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Abstract

Shor’s and Grover’s famous quantum algorithms for factoring and searching show that
guantum computers can solve certain computational problems significantly faster than any
classical computer. We discuss here what quantum compmaerotdo, and specifically how
to prove limits on their computational power. We cover the main known techniques for proving
lower bounds, and exemplify and compare the methods.

1 Introduction

The very first issue of the Journal of the ACM was published in January 1954. It was the first
journal devoted to computer science. For its 50th anniversary volume, published in January 2003,
editors-in-chief Joseph Y. Halpern asked winners of the Turing Award and the Nevanlinna Prize
to discuss up to three problems that they thought would be major problems for computer science
in the next 50 years. Nevanlinna Prize winner Leslie G. Valiant [Val03] describes three problems,
the first of which is on physically realizable models for computation and formalizes the setting
by defining: “We therefore call our class PhP, the class of physically constructible polynomial
resource computers.” He then formulates the problem by: “[t]jo phrase a single question, the full
characterization of PhP,” and argues that “this single question appears at this time to be scientifi-
cally the most fundamental in computer science.”

On January 26, this year, Nobel Laureate David Gross gave a CERN Colloquium presenta-
tion on “The future of physics’1[Gro05]. He discusses “25 questions that might guide physics, in
the broadest sense, over the next 25 years,” and includes as questions 15 and 16 “Complexity” and
“Quantum Computing.” In July, this year, the Science magazine celebrated its 125th anniversary by
“explor[ing] 125 big questions that face scientific enquiry over the next quarter-century” [Sei05].

*Department of Computer Science, University of Calgary. Supported by Canada’s Natural Sciences and Engi-
neering Research Council (NSERC), the Canadian Institute for Advanced Research (CIAR), and The Mathematics of
Information Technology and Complex Systems (MITACS).

fCWI and University of Amsterdam. Supported in part by the EU fifth framework project RESQ, IST-2001-37559.
Work conducted in part while visiting the University of Calgary.



Among the top 25, is the question of “What are the limits of conventional computing?” Charles
Seife writes: “[T]here is a realm beyond the classical computer: the quantum,” and he discusses
the issue of determining “what quantum-mechanical properties make quantum computers So pow-
erful.”

In this issue of the Bulletin of the EATCS, we would like to offer an introduction to the topic
of studying limitations on the power of quantum computers. Can quantum computers really be
more powerful than traditional computers? What can quantum computers not do? What proof
techniques are used for proving bounds on the computational power of quantum computers? It
is a highly active area of research and flourishing with profound and beautiful theorems. Though
deep, it is fortunately also an accessible area, based on basic principles and simple concepts, and
one that does not require specialized prior knowledge. One aim of this paper is to show this by
providing a fairly complete introduction to the two most successful methods for proving lower
bounds on quantum computations, the adversary method and the polynomial method. Our survey
is biased towards the adversary method since it is likely the least familiar method and it yields very
strong lower bounds. This paper is meant to be supplemented by the excellent survey of Buhrman
and de Wolf [BWO2] on decision tree complexities, published in 2002 in the journal Theoretical
Computer Science.

We demonstrate the methods on a running example, and for this, we use one of the most basic
algorithmic questions one may think of: that of searching an ordered set. Can one implement
ordered searching significantly faster on a quantum computer than applying a stéxiderd’)
binary search algorithm?

The rest of the paper is organized as follows. We motivate and define our models of compu-
tation in the next section. We then discuss very basic principles used in proving quantum lower
bounds in Section|3 and use them to establish our first lower-bound method, the adversary method,
in Sectiorj 4. We discuss how to apply the method in Se€lion 5, and its limitations in Section 6. We
then give an introduction to the second method, the polynomial method, in Sgction 7. We compare
the two methods in Sectign 8 and give a few final remarks in Selction 9.

We have aimed at limiting prior knowledge on quantum computing to a bare minimum. Sen-
tences and paragraphs with kets and bitss(is a ket and (this is a br@ can either safely be
skipped, or substituted with column-vectors and row-vectors, respectively.

2 Quantum query complexity

Many quantum algorithms are developed for the so-called oracle model in which the input is given
as an oracle so that the only knowledge we can gain about the input is in asking queries to the
oracle. The input is a finite bitstring € {0, 1}V of some lengthV, wherez = x5 ... xy. The
goal is to compute some functidn: {0, 1}" — {0, 1}™ of the inputz. Some of the functions we
consider are boolean, some not. We use the shorthand notatiea {1,2,..., N}.

As our measure of complexity, we use the query complexity. The query complexity of an
algorithmA computing a functiorf’ is the number of queries used By The query complexity of
F is the minimum query complexity of any algorithm computiig We are interested in proving
lower bounds on the query complexity of specific functions and consider methods for computing



such lower bounds.

An alternative measure of complexity would be to use the time complexity which counts the
number of basic operations used by an algorithm. The time complexity is always at least as large
as the query complexity since each query takes one unit step, and thus a lower bound on the query
complexity is also a lower bound on the time complexity. For most existing quantum algorithms,
including Grover’s algorithm[[Gro96], the time complexity is within poly-logarithmic factors of
the query complexity. A notorious exception is the so-called Hidden Subgroup Problem which has
polynomial query complexity [EHKO4], yet polynomial time algorithms are known only for some
instances of the problem.

The oracle model is called decision trees in the classical setting. A classical query consists of
an indexi € [N], and the answer of the hit. There is a natural way of modelling a query so that
it is reversible. The input is a palf, b), wherei € [N]is an index and € {0, 1} a bit. The output
is the pair(i, b @ x;), where the bib is flipped if z; = 1. There are (at least) two natural ways of
generalizing a query to the quantum setting, in which we require all operations to be unitary. The
first way is to consider a quantum query as a unitary operator that takes two [ijphltswhere
i € [N]andb € {0, 1}, and outputsi)|b @ x;). The oracle is then simply just a linear extension of
the reversible query given above. We extend the definition of the oracle so that we can simulate a
non-query, and we allow it to take some arbitrary ancilla statevith z > 0 as part of the input
and that is acted upon trivially,

0" li,b: ) |i,b; z) ift=0o0rz; =0 1)
LOZ) =9, .
‘ li,b®1;2) ifie[N]andx; = 1.

