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Abstract

Shor’s and Grover’s famous quantum algorithms for factoring and searching show that
quantum computers can solve certain computational problems significantly faster than any
classical computer. We discuss here what quantum computerscannotdo, and specifically how
to prove limits on their computational power. We cover the main known techniques for proving
lower bounds, and exemplify and compare the methods.

1 Introduction

The very first issue of the Journal of the ACM was published in January 1954. It was the first
journal devoted to computer science. For its 50th anniversary volume, published in January 2003,
editors-in-chief Joseph Y. Halpern asked winners of the Turing Award and the Nevanlinna Prize
to discuss up to three problems that they thought would be major problems for computer science
in the next 50 years. Nevanlinna Prize winner Leslie G. Valiant [Val03] describes three problems,
the first of which is on physically realizable models for computation and formalizes the setting
by defining: “We therefore call our class PhP, the class of physically constructible polynomial
resource computers.” He then formulates the problem by: “[t]o phrase a single question, the full
characterization of PhP,” and argues that “this single question appears at this time to be scientifi-
cally the most fundamental in computer science.”

On January 26, this year, Nobel Laureate David Gross gave a CERN Colloquium presenta-
tion on “The future of physics” [Gro05]. He discusses “25 questions that might guide physics, in
the broadest sense, over the next 25 years,” and includes as questions 15 and 16 “Complexity” and
“Quantum Computing.” In July, this year, the Science magazine celebrated its 125th anniversary by
“explor[ing] 125 big questions that face scientific enquiry over the next quarter-century” [Sei05].
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Among the top 25, is the question of “What are the limits of conventional computing?” Charles
Seife writes: “[T]here is a realm beyond the classical computer: the quantum,” and he discusses
the issue of determining “what quantum-mechanical properties make quantum computers so pow-
erful.”

In this issue of the Bulletin of the EATCS, we would like to offer an introduction to the topic
of studying limitations on the power of quantum computers. Can quantum computers really be
more powerful than traditional computers? What can quantum computers not do? What proof
techniques are used for proving bounds on the computational power of quantum computers? It
is a highly active area of research and flourishing with profound and beautiful theorems. Though
deep, it is fortunately also an accessible area, based on basic principles and simple concepts, and
one that does not require specialized prior knowledge. One aim of this paper is to show this by
providing a fairly complete introduction to the two most successful methods for proving lower
bounds on quantum computations, the adversary method and the polynomial method. Our survey
is biased towards the adversary method since it is likely the least familiar method and it yields very
strong lower bounds. This paper is meant to be supplemented by the excellent survey of Buhrman
and de Wolf [BW02] on decision tree complexities, published in 2002 in the journal Theoretical
Computer Science.

We demonstrate the methods on a running example, and for this, we use one of the most basic
algorithmic questions one may think of: that of searching an ordered set. Can one implement
ordered searching significantly faster on a quantum computer than applying a standardΘ(logN)
binary search algorithm?

The rest of the paper is organized as follows. We motivate and define our models of compu-
tation in the next section. We then discuss very basic principles used in proving quantum lower
bounds in Section 3 and use them to establish our first lower-bound method, the adversary method,
in Section 4. We discuss how to apply the method in Section 5, and its limitations in Section 6. We
then give an introduction to the second method, the polynomial method, in Section 7. We compare
the two methods in Section 8 and give a few final remarks in Section 9.

We have aimed at limiting prior knowledge on quantum computing to a bare minimum. Sen-
tences and paragraphs with kets and bras (|this is a ket〉 and 〈this is a bra|) can either safely be
skipped, or substituted with column-vectors and row-vectors, respectively.

2 Quantum query complexity

Many quantum algorithms are developed for the so-called oracle model in which the input is given
as an oracle so that the only knowledge we can gain about the input is in asking queries to the
oracle. The input is a finite bitstringx ∈ {0, 1}N of some lengthN , wherex = x1x2 . . . xN . The
goal is to compute some functionF : {0, 1}N → {0, 1}m of the inputx. Some of the functions we
consider are boolean, some not. We use the shorthand notation[N ] = {1, 2, . . . , N}.

As our measure of complexity, we use the query complexity. The query complexity of an
algorithmA computing a functionF is the number of queries used byA. The query complexity of
F is the minimum query complexity of any algorithm computingF . We are interested in proving
lower bounds on the query complexity of specific functions and consider methods for computing
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such lower bounds.
An alternative measure of complexity would be to use the time complexity which counts the

number of basic operations used by an algorithm. The time complexity is always at least as large
as the query complexity since each query takes one unit step, and thus a lower bound on the query
complexity is also a lower bound on the time complexity. For most existing quantum algorithms,
including Grover’s algorithm [Gro96], the time complexity is within poly-logarithmic factors of
the query complexity. A notorious exception is the so-called Hidden Subgroup Problem which has
polynomial query complexity [EHK04], yet polynomial time algorithms are known only for some
instances of the problem.

The oracle model is called decision trees in the classical setting. A classical query consists of
an indexi ∈ [N ], and the answer of the bitxi. There is a natural way of modelling a query so that
it is reversible. The input is a pair(i, b), wherei ∈ [N ] is an index andb ∈ {0, 1} a bit. The output
is the pair(i, b ⊕ xi), where the bitb is flipped ifxi = 1. There are (at least) two natural ways of
generalizing a query to the quantum setting, in which we require all operations to be unitary. The
first way is to consider a quantum query as a unitary operator that takes two inputs|i〉|b〉, where
i ∈ [N ] andb ∈ {0, 1}, and outputs|i〉|b⊕ xi〉. The oracle is then simply just a linear extension of
the reversible query given above. We extend the definition of the oracle so that we can simulate a
non-query, and we allow it to take some arbitrary ancilla state|z〉 with z ≥ 0 as part of the input
and that is acted upon trivially,

O′
x|i, b; z〉 =

{
|i, b; z〉 if i = 0 or xi = 0

|i, b⊕ 1; z〉 if i ∈ [N ] andxi = 1.
(1)

The ancilla|z〉 contains any additional information currently part of the quantum state that is not
involved in the query.

