
Negative weights make adversaries stronger

Peter Høyer∗

hoyer@cpsc.ucalgary.ca
Troy Lee†

troyjlee@gmail.com

Robert Špalek‡

spalek@eecs.berkeley.edu

Abstract
The quantum adversary method is one of the most successful techniques for proving lower

bounds on quantum query complexity. It gives optimal lower bounds for many problems, has
application to classical complexity in formula size lower bounds, and is versatile with equiva-
lent formulations in terms of weight schemes, eigenvalues, and Kolmogorov complexity. All
these formulations rely on the principle that if an algorithm successfully computes a function
then, in particular, it is able to distinguish between inputs which map to different values.

We present a stronger version of the adversary method which goes beyond this principle to
make explicit use of the stronger condition that the algorithm actually computes the function.
This new method, which we call ADV±, has all the advantages of the old: it is a lower bound
on bounded-error quantum query complexity, its square is a lower bound on formula size, and
it behaves well with respect to function composition. Moreover ADV± is always at least as
large as the adversary method ADV, and we show an example of a monotone function for
which ADV±(f) = Ω(ADV(f)1.098). We also give examples showing that ADV± does not
face limitations of ADV like the certificate complexity barrier and the property testing barrier.

1 Introduction
Quantum query complexity is a popular model for study as it seems to capture much of the power
of quantum computing—in particular, the search algorithm of Grover [Gro96] and the period find-
ing routine of Shor’s factoring algorithm [Sho97] can be formulated in this model—yet is still

∗Department of Computer Science, University of Calgary. Supported by Canada’s Natural Sciences and Engi-
neering Research Council (NSERC), the Canadian Institute for Advanced Research (CIAR), and The Mathematics of
Information Technology and Complex Systems (MITACS).

†LRI, Université Paris-Sud. Supported by a Rubicon grant from the Netherlands Organisation for Scientific Re-
search (NWO) and by the European Commission under the Integrated Project Qubit Applications (QAP) funded by
the IST directorate as Contract Number 015848. Part of this work conducted while at CWI, Amsterdam, and while
visiting the University of Calgary.

‡University of California, Berkeley. Supported by NSF Grant CCF-0524837 and ARO Grant DAAD 19-03-1-0082.
Work conducted in part while at CWI and the University of Amsterdam, supported by the European Commission under
project QAP, IST-015848, and while visiting the University of Calgary.

1

simple enough that we can often hope to prove tight lower bounds. In this model, complexity is
measured by the number of queries made to the input, and other operations are for free. For most
known quantum algorithms, the time complexity is bigger than the query complexity by only a
polylogarithmic factor.

The two most successful techniques for proving lower bounds on quantum query complexity
are the polynomial method [BBC+01] and the quantum adversary method [Amb02]. The adversary
method gives tight lower bounds for many problems and is quite versatile with formulations in
terms of weight schemes [Amb06, Zha05], eigenvalues [BSS03], and Kolmogorov complexity
[LM04]. Špalek and Szegedy [ŠS06] show that in fact all these formulations are equivalent. All
these versions of the adversary method rest on the principle that, if an algorithm is able to compute
a function f , then in particular it is able to distinguish inputs which map to different values. The
method actually bounds the difficulty of this distinguishing task.

We present a stronger version of the adversary method which goes beyond this principle to
essentially make use of the stronger condition that the algorithm actually computes the function—
namely, we make use of the existence of a measurement which gives the correct answer with high
probability from the final state of the algorithm. This new method, which we call ADV±, is always
at least as large as the adversary bound ADV, and we show an example of a monotone function
f for which ADV±(f) = Ω(ADV(f)1.098). Moreover, ADV± possesses all the nice properties
of the old adversary method: it is a lower bound on bounded-error quantum query complexity, its
square is a lower bound on formula size, and it behaves well with respect to function composition.
Using this last property, and the fact that our bound is larger than the adversary bound for the base
function of Ambainis, we improve the best known separation between quantum query complexity
and polynomial degree giving an f such that Qε(f) = Ω(deg(f)1.329).

The limitations of the adversary method are fairly well understood. One limitation is the “cer-
tificate complexity barrier.” This says that ADV(f) ≤

√
C0(f)C1(f) for a total function f with

Boolean output [Zha05, ŠS06], where C0(f) is the certificate complexity of the inputs x which
evaluate to zero on f , and C1(f) is the certificate complexity of inputs which evaluate to one.
This means that for problems like determining if a graph contains a triangle, or element distinct-
ness, where one of the certificate complexities is constant, the best bound which can be proven by
the adversary method is Ω(

√
N). For triangle finding, the best known upper bound is O(N13/20)

[MSS05], and for element distinctness the polynomial method is able to prove a tight lower bound
of Ω(N2/3) [AS04]. We show that our new method can break the certificate complexity barrier—
we give an example where ADV±(f) = Ω((C0(f)C1(f))0.549).

Another limitation of the adversary method is the “property testing barrier.” For a partial
Boolean function f where all zero-inputs have relative Hamming distance at least ε from all one-
inputs, it holds that ADV(f) ≤ 1/ε. A prime example where this limitation applies is the collision
problem of determining if a function is 2-to-1 or 1-to-1. Here all zero-inputs have relative Ham-
ming distance at least 1/2 from all one inputs and so the best bound provable by the adversary
method is 2, while the polynomial method is able to prove a tight lower bound of Ω(n1/3) [AS04].
We show the property testing barrier does not apply in this strict sense to ADV±, although we do
not know of an asymptotic separation for constant ε.

Breaking these barriers opens the possibility that ADV± can prove tight lower bounds for

2

problems like element distinctness and the collision problem, and improve the best known Ω(
√
N)

lower bound for triangle finding.

1.1 Comparison with previous methods
We now take a closer look at our new method and how it compares with previous adversary meth-
ods. We use the setting of the spectral formulation of the adversary method [BSS03].

Let f : S → ΣO be a function, with S ⊆ Σn
I the set of inputs. We assume ΣI =

{0, 1, . . . , |ΣI | − 1}, and call this the input alphabet and ΣO the output alphabet. Let Γ be a
Hermitian matrix with rows and columns labeled by elements of S. We say that Γ is an adversary
matrix for f if Γ[x, y] = 0 whenever f(x) = f(y). We let ‖M‖ denote the spectral norm of the
matrix M , and for a real matrix M use M ≥ 0 to say the entries of M are nonnegative. We now
give the spectral formulation of the adversary method:

Definition 1
ADV(f) = max

Γ≥0
Γ6=0

‖Γ‖
maxi ‖Γ ◦Di‖

.

Here the maximum is taken over nonnegative symmetric adversary matrices Γ, and Di is a zero-
one matrix where Di[x, y] = 1 if xi 6= yi and Di[x, y] = 0 otherwise. Γ◦Di denotes the entry-wise
(Hadamard) product of Γ and Di.

Let Qε(f) be the two-sided ε-bounded error quantum query complexity of f . Barnum, Saks, and
Szegedy show that the spectral version of the adversary method is a lower bound on Qε(f):

Theorem 1 ([BSS03]) For any function f , Qε(f) ≥ 1−2
√

ε(1−ε)

2
ADV(f).

Note that the definition of ADV(f) restricts the maximization to adversary matrices whose
entries are all nonnegative and real. Our new bound removes these restrictions:

Definition 2
ADV±(f) = max

Γ6=0

‖Γ‖
maxi ‖Γ ◦Di‖

.

It is clear that ADV±(f) ≥ ADV(f) for any function f as the maximization is taken over a larger
set. Our main theorem, presented in Section 3, states that ADV±(f) is a lower bound on Qε(f).

Theorem 2 For any function f , Qε(f) ≥ 1−2
√

ε(1−ε)−2ε

2
ADV±(f). If f has Boolean output, i.e. if

|ΣO| = 2, then Qε(f) ≥ 1−2
√

ε(1−ε)

2
ADV±(f).

While it is clear that ADV± is always least as large as ADV, it might at first seem surprising
that ADV± can achieve bounds super-linear in ADV. An intuition for why negative weights help
is that it is good to give negative weight to entries with large Hamming distance, entries which
are easier to distinguish by queries. Consider an entry (x, y) where x and y have large Hamming
distance. This entry appears in several Γ◦Di matrices but only appears in the Γ matrix once. Thus

3

by giving this entry negative weight we can simultaneously decrease ‖Γ◦Di‖ for several i’s, while
doing relatively little damage to the large Γ matrix.