The ancillalz) contains any additional information currently part of the quantum state that is not
involved in the query.

The second way is to consider a quantum query as a unitary op€ratoat takes only the one
input |z) and outputg—1)¥i|i), wherei € [N]. We say that the oracle is “computed in the phases”
by O,. Both operator®’ andO, square to the identity, i.e., they are their own inverses, and thus
unitary. The two operators are equivalent in that one query to either oracle can be simulated by a
superposition query to the other oracle preceeded and followed by a basis change. Though the first
way is possibly the more intuitive, we shall adapt the second way as it is very convenient when
proving lower bounds. Again, we extend the definition of the orécleo that it also embodies a
non-query, and we allow it to take some arbitrary ancilla stat¢hat is not acted upon,

0,]i:2) = |i; 2) ifi=0 o)
T (<1)m i z) i 1< < N.

We may think of one query as a one-round exchange of information between two parties, the
algorithm and the oracle. In the classical setting, the algorithm sends anindeXV] to the
oracle, and the oracle responds with one bit of information, namely the quantum setting, the
algorithm sends th&g,(N) qubits|i) to the oracleO,, and the oracle responds with-1)%|i).

The algorithm and oracle thus exchange a total numbei@f, (V) qubits, and thus, a quantum
query toO,, can convey up t@ log, (V) classical bits of information about the oracle by Holevo’s
theorem[[Hol 73, CD98] and superdense coding [BW92].
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Information theoretically, a functio” : {0,1}¥ — {0,1}°&(™) that outputs at most
O(log,(NN)) bits, can potentially be solved by a constant number of queries to the oracle. An
example of such a problem is the Deutsch-Jozsa problem [DJ92], which is to distinguish balanced
boolean functions from constant functions. (A functi®iis constant ifF'(x) = F(y) for all inputs
z,y, and it is balanced if it is not constant ajfd™'(F(z))| = |F~*(F(y))| for all inputsz, y.)

A quantum algorithm in the oracle model starts in a state that is independent of the oracle. For
convenience, we choose the stéigin which all qubits are initialized t@. It then evolves by
applying arbitrary unitary operatotks to the system, alternated with queri@s to the oracler,
followed by a conclusive measurement of the final state, the outcome of which is the result of the
computation. In symbols, a quantum algoritnthat used’ queries, computes the final state

) = UrO Uy - - U;0,Uq|0) (3)

which is then measured. If the algorithm computes some fundfian{0, 1} — {0,1}™, we
measure then leftmost bit of the final statg)?), producing some outcome. The success prob-
ability p, of A on inputz € {0,1}" is the probability thatv = F(x). For complete functions
F : {0,1}¥ — {0,1}™, we define the success probability dfas the minimum op, over all
r € {0,1}". For partial functions#’ : S — {0,1}™, whereS C {0,1}", we take the mini-
mum overS only. A quantum algorithnA has error at most if the success probability ok is
at leastl — e. Let Q.(F') denote the minimum query complexity of any quantum algorithm that
computesF' with two-sided error at most, and as common, l&D,(F) = Q1/3(F) denote the
two-sided bounded error complexity with=1/3.

As our running example, we use the well-known ordered searching problem. In the oracle
model, the input to ordered searching is/8@rbit stringx = (xy,...,xy). We are promised that
x; <z foralll <i < N and thatry = 1, and the goal is to find the leftmost 1, i.e., the index
i € [N] for whichz; = 1 and no index < i exists withz; = 1.

Given: An N-bit stringz = (x1, 2, ..., zx) given as an oracle.

Promise: z; < x;.;forl1 <i¢ < N andzy = 1.

Output: Index: such thatr; = 1 and eitherr;_; = 0or: = 1.

The classical query complexity of ordered searchinglig,(/N)| and is achieved by standard
binary searching. The quantum query complexity is at Mmastlog, N, due to the work of high
school student M. B. Jacokes in collaboration with Landahl and Brookes [JLB05] (See alsol[FGGS,
HNSO02]). Using the adversary method, we show that their algorithm is within a factor of about
two of being optimal.

3 Distinguishing hard inputs
The first quantum lower bound using adversary arguments was given by Bennett, Bernstein, Bras-

sard, and Vazirani in_[BB97]. They show that any quantum query algorithm can be sensitive
to at most quadratically many oracle bits, which implies a lower bourd(efN) for Grover’s

4



problem [Gro96] and thus proves that GrovePéy/N) algorithm is optimal. Grover’s problem
is a search problem in which we are given Anbit stringz € {0,1}" as an oracle, and the
goal is to find an index for which x; = 1, provided one exists. Interestingly, the lower bound
of Bennett et al. was proved in 1994, well before Grover defined his search problem. In 2000,
Ambainis [Amb02] found an important generalization of the method and coined it “adversary ar-
guments.”

A constructive interpretation of basic adversary arguments is in terglistoiguishability We
will thus not be concerned with computing the functiBnbut merely interested in distinguishing
oracles. Consider some algorithinthat computes some functiafi in the oracle model, and
consider two inputs:,y € {0,1}" for which F(z) # F(y). SinceA computesF, it must in
particular be capable of distinguishing between oracd oracle,. For a given problem we try
to identify pairs of oracleghat are hard tadlistinguish If we can identify hard input pairs, we may
derive a good lower bound. However, a caveat is that using only the very hardest input pairs does
not yield good lower bounds for some problems, and we are thus naturally led to also consider less
hard input pairs. A remedy is to useeightsthat capture the hardness of distinguishing each pair
of oracles, and to do so, we define a matrief dimension2” x 2% that takes non-negative real
values,

r:{0, 1}V x {0,1}" — R{. (4)

We require thal’ is symmetric and thdf[z, y| = 0 wheneverF'(z) = F(y). We say thatl is a
spectral adversary matrix foF’ if it satisfies these two conditions. The symmetry conditiori’'on
states that we are concerned with distinguistiatyveerany two inputse, y. We are not concerned
with distinguishingz from y, nor distinguishingy from x. We discuss this subtlety further in
Section] b below when considering alternative definitions of weighted adversary arguments. The
spectral adversary matrix allows us to capture both total and partial functions, as well as non-
boolean functions. Since we are only concerned with distinguishability, once we have specified
the entries of’, we may safely ignore the underlying functién

Weighted adversary arguments were first used by Hagyer, Neerbek, and Shi in [HNS02] to
prove a lower bound df(log N) for ordered searching arfe( N log V) for sorting. Barnum and
Saks [BS04] used weighted adversary arguments to prove a lower bo@g/of) for read-once
formulae, and introduced the notidhthat we adapt here. Barnum, Saks, and Szegedy extended
their work in [BSS03] and derived a general lower bound on the query complextyioterms
of spectral properties of matriX. Their lower bound has a very elegant and short formulation, a
basic proof, and captures important properties of adversary methods, and we shall thus adapt much
of their terminology.