The second way is to consider a quantum query as a unitary operatorOx that takes only the one
input |i〉 and outputs(−1)xi|i〉, wherei ∈ [N ]. We say that the oracle is “computed in the phases”
by Ox. Both operatorsO′

x andOx square to the identity, i.e., they are their own inverses, and thus
unitary. The two operators are equivalent in that one query to either oracle can be simulated by a
superposition query to the other oracle preceeded and followed by a basis change. Though the first
way is possibly the more intuitive, we shall adapt the second way as it is very convenient when
proving lower bounds. Again, we extend the definition of the oracleOx so that it also embodies a
non-query, and we allow it to take some arbitrary ancilla state|z〉 that is not acted upon,

Ox|i; z〉 =

{
|i; z〉 if i = 0

(−1)xi|i; z〉 if 1 ≤ i ≤ N .
(2)

We may think of one query as a one-round exchange of information between two parties, the
algorithm and the oracle. In the classical setting, the algorithm sends an indexi ∈ [N ] to the
oracle, and the oracle responds with one bit of information, namelyxi. In the quantum setting, the
algorithm sends thelog2(N) qubits |i〉 to the oracleOx, and the oracle responds with(−1)xi|i〉.
The algorithm and oracle thus exchange a total number of2 log2(N) qubits, and thus, a quantum
query toOx can convey up to2 log2(N) classical bits of information about the oracle by Holevo’s
theorem [Hol73, CD+98] and superdense coding [BW92].

3



Information theoretically, a functionF : {0, 1}N → {0, 1}log2(N) that outputs at most
O(log2(N)) bits, can potentially be solved by a constant number of queries to the oracle. An
example of such a problem is the Deutsch-Jozsa problem [DJ92], which is to distinguish balanced
boolean functions from constant functions. (A functionF is constant ifF (x) = F (y) for all inputs
x, y, and it is balanced if it is not constant and|F−1(F (x))| = |F−1(F (y))| for all inputsx, y.)

A quantum algorithm in the oracle model starts in a state that is independent of the oracle. For
convenience, we choose the state|0〉 in which all qubits are initialized to0. It then evolves by
applying arbitrary unitary operatorsU to the system, alternated with queriesOx to the oraclex,
followed by a conclusive measurement of the final state, the outcome of which is the result of the
computation. In symbols, a quantum algorithmA that usesT queries, computes the final state

|ψT
x 〉 = UT OxUT−1 · · ·U1OxU0|0〉 (3)

which is then measured. If the algorithm computes some functionF : {0, 1}N → {0, 1}m, we
measure them leftmost bit of the final state|ψT

x 〉, producing some outcomew. The success prob-
ability px of A on inputx ∈ {0, 1}N is the probability thatw = F (x). For complete functions
F : {0, 1}N → {0, 1}m, we define the success probability ofA as the minimum ofpx over all
x ∈ {0, 1}N . For partial functionsF : S → {0, 1}m, whereS ⊆ {0, 1}N , we take the mini-
mum overS only. A quantum algorithmA has error at mostε if the success probability ofA is
at least1 − ε. LetQε(F ) denote the minimum query complexity of any quantum algorithm that
computesF with two-sided error at mostε, and as common, letQ2(F ) = Q1/3(F ) denote the
two-sided bounded error complexity withε = 1/3.

As our running example, we use the well-known ordered searching problem. In the oracle
model, the input to ordered searching is anN -bit stringx = (x1, . . . , xN). We are promised that
xi ≤ xi+1 for all 1 ≤ i < N and thatxN = 1, and the goal is to find the leftmost 1, i.e., the index
i ∈ [N ] for whichxi = 1 and no indexj < i exists withxj = 1.

Given: An N -bit stringx = (x1, x2, . . . , xN) given as an oracle.

Promise: xi ≤ xi+1 for 1 ≤ i < N andxN = 1.

Output: Indexi such thatxi = 1 and eitherxi−1 = 0 or i = 1.

The classical query complexity of ordered searching isdlog2(N)e and is achieved by standard
binary searching. The quantum query complexity is at most0.45 log2N , due to the work of high
school student M. B. Jacokes in collaboration with Landahl and Brookes [JLB05] (See also [FGGS,
HNS02]). Using the adversary method, we show that their algorithm is within a factor of about
two of being optimal.

3 Distinguishing hard inputs

The first quantum lower bound using adversary arguments was given by Bennett, Bernstein, Bras-
sard, and Vazirani in [BB+97]. They show that any quantum query algorithm can be sensitive
to at most quadratically many oracle bits, which implies a lower bound ofΩ(

√
N) for Grover’s
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problem [Gro96] and thus proves that Grover’sO(
√
N) algorithm is optimal. Grover’s problem

is a search problem in which we are given anN -bit string x ∈ {0, 1}N as an oracle, and the
goal is to find an indexi for which xi = 1, provided one exists. Interestingly, the lower bound
of Bennett et al. was proved in 1994, well before Grover defined his search problem. In 2000,
Ambainis [Amb02] found an important generalization of the method and coined it “adversary ar-
guments.”

A constructive interpretation of basic adversary arguments is in terms ofdistinguishability. We
will thus not be concerned with computing the functionF , but merely interested in distinguishing
oracles. Consider some algorithmA that computes some functionF in the oracle model, and
consider two inputsx, y ∈ {0, 1}N for which F (x) 6= F (y). SinceA computesF , it must in
particular be capable of distinguishing between oraclex and oracley. For a given problem we try
to identifypairs of oraclesthat are hard todistinguish. If we can identify hard input pairs, we may
derive a good lower bound. However, a caveat is that using only the very hardest input pairs does
not yield good lower bounds for some problems, and we are thus naturally led to also consider less
hard input pairs. A remedy is to useweightsthat capture the hardness of distinguishing each pair
of oracles, and to do so, we define a matrixΓ of dimension2N × 2N that takes non-negative real
values,

Γ : {0, 1}N × {0, 1}N → <+
0 . (4)

We require thatΓ is symmetric and thatΓ[x, y] = 0 wheneverF (x) = F (y). We say thatΓ is a
spectral adversary matrix forF if it satisfies these two conditions. The symmetry condition onΓ
states that we are concerned with distinguishingbetweenany two inputsx, y. We are not concerned
with distinguishingx from y, nor distinguishingy from x. We discuss this subtlety further in
Section 5 below when considering alternative definitions of weighted adversary arguments. The
spectral adversary matrixΓ allows us to capture both total and partial functions, as well as non-
boolean functions. Since we are only concerned with distinguishability, once we have specified
the entries ofΓ, we may safely ignore the underlying functionF .

Weighted adversary arguments were first used by Høyer, Neerbek, and Shi in [HNS02] to
prove a lower bound ofΩ(logN) for ordered searching andΩ(N logN) for sorting. Barnum and
Saks [BS04] used weighted adversary arguments to prove a lower bound ofΩ(

√
N) for read-once

formulae, and introduced the notionΓ that we adapt here. Barnum, Saks, and Szegedy extended
their work in [BSS03] and derived a general lower bound on the query complexity ofF in terms
of spectral properties of matrixΓ. Their lower bound has a very elegant and short formulation, a
basic proof, and captures important properties of adversary methods, and we shall thus adapt much
of their terminology.

As discussed above, the key to prove a good lower bound is to pick a good adversary matrixΓ.
For our running example of ordered searching, which is a partial non-boolean function, we use the
following weights.

