing.
– Otherwise mark w′ as even, append it to W , and set its pointers as

follows: link to v, bridge to nil, and first to w.
5. For every even vertex w connected to v, do the following:

– Compare the pointers first of v and w. If they are equal, do nothing.
– Now, v and w lie on a circle of odd length, and the edge (v, w) is a bridge

between the two subpaths. Find the nearest common odd ancestor p of
v and w by tracing the pointers first. Collapse the circle as follows:
• Mark all odd vertices between v and p as even, append them to W ,

and set their pointers as follows: link to v, bridge to w, and first to
p.

• Do the same for odd vertices between w and p.
• Finally, rewrite all links first pointing to odd vertices that have just

become even to p.
6. If W is empty, then there is no augmenting path from a and we quit, other-

wise go back to step 2.

It holds that if an augmenting path from some vertex has not been found,
then it would not be found even later after more iterations of the algorithm.
Hence it suffices to search for an augmenting path from each vertex once.

7

8

6

5 4

3

2

1
bridges

0

– white vertices are free
– thick solid lines denote the

current matching
– dotted lines are the remaining

edges of the graph
– even vertices are numbered in

the order they are found
– vertices 5, 6, 7, and 8 are found

via 3 bridges
– the augmenting path is 0, 7, 1,

6, 3, 4, 5, 2, 8, and the final
free vertex

Fig. 1. The classical non-bipartite matching algorithm [8, 9]

Theorem 3. Quantumly, a maximal non-bipartite matching can be found in
time O(n5/2 log n) in the adjacency model and O(n2(

√
m/n+log n) log n) in the

list model.

Proof. The algorithm iteratively augments the current matching by single aug-
menting paths, like the classical algorithm. An augmenting path is found using
Grover’s search in faster time O(n3/2), resp. O(n(

√
m/n + log n)), times the

usual log-factor. This implies the bound on the total running time, since there
are n vertices and each of them is used as the starting vertex a at most once.
Let us prove the time bound for the list model.

Let f ≤ min(n, m) denote the number of even vertices. For every even vertex
v, we perform the following 3 Grover’s searches: First, we look for a free neighbor
of v in time O(

√
dv). Second, we process all odd neighbors of v whose mate is

still odd in total time O(
√

evdv), where ev is the number of odd vertices that
are found during processing v. Third, we process all even neighbors of v whose
pointer first is different from v’s pointer first, in time O(

√
bvdv), where bv is the

number of bridges that are found during processing v. Clearly
∑

v ev ≤ f and∑
v bv ≤ f , and, since

∑
v dv ≤ m, by the Cauchy-Schwarz inequality, the total

time spent in all Grover’s searches is O(
√

nm).
Let us estimate the running time of collapsing one circle. Let p1 be the length

of the link-list of pointers first from one side of the bridge into the nearest
common parent, let p2 be the other one, and let p = max(p1, p2). The nearest
common parent is found in time O(p log p) as follows: we maintain two balanced
binary trees for each link-list, add vertices synchronously one-by-one, and search
for every newly inserted vertex in the opposite tree, until we find a collision. Let
rv be the number of odd vertices collapsed during processing a vertex v. It holds
that rv = p1+p2 = Θ(p) and

∑
v rv ≤ f . Hence the total time spent in collapsing

circles is O(f log f).

Rewriting the pointers first of all even vertices inside a collapsed circle would
be too slow. We instead maintain aside a Union-tree of all these pointers, and
for every odd vertex converted to even, we append its subtree to the node of the
nearest common ancestor. The total time spent in doing this is O(f log f).

The augmenting path has length at most n and it is traced back in linear
time. We conclude that the total running time of finding an augmented time is
O(
√

nm + n log n) = O(n(
√

m/n + log n)), which is O(
√

nm) for m ≥ n(log n)2.
The running time in the adjacency model is equal to the running time in the list
model with m = n2, that is O(n5/2).

It would be interesting to quantize the fastest known classical algorithm by
Micali and Vazirani [11] running in total time O(

√
nm).