While in form the ADV± bound is very similar to the ADV bound, our proof of Theorem 2
departs from the standard adversary principle. The standard adversary principle is based on the
fact that an algorithm A which is able to compute a function f is, in particular, able to distinguish
inputs x, y such that f(x) 6= f(y). Distinguishing quantum states is closely related to the inner
product of the states as given by the following quantitative principle:

Theorem 3 Suppose we are given one of two known states |ψx〉, |ψy〉. Let 0 ≤ ε ≤ 1/2. There is a
measurement which correctly identifies which of the two states we are given with error probability
ε if and only if 〈ψx|ψy〉 ≤ 2

√
ε(1− ε).

Let |ψt
x〉 be the state of an algorithm on input x after t queries. The adversary method works by

defining a “progress function” based on the inner product 〈ψt
x|ψt

y〉. Initially, before the algorithm
has made any queries, all inputs look the same and thus 〈ψ0

x|ψ0
y〉 = 1 for all x, y, and thus the

progress function is large. On the other hand, if a T -query algorithm computes a function f within
error ε, then by Theorem 3 for x, y with f(x) 6= f(y) we must have 〈ψT

x |ψT
y 〉 ≤ 2

√
ε(1− ε), and

thus the final progress function is small. In [BSS03] this is termed the Ambainis output condition.
The adversary method then works by showing an upper bound on how much the progress function
can change by a single query.

Our proof follows the same basic reasoning, but the Ambainis output condition no longer seems
to suffice to show that the final progress function is small. We use in an essential way the stronger
output condition that if a T -query algorithm A computes a function f , then there exists orthogonal
projectors {Πb}b∈ΣO

which sum to the identity such that ‖Πb|ψT
x 〉‖2 ≥ 1− ε when f(x) = b.

2 Preliminaries
We assume standard background from quantum computing and Boolean function complexity, see
[NC00] and [BW02] for nice references. In this section, we restrict ourselves to more specific
background.

2.1 Linear algebra
The background we need about matrices can be found in, for example, [Bha97]. We use standard
notations such as | · | for absolute value, A for the entrywise complex conjugate of a matrix A, A∗

for the conjugate transpose of A, and ‖x‖ =
√
x∗x for the `2-norm of a vector x. For two matrices

A,B of the same size, the Hadamard product or entrywise product is the matrix (A ◦ B)[x, y] =
A[x, y]B[x, y].

For an indexed set of vectors {|ψx〉 : x ∈ S}, we associate an |S|-by-|S| Gram matrix M =
Gram(|ψx〉 : s ∈ S) where

M [x, y] = 〈ψx|ψy〉.

It is easy to see that M is Hermitian and positive semidefinite.

4

We will make use of several matrix norms. For a matrix A let ‖A‖ be the spectral norm of A

‖A‖ = max
x,y

|x∗Ay|
‖x‖‖y‖

.

For two matrices A,B let 〈A,B〉 be the Hilbert-Schmidt inner product. This is the inner product
of A,B viewed as long vectors,

〈A,B〉 = Tr(A∗B) =
∑
i,j

A[i, j]B[i, j].

The Frobenius norm, denoted ‖A‖F , is the norm associated with this inner product,

‖A‖F =
√
〈A,A〉 =

√∑
i,j

|A[i, j]|2.

Finally, we will use the trace norm, denoted ‖A‖tr, where

‖A‖tr = max
B

|〈A,B〉|
‖B‖

,

and B runs over all complex matrices of the same size as A. The following theorem is an easy
consequence of this definition.

Theorem 4 Let A,B be n-by-n matrices. Then |〈A,B〉| ≤ ‖A‖ · ‖B‖tr.

In our proof that ADV± is a lower bound on quantum query complexity we will need one more
tool for bounding norms:

Theorem 5 (HÖLDER’S INEQUALITY, [BHA97] COROLLARY IV.2.6) Let A,B be matrices
such that AB∗ is defined. Then

‖AB∗‖tr ≤ ‖A‖F‖B‖F .

A partial trace is a linear mapping TrA : L(A ⊗ B) → L(A) mapping linear operators (e.g.,
density matrices) over the joint system AB to linear operators over A. This mapping is uniquely
determined by the requirement

TrA(ρA ⊗ ρB) = ρA · Tr(ρB).

and linearity. For example, since TrA(|i〉〈j|A ⊗ |ψi〉〈ψj|B) = |i〉〈j|A · 〈ψj|ψi〉, by linearity

TrA

(∑
i,j

|i〉〈j|A ⊗ |ψi〉〈ψj|B
)

=
∑
i,j

|i〉〈j|A · 〈ψj|ψi〉.

5

2.2 Quantum query complexity
As with the classical model of decision trees, in the quantum query model we wish to compute
some function f and we access the input through queries. The complexity of f is the number of
queries needed to compute f on a worst-case input x. Unlike the classical case, however, we can
now make queries in superposition.

The memory of a quantum query algorithm is described by three registers: the input register,
HI , which holds the input x ∈ S ⊆ Σn

I , the query register,HQ, which holds two integers 1 ≤ i ≤ n
and 0 ≤ p < |ΣI |, and the working memory, HW , which holds an arbitrary value. The query
register and working memory together form the accessible memory, denoted HA.

The accessible memory of a quantum query algorithm A is initialized to a fixed state. For
convenience, on input x we assume the state of the algorithm is |x〉I |1, 0〉Q|0〉W where all qubits in
the working memory are initialized to 0. The state of the algorithm then evolves through queries,
which depend on the input register, and accessible memory operators which do not. We now
describe these operations.

We will model a query by a unitary operator where the oracle answer is given in the phase.
This operator O is defined by its action on the basis state |x〉|i, p〉 as

O|x〉|i, p〉 = e
2πi
|ΣI |

pxi|x〉|i, p〉,

where 1 ≤ i ≤ n is the index of the queried input variable and 0 ≤ p < |ΣI | is the phase multiplier.
This operation can be extended to act on the whole space by interpreting it as O × IW , where IW
is the identity operation on the workspace HW . In the sequel, we will refer to the action of O both
on HI ⊗HQ and the full space HI ⊗HQ ⊗HW , and let context dictate which we mean.

For a function with ΣI = {0, 1}, the query operator simply becomes

O|x〉|i, p〉 = (−1)pxi|x〉|i, p〉,

An alternative, perhaps more common, way to model a quantum query is through an operator
O′ : |x〉|i, p〉 → |x〉|i, (xi + p) mod |ΣI |〉 that encodes the result in a register. These two query
models are equivalent, as can be seen by conjugating with the quantum Fourier transform on |p〉.
For our results, it is more convenient to work with the phase oracle.

An accessible memory operator is an arbitrary unitary operation U on the accessible memory
HA. This operation is extended to act on the whole space by interpreting it as II ⊗ U, where II
is the identity operation on the input space HI . Thus the state of the algorithm on input x after t
queries can be written

|φt
x〉 = UtOUt−1 · · ·U1OU0|x〉|1, 0〉|0〉.

As the input register is left unchanged by the algorithm, we can decompose |φt
x〉 as |φt

x〉 = |x〉|ψt
x〉,

where |ψt
x〉 is the state of the accessible memory after t queries.

The output of a T -query algorithmA on input x is chosen according to a probability distribution
which depends on the final state of the accessible memory |ψT

x 〉. Namely, the probability that the
algorithm outputs some b ∈ ΣO on input x is ‖Πb|ψT

x 〉‖2, for a fixed set of projectors {Πb} which
are orthogonal and complete, that is, sum to the identity. The ε-error quantum query complexity
of a function f , denoted Qε(f), is the minimum number of queries made by an algorithm which
outputs f(x) with probability at least 1− ε for every x.

6

3 Bounded-error quantum query complexity
We now show that ADV±(f) is a lower bound on the bounded-error quantum query complexity of
f .
Proof of Theorem 2 Let f : S → ΣO, where S ⊆ Σn

I , be a function and let Γ be a |S|-by-|S|
Hermitian matrix such that Γ[x, y] = 0 if f(x) = f(y). As Γ is Hermitian, its eigenvalues will
be equal to its singular values, up to sign. Notice that Γ and −Γ have the same adversary value,
thus without loss of generality we will assume Γ has largest eigenvalue equal to its spectral norm.
Therefore, let δ be an eigenvector of Γ corresponding to the eigenvalue ‖Γ‖.