Example: Ordered Seaching 1The weight on the pair(x, y) is the inverse of the Hamming dis-
tance ofx andy,

Γsearch[x, y] =

{
1

|F (x)−F (y)| if x andy are valid and distinct inputs toF

0 otherwise.
(5)
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The larger the Hamming distance betweenx and y, the easier it is to distinguish them, and the
smaller weight is assigned to the pair.

We have to choose how to measure distinguishability. The possibly simplest measure is to
use inner products. Two quantum states are distinguishable with certainty if and only if they are
orthogonal, and they can be distinguished with high probability if and only if their inner product
has small absolute value.

Fact 1 Suppose we are given one of two known states|Ψx〉, |Ψy〉. There exists a measurement that
correctly determines which of the two states we are given with error probability at mostε if and
only if |〈Ψx|Ψy〉| ≤ ε′, whereε′ = 2

√
ε(1− ε).

Since a unitary operator is just a change of basis, it does not change the inner product between
any two quantum states, and thus the inner product can only change as a consequence of queries
to the oracle.

4 Adversary lower bounds

Adversary lower bounds are of information theoretical nature. A basic idea in adversary lower
bounds is to upper-bound the amount of information that can be learned in a single query. If little
information can be learned in any one query, then many queries are required. We use spectral
properties ofΓ to put an upper bound on the amount of information the algorithm learns about the
oracle.

Let A be some quantum algorithm that computes some functionF with bounded two-sided
error. For every integert ≥ 0 and every oraclex, let

|ψt
x〉 = UtOx · · ·U1OxU0|0〉 (6)

denote the quantum state aftert queries to the oracle. To measure the progress of the algorithm,
we define similarly to [Amb02, HNS02, BS04, BSS03] a weight function

W t =
∑
x,y

Γ[x, y]δxδy · 〈ψt
x|ψt

y〉, (7)

whereδ is a fixed principal eigenvector ofΓ, i.e., a normalized eigenvector corresponding to the
largest eigenvalue ofΓ, and whereδx denotes thexth entry ofδ.

The algorithm starts in a quantum state|ψ0
x〉 = U0|0〉 which is independent of the oraclex, and

thus the total initial weight is

W 0 =
∑
x,y

Γ[x, y]δxδy = λ(Γ), (8)

whereλ(Γ) denotes the spectral norm ofΓ. The final state of the algorithm afterT queries is|ψT
x 〉

if the oracle isx, and it is|ψT
y 〉 if the oracle isy. If F (x) 6= F (y), we must have that|〈ψT

x |ψT
y 〉| ≤ ε′

6



by Fact 1, and henceW T ≤ ε′W 0. If the total weight can decrease by at most∆ by each query,
the algorithm requiresΩ(W 0

∆
) queries to the oracle.

Following Barnum, Saks, and Szegedy [BSS03], we upper bound∆ by the largest spectral
norm of the matricesΓi, defined by

Γi[x, y] =

{
Γ[x, y] if xi 6= yi

0 if xi = yi,
(9)

for each1 ≤ i ≤ n. The theorem of [BSS03] is here stated (and proved) in a slightly more
general form than in [BSS03] so that it also applies to non-boolean functions. Our proof aims at
emphasizing distinguishability and differs from the original.

Theorem 2 (Spectral method [BSS03])For any adversary matrixΓ for any functionF :
{0, 1}N → {0, 1}m,

Q2(F ) = Ω
( λ(Γ)

maxi λ(Γi)

)
. (10)

Proof We prove that the drop in total weightW t−W t+1 by thet+ 1st query is upper-bounded by
the largest eigenvalue of the matricesΓi.

For each0 ≤ i ≤ N , letPi =
∑

z≥0 |i; z〉〈i; z| denote the projection onto the subspace querying
the ith oracle bit. Letβx,i = |Pi|ψt

x〉| denote the absolute value of the amplitude of querying the
ith bit in the t+ 1st query, provided the oracle isx. Note that

∑N
i=0 β

2
x,i = 1 for any oraclex,

since the algorithm queries one of theN bits x1, . . . , xN , or simulates a non-query by querying
the oracle withi = 0. Thet+ 1st query changes the inner product by at most the overlap between
the projections of the two states onto the subspace that corresponds to indicesi on whichxi andyi

differ,∣∣∣〈ψt
x|ψt

y〉− 〈ψt+1
x |ψt+1

y 〉
∣∣∣ =

∣∣∣〈ψt
x|(I−OxOy)|ψt

y〉
∣∣∣ =

∣∣∣2 ∑
i:xi 6=yi

〈ψt
x|Pi|ψt

y〉
∣∣∣ ≤ 2

∑
i:xi 6=yi

βx,iβy,i. (11)

The bigger the amplitudes of querying the bitsi on whichxi andyi differ, the larger the drop in
the inner product can be.

Define an auxiliary vectorai[x] = δxβx,i and note that

N∑
i=0

|ai|2 =
N∑

i=0

∑
x

δ2
xβ

2
x,i =

∑
x

δ2
x

N∑
i=0

β2
x,i =

∑
x

δ2
x = 1.
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The drop in the total weight is upper-bounded by∣∣W t −W t+1
∣∣ =

∣∣∣∑
x,y

Γ[x, y]δxδy
(
〈ψx|ψy〉 − 〈ψ′

x|ψ′
y〉
)∣∣∣

=
∣∣∣2∑

x,y

∑
i:xi 6=yi

Γ[x, y]δxδy〈ψx|Pi|ψy〉
∣∣∣

≤ 2
∑
x,y

∑
i

Γi[x, y]δxδy · βx,iβy,i

= 2
∑

i

a∗i Γiai

≤ 2
∑

i

λ(Γi)|ai|2

≤ 2 max
i
λ(Γi) ·

∑
i

|ai|2

= 2 max
i
λ(Γi).

Herea∗i denotes the transpose ofai. The first inequality bounds the drop in inner product for a
specific pair and follows from Equation 11. The second inequality follows from the spectral norm
of Γ. The second and third inequalities state that the best possible query distributes the amplitude
of the query according to the largest principal eigenvector of the query matricesΓi. ut

Example: Ordered Seaching 2Returning to our example of ordered searching, forN = 4, the
adversary matrix with respect to the ordered basis(0001, 0011, 0111, 1111) is given by

Γsearch(4) =


0 1 1

2
1
3

1 0 1 1
2

1
2

1 0 1
1
3

1
2

1 0

 .
The spectral norm is easily seen to be lower-bounded by the sum of the entries in the first row,
λ(Γsearch(4)

) ≥ 1 + 1
2

+ 1
3
. In general,λ(Γsearch) is lower-bounded by the harmonic numberHN−1,

which is at leastln(N). The spectral norm of the query matricesλ(Γsearch
i ) is maximized when

i = bN/2c, in which case it is upper-bounded by the spectral norm of the infinite Hilbert matrix
[1/(r + s − 1)]r,s≥1, which isπ. We thus reprove the lower bound of(1 − ε′) ln(N)

π
for ordered

searching given in [HNS02].