As discussed above, the key to prove a good lower bound is to pick a good adversarymatrix
For our running example of ordered searching, which is a partial non-boolean function, we use the
following weights.

Example: Ordered Seaching 1The weight on the paifz, y) is the inverse of the Hamming dis-
tance ofr andy,

1 . . - - -
pearch, 1 _ ) @ T if x andy are valid and distinct inputs t& 5)
Y 0 otherwise.
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The larger the Hamming distance betweeand y, the easier it is to distinguish them, and the
smaller weight is assigned to the pair.

We have to choose how to measure distinguishability. The possibly simplest measure is to
use inner products. Two quantum states are distinguishable with certainty if and only if they are
orthogonal, and they can be distinguished with high probability if and only if their inner product
has small absolute value.

Fact 1 Suppose we are given one of two known stpkes$, |V, ). There exists a measurement that
correctly determines which of the two states we are given with error probability atambahd

only if (W, |V,)| < €, wheree =2,/e(1 —¢).

Since a unitary operator is just a change of basis, it does not change the inner product between
any two quantum states, and thus the inner product can only change as a consequence of queries
to the oracle.

4 Adversary lower bounds

Adversary lower bounds are of information theoretical nature. A basic idea in adversary lower
bounds is to upper-bound the amount of information that can be learned in a single query. If little
information can be learned in any one query, then many queries are required. We use spectral
properties ofl" to put an upper bound on the amount of information the algorithm learns about the
oracle.

Let A be some quantum algorithm that computes some fundtiomith bounded two-sided
error. For every integer> 0 and every oracle, let

denote the quantum state aftequeries to the oracle. To measure the progress of the algorithm,
we define similarly tol[Amb02, HNS02, BS04, BSS$S03] a weight function

W= "Tlz,y]6.6, - (WLlv)), (7)

where/ is a fixed principal eigenvector df, i.e., a normalized eigenvector corresponding to the
largest eigenvalue df, and whereS, denotes the™ entry of 5.

The algorithm starts in a quantum stat€) = Uy|0) which is independent of the oraclgand
thus the total initial weight is

W= "T[z,y)6.6, = \T), (8)

where)\(T") denotes the spectral normbf The final state of the algorithm aftérqueries igy’)
if the oracle isr, and itis|; ) if the oracle iy. If F'(z) # F(y), we must have thaty; | )| < ¢



by FactD., and hencd’? < ¢WP. If the total weight can decrease by at madsby each query,
the algorithm require (%" ) queries to the oracle.

Following Barnum, Saks, and Szegedy [BSS03], we upper bauriy the largest spectral
norm of the matrice§;, defined by

Fi[w}_{g[x,y] :fiiz (9)

for eachl < i < n. The theorem of [BSS03] is here stated (and proved) in a slightly more
general form than in [BSS03] so that it also applies to non-boolean functions. Our proof aims at
emphasizing distinguishability and differs from the original.

Theorem 2 (Spectral method [BSSQO3])For any adversary matrixI” for any function F
{0,137 — {0, 1}™,

aur) =200, (10

Proof We prove that the drop in total weighit® — W+! by thet + 15 query is upper-bounded by
the largest eigenvalue of the matridés

Foreact) <i < N,letP;, =", |i; 2)(i; 2| denote the projection onto the subspace querying
the i oracle bit. Let3,; = |P;|v%)| denote the absolute value of the amplitude of querying the
i bit in the ¢ + 1% query, provided the oracle is. Note thaty " B2, = 1 for any oracler,
since the algorithm queries one of tAebits 1, ..., zy, or simulates a non-query by querying
the oracle withi = 0. Thet + 1% query changes the inner product by at most the overlap between
the projections of the two states onto the subspace that corresponds to irahogkichz; andy;
differ,

(Uzly) — (WL,

= |(wt10 - 0,0,)lL)

=2 3 WP <2 7 B Q1)

xi Ay X AY;

The bigger the amplitudes of querying the hitsn whichz; andy; differ, the larger the drop in
the inner product can be.
Define an auxiliary vectot; [x] = 6,3, and note that

N N N
Z |ai‘2 = Zz(ﬁﬁiz = Zéizﬁiz = 2533 =L
i=0 0 x

=0 =z T i=



The drop in the total weight is upper-bounded by

W= = | 3Tl la, (k) — (1)

— )22 Z Iz, y]0,0, (2 |Pi|1y)

Y LTiFY;

< 2 Z Z Pz {l’, y] 5w6y : ﬁx,iﬁy,i
Ty

= 2 Z CL*F'CLZ‘

< 2 Z AMTy)|as)?

< Qmax)\ Z!aﬁ

= 2max \(I;).

i

Herea; denotes the transpose @f The first inequality bounds the drop in inner product for a
specific pair and follows from Equati¢n]|11. The second inequality follows from the spectral norm
of I'. The second and third inequalities state that the best possible query distributes the amplitude
of the query according to the largest principal eigenvector of the query maltices O

Example: Ordered Seaching 2Returning to our example of ordered searching, /or= 4, the
adversary matrix with respect to the ordered bg$ig01,0011,0111,1111) is given by

o1 1 1
2 3
Fsearcl“) _ } 0 1 %
5 1 0 1
1 1
3 2 10

The spectral norm is easily seen to be lower-bounded by the sum of the entries in the first row,
A(Tsearctty > 3 + 1. In general \(I'>*®") is lower-bounded by the harmonic numbiéx _,

which is at leasin(N). The spectral norm of the query matriced 5" is maximized when

i = |N/2], in which case it is upper-bounded by the spectral norm of the infinite Hilbert matrix
[1/(r + s — 1)],.s>1, Which is7. We thus reprove the lower bound (@f — e’)@ for ordered
searching given in [HNSO02].