We imagine that we initially prepare the state |Ψ0〉 =
∑

x δx|x〉|1, 0〉|0〉 and run the algorithm
on this superposition. Thus after t queries we have the state

|Ψt〉 = UtOUt−1 . . .U1OU0

∑
x

δx|x〉|1, 0〉|0〉 =
∑

x

δx|x〉|ψt
x〉,

where |ψt
x〉 is the state of the accesible memory of the algorithm on input x after t queries. We

define ρ(t) = TrI |Ψt〉〈Ψt| to be the reduced density matrix of the state |Ψt〉 on the input register,
that is we trace out the accessible memory. In other words, ρ(t) = Gram(δx|ψt

x〉 : x ∈ S).
We define a progress function W t based on ρ(t) as W t = 〈Γ, ρ(t)〉. Although phrased differ-

ently, this is in fact the same progress function used by Høyer and Špalek [HŠ05] in their proof
that the regular adversary method is a lower bound on bounded-error quantum query complexity.
Note that W t is real, as both Γ and ρ(t) are Hermitian. Our proof rests on three claims:

1. At the beginning of the algorithm W 0 = ‖Γ‖.

2. With any one query, the progress measure changes by at mostW t−W t+1 ≤ 2 maxi ‖Γ◦Di‖.

3. At the end of the algorithm W T ≤ (2
√
ε(1− ε) + 2ε)‖Γ‖.

The theorem clearly follows from these three claims. The main novelty of the proof lies in the
third step. This is where we depart from the standard adversary principle in using a stronger output
condition implied by a successful algorithm.

Item 1 As the state of the accessible memory |ψ0
x〉 is independent of the oracle, 〈ψ0

x|ψ0
y〉 = 1 for

every x, y, and so ρ(0) = δδ∗. Thus W 0 = 〈Γ, δδ∗〉 = Tr(δ∗Γ∗δ) = ‖Γ‖.

Item 2 After the t+ 1st query, the quantum state is |Ψt+1〉 = Ut+1O|Ψt〉 and thus

ρ(t+1) = TrI(Ut+1O|Ψt〉〈Ψt|O∗U∗
t+1) = TrI(O|Ψt〉〈Ψt|O∗),

because the unitary operator Ut+1 acts as identity on the input register. The oracle operator O
only acts on the input register and the query register, hence we can trace out the working memory.

7

Denote ρ = TrI,Q|Ψt〉〈Ψt| and ρ′ = OρO∗. Then ρ(t) = TrI(ρ) and ρ(t+1) = TrI(ρ
′). We re-

express the progress function in terms of ρ, ρ′. Define two block-diagonal matrices on HI ⊗HQ:

G = Γ⊗ In ⊗ I|ΣI | =
⊕n

i=1

⊕|ΣI |−1

p=0
Γ

D =
⊕n

i=1

⊕|ΣI |−1

p=0
Di,

where Di is the zero-one symmetric matrix from Definition 1. Then W t = 〈Γ, ρ(t)〉 = 〈G, ρ〉 and
W t+1 = 〈Γ, ρ(t+1)〉 = 〈G, ρ′〉. We upper-bound the change of the progress function as follows:

W t −W t+1 = 〈G, ρ〉 − 〈G, ρ′〉
= 〈G, ρ− OρO∗〉 ρ′ = OρO∗

= 〈G, (ρ− OρO∗) ◦D〉 ρ− OρO∗ = (ρ− OρO∗) ◦D
= 〈G ◦D, ρ− OρO∗〉 D is real
≤ ‖G ◦D‖ · ‖ρ− OρO∗‖tr Theorem 4
≤ ‖G ◦D‖ · (‖ρ‖tr + ‖OρO∗‖tr) triangle inequality
= 2‖G ◦D‖ · ‖ρ‖tr O is unitary
= 2‖G ◦D‖ ‖ρ‖tr = 1

= 2 max
i
‖Γ ◦Di‖.

The third equality holds because O is diagonal in the computational basis and thus, in the block
corresponding to the value |i, p〉 of the query register, (ρ−OρO∗)[x, y] = (1− e

2πi
|ΣI |

p(xi−yi))ρ[x, y],
which is 0 if xi = yi. For the remaining equalities note that conjugating with a unitary operator
does not change the trace norm and that density matrices have trace norm 1.

Item 3 Now consider the algorithm at the final time T . We want to upper bound 〈Γ, ρ(T)〉. The
first thing to notice is that as Γ[x, y] = 0 when f(x) = f(y), we have Γ = Γ ◦ F , where F is a
zero-one matrix such that F [x, y] = 1 if f(x) 6= f(y) and F [x, y] = 0 otherwise.

As F is a real matrix, it is clear from the definition of the Hilbert-Schmidt inner product that
〈Γ◦F, ρ(T)〉 = 〈Γ, F ◦ρ(T)〉. Now applying Theorem 4 we have 〈Γ, F ◦ρ(T)〉 ≤ ‖Γ‖ · ‖ρ(T) ◦F‖tr.
It remains to upper bound ‖ρ(T) ◦ F‖tr, which we do using Theorem 5. To be able to apply
this theorem, we would like to find matrices X, Y such that XY ∗ = ρ(T) ◦ F , and the product
‖X‖F‖Y ‖F is small.

Let {Πz}z∈ΣO
be a complete set of orthogonal projectors that determine the output probabili-

ties, that is the probability that the algorithm outputs z on input x is ‖Πz|ψT
x 〉‖2. We will use these

projectors to help decompose ρ(T) in such a way as to apply Theorem 5. The correctness of the
algorithm tells us that ‖Πf(x)|ψT

x 〉‖2 ≥ 1 − ε. For an i ∈ {0, 1, . . . , |ΣO| − 1}, let Xi denote the
matrix with |S| rows {Πf(x)+iδx|ψT

x 〉}x∈S , where f(x) + i is computed modulo |ΣO|. Intuitively,
X0 is the matrix where we project onto the correct answers, and Xi for i ≥ 1 where we project
onto some incorrect answer. The matrices Xi for i ≥ 1 will therefore have small Frobenius norm.

8

We claim ρ(T) ◦ F =
∑

i6=j XiX
∗
j :(∑

i6=j

XiX
∗
j

)
[x, y] =

∑
i6=j

δxδ
∗
y · 〈ψT

y |Πf(y)+jΠf(x)+i|ψT
x 〉

=

{
0 f(x) = f(y)

δxδ
∗
y〈ψT

y |ψT
x 〉 f(x) 6= f(y)

= (ρ(T) ◦ F)[x, y],

because Πz1Πz2 = 0 for z1 6= z2, Π2
z = Πz, and

∑
z Πz = I . Then

‖ρ(T) ◦ F‖tr =
∥∥∥∑

i6=j

XiX
∗
j

∥∥∥
tr

≤
∥∥∥∑

i≥1

(X0X
∗
i +XiX

∗
0)
∥∥∥

tr
+
∥∥∥∑

i6=j
i,j≥1

XiX
∗
j

∥∥∥
tr

triangle inequality

= ‖X0(X
⊥
0)∗ +X⊥

0 X
∗
0‖tr +

∥∥∥∑
i,j≥1

XiX
∗
j −

∑
i≥1

XiX
∗
i

∥∥∥
tr︸ ︷︷ ︸

only present for |ΣO| > 2

define X⊥
0 =

∑
i≥1

Xi

≤ 2‖X0(X
⊥
0)∗‖tr + ‖X⊥

0 (X⊥
0)∗‖tr +

∥∥∥∑
i≥1

XiX
∗
i

∥∥∥
tr

triangle inequality

≤ 2‖X0‖F‖X⊥
0 ‖F + ‖X⊥

0 ‖2
F +

∥∥∥∑
i≥1

XiX
∗
i

∥∥∥
tr
. Theorem 5

We now bound the term ‖
∑

i≥1XiX
∗
i ‖tr. As each XiX

∗
i is positive semidefinite, the trace norm

of this sum is equal to its trace. Notice that Tr(XiX
∗
j) = 0 if i 6= j, because (XiX

∗
j)[x, x] =

|δx|2〈ψT
x |Πf(x)+iΠf(x)+j|ψT

x 〉 = 0. Thus∥∥∥∑
i≥1

XiX
∗
i

∥∥∥
tr

= Tr
(∑

i≥1

XiX
∗
i

)
= Tr(X⊥

0 (X⊥
0)∗) = ‖X⊥

0 ‖2
F .