5 Applying the spectral method

The spectral method is very appealing in that it has a simple formulation, a basic proof, and gives
good lower bounds for many problems.Špalek and Szegedy [ŠS05] show that for any problem,
the best lower bound achievable by the spectral method is always at least as good as the best
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lower bound achievable by any of the previously published adversary methods. Their proof is
constructive and illuminating: given any lower bound in any of the previously published adversary
methods, they construct an adversary matrixΓ and prove it achieves the same lower bound.

The first general quantum lower bound using adversary arguments was introduced by Ambainis
in [Amb02]. As shown in [̌SS05], it can be derived from the spectral method by applying simple
bounds on the spectral norm ofΓ and eachΓi. By definition, the numeratorλ(Γ) is lower-bounded
by 1

|d|2d
∗Γd for any non-negative vectord, and by Mathias’ lemma [Mat90], the denominatorλ(Γi)

is upper-bounded by the product of a row-norm and a column-norm.

Lemma 3 ([Mat90, ŠS05]) LetG be any non-negative symmetric matrix andM,N non-negative
matrices such thatG = M ◦N is the entrywise product ofM andN . Then

λ(G) ≤ max
x,y

G[x,y]>0

rx(M) cy(N),

whererx(M) is the`2-norm of thexth row inM , andcy(N) is the`2-norm of theyth column inN .

Applying these two bounds, we obtain Ambainis’ lower bound in [Amb02]. We refer to the
method as an unweighted adversary method since it considers only two types of inputs: easy inputs
and hard inputs. We construct a zero-one valued adversary matrixΓ that corresponds to a uniform
distribution over the hard input pairs.

Theorem 4 (Unweighted method [Amb02])Let F be a partial boolean function, and letA ⊆
F−1(0) andB ⊆ F−1(1) be subsets of (hard) inputs. LetR ⊆ A × B be a relation, and set
Ri = {(x, y) ∈ R : xi 6= yi} for each1 ≤ i ≤ n. Letm,m′ denote the minimal number of ones in
any row and any column in relationR, respectively, and let̀, `′ denote the maximal number of ones
in any row and any column in any of the relationsRi, respectively. ThenQ2(f) = Ω(

√
mm′/``′).

Proof Let S = {(x, y) : (x, y) ∈ R ∨ (y, x) ∈ R} be a symmetrized version ofR. Define a
column vectord from the relationS by settingdx =

√
|{y : (x, y) ∈ S}|, and an adversary matrix

Γ by settingΓ[x, y] = 1
dxdy

if and only if (x, y) ∈ S. Thenλ(Γ) ≥ 1
|d|2d

∗Γd = 1. For each of the

matricesΓi, we apply Lemma 3 withM [x, y] = N [y, x] = 1
dx

if and only if (x, y) ∈ S. For every

(x, y) ∈ R, rx(M) ≤
√
`/d2

x ≤
√
`/m andcy(N) ≤

√
`′/d2

y ≤
√
`′/m′. For every(x, y) ∈

S − R, the two inequalities are swapped. By Lemma 3,λ(Γi) ≤ maxx,y:Γi[x,y]>0 rx(M)cy(N) ≤√
``′/mm′. ut

The unweighted adversary method is very simple to apply as it requires only to spec-
ify a set R of hard input pairs. It gives tight lower bounds for many computational prob-
lems, including inverting a permutation [Amb02], computing any symmetric function and count-
ing [NW99, BC+99, BH+02], constant-level and-or trees [Amb02, HMW03], and various graph
problems [DH+04]. For some computational problems, the hardness does however not necessarily
rely only on a few selected hard instances, but rather on more global properties of the inputs. Ap-
plying the unweighted method on ordered searching would for instance only yield a lower bound
of a constant. In these cases, we may apply the following weighted variant of the method, due to
Ambainis [Amb03] and Zhang [Zha04].
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Theorem 5 (Weighted method [Amb03, Zha04])Let F : S → {0, 1}m be a partial function.
Letw,w′ denote a weight scheme as follows:

• Every pair(x, y) ∈ S2 is assigned a non-negative weightw(x, y) = w(y, x) that satisfies
w(x, y) = 0 wheneverF (x) = F (y).

• Every triple(x, y, i) ∈ S2 × [N ] is assigned a non-negative weightw′(x, y, i) that satisfies
w′(x, y, i) = 0 wheneverxi = yi or F (x) = F (y), andw′(x, y, i)w′(y, x, i) ≥ w2(x, y) for
all x, y, i with xi 6= yi.

Then

Q2(F ) = Ω

(
min
x,y,i

w(x,y)>0
xi 6=yi

√
wt(x)wt(y)

v(x, i)v(y, i)

)
,

wherewt(x) =
∑

y w(x, y) andv(x, i) =
∑

y w
′(x, y, i) for all x ∈ S andi ∈ [N ].

At first glance, the weighted method may look rather complicated, both in its formulation and
use, though it is not. We first assign weights to pairs(x, y) of inputs for whichF (x) 6= F (y), as in
the spectral method. We require the weights to be symmetric so that they represent the difficulty
in distinguishingbetweenx andy.

We then afterwards assign weightsw′(x, y, i) that represent the difficulty in distinguishingx
from y by querying indexi. The harder it is to distinguishx from y by index i, compared to
distinguishingy from x by indexi, the more weight we put on(x, y, i) and the less on(y, x, i), and
vice versa.

To quantify this, definet(x, y, i) = w′(x, y, i)/w′(y, x, i). Thent(x, y, i) represents the relative
amount of information we learn about input pairs(x, z) compared to the amount of information
we learn about input pairs(u, y), by querying indexi. If we, by querying indexi, learn little
aboutx compared toy, we let t(x, y, i) be large, and otherwise small. Consider we query an
index i for which xi 6= yi. Then we learn whether the oracle isx or y. However, at the same
time, we also learn whether the oracle isx or z for any other pair(x, z) for which xi 6= zi and
F (x) 6= F (z); and similarly, we learn whether the oracle isu or y for any other pair(u, y) for
which ui 6= yi andF (u) 6= F (y). The less information querying indexi provides about pairs
(x, z) compared to pairs(u, y), the larger we chooset(x, y, i). Having thus chosent(x, y, i), we
setw′(x, y, i) = w(x, y)

√
t(x, y, i) andw′(y, x, i) = w(x, y)/

√
t(x, y, i).