6 Integer network flows

We are given a directed network with real capacities, and we want to find a
maximal flow from the source to the sink. There are classical algorithms running
in time O(n3) [2, 3]. They iteratively augment the current flow by adding blocking
flows in layered residual networks [21] of increasing depth. Since the depth is
increased by at least one after each iteration, there are at most n iterations.
Each of them can be processed in time O(n2). For sparse real networks, the
fastest known algorithm runs in time O(nm(log n)2) [4].

Let us restrict the setting to integer capacities bounded by U . There is a sim-
ple capacity scaling algorithm running in time O(nm log U) [22, 21]. The fastest
known algorithm runs in time O(min(n2/3m,m3/2) log(n2/m) log U) [5]. For unit
networks, i.e. for U = 1, a simple combination of the capacity scaling algorithm
and the blocking-flow algorithm runs in time O(min(n2/3m,m3/2)) [6]. For undi-
rected unit networks, there is an algorithm running in time O(n3/2

√
m) [23], and

the fastest known algorithm runs in worst-case time O(n7/6m2/3) and expected
time O(n20/9) [7].

Lemma 2. [6] Let us have an integer network with capacities bounded by U ,
whose layered residual network has depth k. Then the size of the residual flow is
at most min((2n/k)2,m/k) · U .

Proof. (1) There exist layers V` and V`+1 that both have less than 2n/k ver-
tices. This is because if for every i = 0, 1, . . . , k/2, at least one of the layers
V2i, V2i+1 had size at least 2n/k, then the total number of vertices would
exceed n. Since V` and V`+1 form a cut, the residual flow has size at most
|V`| · |V`+1| · U ≤ (2n/k)2U .

(2) For every i = 0, 1, . . . , k − 1, the layers Vi and Vi+1 form a cut. These cuts
are disjoint and they together have at most m edges. Hence at least one of
them has at most m/k edges, and the residual flow has thus size at most
O(mU/k).

Theorem 4. Let U ≤ n1/4. Quantumly, a maximal network flow with integer
capacities at most U can be found in time O(n13/6 ·U1/3 log n) in the adjacency
model and in time O(min(n7/6

√
m · U1/3,

√
nUm) log n) in the list model.

Proof. The algorithm iteratively augments the current flow by blocking flows
in layered residual networks [21], until the depth of the network exceeds k =
min(n2/3U1/3,

√
mU). Then it switches to searching augmenting paths [22], while

there are some. The idea of switching the two algorithms comes from [6]. Our
algorithm uses classical memory of size O(n2) to store the current flow and its
direction for every edge of the network, and a 1-bit status of each vertex. A
blocking flow is found as follows:

1. Compute a layered subgraph H ′ of the residual network H. The capacity of
each edge in H is equal to the original capacity plus or minus the current
flow depending on the direction. Edges with zero capacities are omitted.

2. Mark all vertices as enabled.
3. Find by a depth-first search a path ρ in H ′ from the source to the sink that

only goes through enabled vertices. If there is no such a path, quit. During
back-tracking, disable all vertices from which there is no path to the sink.

4. Compute the minimal capacity µ of an edge on ρ.
Augment the flow by µ along ρ.

5. Go back to step 3.

The layered subgraph H ′ is computed from H using Theorem 1, and the
capacities of H are computed on-line in constant time. When the flow is aug-
mented by µ along the path ρ, the saturated edges will have been automatically
deleted. This is because the algorithm only stores layer numbers for the vertices,
and the edges of H ′ are searched on-line by Grover’s search.

Let us compute how much time the algorithm spends in a vertex v during
searching the augmenting paths. Let av denote the number of augmenting paths
going through v and let ev,i denote the number of outgoing edges from v at
the moment when there are still i remaining augmenting paths. The capacity of
every edge is at most U , hence ev,i ≥ di/Ue. The time spent in Grover’s searches
leading to an augmenting path in v is thus at most

av∑
i=1

√
dv

ev,i
≤
√

U ·
av∑
i=1

√
dv

i
= O(

√
Uavdv).

Let cv denote the number of enabled vertices found from v that do not lie on
an augmenting path and are thus disabled. The time spent in Grover’s searches
for these vertices is at most O(

√
cvdv). Furthermore, it takes additional time

O(
√

dv + 1) to discover that there is no augmenting path from v, and in this
case v is disabled and never visited again.