Therefore ‖ρ(T) ◦F‖tr ≤ 2ab+2b2, where a = ‖X0‖F and b = ‖X⊥
0 ‖F . We know that a, b satisfy

the following constraints:

a2 + b2 = ‖X0‖2
F + ‖X⊥

0 ‖2
F =

∑
x∈S

|δx|2(‖Πf(x)|ψT
x 〉‖2 + ‖(I − Πf(x))|ψT

x 〉‖2) = ‖δ‖2 = 1

and
a2 = ‖X0‖2

F =
∑
x∈S

|δx|2‖Πf(x)|ψT
x 〉‖2 ≥ (1− ε)

∑
x∈S

|δx|2 = 1− ε.

Assuming ε ≤ 1
2
, the maximum of the expression 2ab+2b2 under these constraints is the boundary

case a =
√

1− ε. Hence ‖ρ(T) ◦ F‖tr ≤ 2
√
ε(1− ε) + 2ε. As we note above, the bound can be

strengthened to 2
√
ε(1− ε) if the function has Boolean output, that is |ΣO| = 2. 2

9

4 Formula size
Laplante, Lee, and Szegedy [LLS06] show that the adversary method can also be used to prove
classical lower bounds—they show that ADV(f)2 is a lower bound on the formula size of f .
A formula is circuit with AND, OR, and NOT gates with the restriction that every gate has out-
degree exactly one. The size of a formula is the number of leaves and the size of a smallest formula
computing f is denoted L(f). We show that ADV±(f)2 remains a lower bound on the formula
size of f .

Before we prove this statement, note that it implies a limitation of ADV±(f)—it is upper
bounded by the square root of the formula size of f . Thus for the binary AND-OR tree—or read-
once formulae in general— the largest lower bounds provable by ADV± are

√
n. Laplante, Lee,

and Szegedy conjecture that this is not a limitation at all— that is, they conjecture that bounded-
error quantum query complexity squared is in general a lower bound on quantum query complexity.
A major step has recently been taken toward proving this conjecture by [FGG07, CRŠZ07], who
show that Q2(f) ≤ L(f)1/2+ε for any ε > 0.

We will work in the setting of Karchmer and Wigderson, who characterize formula size in
terms of a communication complexity game [KW88]. Since this seminal work, nearly all formula
size lower bounds have been formulated in the language of communication complexity.

Let f : {0, 1}n → {0, 1} be a Boolean function. Following Karchmer and Wigderson, we
associate with f a relation Rf ⊆ {0, 1}n × {0, 1}n × [n] where

Rf = {(x, y, z) : f(x) = 0, f(y) = 1, xz 6= yz}.

For a relation R, let CP (R) denote the number of leaves in a smallest communication protocol for
R, and let L(f) be the number of leaves in a smallest formula for f . Karchmer and Wigderson
show the following:

Theorem 6 L(f) = CP (R).

We say that a set S ⊆ X × Y is monochromatic with respect to R if there exists z ∈ Z
such that (x, y, z) ∈ R for all (x, y) ∈ S. It is well known, see for example [KN97], that a
successful communication protocol for a relation R ⊆ X × Y × Z partitions X × Y into disjoint
combinatorial rectangles which are monochromatic with respect to R. Let CD(R) be the size of
a smallest decomposition of X × Y into disjoint rectangles monochromatic with respect to R.
Clearly, CD(R) ≤ CP (R). We are actualy able to show the stronger statement that the square of
ADV±(f) is a lower bound on the size of a smallest rectangle decomposition of Rf .

Theorem 7 L(f) ≥ CD(Rf) ≥ (ADV±(f))2.

Proof. Laplante, Lee, and Szegedy [LLS06] show that two conditions are sufficient for a measure
to lower bound formula size. The first is rectangle subadditivity—they show that the spectral norm
squared is subadditive over rectangles, and this result holds for an arbitrary, possibly negative,
matrix.

10

Lemma 8 (Laplante, Lee, Szegedy) Let A be an arbitrary |X|-by-|Y | matrix and R a rectangle
partition of |X| × |Y |. Then ‖A‖2 ≤

∑
R∈R ‖AR‖2.

The second property is monotonicity, and here we need to modify their argument to handle
negative entries. They use the property that if A,B are nonnegative matrices, and if A ≤ B
entrywise, then ‖A‖ ≤ ‖B‖. In our application, however, we actually know more: if R is a
rectangle monochromatic with respect to a color i, then AR is a submatrix of Ai. And, for arbitrary
matrices A,B, if A is a submatrix of B then ‖A‖ ≤ ‖B‖.

This allows us to complete the proof: let R be a monochromatic partition of Rf with |R| =
CD(Rf). Then for any matrix A

‖A‖2 ≤
∑
R∈R

‖AR‖2 ≤ CD(Rf) ·max
R

‖AR‖2

≤ CD(Rf) ·max
i
‖Ai‖2.

And so we conclude

L(f) ≥ CD(Rf) ≥ max
A6=0

‖A‖2

maxi ‖Ai‖2
.

2

5 Automorphism Principle
In practice, many of the functions we are interested in possess a high degree of symmetry. We now
show how to take advantage of this symmetry to simplify the computation of the adversary bound.
We will state this principle in a general way for possibly non-Boolean functions. Thus let Σ, T
be two finite sets, and let f : Σn → T be a function. We will define a group action of Sn × Sn

Σ

on our set of inputs Σn. A natural action of an element τ ∈ Sn on input x ∈ Σn is to permute
the indices of x. Namely, we define τ · x = y to be the string where xi = yτ(i). An element
σ ∈ Sn

Σ = (σ1, . . . , σn) similarly has a natural action on an input x ∈ Σn. Namely, we define
σ · x = y to be the string where yi = σi(xi). In general we can combine these actions and for
(τ, σ) ∈ Sn × Sn

Σ define (τ, σ) · x = τ · (σ · x). From now on, we will use the more convenient
functional notation (τ, σ)(x) = τ · (σ · x).

Definition 3 Let f : Σn → T be a function, and π ∈ Sn × Sn
Σ. We say that π is an automorphism

of f if f(x) 6= f(y) ⇒ f(π(x)) 6= f(π(y)) for all x, y ∈ Σn.

Note that the automorphisms of a function form a group.
Intuitively, when choosing a weight matrix Γ, it seems that pairs (x, y) and (π(x), π(y)) “look

the same” when π is an automorphism of f and therefore should be given the same weight. The
automorphism principle makes this intuition rigorous. This principle can vastly simplify the com-
putation of the adversary bound, helping both in choosing good weight matrices, and in showing
upper bounds on the adversary value.

11

Definition 4 Let G be a group of automorphisms for a function f . We say that G is f -transitive if
for every x, y such that f(x) = f(y), there is π ∈ G such that π(x) = y.

Theorem 9 (Automorphism Principle) Let G be a group of automorphisms of f . There is an
optimal adversary matrix Γ for which Γ[x, y] = Γ[π(x), π(y)] for all π ∈ G and x, y. Furthermore,
if G is f -transitive then Γ has a principal eigenvector β for which β[x] = β[y] whenever f(x) =
f(y).

Proof. Let Γ be an optimal adversary matrix for f . By normalizing as necessary, we assume that
ADV±(f) = ‖Γ‖—that is, maxi ‖Γ ◦Di‖ = 1. For an automorphism π, we let Γπ be the matrix
obtained from Γ by permuting the rows and columns by π, that is Γπ[x, y] = Γ[π(x), π(y)]. Letting
P be the permutation matrix representing π, where P [x, y] = 1 if x = π(y) and 0 otherwise, we
see that P T ΓP = Γπ. As P is unitary, this means that ‖Γ‖ = ‖Γπ‖. Notice that if π sends the
index i to j, then if xi 6= yi it follows π(x)j 6= π(y)j . Thus P T (Γ ◦ Di)P = Γπ ◦ Dj , and these
matrices also have the same spectral norm. It follows that Γπ achieves the same adversary bound
as Γ, and so is an optimal adversary matrix.