5 Applying the spectral method

The spectral method is very appealing in that it has a simple formulation, a basic proof, and gives
good lower bounds for many problemSpaIek and Szeged$505] show that for any problem,
the best lower bound achievable by the spectral method is always at least as good as the best



lower bound achievable by any of the previously published adversary methods. Their proof is
constructive and illuminating: given any lower bound in any of the previously published adversary
methods, they construct an adversary mdirand prove it achieves the same lower bound.

The first general quantum lower bound using adversary arguments was introduced by Ambainis
in [Amb02]. As shown in/§S05], it can be derived from the spectral method by applying simple
bounds on the spectral normbfand each’;. By definition, the numeratox(I") is lower-bounded
by #d*rd for any non-negative vectal, and by Mathias’ lemma [Mat90], the denominatdi’;)
is upper-bounded by the product of a row-norm and a column-norm.

Lemma 3 ([Mat90, SS05]) Let G be any non-negative symmetric matrix altl N' non-negative
matrices such thatr = M o N is the entrywise product df/ and N. Then

AMG) < max ry(M) ¢y (N),

Gla,y]>0
wherer, (M) is thel,-norm of thex™ row in M, andc, (N) is the/,-norm of they™ column inNV.

Applying these two bounds, we obtain Ambainis’ lower bound_in [Amb02]. We refer to the
method as an unweighted adversary method since it considers only two types of inputs: easy inputs
and hard inputs. We construct a zero-one valued adversary matie¢ corresponds to a uniform
distribution over the hard input pairs.

Theorem 4 (Unweighted method[[AmbO2])Let F' be a partial boolean function, and let C
F~1(0) and B C F~!(1) be subsets of (hard) inputs. L& C A x B be a relation, and set
R, = {(x,y) € R: z; # y;} for eachl < i < n. Letm,m’ denote the minimal number of ones in
any row and any column in relatioR, respectively, and let ¢’ denote the maximal number of ones
in any row and any column in any of the relatioRg respectively. The@(f) = Q(y/mm//l").

Proof LetS = {(z,y) : (z,y) € RV (y,x) € R} be a symmetrized version @t. Define a
column vector! from the relationS by settingd, = \/|{y : (z,y) € S}|, and an adversary matrix
" by settingl'[z,y] = ﬁ if and only if (z,y) € S. Then\(T") > #d*rd = 1. For each of the

matricesl’;, we apply LefnmﬂB withV/ [z, y] = N[y, x| = é if and only if (x,y) € S. For every

(z,y) € R, ro(M) < \/t/d2 < \/t/mandc,(N) < \/U/d2 < \/U/m'. For every(z,y) €
S — R, the two inequalities are swapped. By Lemma\@,;) < max, y.r o150 7 (M)cy(N) <

VU Jmm. O

The unweighted adversary method is very simple to apply as it requires only to spec-
ify a set R of hard input pairs. It gives tight lower bounds for many computational prob-
lems, including inverting a permutation [AmB02], computing any symmetric function and count-
ing [NW99, BC"99, BH™02], constant-level and-or trees [Amb02, HMWO03], and various graph
problems|[DH 04]. For some computational problems, the hardness does however not necessarily
rely only on a few selected hard instances, but rather on more global properties of the inputs. Ap-
plying the unweighted method on ordered searching would for instance only yield a lower bound
of a constant. In these cases, we may apply the following weighted variant of the method, due to
Ambainis [Amb03] and Zhang [Zha04].




Theorem 5 (Weighted method[Amb03| ZhaO4])Let F' : S — {0,1}™ be a partial function.
Letw, w’ denote a weight scheme as follows:

e Every pair(z,y) € S? is assigned a non-negative weightz,y) = w(y, z) that satisfies
w(z,y) = 0 whenevell'(z) = F(y).

e Every triple(z,y,i) € S? x [N] is assigned a non-negative weight(x, y, 1) that satisfies
w'(z,y,1) = 0 whenever; = y; or F(z) = F(y), andw'(z,y,i)w'(y,x,i) > w?(z,y) for
all z,y, i with z; # y;.

Then

T,Y,1 W

w(x,y)>0
T 7Y

Qz(F)=Q< min | LHEwH) )

wherewt(z) = >, w(x,y) andv(z,i) = >, w'(z,y,4) forall z € S andi € [N].

At first glance, the weighted method may look rather complicated, both in its formulation and
use, though it is not. We first assign weights to pé&irgy) of inputs for whichF'(z) # F(y), asin
the spectral method. We require the weights to be symmetric so that they represent the difficulty
in distinguishingbetween: andy.

We then afterwards assign weight§z, y, i) that represent the difficulty in distinguishing
from y by querying index. The harder it is to distinguisht from y by indexi, compared to
distinguishingy from z by index:, the more weight we put ofx, y, i) and the less ofy, x, i), and
vice versa.

To quantify this, define(x, y, i) = w'(x,y,i)/w'(y, x,1). Thent(z,y, i) represents the relative
amount of information we learn about input pafts =) compared to the amount of information
we learn about input pair&:, y), by querying index. If we, by querying index, learn little
aboutz compared toy, we lett(z,y,i) be large, and otherwise small. Consider we query an
index for which x; # y;. Then we learn whether the oraclexisor y. However, at the same
time, we also learn whether the oracleri®r = for any other pair(x, z) for which z; # z; and
F(x) # F(z); and similarly, we learn whether the oracleuior y for any other pairu, y) for
which u; # y; and F(u) # F(y). The less information querying indéxprovides about pairs
(x,z) compared to pairéu, y), the larger we choos&z, y,i). Having thus chosef(z, y, i), we
setw'(z,y,1) = w(x,y)\/t(z,y,1) andw'(y, z,i) = w(x,y)/\/t(z,y,17).