Let j denote the depth of the network and let Aj be the size of its blocking
flow. The total number of augmenting paths going through vertices in any given
layer is at most Aj . We conclude that

∑
v av ≤ jAj . We also know that

∑
v cv ≤

n. Since
∑

v dv ≤ m, by the Cauchy-Schwarz inequality, the total time spent by
finding one blocking flow is∑

v

(
√

Uavdv +
√

cvdv +
√

dv + 1) ≤
√

U

√∑
v

av

√∑
v

dv + 2
√

nm

= O(
√

jmAjU +
√

nm).

Our algorithm performs at most k = min(n2/3U1/3,
√

mU) iterations of find-
ing the blocking flow in total time at most

√
mU ·

∑k
j=1

√
jAj + k

√
nm. Let us

assume that the algorithm has not finished, and estimate the size of the resid-
ual flow and thus upper-bound the number of augmenting paths that need to be
found. The algorithm has constructed in this iteration a layered network of depth
bigger than k. By Lemma 2, the residual flow has size O(min((n/k)2,m/k)·U) =
O(k), hence the algorithm terminates in O(k) more iterations. From this point
on, the algorithm only looks for one augmenting path in each layered network,
hence its complexity drops to O(

√
j′m) = O(

√
nm) per iteration, omitting the

factor
√

Aj′U . The total running time is thus at most

O
(√

mU ·
k∑

j=1

√
jAj + k

√
nm

)
+ O(k

√
nm).

Let us prove that
∑

j

√
jAj = O(k3/2). We split the sequence into log k intervals

Si = {2i, 2i + 1, . . . , 2i+1 − 1} of length 2i. By Lemma 2, the residual flow after
` = k/2i iterations is at most O(min((n/k)2 · 22i,m/k · 2i) · U) ≤ O(22ik) =
O((k/`)2`) = O(k2/`). Since the total size of all blocking flows cannot exceed the
residual flow,

∑2`−1
j=` Aj = O(k2/`). By applying the Cauchy-Schwarz inequality

independently on each block, we get

k∑
j=1

√
jAj =

log k∑
i=0

2i+1−1∑
j=2i

√
jAj ≤

log k∑
i=0

√
2i · 2i+1

√√√√2i+1−1∑
j=2i

Aj

≤
√

2
log k∑
i=0

2i
√

k2/2i =
√

2 · k
log k∑
k=0

2i/2 = O(k3/2).

The total running time is thus O(k
√

m(
√

kU +
√

n)). Now, kU ≤ n, because
U ≤ n1/4 and kU = min(n2/3U4/3,

√
m·U3/2) ≤ n2/3n1/3 = n. The running time

is therefore O(k
√

nm) = O(min(n7/6
√

m · U1/3,
√

nUm)), times a log-factor for
Grover’s search. The time for the adjacency model follows from setting m = n2

and it is O(n13/6 · U1/3 log n).

It is not hard to compute an upper bound on the running time of the
network flows algorithm for U > n1/4 by the same techniques. One obtains

O(min(n7/6
√

m,
√

nm) · U log n) for arbitrary U by setting k = min(n2/3,
√

m).
It would be interesting to apply techniques of [5] to improve the multiplicative
constant in Theorem 4 from poly(U) to log U . If m = Ω(n1+ε) for some ε > 0
and U is small, then our algorithm is polynomially faster than the best classical
algorithm. For constant U and m = O(n), it is slower by at most a log-factor.
The speedup is biggest for dense networks with m = Ω(n2).

Theorem 5. Any bounded-error quantum algorithm for network flows with in-
teger capacities bounded by U = n has quantum query complexity Ω(n2).

Proof. Consider the following layered graph with m = Θ(n2) edges. The vertices
are ordered into 4 layers: the first layer contains the source, the second and third
layer contain p = n

2 − 1 vertices each, and the last layer contains the sink. The
source and the sink are both connected to all vertices in the neighboring layer
by p edges of full capacity n. The vertices in the second and third layer are
connected by either p2

2 or p2

2 + 1 edges of capacity 1 chosen at random. The
edges between these two layers form a minimal cut. Now, deciding whether the
maximal flow is p2

2 or p2

2 +1 allows us to compute the majority on p2 bits. There
is an Ω(p2) = Ω(n2) lower bound for majority, hence the same lower bound also
holds for the computation of the maximal flow.