We show next that the weighted method yields a lower bound ofΩ(logN) for the ordered
searching problem. This proves that the weighted method is strictly stronger than the unweighted
method. The weighted method yields strong lower bounds for read-once formula [BS04] and it-
erated functions [Amb03]. Aaronson [Aar04], Santha and Szegedy [SS04], and Zhang [Zha05]
use adversary arguments to prove lower bounds for local search, a distributed version of Grover’s
problem.Špalek and Szegedy prove in [ŠS05] that the weighted method is equivalent to the spec-
tral method—any lower bound that can be achieved by one of the two methods can also be shown
by the other. Their proof is constructive and gives simple expressions for converting one into the
other. The main weightsw(x, y) are the coefficients of the weight functionW t for the input pair
(x, y), that is,w(x, y) = Γ[x, y]δxδy, and the secondary weightsw′(x, y, i) follow from Mathias’
lemma [Mat90] (Lemma 3).
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Example: Ordered Seaching 3To apply the weighted method on ordered searching, we pick the
same weightsw(x, y) = Γsearch[x, y] δxδy as in the spectral method as there are no strong reasons
for choosing otherwise. Now, considert(x, y, i) with F (x) ≤ i < F (y) so thatxi 6= yi. By
querying indexi, we also learn to distinguish betweenx andz for each of theF (y) − i inputsz
with i < F (z) ≤ F (y), and we learn to distinguish betweenu andy for each of thei− F (x) + 1
inputsu with F (x) ≤ F (u) ≤ i. We thus choose to set

t(x, y, i) =
|F (x)− i|+ 1

|F (y)− i|+ 1
.

Plugging these values into the weighted method yields a lower bound ofΩ(logN) for ordered
searching.

6 Limitations of the spectral method

The spectral method and the weighted adversary method bound the amount of information that can
be learned in any one query. They do not take into account that the amount of information that can
be learned in thej th query might differ from the amount of information that can be learned in the
kth query.

In 1999, Zalka [Zal99] successfully managed to capture the amount of information that can
be learned in each individual query for a restricted version of Grover’s problem [Gro96]. In this
restricted version, we are promised that the input oraclex is either the zero-string (so|x| = 0)
or exactly one entry inx is one (so|x| = 1), and the goal is to determine which is the case. By
symmetry considerations, Zalka demonstrates that Grover’s algorithm saturates some improved
inequalities (which are similar to Eq. 11) and hence is optimal, even to within an additive constant.

Since current adversary methods do not capture the amount of information the algorithm cur-
rently knows, we may simply assume that the algorithm already knows every bit of the oracle and
that it tries to prove so. This motivates a study of the relationship between the best bound achiev-
able by the spectral method and the certificate complexity. Acertificatefor an inputx ∈ {0, 1}N ,
is a subsetC ⊆ [N ] of input bits such that for any other inputy in the domain ofF that may be ob-
tained fromx by flipping some of the indices not inC, we have thatF (x) = F (y). The certificate
complexity Cx(F ) of input x is the size of a smallest certificate forx. Thecertificate complexity
C(F ) of a functionF is the maximum certificate complexity of any of its inputs. We also define
thez-certificate complexity Cz(F ) when taking the maximum only over inputs that map toz. The
spectral theorem can then never yield a lower bound better than a quantity that can be expressed in
terms of certificate complexity.

Lemma 6 ([LM04, Zha04, ŠS05]) Let F : S → {0, 1} be any partial boolean function. The
spectral adversary lower boundAdv(F ) is at mostmin

{√
C0(F )N,

√
C1(F )N

}
. If F is total,

the method is limited by
√

C0(F )C1(F ).

The certificate complexity of a functionF : {0, 1}N → {0, 1}m is itself polynomially related
to the block sensitivity of the function. An inputx ∈ {0, 1}N is sensitiveto a blockB ⊆ [N ]
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if F (x) 6= F (xB), wherexB denotes the input obtained by flipping the bits inx with indices
from B. The block sensitivity bsx(F ) of input x is the maximum number of disjoint blocks
B1, B2, . . . , Bk ⊆ [N ] on whichx is sensitive. Theblock sensitivitybs(F ) of F is the maxi-
mum block sensitivity of any of its inputs. We also define thez-block sensitivity bsz(F ) when
taking the maximum only over inputs that map toz.

For any boolean functionF : {0, 1}N → {0, 1}, the certificate complexity is upper-bounded
by C(F ) ≤ bs0(F )bs1(F ), and thus so is the spectral adversary method. Conversely, Adv(F ) ≥√

bs(F ) by a zero-one valued adversary matrixΓ: Let x′ ∈ {0, 1}N be an input that achieves the
block sensitivity ofF , and letB1, B2, . . . , Bk ⊆ [N ] be disjoint blocks on whichx′ is sensitive,
wherek = bs(F ). SetΓ(F )[x, xB] = 1 if and only if x = x′ andB is one of thek blocksBi and
closeΓ under transposition. Thenλ(Γ) =

√
k andmaxi λ(Γi) = 1, and thus√

bs(F ) ≤ Adv(F ) ≤ bs0(F )bs1(F ). (12)

The spectral adversary method is not suitable for proving lower bounds for problems related to
property testing. If functionF : S → {0, 1} is a partial function withS ⊆ {0, 1}N such that every
zero-input is of Hamming distance at leastεn from every one-input, then the spectral theorem does
not yield a lower bound better than1/ε.

Laplante and Magniez introduce in [LM04] a lower-bound method based on Kolmogorov com-
plexity. They show by direct constructions that their method is at least as strong as each of the two
methods, the spectral and weighted adversary method.Špalek and Szegedy then show in [ŠS05]
that the spectral method is at least as strong as the Kolmogorov complexity method, allowing
us to conclude that the three methods are equivalent. Having such a variety of representations
of the same method shows that the adversary method is very versatile and captures fundamental
properties of functions. Indeed, Laplante, Lee, and Szegedy [LLS05] show that the square of the
adversary bound is a lower bound on the formula size. The following lower-bound method is a
combinatorial version of the Kolmogorov complexity method.

Theorem 7 (Minimax method [LM04, ŠS05]) Let F : S → {0, 1}m be a partial function and
A a bounded-error quantum algorithm forF . Let p : S × [N ] → <+

0 be a set of|S| probability
distributions such thatpx(i) denotes the average probability of querying theith input bit on input
x, where the average is taken over the whole computation ofA. Then the query complexityQA of
algorithmA satisfies

QA ≥Mp = max
x,y:F (x) 6=F (y)

1∑
i:xi 6=yi

√
px(i) py(i)

.