Let δ be a principal eigenvector of Γ. We may assume without loss of generality that all entries
of δ are nonzero, as the rows and columns of Γ corresponding to zero entries of δ can be removed
without affecting the adversary bound. We now see how δ relates to a principal eigenvector of Γπ:
note that P T ΓP (P T δ) = P T ΓPP T δ = ‖Γ‖P T δ, thus P T δ will be a principal eigenvector of Γπ.
The vector P T δ has entries P T δ[x] = δ[π(x)]. For convenience we set δπ = P T δ.

To prove the automorphism principle, we will now “average” the matrices Γπ over π ∈ G in
the following way. We define a vector β as

β[x] =

√∑
π∈G

δ[π(x)]2

Notice that β has norm
√
|G|. Now form the matrix Γ′, where

Γ′[x, y] =

∑
π∈G Γ[π(x), π(y)]δ[π(x)]∗δ[π(y)]

β[x]∗β[y]
(1)

We claim that Γ′ is an optimal adversary matrix. The spectral norm of Γ′ is at least

‖Γ′‖ ≥ 1

|G|
β∗Γ′β =

1

|G|
∑
π∈G

‖Γπ‖ = ‖Γ‖.

We will now show that ‖Γ′ ◦ Di‖ ≤ 1 for all i ∈ [n]. This is equivalent to showing I ±
Γ′ ◦ Di � 0. As argued above, we have I ± Γπ ◦ Di � 0, for all π ∈ G. It follows that also
δπδ

∗
π ◦ (I ± Γπ ◦Di) � 0. Now adding these equations over π ∈ G we obtain(∑

π∈G

δπδ
∗
π

)
◦ I ±

(∑
π∈G

Γπ ◦ δπδ∗π

)
◦Di � 0.

12

We can further take the Hadamard product of this matrix with the rank one matrix A, where
A[x, y] = [1/β[x]∗β[y]], with the result remaining positive semidefinite. This gives

I ± (
∑
π∈G

Γπ ◦ δπδ∗π) ◦Di ◦ A = I ± Γ′ ◦Di � 0,

which concludes the proof that Γ′ is an optimal adversary matrix.
Note that this argument has actually shown that β is a principal eigenvector of Γ′. Let σ be an

arbitrary element of G. We have

β[σ(x)] =

√∑
π∈G

δ[πσ(x)]2 =

√ ∑
πσ−1:π∈G

δ[π(x)]2 = β[x].

If G is f -transitive, then for every x, y with f(x) = f(y), there is some σ such that σ(x) = y, and
thus β(x) = β(y). This proves the “furthermore” of the theorem.

Now we will show that Γ′[x, y] = Γ′[σ(x), σ(y)]. We have just argued that β[x] = β[σ(x)],
which gives that the denominators of these terms, defined by Equation (1), are equal. That the
numerators are equal follows similarly since summing over π ∈ G is the same as summing over
πσ−1 : π ∈ G as G is a group. 2

We single out another class of functions which arise frequently in practice and where the auto-
morphism principle can give the adversary bound a particularly simple form.

Definition 5 Let f : Σn → T be a function, and let G ⊆ Sn × Sn
Σ be its group of automorphisms.

We say that G is index transitive if for every i, j ∈ [n] there is an automorphism π = (σ, τ) ∈ G
with σ(i) = j.

Corollary 10 If f has a group of automorphisms which is index transitive, then there is an optimal
adversary matrix Γ such that ‖Γ ◦Di‖ = ‖Γ ◦Dj‖ for all i, j ∈ [n].

This corollary means that if a function has an automorphism group which is index transitive
we can do away with the maximization in the denominator of the adversary bound—all Γ ◦Di will
have the same spectral norm.
Proof. Let i, j ∈ [n], and let G be the group of automorphisms of f . By assumption, there is a
π = (σ, τ) ∈ G such that σ(i) = j. Applying Theorem 9, there is an optimal adversary matrix Γ
such that Γ[π(x), π(y)] = Γ[x, y], for all x, y. Notice that xi 6= yi if and only if π(x)j 6= π(y)j .
Letting P be the permutation matrix representing π, it then follows that P T (Γ ◦Di)P = Γ ◦Dj ,
and so Γ ◦Di and Γ ◦Dj have the same spectral norm. 2

6 Composition theorem
One nice property of the adversary method is that it behaves very well with respect to iterated
functions. In this section we will exclusively deal with Boolean functions. For a function f :

13

{0, 1}n → {0, 1} we define the dth iteration of f , fd : {0, 1}nd → {0, 1} recursively as f 1 = f
and fd = f ◦ (fd−1, . . . , fd−1) for d > 1. Ambainis [Amb06] shows that ADV(fd) ≥ ADV(f)d.
Thus by proving a good adversary bound on the base function f , one can easily obtain good lower
bounds on the iterates of f . In this way, Ambainis shows a super-linear gap between the bound
given by the polynomial degree of a function and the adversary method, thus separating polynomial
degree and quantum query complexity.

Laplante, Lee, and Szegedy [LLS06] show a matching upper bound for iterated functions,
namely that if ADV(f) ≤ a then ADV(fd) ≤ ad. Thus we conclude that the adversary method
possesses the following composition property.

Theorem 11 ([Amb06, LLS06]) For any function f : S → {0, 1}, with S ⊆ {0, 1}n and natural
number d > 0,

ADV(fd) = ADV(f)d.

Høyer, Lee, and Špalek [HLŠ05] generalize this composition theorem to functions that can be
written in the form

h = f ◦ (g1, . . . , gk). (2)

They give an exact expression for the adversary bound of h in terms of the adversary bounds of f
and gi for 1 ≤ i ≤ k. We will also look at the composition of the ADV± bound in this general
setting.

One may think of h as a two-level decision tree with the top node being labeled by a function
f : {0, 1}k → {0, 1}, and each of the k internal nodes at the bottom level being labeled by a
function gi : {0, 1}ni → {0, 1}. We do not require that the inputs to the inner functions gi have the
same length. An input x ∈ {0, 1}n to h is a bit string of length n =

∑
i ni, which we think of as

being comprised of k parts, x = (x1, x2, . . . , xk), where xi ∈ {0, 1}ni . We may evaluate h on input
x by first computing the k bits x̃i = gi(x

i), and then evaluating f on input x̃ = (x̃1, x̃2, . . . , x̃k).

Adversary bound with costs To show their composition theorem, [HLŠ05] consider as an inter-
mediate step a generalization of the adversary method allowing input bits to be given an arbitrary
positive cost. For any function f : {0, 1}n → {0, 1}, and any vector α ∈ Rn

+ of length n of positive
reals, they define a quantity ADVα(f) as follows:

ADVα(f) = max
Γ≥0
Γ6=0

min
i

{
αi

‖Γ‖
‖Γ ◦Di‖

}
.

We define the analogous quantity ADV±
α (f) by enlarging the maximization over all nonzero adver-

sary matrices. We will use the notation ADV(±) to simultaneously refer to both ADV and ADV±.
One may think of αi as expressing the cost of querying the ith input bit xi. For example, xi could
be equal to the parity of αi new input bits, or, alternatively, each query to xi could reveal only a
fraction of 1/αi bits of information about xi. When α = (a, . . . , a) and all costs are equal to a,
the new adversary bound ADV(±)

α (f) reduces to a ·ADV(±)(f), the product of a and the adversary
bound ADV(±)(f). In particular, when all costs a = 1 we have Qε(f) = Ω(ADV

(±)
~1

(f)). When
α is not the all-one vector, then ADV(±)

α (f) will not necessarily be a lower bound on the quantum

14

query complexity of f , but this quantity can still be very useful in computing the adversary bound
of composed functions. We will show the following composition theorem for the nonnegative
ADV bound:

Theorem 12 (Exact expression for adversary bound of composed functions) For any function
h : S → {0, 1} of the form h = f ◦ (g1, . . . , gk) with domain S ⊆ {0, 1}n, and any cost function
α ∈ Rn

+,
ADVα(h) = ADVβ(f),

where βi = ADVαi(gi), α = (α1, α2, . . . , αk), and β = (β1, . . . , βk).

We show that one direction of this theorem, the lower bound, also holds for the ADV± bound.
This is the direction which is useful for proving separations.

Theorem 13 Let h, f, gi be as in the previous theorem. Then

ADV±
α (h) ≥ ADV±

β (f),

where βi = ADV±
αi(gi), α = (α1, α2, . . . , αk), and β = (β1, . . . , βk).