We show next that the weighted method yields a lower boun@ (&g N) for the ordered
searching problem. This proves that the weighted method is strictly stronger than the unweighted
method. The weighted method yields strong lower bounds for read-once formula [BS04] and it-
erated functions [Amb03]. Aaronson [Aar04], Santha and Szededy [SS04], and Zhangl [ZhaO05]
use adversary arguments to prove lower bounds for local search, a distributed version of Grover’s
problem.Spalek and Szegedy prove 8305] that the weighted method is equivalent to the spec-
tral method—any lower bound that can be achieved by one of the two methods can also be shown
by the other. Their proof is constructive and gives simple expressions for converting one into the
other. The main weights(z, y) are the coefficients of the weight functié#’ for the input pair
(z,y), that is,w(z,y) = I'[z, y]0,d,, and the secondary weighig(z, y, i) follow from Mathias’
lemma [Mat90] (Lemma]3).
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Example: Ordered Seaching 3To apply the weighted method on ordered searching, we pick the
same weights(z, y) = 'Sz 4] 4,4, as in the spectral method as there are no strong reasons
for choosing otherwise. Now, considét:, y,i) with F(x) < i < F(y) so thatz; # y;. By
querying index, we also learn to distinguish betweerand = for each of thef’(y) — i inputsz
with i < F(z) < F(y), and we learn to distinguish betweerandy for each of the — F(z) + 1
inputsu with F(z) < F(u) < i. We thus choose to set

_|F(z) —id[+1

N Y

Plugging these values into the weighted method yields a lower boufidlef V) for ordered
searching.

6 Limitations of the spectral method

The spectral method and the weighted adversary method bound the amount of information that can
be learned in any one query. They do not take into account that the amount of information that can
be learned in thg" query might differ from the amount of information that can be learned in the

k™ query.

In 1999, Zalka([Zal99] successfully managed to capture the amount of information that can
be learned in each individual query for a restricted version of Grover’s problem [Gro96]. In this
restricted version, we are promised that the input oradke either the zero-string (s@z| = 0)
or exactly one entry i is one (soxz| = 1), and the goal is to determine which is the case. By
symmetry considerations, Zalka demonstrates that Grover's algorithm saturates some improved
inequalities (which are similar to EQ.[11) and hence is optimal, even to within an additive constant.

Since current adversary methods do not capture the amount of information the algorithm cur-
rently knows, we may simply assume that the algorithm already knows every bit of the oracle and
that it tries to prove so. This motivates a study of the relationship between the best bound achiev-
able by the spectral method and the certificate complexityerificatefor an inputz € {0,1}%,
is a subsef’ C [N] of input bits such that for any other inputn the domain off” that may be ob-
tained fromz by flipping some of the indices not ifl, we have that'(x) = F(y). The certificate
complexity C.(F') of input x is the size of a smallest certificate fer The certificate complexity
C(F) of a functionF" is the maximum certificate complexity of any of its inputs. We also define
the z-certificate complexity Q F') when taking the maximum only over inputs that map t@he
spectral theorem can then never yield a lower bound better than a quantity that can be expressed in
terms of certificate complexity.

Lemma 6 ([LM04| [Zha04, SS05]) Let F : S — {0,1} be any partial boolean function. The
spectral adversary lower bountidv(F) is at mostmin {\/Co(F)N, /Ci(F)N}. If F is total,

the method is limited by/C,(F)C, (F).

The certificate complexity of a functiofA : {0,1}" — {0,1}™ is itself polynomially related
to the block sensitivity of the function. An input € {0,1}" is sensitiveto a block B C [N]
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if F(z) # F(2P), wherez? denotes the input obtained by flipping the bitszirwith indices
from B. The block sensitivity bg F') of input z is the maximum number of disjoint blocks
By, By, ...,B; C [N] on whichz is sensitive. Thelock sensitivityps(F') of F' is the maxi-
mum block sensitivity of any of its inputs. We also define thblock sensitivity bs(F") when
taking the maximum only over inputs that map:to

For any boolean functiod : {0,1}" — {0, 1}, the certificate complexity is upper-bounded
by C(F') < bs(F)bs,(F'), and thus so is the spectral adversary method. Conversely,;Ady
\/bs(F) by a zero-one valued adversary matfrixLet 2’ € {0, 1} be an input that achieves the
block sensitivity of ', and letB;, B, ..., By C [IN] be disjoint blocks on which’ is sensitive,
wherek = bg(F). Setl'(F)[x, 2P] = 1 if and only if z = 2’ and B is one of thek blocks B; and
closel under transposition. ThenT) = vk andmax; A(I';) = 1, and thus

VBS(F) < Adv(F) < bsy(F)bs(F). (12)

The spectral adversary method is not suitable for proving lower bounds for problems related to
property testing. If functior : S — {0, 1} is a partial function withs C {0, 1} such that every
zero-input is of Hamming distance at leastfrom every one-input, then the spectral theorem does
not yield a lower bound better thdrie.

Laplante and Magniez introduce [n [LMO04] a lower-bound method based on Kolmogorov com-
plexity. They show by direct constructions that their method is at least as strong as each of the two
methods, the spectral and weighted adversary metSpdlek and Szegedy then show/8S05]
that the spectral method is at least as strong as the Kolmogorov complexity method, allowing
us to conclude that the three methods are equivalent. Having such a variety of representations
of the same method shows that the adversary method is very versatile and captures fundamental
properties of functions. Indeed, Laplante, Lee, and Szegedy [LLS05] show that the square of the
adversary bound is a lower bound on the formula size. The following lower-bound method is a
combinatorial version of the Kolmogorov complexity method.

Theorem 7 (Minimax method [LM04] SS05]) Let F' : S — {0,1}™ be a partial function and
A a bounded-error quantum algorithm fdf. Letp : S x [N] — R be a set of S| probability

distributions such thap, (i) denotes the average probability of querying tfeénput bit on input
x, where the average is taken over the whole computatigh dhen the query complexity, of

algorithmA satisfies

1
QA>Mp:

max .
= pyF@ARW) Y A/ Pali) py (i)

The previous methods satisfy the property that if we plug in some matrix or relation, we get
a valid lower bound. The minimax method is principally different. A lower bound computed by
the minimax theorem holds for one particular algoritAirand it may not hold for some other and
better algorithm. However, we may obtain a universal lower bound that holé&ybounded
error algorithm by simply taking the minimum of the bouhf} over all possible sets of probability
distributionsp. The spectral bound and the minimax bound are in a primal-dual relation: the best
lower bound that can be obtained by any adversary matexjuals the smallest bound that can
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be obtained by a set of probability distribution§SS05]. Primal methods are used for obtaining
concrete lower bounds and dual methods are used for proving limitations of the method, as in
Lemma®.