The previous methods satisfy the property that if we plug in some matrix or relation, we get
a valid lower bound. The minimax method is principally different. A lower bound computed by
the minimax theorem holds for one particular algorithmA, and it may not hold for some other and
better algorithm. However, we may obtain a universal lower bound that holds foreverybounded
error algorithm by simply taking the minimum of the boundMp over all possible sets of probability
distributionsp. The spectral bound and the minimax bound are in a primal-dual relation: the best
lower bound that can be obtained by any adversary matrixΓ equals the smallest bound that can
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be obtained by a set of probability distributionsp [ŠS05]. Primal methods are used for obtaining
concrete lower bounds and dual methods are used for proving limitations of the method, as in
Lemma 6.

A useful property of the adversary method is that it composes. Consider a function of the form
H = F ◦ (G1, . . . , Gk), whereF : {0, 1}k → {0, 1} andGi : {0, 1}Ni → {0, 1} for i = 1, . . . , k
are partial boolean functions. A composition theorem states the complexity of functionH in terms
of the complexities ofF andG1, . . . , Gk. Barnum and Saks [BS04] use composition properties
to prove a query lower bound ofΩ(

√
N) for any read-once formula, Ambainis [Amb03] proves a

composition lower bound for iterated boolean functions, and Laplante, Lee, and Szegedy [LLS05]
prove a limitation on composition lower bounds for functionsGi for which the adversary bound
is upper bounded by a common boundb. To formulate a composition theorem for arbitrary cases
when the functionsGi may have different adversary bounds, we require a weighted version of the
spectral method.

Let F : {0, 1}N → {0, 1} be a partial boolean function andα = (α1, . . . , αN) a string of
positive reals. Let

Advα(F ) = max
Γ

min
i

{
αi
λ(Γ)

λ(Γi)

}
,

whereΓ ranges over all adversary matrices forF . If the weights are all 1, then our new quantity
Advα(F ) coincides with the spectral adversary bound and is thus a lower bound on the quantum
query complexity ofF . If the weightsα are non-uniform, then Advα(F ) is a new abstract com-
plexity measure that assigns costαi to querying theith input bit. We can then prove [ȞS05] that
the quantity Advα composes in the following sense.

Theorem 8 (Composition Theorem [BS04, Amb03, LLS05, ȞS05]) For any composite func-
tionH = F ◦ (G1, . . . , Gk), whereF : {0, 1}k → {0, 1} andGi : {0, 1}Ni → {0, 1} are partial
boolean functions,

Advα(H) = Advβ(F ),

whereβi = Advαi(Gi), andα = (α1, . . . , αk) is ak-tuple of stringsαi ∈ <+Ni.

A natural generalization of Grover’s problem is the so-calledk-fold search problem in which
we are promised that exactlyk entries of the input oraclex are one (so|x| = k), and the goal
is to find all of thesek indices. We say an algorithmA succeeds if it outputs a subsetS ⊆ [N ]
of sizek andS contains all indicesi ∈ [N ] for which xi = 1. Thus, by definition, it fails even
if it outputs all but one of thek indices. Thek-fold search problem can be solved inO(

√
kn)

queries, essentially by sequentially running Grover’s search algorithmk times. Klauck,Špalek,
and de Wolf [ǨSW04] show that if the number of queries is less thanε

√
kn for some constantε,

then the success probability ofA is exponentially small ink. They thus prove a strong direct
product theorem for thek-fold search problem. One of the main elements of the proof is the
polynomial method which we discuss in the next section.

In very recent work, Ambainis [Am05a] proposes an extension of the adversary method and
uses it to reprove the strong direct product theorem of [KŠW04]. Though the following very brief
description of the proof does not do full justice to the method, we hope it conveys some of the
intuition on which [Am05a] is based. The algorithm runs on a uniform superposition of all inputs.
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During the computation, the input register gets entangled with the workspace of the algorithm
due to the queries to the oracle. We trace out the workspace and examine the eigenspaces of the
density matrix of the input register. Due to symmetries, there are exactlyk+1 eigenspaces, indexed
by the number of ones the algorithm “knows” at that stage of the algorithm. In the beginning, all
amplitude is in the0th eigenspace. One query can only move little amplitude from theith eigenspace
to thei+ 1st eigenspace. If the algorithm has good success probability, the quantum amplitude in
high eigenspaces must be significant, since the algorithm must “know” most of thek indices, which
implies a lower bound on the query complexity.

7 Polynomial lower bounds

There are essentially two different methods known for proving lower bounds on quantum compu-
tations. The historically first method is the adversary method we discuss above. It was introduced
in 1994 by Bennett, Bernstein, Brassard, and Vazirani, and published in 1997 in the SIAM Journal
on Computing, in a special section that contains some of the most outstanding papers on quan-
tum computing. The second method was introduced shortly after, in 1998, by Beals, Buhrman,
Cleve, Mosca, and de Wolf [BB+01], and implicitly used by Fortnow and Rogers in [FR99]. Their
approach is algebraic and follows earlier very successful work on classical lower bounds via poly-
nomials (see for instance Beigel’s 1993 survey [Bei93] and Regan’s 1997 survey [Reg97]). We first
establish that any partial boolean functionF : S → {0, 1}, whereS ⊆ {0, 1}N , can be represented
by a real-valued polynomialp : <N → <.

Definition 9 Let F : S → {0, 1} be a partial boolean function, whereS ⊆ {0, 1}N . AnN -
variable polynomialp representsF if p(x) = F (x) for all x ∈ S, and it approximatesF if
|p(x) − F (x)| ≤ 1

3
for all x ∈ S. Thedegreeof F , denoteddeg(F ), is the minimal degree of a

polynomial representingF . Theapproximate degreeof F , denoted̃deg(F ), is the minimal degree
of a polynomial approximatingF .

The crux in [BB+01] is in showing that any quantum algorithmA computing some functionF
gives rise to some polynomialpA that represents or approximatesF .

Theorem 10 ([BB+01]) Let A be a quantum algorithm that computes a partial boolean func-
tion F : S → {0, 1}, whereS ⊆ {0, 1}N , using at mostT queries to the oracleO′

x. Then there
exists anN -variate real-valued multilinear polynomialpA : <N → < of degree at most2T , which
equals the acceptance probability ofA.