As with the proof that ADV± is a lower bound on quantum query complexity, the presence of
negative entries again causes new difficulties in the proof of the composition theorem. In particular,
previous proofs of composition theorems do not seem to work for ADV± and we prove Theorem 13
in a quite different manner. Also, as the dual of the ADV± bound is more complicated than that of
the ADV bound, we have not yet been able to show the upper bound in this theorem.

The usefulness of such a theorem is that it allows one to divide and conquer—it reduces the
computation of the adversary bound for h into the disjoint subproblems of first computing the ad-
versary bound for each gi, and then, having determined βi = ADV(±)(gi), computing ADV

(±)
β (f),

the adversary bound for f with costs β.
One need not compute exactly the adversary bound for each gi to apply the theorem. Indeed, a

bound of the form a ≤ ADV(gi) ≤ b for all i already gives some information about h.

Corollary 14 If h = f ◦ (g1, . . . , gk) and a ≤ ADV(gi) ≤ b for all i, then a · ADV(f) ≤
ADV(h) ≤ b · ADV(f).

One limitation of our theorem is that we require the sub-functions gi to act on disjoint subsets of
the input bits. Thus one cannot use this theorem to compute the adversary bound of any function by,
say, proceeding inductively on the structure of a {∧,∨,¬}-formula for the function. One general
situation where the theorem can be applied, however, is to read-once functions, as by definition
these functions are described by a formula over {∧,∨,¬} where each variable appears only once.

To demonstrate how Theorem 12 can be applied, we give a simple proof of the Ω(
√
n) lower

bound due to Barnum and Saks [BS04] on the bounded-error quantum query complexity of read-
once functions.

Corollary 15 (Barnum-Saks) Let h be a read-once Boolean function with n variables. Then
Qε(h) = Ω(

√
n).

15

Proof. We prove by induction on the number of variables n that ADV(f) ≥
√
n. If n = 1 then the

formula is either xi or ¬xi and taking Γ = 1 shows the adversary bound is at least 1.
Now assume the induction hypothesis holds for read-once formulas on n variables, and let h

be given by a read-once formula with n+ 1 variables. As usual, we can push any NOT gates down
to the leaves, and assume that the root gate in the formula for h is labeled either by an AND gate
or an OR gate. Assume it is AND—the other case follows similarly. In this case, h can be written
as h = g1 ∧ g2 where g1 is a read-once function on n1 ≤ n bits and g2 is a read-once function on
n2 ≤ n bits, where n1 + n2 = n + 1. We want to calculate ADV~1(h). Applying Theorem 12,
we proceed to first calculate β1 = ADV(g1) and β2 = ADV(g2). By the induction hypothesis, we
know β1 ≥

√
n1 and β2 ≥

√
n2. We now proceed to calculate ADV~1(h) = ADV(β1,β2)(AND).

We set up our AND adversary matrix as follows:

00 01 10 11
00 0 0 0 0
01 0 0 0 β1

10 0 0 0 β2

11 0 β1 β2 0

This matrix has spectral norm
√
β2

1 + β2
2 , and ‖Γ ◦D1‖ = β1, and ‖Γ ◦D2‖ = β2. Thus

β1
‖Γ‖

‖Γ ◦D1‖
= β2

‖Γ‖
‖Γ ◦D2‖

=
√
β2

1 + β2
2 ≥

√
n+ 1.

2

6.1 Composition Lemma
We now turn to the proof of the composition theorem. Given an adversary matrix Γf realizing
the adversary bound for f and adversary matrices Γgi

realizing the adversary bound for gi where
i = 1, . . . , k, we build an adversary matrix Γh for the function h = f ◦ (g1, . . . , gk). Lemma 16
expresses the spectral norm of this Γh in terms of the spectral norms of Γf and Γgi

. Moreover, if
Γf ,Γgi

are nonnegative, then Γh will be nonnegative.
Let Γf be an adversary matrix for f , i.e. a Hermitian matrix satisfying Γf [x, y] = 0 if f(x) =

f(y), and let δf be a prinicipal eigenvector of Γf with unit norm. Similarly, let Γgi
be a spectral

matrix for gi and let δgi
be a principal eigenvector of unit norm, for every i = 1, . . . , k.

It is helpful to visualize an adversary matrix in the following way. Let Xf = f−1(0) and
Yf = f−1(1). We order the rows first by elements from Xf and then by elements of Yf . In this
way, the matrix has the following form:

Γf =

[
0 Γf

(0,1)

Γf
(1,0) 0

]
where Γf

(0,1) is the submatrix of Γf with rows labeled from Xf and columns labeled from Yf and
Γf

(1,0) is the conjugate transpose of Γf
(0,1).

16

Thus one can see that an adversary matrix for a Boolean function corresponds to a (weighted)
bipartite graph where the two color classes are the domains where the function takes the values 0
and 1. For b ∈ {0, 1} let δ�b

gi
[x] = δgi

[x] if gi(x) = b and δ�b
gi

[x] = 0 otherwise. In other words, δ�b
gi

is the vector δgi
restricted to the color class b.

Before we define our composition matrix, we need one more piece of notation. Let Γf
(0,0) =

‖Γf‖I|Xf |, where I is a |Xf |-by-|Xf | identity matrix and similarly Γf
(1,1) = ‖Γf‖I|Yf |.

We are now ready to define the matrix Γh:

Definition 6 Γh[x, y] = Γf [x̃, ỹ] ·
(⊗

i Γ
(x̃i,ỹi)
gi

)
[x, y]

Lemma 16 Let Γh be as in Definition 6. Then ‖Γh‖ = ‖Γf‖ ·
∏k

i=1 ‖Γgi
‖ and a principal eigenvec-

tor of Γh is δh[x] = δf [x̃] ·
∏k

i=1 δgi
[xi].

Proof. The more difficult direction is to show ‖Γh‖ ≤ ‖Γf‖ ·
∏k

i=1 ‖Γgi
‖, and we do this first. The

outline of this direction is as follows:

1. We first define 2k+n many vectors δα,c ∈ C2n .

2. We show that each δα,c is an eigenvector of Γh.

3. We show that {δα,c}α,c span a space of dimension 2n. This implies that every eigenvalue
of Γh is an eigenvalue associated to at least one of the δα,c as eigenvectors corresponding to
different eigenvalues of a symmetric matrix are orthogonal.

4. We upper bound the absolute value of the eigenvalues corresponding to the δα,c by ‖Γf‖ ·∏k
i=1 ‖Γgi

‖.

Let c = (c1, . . . , ck) where ci ∈ [2ni] for i = 1, . . . , k. Let δci
be an eigenvector of unit norm

corresponding to the cith largest eigenvalue of Γgi
—that is Γgi

δci
= λci

(Γgi
)δci

.
It is helpful to look at the matrix Γh as composed of blocks labeled by a, b ∈ {0, 1}k where the

(a, b) block of the matrix consists of all x, y pairs with x̃ = a and ỹ = b. Notice that the (a, b)

block of Γh is the matrix Γf [a, b] · ⊗Γ
(ai,bi)
gi .

Let λ0
ci
(A) = ‖A‖ and λ1

ci
(A) = λci

(A). We claim that Γ
(ai,bi)
gi δ�bi

ci
= λai⊕bi

ci
(Γgi

)δ�ai
ci

. This is
because if ai 6= bi then Γ

(ai,bi)
gi is one half of the bipartite matrix Γgi

and so Γ
(ai,bi)
gi δ�bi

ci
= λci

(Γgi
)δ�ai

ci
.

On the other hand, if ai = bi then Γ
(ai,bi)
gi = ‖Γgi

‖I and so Γ
(ai,bi)
gi δ�bi

ci
= ‖Γgi

‖δ�bi
ci

= ‖Γgi
‖δ�ai

ci
.

Thus for the tensor product matrix ⊗Γ
(ai,bi)
gi we have that

⊗Γ(ai,bi)
gi

⊗ δ�bi
ci

=
k∏

i=1

λai⊕bi
ci

(Γgi
) · ⊗δ�ai

ci
.

Expanding this equation gives that for every x such that x̃ = a

∑
y:ỹ=b

⊗Γ(ai,bi)
gi

[x, y] · (⊗δci
)[y] =

k∏
i=1

λai⊕bi
ci

(Γgi
) · (⊗δci

)[x]. (3)

17

Now consider a 2k-by-2k matrix Ac where

Ac[a, b] = Γf [a, b] ·
k∏

i=1

λai⊕bi
ci

(Γgi
).