A useful property of the adversary method is that it composes. Consider a function of the form
H = Fo(Gy,...,Gi),whereF : {0,1}* — {0,1} andG; : {0,1} — {0,1}fori=1,... k
are partial boolean functions. A composition theorem states the complexity of fuitiiloterms
of the complexities of” and Gy, ..., G. Barnum and Saks$ [BSD4] use composition properties
to prove a query lower bound 6f(/N) for any read-once formula, Ambainis [AmB03] proves a
composition lower bound for iterated boolean functions, and Laplante, Lee, and SZegedy![LLS05]
prove a limitation on composition lower bounds for functi@rsfor which the adversary bound
is upper bounded by a common boundTo formulate a composition theorem for arbitrary cases
when the functionss; may have different adversary bounds, we require a weighted version of the
spectral method.

Let F' : {0,1}¥ — {0,1} be a partial boolean function and = (ay,...,ay) a string of
positive reals. Let

: A(T)
Adv,(F) = max min {alm} :

wherel ranges over all adversary matrices for If the weights are all 1, then our new quantity
Adv, (F) coincides with the spectral adversary bound and is thus a lower bound on the quantum
query complexity off’. If the weightsa are non-uniform, then Ad\F') is a new abstract com-
plexity measure that assigns cestto querying the™ input bit. We can then prove [BD5] that
the quantity Ady, composes in the following sense.

Theorem 8 (Composition Theorem[[BS04, Amb03, LLS05, B05]) For any composite func-
tion H = F o (G4,...,G}), whereF : {0,1}F — {0,1} andG; : {0,1}" — {0, 1} are partial
boolean functions,

Adv,(H) = Advg(F),

whereg; = Adv,:(G;), anda = (a', ..., a*) is ak-tuple of stringsy’ € R+

A natural generalization of Grover’s problem is the so-callefdld search problem in which
we are promised that exactly entries of the input oracle are one (sdz| = k), and the goal
is to find all of thesek indices. We say an algorithi succeeds if it outputs a subsgtC [V]
of sizek andS contains all indices € [N] for whichz; = 1. Thus, by definition, it fails even
if it outputs all but one of thé: indices. Thek-fold search problem can be solved@{v/kn)
gueries, essentially by sequentially running Grover’s search algo#thimes. Klauck,épalek,
and de Wolf [KSW04] show that if the number of queries is less thgftn for some constant,
then the success probability éfis exponentially small ink. They thus prove a strong direct
product theorem for thé-fold search problem. One of the main elements of the proof is the
polynomial method which we discuss in the next section.

In very recent work, Ambainis [AmQ5a] proposes an extension of the adversary method and
uses it to reprove the strong direct product theorem &\W04]. Though the following very brief
description of the proof does not do full justice to the method, we hope it conveys some of the
intuition on which [AmQ5a] is based. The algorithm runs on a uniform superposition of all inputs.
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During the computation, the input register gets entangled with the workspace of the algorithm
due to the queries to the oracle. We trace out the workspace and examine the eigenspaces of the
density matrix of the input register. Due to symmetries, there are exaetlyeigenspaces, indexed

by the number of ones the algorithm “knows” at that stage of the algorithm. In the beginning, all
amplitude is in th@™ eigenspace. One query can only move little amplitude fronitieégenspace

to thei + 15 eigenspace. If the algorithm has good success probability, the quantum amplitude in
high eigenspaces must be significant, since the algorithm must “know” most/oirtdees, which

implies a lower bound on the query complexity.

7 Polynomial lower bounds

There are essentially two different methods known for proving lower bounds on quantum compu-
tations. The historically first method is the adversary method we discuss above. It was introduced
in 1994 by Bennett, Bernstein, Brassard, and Vazirani, and published in 1997 in the SIAM Journal
on Computing, in a special section that contains some of the most outstanding papers on quan-
tum computing. The second method was introduced shortly after, in 1998, by Beals, Buhrman,
Cleve, Mosca, and de Wolf [BB)1], and implicitly used by Fortnow and Rogerslin [FR99]. Their
approach is algebraic and follows earlier very successful work on classical lower bounds via poly-
nomials (see for instance Beigel's 1993 survey [Bei93] and Regan’s 1997 survey [Reg97]). We first
establish that any partial boolean functibn S — {0, 1}, whereS C {0, 1}", can be represented

by a real-valued polynomial : RV — R.

Definiton 9 Let F : S — {0,1} be a partial boolean function, wher¢ C {0,1}". An N-
variable polynomialp represents’ if p(z) = F(x) for all z € S, and it approximatesr if
Ip(x) — F(z)| < 5 forall 2 € S. Thedegreeof F, denotedleg(F), is the minimal degree of a
polynomial representing’. Theapproximate degreef F, denotedleg(F), is the minimal degree
of a polynomial approximating’.

The crux in [BBT01] is in showing that any quantum algorithhrcomputing some functiof’
gives rise to some polynomig) that represents or approximates

Theorem 10 ([BB"01]) Let A be a quantum algorithm that computes a partial boolean func-
tion £ : S — {0,1}, whereS C {0, 1}V, using at mosf” queries to the oracl®’,. Then there
exists anV-variate real-valued multilinear polynomial, : Y — R of degree at mostT, which
equals the acceptance probability Aof

Proof In this theorem, we use the oragd which is equivalent to the oracle,, since it allows
for simple formulations. We first rewrite the action©f as

where we define; = 0 for i = 0 so that we can simulate a non-query by queryingith ; = 0.
Suppose we appl;. on some superposition., , .« .|i, b; z) where each amplitude; ;. is an
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N-variate complex-valued polynomial inof degree at most Then, by Eq[. 113, the resulting state