Proof In this theorem, we use the oracleO′
x which is equivalent to the oracleOx, since it allows

for simple formulations. We first rewrite the action ofO′
x as

O′
x|i, b; z〉 = (1− xi)|i, b; z〉+ xi|i, b⊕ 1; z〉 (13)

where we definexi = 0 for i = 0 so that we can simulate a non-query by queryingxi with i = 0.
Suppose we applyO′

x on some superposition
∑

i,b,z αi,b,z|i, b; z〉 where each amplitudeαi,b,z is an
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N -variate complex-valued polynomial inx of degree at mostj. Then, by Eq. 13, the resulting state∑
i,b,z βi,b,z|i, b; z〉 is a superposition where each amplitudeβi,b,z is anN -variate complex-valued

polynomial inx of degree at mostj + 1. By proof by induction, afterT queries, each amplitude
can be expressed as a complex-valued polynomial inx of degree at mostT . The probability that
the final measurement yields the outcome1, corresponding to accepting the input, is obtained by
summing some of the absolute values of the amplitudes squared. The square of any of the absolute
amplitudes can be expressed as a real-valued polynomialpA in x of degree at most2T . Theorem 10
follows. ut

The above theorem states that to any quantum algorithmA computing a boolean functionF :
S → {0, 1}, whereS ⊆ {0, 1}N , we can associate anN -variate polynomialpA : <N → < that
expresses the acceptance probability of the algorithm on any given input. If algorithmA is exact,
i.e., if A always stops and outputs the correct answer, thenpA(x) = F (x) for all x ∈ S, and thus
pA representsF . If A has bounded error, then0 ≤ pA(x) ≤ 1/3 if F (x) = 0 and2/3 ≤ pA(x) ≤ 1
if F (x) = 1, and thuspA approximatesF . The degree ofpA is at most twice the number of queries
used by algorithmA. Consequently, the degree of a function is a lower bound on the quantum
query complexity, up to a factor of two.

Corollary 11 (Polynomial method [BB+01]) For any partial boolean functionF : S → {0, 1},
whereS ⊆ {0, 1}N , we haveQE(F ) ≥ deg(F )/2 andQ2(F ) ≥ d̃eg(F )/2.

8 Applying the polynomial method

The challenge in applying the polynomial method lies in the dimensionality of the input. Typically,
the method is applied by first identifying a univariate or bivariate polynomial that captures essential
properties of the problem, and then proving a lower bound on the degree of that polynomial.
The second part is typically reasonably straightforward since polynomials have been studied for
centuries and much is known about their degrees. The possibly simplest nontrivial example is
whenF is the threshold functionThrt defined byThrt(x) = 1 if and only if |x| ≥ t. It is easy
to see thatdeg(Thrt) = Θ(N) for all nontrivial threshold functions, and thusQE(Thrt) = Ω(N).
Paturi [Pat92] shows that̃deg(Thrt) = Θ

(√
(t+ 1)(N − t+ 1)

)
, and we thus readily get that

Q2(Thrt) = Ω
(√

(t+ 1)(N − t+ 1)
)
, which is tight by quantum counting [BH+02, BB+01].

This degree argument extends to any symmetric functionF by writing F as a sum of threshold
functions. The same tight lower bounds for symmetric functions can also be obtained by the
unweighted adversary method (see the paragraph after Theorem 4).

For general non-symmetric functions, the polynomial method is, however, significantly harder
to apply. For problems that are “close” to being symmetric, we can sometimes succeed in con-
structing a univariate or bivariate polynomial that yields a non-trivial lower bound. The first and,
in our view, most important such a result was obtained by Aaronson in [Aar02] in which he proves
a lower bound ofΩ(N1/5) on any bounded-error quantum algorithm for the collision problem.

The collision problem is a non-boolean promise problem. The oracle is anN -tuple of positive
integers between 1 andM , which we think of as a functionX : [N ] → [M ]. We model the oracle
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O′′
X so that a query to theith entry of the oracle returns the integerX(i). Specifically,O′′

X takes as
input |i, r; z〉 and outputs|i, r⊕X(i); z〉 where0 ≤ r < 2m form = dlog2(M +1)e, andr⊕X(i)
denotes bitwise addition modulo 2. We are promised that eitherX is a one-to-one function, orX
is two-to-one, and the goal is to determine which is the case.

The result of Aaronson was shortly after improved by Shi [Shi02] toΩ(N1/4) for general
functionsX : [N ] → [M ], and toΩ(N1/3) in the case the range is larger than the domain by a
constant factor,M ≥ 3

2
N . The lower bounds of Aaronson and Shi appears as a joint article [AS04].

Finally, Kutin [Kut05] and Ambainis [Am05b] independently found remedies for the technical
limitations in Shi’s proof, yielding anΩ(N1/3) lower bound for all functions, which is tight by an
algorithm that uses Grover search on subsets by Brassard, Høyer, and Tapp [BHM97].

The best lower bound for the collision problem that can be obtained using the adversary method
is only a constant, since any one-to-one function is of large Hamming distance to any two-to-one
function. Koiran, Nesme, and Portier [KNP05] use the polynomial method to prove a lower bound
of Ω(logN) for Simon’s problem [Sim97], which is tight [Sim97, BH97]. Simon’s problem is a
partial boolean function having properties related to finite abelian groups. Also for this problem,
the best lower bound that can be obtained using the adversary method is a constant.

In contrast, for anytotal boolean functionF : {0, 1}N → {0, 1}, the adversary and polynomial
method are both polynomially related to block sensitivity,√

bs(F )/6 ≤ d̃eg(F ) ≤ deg(F ) ≤ bs3(F ) (14)√
bs(F ) ≤ Adv(F ) ≤ bs2(F ). (15)

It follows from [BB+01] that deg(F ) ≤ bs3(F ), and from Nisan and Szegedy [NS92] that
6d̃eg(F )2 ≥ bs(F ). Buhrman and de Wolf [BW02] provide an excellent survey of these and
other complexity measures of boolean functions.

The polynomial lower bound is known to be inferior to the weighted adversary method for
some total boolean functions. In [Amb03], Ambainis gives a boolean functionF : {0, 1}4 →
{0, 1} on four bits, which can be described as “the four input bits are sorted” [LLS05],
for which deg(F ) = 2 and for which there exists an adversary matrixΓF satisfying that
λ(ΓF )/maxi λ(ΓF

i ) = 2.5. We compose the function with itself and obtain a boolean function
F2 = F ◦ (F, F, F, F ) : {0, 1}16 → {0, 1} defined on 16 bits for whichdeg(F2) = 4, and for
whichλ(ΓF2)/maxi λ(ΓF2

i ) = 2.52, by the composition theorem. Iteratingn times, yields a func-
tion F onN = 4n bits of degreedeg(F ) = 2n, with spectral lower bound2.5n = deg(F )1.32..., by
the composition theorem. The thus constructed functionF is an example of an iterated function
of low degree and high quantum query complexity. It is the currently biggest known gap between
the polynomial method and the adversary method for a total function. Another iterated total func-
tion for which the adversary methods yield a lower bound better than the degree, is the function
described by “all three input bits are equal” [Amb03].