Let α be a unit norm eigenvector of this matrix, say with eigenvalue µα,c. Explicitly writing out
the eigenvalue equation means that for every a,

∑
b

Γf [a, b] ·
k∏

i=1

λai⊕bi
ci

(Γgi
) · α[b] = µα,c α[a]. (4)

Item 1: We are ready to define our proposed eigenvectors of Γh. For any c = (c1, . . . , ck) and α
an eigenvector of Ac let

δα,c[x] = α[x̃] ·
k∏

i=1

δci
[xi] = α[x̃] · (⊗δci

)[x].

Item 2: We claim that δα,c is an eigenvector of Γh with eigenvalue µα,c. This can be verified as
follows: for any x,∑

y

Γh[x, y]δα,c[y] =
∑

y

Γf [x̃, ỹ]α[ỹ] · (⊗Γ(x̃i,ỹi)
gi

)[x, y] · (⊗δci
)[y]

=
∑

b

Γf [x̃, b]α[b] ·
∑
y:ỹ=b

(⊗Γ(x̃i,ỹi)
gi

)[x, y] · (⊗δci
)[y]

Applying Equation (3) gives

∑
y

Γh[x, y]δα,c[y] =
∑

b

Γf [x̃, b]α[b] ·
k∏

i=1

λx̃i⊕bi
ci

(Γgi
) · (⊗δci

)[x]

= (⊗δci
)[x] ·

∑
b

Γf [x̃, b] ·
k∏

i=1

λx̃i⊕bi
ci

(Γgi
)α[b].

And now applying Equation (4) gives∑
y

Γh[x, y]δα,c[y] = µα,cα[x̃] · (⊗δci
)[x] = µα,c δα,c[x].

Thus δα,c is an eigenvector of Γh with eigenvalue µα,c. This completes the second step of the proof.

18

Item 3: We now claim that the vectors {δα,c}α,c span C2n . For a fixed c, the set of eigenvectors
{α`}2k

`=1 of Ac forms an orthogonal basis for the space of vectors of dimension 2k, hence there is
a linear combination γ of α`’s such that

∑
` γ`α` = (1, 1, . . . , 1). Then

∑
` γ`δα`,c = ⊗δci

. Now,
since {δci

}2ni

ci=1 form an orthogonal basis for every i, linear combinations of δα,c span the whole
space of dimension 2

P
i ni , which is the dimension of Γh. Hence every eigenvector of Γh can be

expressed in this form. This completes step three of the proof.

Item 4: It now remains to show that µα,c ≤ ‖Γf‖ ·
∏

i ‖Γgi
‖ for every α, c. To do this, fix c and

consider the matrix Ac.

µα,c = α∗Acα =
∑
a,b

Γf [a, b] ·
k∏

i=1

λai⊕bi
ci

(Γgi
) · α[a]α[b]. (5)

Notice that −‖Γgi
‖ ≤ λci

(Γgi
) ≤ ‖Γgi

‖. Our first claim is that we can replace λci
(Γgi

) by either
‖Γgi

‖ or −‖Γgi
‖ in such a way that the sum in (5) does not decrease. To see this, we can first factor

out λc1(Γg1) of the above sum and look at the term it multiplies. If this term is positive, then setting
λc1(Γg1) to ‖Γg1‖ will not decrease the sum; on the other hand, if the term it multiplies is negative,
then replacing λc1(Γg1) by −‖Γg1‖ will not decrease the sum. We continue this process in turn with
i = 2, . . . , k.

Let di = 1 if in this process we replaced λci
(Γgi

) by −‖Γgi
‖ and di = 0 if λci

(Γgi
) was replaced

by ‖Γgi
‖. Note that if ai = bi, then no replacement was made and the coefficient remains ‖Γgi

‖.
We thus now have

µα,c ≤
∑
a,b

Γf [a, b]α[a]α[b] ·
k∏

i=1

(−1)di(ai+bi)‖Γgi
‖, (6)

A key fact here is that the sign of ‖Γgi
‖ will be the same everywhere ai 6= bi—the signs of entries

cannot be flipped at will.
We now mimic the pattern of signs in Equation (6) by defining a new unit vector α′. Let

α′[a] = α[a]
∏

i(−1)di·ai . Then

µα,c ≤
∑
a,b

Γf [a, b]α[a]α[b] ·
k∏

i=1

(−1)di(ai+bi)‖Γgi
‖

=
k∏

i=1

‖Γgi
‖
∑
a,b

Γf [a, b]α
′[a]α′[b]

≤ ‖Γf‖ ·
∏

‖Γgi
‖,

which we wished to show.

Other direction: We now show that ‖Γh‖ ≥ ‖Γf‖ ·
∏k

i=1 ‖Γgi
‖. Let δf be a principal eigenvector

of Γf and δgi
a principal eigenvector for Γgi

for i = 1, . . . , k. We have already argued that δh =

19

δf [x̃] ·
∏k

i=1 δgi
[xi] is an eigenvector of Γh whose eigenvalue is the eigenvalue of the matrix A~1

where

A~1[a, b] = Γf [a, b] ·
k∏

i=1

‖Γgi
‖.

Factoring out
∏k

i=1 ‖Γgi
‖ fromA~1 we are simply left with the matrix Γf , thus the largest eigenvalue

of A~1 is ‖Γf‖ ·
∏k

i=1 ‖Γgi
‖. 2

6.2 Composition lower bound
With Lemma 16 in hand, it is a relatively easy matter to show a lower bound on the adversary value
of the composed function h. Let ADV(±) denote either ADV or ADV±.

Lemma 17 ADV(±)
α (h) ≥ ADV

(±)
β (f), where βi = ADV

(±)

αi (gi),

Proof. Due to the maximization over all matrices Γ, the spectral bound of the composite function h
is at least ADV(±)

α (h) ≥ minn
`=1(α`‖Γh‖/‖Γh ◦D`‖), where Γh is defined as in Lemma 16. Notice

that in Lemma 16, if the component matrices are nonnegative, then Gh will be as well, thus we
can simultaneously treat both adversary bounds.

We compute ‖Γh ◦D`‖ for ` = 1, . . . , n. Let the `th input bit be the qth bit in the pth block.
Recall that

Γh[x, y] = Γf [x̃, ỹ] ·
k∏

i=1

Γ(x̃i,ỹi)
gi

[xi, yi].

We prove that

(Γh ◦D`)[x, y] = (Γf ◦Dp)[x̃, ỹ] · (Γgp ◦Dq)
(x̃p,ỹp)[xp, yp] ·

∏
i6=p

Γ(x̃i,ỹi)
gi

[xi, yi].

If x` 6= y` and x̃p 6= ỹp then both sides are equal because all multiplications by Dp, Dq, D` are
multiplications by 1. If this is not the case—that is, if x` = y` or x̃p = ỹp—then both sides are
zero. We see this by means of two cases:

1. x` = y`: In this case the left hand side is zero due to (Γh ◦D`)[x, y] = 0. The right hand side
is also zero because

(a) if x̃p = ỹp then the right hand side is zero as (Γf ◦Dp)[x̃, ỹ] = 0.

(b) else if x̃p 6= ỹp then the right hand side is zero as (Γgp ◦Dq)[x
p, yp] = 0.

2. x` 6= y`, x̃p = ỹp: The left side is zero because Γ
(x̃p,ỹp)
gp [xp, yp] = ‖Γgp‖I[xp, yp] = 0 since

xp 6= yp. The right side is also zero due to (Γf ◦Dp)[x̃, ỹ] = 0.

20

Since Γh ◦D` has the same structure as Γh, by Lemma 16, ‖Γh ◦D`‖ = ‖Γf ◦Dp‖ ·‖Γgp ◦Dq‖ ·∏
i6=p ‖Γgi

‖. By dividing the two spectral norms,

‖Γh‖
‖Γh ◦D`‖

=
‖Γf‖

‖Γf ◦Dp‖
·

‖Γgp‖
‖Γgp ◦Dq‖

. (7)

Since the spectral adversary maximizes over all adversary matrices, we conclude that

ADV(±)
α (h) ≥

n

min
`=1

‖Γh‖
‖Γh ◦D`‖

· α`

=
k

min
i=1

‖Γf‖
‖Γf ◦Di‖

·
ni

min
j=1

‖Γgi
‖

‖Γgi
◦Dj‖

· αi
j

=
k

min
i=1

‖Γf‖
‖Γf ◦Di‖

· ADV
(±)

αi (gi)

=
k

min
i=1

‖Γf‖
‖Γf ◦Di‖

· βi

= ADV
(±)
β (f),

which we had to prove. 2

6.3 Composition upper bound
The non-negative adversary bound ADV satisfies the matching upper bound ADVα(h) ≤
ADVβ(f). Interestingly, we do not know yet how to show this for the ADV± bound.