> in. Binz|ts b 2) s a superposition where each amplituglg . is an N-variate complex-valued
polynomial inx of degree at most + 1. By proof by induction, aftefl” queries, each amplitude

can be expressed as a complex-valued polynomialohdegree at most’. The probability that

the final measurement yields the outcomeorresponding to accepting the input, is obtained by
summing some of the absolute values of the amplitudes squared. The square of any of the absolute
amplitudes can be expressed as a real-valued polynpmiial: of degree at mosXT". Theorenj Ip

follows. O

The above theorem states that to any quantum algorikloomputing a boolean functioh :
S — {0,1}, whereS C {0,1}", we can associate aN-variate polynomiap, : ®Y — R that
expresses the acceptance probability of the algorithm on any given input. If algd¥ithexact,
i.e., if A always stops and outputs the correct answer, fhén) = F(z) for all z € S, and thus
pa representd’. If A has bounded error, thén< pa(z) < 1/31if F(z) =0and2/3 < pa(z) <1
if F'(x) =1, and thuga approximated’. The degree of, is at most twice the number of queries
used by algorithmA. Consequently, the degree of a function is a lower bound on the quantum
guery complexity, up to a factor of two.

Corollary 11 (Polynomial method [BBT01]) For any partial boolean functiod : S — {0, 1},
wheresS C {0,1}", we haveQz(F) > deg(F)/2 andQy(F) > deg(F)/2.

8 Applying the polynomial method

The challenge in applying the polynomial method lies in the dimensionality of the input. Typically,
the method is applied by first identifying a univariate or bivariate polynomial that captures essential
properties of the problem, and then proving a lower bound on the degree of that polynomial.
The second part is typically reasonably straightforward since polynomials have been studied for
centuries and much is known about their degrees. The possibly simplest nontrivial example is
when F' is the threshold functiofhr, defined byThr,(z) = 1 if and only if |x| > ¢. It is easy

to see thatleg(Thr;) = ©(N) for all nontrivial threshold functions, and thag; (Thr;) = Q(N).

Paturi [Pat9?] shows thateg(Thr,) = ©(,/(t+ 1)(NV —t + 1)), and we thus readily get that
Q2(Thry) = Q(y/(t+ 1)(N —t + 1)), which is tight by quantum counting [BH02, BB 01].

This degree argument extends to any symmetric funckidoy writing £’ as a sum of threshold
functions. The same tight lower bounds for symmetric functions can also be obtained by the
unweighted adversary method (see the paragraph after Thgprem 4).

For general non-symmetric functions, the polynomial method is, however, significantly harder
to apply. For problems that are “close” to being symmetric, we can sometimes succeed in con-
structing a univariate or bivariate polynomial that yields a non-trivial lower bound. The first and,
in our view, most important such a result was obtained by Aaronson in [Aar02] in which he proves
a lower bound of2(N'/?) on any bounded-error quantum algorithm for the collision problem.

The collision problem is a non-boolean promise problem. The oracle A&-auple of positive
integers between 1 and’, which we think of as a functioX : [N] — [M]. We model the oracle
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0% so that a query to th&" entry of the oracle returns the integ&li). Specifically,0% takes as
input i, 7; z) and outputsi, r & X (i); z) where0 < r < 2™ for m = [log,(M +1)], andr & X (7)
denotes bitwise addition modulo 2. We are promised that exhera one-to-one function, oX
is two-to-one, and the goal is to determine which is the case.

The result of Aaronson was shortly after improved by Shi [Shio2{2tav'/*) for general
functionsX : [N] — [M], and toQ(N'/3) in the case the range is larger than the domain by a
constant factor)/ > %N. The lower bounds of Aaronson and Shi appears as a joint alticle [AS04].
Finally, Kutin [KutOS] and Ambainis/[AmO5b] independently found remedies for the technical
limitations in Shi’s proof, yielding af2(N'/?) lower bound for all functions, which is tight by an
algorithm that uses Grover search on subsets by Brassard, Hayer, and Tapp [BHM97].

The best lower bound for the collision problem that can be obtained using the adversary method
is only a constant, since any one-to-one function is of large Hamming distance to any two-to-one
function. Koiran, Nesme, and Portier [KNR05] use the polynomial method to prove a lower bound
of Q(log V) for Simon’s problem([Sim97], which is tight [SIim97, BH97]. Simon’s problem is a
partial boolean function having properties related to finite abelian groups. Also for this problem,
the best lower bound that can be obtained using the adversary method is a constant.

In contrast, for anyotal boolean functior¥ : {0, 1} — {0, 1}, the adversary and polynomial
method are both polynomially related to block sensitivity,

VOS(F) /6 < deg(F) < deg(F) < bs'(F) (14)
Vbs(F) < Adv(F) < bs'(F). (15)

It follows from [BBF01] thatdeg(F) < bs’(F), and from Nisan and Szegedy [N$92] that
6deg(F)? > bg(F). Buhrman and de Wolf [BW02] provide an excellent survey of these and
other complexity measures of boolean functions.

The polynomial lower bound is known to be inferior to the weighted adversary method for
some total boolean functions. In TAmB03], Ambainis gives a boolean fundfian{0,1}* —

{0,1} on four bits, which can be described as “the four input bits are sorted” [LLSO05],
for which deg(F) = 2 and for which there exists an adversary matiiX satisfying that
ATF)/ max; A\(TF) = 2.5. We compose the function with itself and obtain a boolean function
Fy = Fo(F F,F,F):{0,1}' — {0,1} defined on 16 bits for whickleg(F,) = 4, and for
which A\(I'*2) / max; A\(I'??) = 2.5%, by the composition theorem. Iteratingimes, yields a func-

tion F on N = 4" bits of degreeleg(F') = 2", with spectral lower bound.5" = deg(F)3*-, by

the composition theorem. The thus constructed funciids an example of an iterated function

of low degree and high quantum query complexity. It is the currently biggest known gap between
the polynomial method and the adversary method for a total function. Another iterated total func-
tion for which the adversary methods yield a lower bound better than the degree, is the function
described by “all three input bits are equal” [AmbO03].