The polynomial method is very suitable when considering quantum algorithms computing
functions with errorε that is sub-constant, whereas the adversary method is not formulated so
as to capture such a fine-grained analysis. Buhrman, Cleve, de Wolf, and Zalka [BC+99] show that
any quantum algorithm for Grover’s problem that succeeds in finding an indexi for whichxi = 1
with probability at least1− ε, provided one exists, requiresΩ(

√
N log(1/ε)) queries to the oracle,
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which is tight. A possibly more familiar example is that any polynomial approximating the parity
function with any positive biasε > 0 (as opposed to bias1

6
where1

6
= 2

3
− 1

2
) has degreeN , since

any such polynomial gives rise to a univariate polynomial of no larger degree withN roots. Hence,
any quantum algorithm computing the parity function with arbitrary small biasε > 0 requiresN/2
queries to the oracle, which is tight.

A useful property of representing polynomials is that they compose. Ifp is a polynomial
representing a functionF , and polynomialsq1, q2, . . . , qk represent functionsG1, . . . , Gk, then
p ◦ (q1, . . . , qk) representsF ◦ (G1, . . . , Gk), when well-defined. This composition property does
not hold for approximating polynomials: if each sub-polynomialqi takes the value0.8, say, then
we cannot say much about the valuep(0.8, . . . , 0.8) since the value ofp on non-integral inputs
is not restricted by the definition of being an approximating polynomial. To achieve composition
properties, we require that the polynomials are insensitive to small variations of the input bits.
Buhrman, Newman, R̈ohrig, and de Wolf give in [BN+05] a definition of such polynomials, and
refer to them as being robust.

Definition 12 (Robust polynomials [BN+05]) An approximateN -variate polynomialp is robust
onS ⊆ {0, 1}N if |p(y)− p(x)| ≤ 1

3
for everyx ∈ S andy ∈ <M such that|yi −xi| ≤ 1

3
for every

i = 1, . . . ,M . Therobust degreeof a boolean functionF : S → {0, 1}, denotedrdeg(F ), is the
minimal degree of a robust polynomial approximatingF .

Robust polynomials compose by definition. Buhrman et al. [BN+05] show that the robust de-
gree of any total functionF : {0, 1}N → {0, 1} isO(N) by giving a classical algorithm that uses a
quantum subroutine for Grover’s problem [Gro96] which is tolerant to errors, due to Høyer, Mosca,
and de Wolf [HMW03]. Buhrman et al. [BN+05] also show thatrdeg(F ) ∈ O(d̃eg(F ) log d̃eg(F ))
by giving a construction for turning any approximating polynomial into a robust polynomial at the
cost of at most a logarithmic factor in the degree ofF . This implies that for any composite function
H = F ◦ (G, . . . , G), we havẽdeg(H) ∈ O(d̃eg(F )d̃eg(G) log d̃eg(F )). It is not known whether
this is tight. Neither is it known if the approximate degree ofH can be significantly smaller than the
product of the approximate degrees ofF andG. The only known lower bound on the approximate
degree ofH is the trivial boundΩ(d̃eg(F ) + d̃eg(G)).

An and-or tree of depth two is a composed functionF ◦ (G, . . . , G) in which the outer function
F is the logical AND of

√
N bits, and the inner functionG is the logical OR of

√
N bits. By

the unweighted adversary method, computing and-or trees of depth two requiresΩ(
√
N) queries.

Høyer, Mosca, and de Wolf [HMW03] give a bounded-error quantum algorithm that usesO(
√
N)

queries, which thus is tight. The existence of that algorithm implies that there exists an approxi-
mating polynomial for and-or tree of depth two of degreeO(

√
N). No other characterization of

an approximating polynomial for and-or trees of depth two of degreeO(
√
N) is currently known.

The best known lower bound on the approximate degree of and-or trees of depth two isΩ(N1/3),
up to logarithmic factors inN , by a folklore reduction from the element distinctness problem on√
N integers [AS04].
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9 Concluding remarks

We have been focusing on two methods for proving lower bounds on quantum query complexity:
the adversary method and the polynomial method. Adversary lower bounds are in general easy to
compute, but are limited by the certificate complexity. Known lower bounds are constructed by
identifying hard input pairs, finding weights accordingly, and computing either the spectral norm
of some matrices, or applying the weighted method. Polynomial lower bounds may yield stronger
bounds, but are hard to prove. Known lower bounds by the polynomial methods are constructed by
identifying symmetries within the problem, reducing the number of input variables to one or two,
and proving a lower bound on the degree of the reduced polynomial.

Barnum, Saks, and Szegedy give in [BSS03] a third lower bound method that exactly charac-
terizes the quantum query complexity, but this strength turns out also to be its weakness: it is very
hard to apply and every known lower bound obtained by the method can also be shown by one of
the other two methods. In a very recent work, Ambainis [Am05a] extends the adversary method
and uses it to reprove a strong direct product theorem by Klauck,Špalek, and de Wolf [ǨSW04]
obtained by techniques that include the polynomial method. Klauck et al. [KŠW04] show that
their strong direct product theorem implies good quantum time-space tradeoffs, including a quan-
tum lower bound ofT 2 · S = Ω(N3) for sorting. A significant body of work have been conducted
on lower bounds on communication complexity. We refer to de Wolf’s excellent survey [Wol02]
as a possible starting point.

There is a range of problems for which we do not currently know tight quantum query bounds.
One important example is binary and-or trees of logarithmic depth. A binary and-or tree onN = 4n

variables is obtained by iterating the functionF (x1, x2, x3, x4) = (x1 ∧ x2) ∨ (x3 ∧ x4) in total
n times. The classical query complexity for probabilistic algorithms isΘ(N0.753) [SW86, Sni85,
San95]. No better bounded-error quantum algorithm is known. The best known lower bound on
the quantum query complexity isΩ(

√
N) by embedding the parity function on

√
N bits and noting

that the parity function has linear query complexity, which can be shown by either method.
Magniez, Santha, and Szegedy give in [MSS05] a quantum algorithm for determining if a graph

onN vertices contains a triangle which usesO(N1.3) queries to the adjacency matrix. The best
known lower bound isΩ(N) by the unweighted adversary method, and has been conjectured not to
be tight [Amb03]. The problem of triangle-identification is an example of a graph property, which
is a set of graphs closed under isomorphism. Sun, Yao, and Zhang [SYZ04] show that there exists
a non-trivial graph property of quantum query complexityO(

√
N), up to logarithmic factors inN .

Gasarch, in a survey on private information retrieval, published in this Computational Com-
plexity Column in the Bulletin [Gas04], writes: “A field is interesting if it answers a fundamental
question, or connects to other fields that are interesting, or uses techniques of interest.” It is our
hope that the reader will find that the surveyed area of quantum lower bounds fulfills each of those
three criteria.
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