Acknowledgments

We thank Marek Karpinski for discussions that lead to the quantum bipartite
matching algorithm and help with literature on classical algorithms for bipartite
matchings.

References

1. Ford, L.R., Fulkerson, D.R.: Maximal flow through a network. Canadian Journal
of Mathematics 8 (1956) 399–404

2. Karzanov, A.V.: Determining the maximal flow in a network by the method of
preflows. Soviet Mathematics Doklady 15 (1974) 434–437

3. Malhotra, V.M., Kumar, P., Maheshwari, S.N.: An O(V 3) algorithm for finding
the maximum flows in networks. Information Processing Letters 7 (1978) 277–278

4. Galil, Z., Naamad, A.: Network flow and generalized path compression. In: Proc.
of 11th ACM STOC. (1979) 13–26

5. Goldberg, A.V., Rao, S.: Beyond the flow decomposition barrier. Journal of the
ACM 45 (1998) 783–797

6. Even, S., Tarjan, R.E.: Network flow and testing graph connectivity. SIAM Journal
on Computing 4 (1975) 507–518

7. Karger, D.R., Levine, M.S.: Finding maximum flows in undirected graphs seems
easier than bipartite matching. In: Proc. of 30th ACM STOC. (1998) 69–78

8. Edmonds, J.: Paths, trees, and flowers. Canadian Journal of Mathematics 17
(1965) 449–467

9. Gabow, H.N.: An efficient implementation of Edmonds’ algorithm for maximum
matching on graphs. Journal of the ACM 23 (1976) 221–234

10. Hopcroft, J.E., Karp, R.M.: An n5/2 algorithm for maximum matchings in bipartite
graphs. SIAM Journal on Computing 2 (1973) 225–231

11. Micali, S., Vazirani, V.V.: An O(
p
|V |·|E|) algorithm for finding maximum match-

ing in general graphs. In: Proc. of 21st IEEE FOCS. (1980) 17–27
12. Mucha, M., Sankowski, P.: Maximum matchings via Gaussian elimination. In:

Proc. of 45th IEEE FOCS. (2004) 248–255
13. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proc.

of 28th ACM STOC. (1996) 212–219
14. Boyer, M., Brassard, G., Høyer, P., Tapp, A.: Tight bounds on quantum searching.

Fortschritte der Physik 46 (1998) 493–505 Earlier version in Physcomp’96.
15. Dürr, C., Heiligman, M., Høyer, P., Mhalla, M.: Quatum query complexity of some

graph problems. In: Proc. of 31st ICALP. (2004) 481–493 LNCS 3142.
16. Berzina, A., Dubrovsky, A., Freivalds, R., Lace, L., Scegulnaja, O.: Quantum query

complexity for some graph problems. In: Proc. of 30th SOFSEM. (2004) 140–150
17. Zhang, S.: On the power of Ambainis’s lower bounds. Theoretical Computer

Science 339 (2005) 241–256 Earlier version in ICALP’04.
18. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information.

Cambridge University Press (2000)
19. Brassard, G., Høyer, P., Mosca, M., Tapp, A.: Quantum amplitude amplification

and estimation. In: Quantum Computation and Quantum Information: A Mil-
lennium Volume. Volume 305 of AMS Contemporary Mathematics Series. (2002)
53–74

20. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows. Prentice-Hall (1993)
21. Dinic, E.A.: Algorithm for solution of a problem of maximum flow in networks

with power estimation. Soviet Mathematics Doklady 11 (1970) 1277–1280
22. Edmonds, J., Karp, R.M.: Theoretical improvement in algorithmic efficiency for

network flow problems. Journal of the ACM 19 (1972) 248–264
23. Goldberg, A.V., Rao, S.: Flows in undirected unit capacity networks. SIAM Journal

on Discrete Mathematics 12 (1999) 1–5