The polynomial method is very suitable when considering quantum algorithms computing
functions with errore that is sub-constant, whereas the adversary method is not formulated so
as to capture such a fine-grained analysis. Buhrman, Cleve, de Wolf, and Zatk&dBshow that
any quantum algorithm for Grover’s problem that succeeds in finding an indexvhich z; = 1
with probability at least — ¢, provided one exists, requir€s /N log(1/¢)) queries to the oracle,
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which is tight. A possibly more familiar example is that any polynomial approximating the parity
function with any positive bias > 0 (as opposed to bigswhere; = 2 — 1) has degreéV, since

any such polynomial gives rise to a univariate polynomial of no larger degreeNnitiots. Hence,

any quantum algorithm computing the parity function with arbitrary small bias) requiresN/2
gueries to the oracle, which is tight.

A useful property of representing polynomials is that they composen i¢fa polynomial
representing a functio#’, and polynomialsy;, ¢s, . . ., ¢x represent functions1, ..., Gy, then
po(q,-...,q) representd’ o (Gy,...,Gy), when well-defined. This composition property does
not hold for approximating polynomials: if each sub-polynomialakes the valu@.8, say, then
we cannot say much about the valp@.8, ..., 0.8) since the value o on non-integral inputs
is not restricted by the definition of being an approximating polynomial. To achieve composition
properties, we require that the polynomials are insensitive to small variations of the input bits.
Buhrman, Newman, &hrig, and de Wolf give in [BNO5] a definition of such polynomials, and
refer to them as being robust.

Definition 12 (Robust polynomials [BN"05]) An approximateV-variate polynomiap is robust
onS C {0,1}Vif |p(y) — p(x)| < 1 for everyz € S andy € R such thafy; — z;| < 3 for every
i =1,..., M. Therobust degreef a boolean functio¥’ : S — {0,1}, denotedrdeg(F), is the
minimal degree of a robust polynomial approximatifg

Robust polynomials compose by definition. Buhrman et al. {BB] show that the robust de-
gree of any total functiod : {0, 1} — {0, 1} isO(N) by giving a classical algorithm that uses a
guantum subroutine for Grover’s problem [Gro96] which is tolerant to errors, due to Hgyer, Mosca,
and de Wolf[HMWO3]. Buhrman et al. [BND5] also show thatdeg(F) € O(deg(F)log deg(F))
by giving a construction for turning any approximating polynomial into a robust polynomial at the
cost of at most a logarithmic factor in the degredofThis implies that for any composite function
H=Fol(G,...,G), we haveleg(H) € O(deg(F)deg(G)logdeg(F)). Itis not known whether
this is tight. Neither is it known if the approximate degredftan be significantly smaller than the
product of the approximate degreestofindG. The only known lower bound on the approximate
degree ofA is the trivial bound(deg(F) + deg(Q)).

An and-or tree of depth two is a composed function (G, . . . , G) in which the outer function
F is the logical AND ofy/N bits, and the inner functiot is the logical OR ofy/N bits. By
the unweighted adversary method, computing and-or trees of depth two req(irég) queries.
Hoyer, Mosca, and de Wolf [HMWO03] give a bounded-error quantum algorithm that(s£a7)
gueries, which thus is tight. The existence of that algorithm implies that there exists an approxi-
mating polynomial for and-or tree of depth two of degree/N). No other characterization of
an approximating polynomial for and-or trees of depth two of degregN) is currently known.

The best known lower bound on the approximate degree of and-or trees of depthtwg'is),
up to logarithmic factors inV, by a folklore reduction from the element distinctness problem on
VN integers[[AS04].
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9 Concluding remarks

We have been focusing on two methods for proving lower bounds on quantum query complexity:
the adversary method and the polynomial method. Adversary lower bounds are in general easy to
compute, but are limited by the certificate complexity. Known lower bounds are constructed by
identifying hard input pairs, finding weights accordingly, and computing either the spectral norm
of some matrices, or applying the weighted method. Polynomial lower bounds may yield stronger
bounds, but are hard to prove. Known lower bounds by the polynomial methods are constructed by
identifying symmetries within the problem, reducing the number of input variables to one or two,
and proving a lower bound on the degree of the reduced polynomial.

Barnum, Saks, and Szegedy givelin [BSS03] a third lower bound method that exactly charac-
terizes the quantum query complexity, but this strength turns out also to be its weakness: it is very
hard to apply and every known lower bound obtained by the method can also be shown by one of
the other two methods. In a very recent work, Ambainis [AmO05a] extends the adversary method
and uses it to reprove a strong direct product theorem by Klaéanlek, and de Wolf [RW04]
obtained by techniques that include the polynomial method. Klauck et 8\WB4] show that
their strong direct product theorem implies good quantum time-space tradeoffs, including a quan-
tum lower bound off™? - S = Q(N?) for sorting. A significant body of work have been conducted
on lower bounds on communication complexity. We refer to de Wolf’'s excellent survey [Wol02]
as a possible starting point.

There is a range of problems for which we do not currently know tight quantum query bounds.
One important example is binary and-or trees of logarithmic depth. A binary and-or trée-od”
variables is obtained by iterating the functidiiz,, x2, z3,4) = (21 A x2) V (23 A x4) In total
n times. The classical query complexity for probabilistic algorithm® (&°-75%) [SW86, Sni8b,
San95]. No better bounded-error quantum algorithm is known. The best known lower bound on
the quantum query complexity §%+/N) by embedding the parity function oA bits and noting
that the parity function has linear query complexity, which can be shown by either method.

Magniez, Santha, and Szegedy give in [MSS05] a quantum algorithm for determining if a graph
on N vertices contains a triangle which us@éN'-3) queries to the adjacency matrix. The best
known lower bound i§2( V) by the unweighted adversary method, and has been conjectured not to
be tight [Amb03]. The problem of triangle-identification is an example of a graph property, which
is a set of graphs closed under isomorphism. Sun, Yao, and Zhang [SYZ04] show that there exists
a non-trivial graph property of quantum query complexityy/N), up to logarithmic factors imv.

Gasarch, in a survey on private information retrieval, published in this Computational Com-
plexity Column in the Bulletin[[Gas04], writes: “A field is interesting if it answers a fundamental
guestion, or connects to other fields that are interesting, or uses techniques of interest.” It is our
hope that the reader will find that the surveyed area of quantum lower bounds fulfills each of those
three criteria.
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