We apply the duality theory of semidefinite programming to obtain an equivalent expression
for ADVα in terms of a minimization problem. We then upper bound ADVα(h) by showing how
to compose solutions to the minimization problems.

Definition 7 Let f : S → {0, 1} be a partial boolean function, where S ⊆ {0, 1}n, and let
α ∈ Rn

+. The minimax bound of f with costs α is

MMα(f) = min
p

max
x,y

f(x) 6=f(y)

1∑
i:xi 6=yi

√
px(i)py(i)/αi

,

where p : S × [n] → [0, 1] ranges over all sets of |S| probability distributions over input bits, that
is, px(i) ≥ 0 and

∑
i px(i) = 1 for every x ∈ S.

This definition is a natural generalization of the minimax bound introduced in [LM04, ŠS06].
As [ŠS06] show that the minimax bound is equal to the spectral norm formulation of the adversary
method, one can similarly show that the versions of these methods with costs are equal.

Theorem 18 (Duality of adversary bounds) For every f : {0, 1}n → {0, 1} and α ∈ Rn
+,

ADVα(f) = MMα(f).

21

Sketch of proof. We start with the minimax bound with costs, substitute qx(i)px(i)/αi, and
rewrite the condition

∑
i px(i) = 1 into

∑
i αiqx(i) = 1. Using similar arguments as in [ŠS06], we

rewrite the bound as a semidefinite program, compute its dual, and after a few simplifications, get
the spectral bound with costs. 2

Lemma 19 ADVα(h) ≤ ADVβ(f).

Proof. Let pf and pgi for i = 1, . . . , k be optimal sets of probability distributions achieving the
minimax bounds. Thus using Theorem 18 we have

ADVβ(f) = max
x,y

f(x) 6=f(y)

1∑
i:xi 6=yi

√
pf

x(i)p
f
y(i)/βi

,

ADVαi(gi) = max
x,y

gi(x) 6=gi(y)

1∑
j:xj 6=yj

√
pgi

x (j)pgi
y (j)/αi

j

.

Define the set of probability distributions ph as ph
x(`) = pf

x̃(i)p
gi

xi(j), where the `th input bit is the
j th bit in the ith block. This construction was used by Laplante, Lee, and Szegedy [LLS06] to prove
a similar bound in the stronger setting where the sub-functions gi can act on the same input bits.
We claim that ph witnesses that ADVα(h) ≤ ADVβ(f):

ADVα(h) ≤ max
x,y

h(x) 6=h(y)

1∑
`:x` 6=y`

√
ph

x(`)p
h
y(`)/α`

= 1

/
min

x,y
h(x) 6=h(y)

∑
`:x` 6=y`

√
pf

x̃(i)p
f
ỹ(i)
√
pgi

xi(j)p
gi

yi(j)/α
i
j

= 1

/
min

x̃,ỹ
f(x̃) 6=f(ỹ)

∑
i

√
pf

x̃(i)p
f
ỹ(i) min

xi,yi

gi(x
i)=x̃i

gi(y
i)=ỹi

∑
j:xi

j 6=yi
j

√
pgi

xi(j)p
gi

yi(j)/α
i
j

≤ 1

/
min

x̃,ỹ
f(x̃) 6=f(ỹ)

∑
i:x̃i 6=ỹi

√
pf

x̃(i)p
f
ỹ(i) min

xi,yi

gi(x
i) 6=gi(y

i)

∑
j:xi

j 6=yi
j

√
pgi

xi(j)p
gi

yi(j)/α
i
j

= 1

/
min

x̃,ỹ
f(x̃) 6=f(ỹ)

∑
i:x̃i 6=ỹi

√
pf

x̃(i)p
f
ỹ(i) / ADVαi(gi)

= 1

/
min

x̃,ỹ
f(x̃) 6=f(ỹ)

∑
i:x̃i 6=ỹi

√
pf

x̃(i)p
f
ỹ(i) / βi

= ADVβ(f),

where the second inequality follows from that fact that we have removed i : x̃i = ỹi from the sum
and the last equality follows from Theorem 18. 2

22

7 Examples
In this section, we look at some examples to see how negative weights can help to achieve larger
lower bounds. We consider two examples in detail: a 4-bit function giving the largest known
separation between the polynomial degree and quantum query complexity, and a 6-bit function
breaking the certificate complexity and property testing barriers.

To help find good adversary matrices, we implemented both adversary bounds as semidefinite
programs and used the convex optimization package SeDuMi [sed06] for Matlab. Using these
programs, we tested both ADV and ADV± bounds for all 222 functions on 4 or fewer variables
which are not equivalent under negation of output and input variables and permutation of input
variables (see sequence number A000370 in [Slo]). The ADV± bound is strictly larger than the
ADV bound for 128 of these functions. The source code of our semidefinite programs and more
examples can be downloaded from [HLŠ06].

7.1 Ambainis function
In order to separate quantum query complexity and polynomial degree, Ambainis defines a Boolean
function f : {0, 1}4 → {0, 1} which is one if and only if the four input bits are sorted1, that is
they are either in a non-increasing or non-decreasing order. This function has polynomial degree
2, and an adversary bound of 2.5. Thus by the composition theorem for the nonnegative adversary
method, Ambainis obtains a separation between quantum query complexity and polynomial degree
of Qε(f

d) = Ω(deg(fd)1.321). We have verified that this function indeed gives the largest separa-
tion between adversary bounds and polynomial degree over all functions on 4 or fewer variables.

In the next theorem, we construct an adversary matrix with negative weights which shows
that ADV±(f) ≥ 2.5135. Using the composition theorem Theorem 13 we obtain ADV±(f) ≥
ADV(f)1.005 and improve the separation between quantum query complexity and polynomial de-
gree to Qε(f

d) = Ω(deg(fd)1.3296).

Theorem 20 Let f : {0, 1}4 → {0, 1} be Ambainis’ function. Then ADV±(f) ≥ 2.5135.

Proof. Following our own advice, to design a good adversary matrix the first thing we do is look
at the automorphisms of the function. Notice that the element g = (1432) × ((01), id, id, id) ∈
S4 × S4

{0,1} preserves the property of the bits being ordered, and thus also the function value. We
are using cycle notation here, so for example, (1432) × ((01), id, id, id) · 0000 = 0001. Let G
be the group generated by g. As g has order eight, this group is isomorphic to Z8. The group G
is both f -transitive and index transitive, thus we know that the uniform vector will be a principal
eigenvector of our eventual adversary matrix, and that all Γ ◦Di will be unitarily equivalent.

We now construct our adversary matrix. If f(x) = f(y) we set Γ[x, y] = 0. So now we just
consider the “interesting” part of the adversary matrix with rows labeled by inputs which map to

1The function was first described in this way by Laplante, Lee, and Szegedy [LLS06]. The function defined by
Ambainis [Amb06] can be obtained from this function by exchanging the first and third input bits and negating the
output.

23

one, and columns labeled by inputs which map to 0. To highlight the group structure in the matrix,
we let the ith row be gi(0000) and similarly let the ith column be gi(0010).

It turns out there are four types of pairs (x, y) which are not equivalent under automorphism.
We let Γ[x, y] = a if (x,y) have Hamming distance one. If (x, y) have Hamming distance 3, they
are also related by automorphism, and we set Γ[x, y] = d in this case. There are two automorphism
types for (x, y) pairs which have Hamming distance 2. If they differ on bits which are both sensitive
or both not sensitive, we set Γ[x, y] = b; otherwise, we set Γ[x, y] = c. The adversary matrix then
looks as follows:

0010 0101 1011 0110 1101 1010 0100 1001
0000 a c d b d c a b
0001 b a c d b d c a
0011 a b a c d b d c
0111 c a b a c d b d
1111 d c a b a c d b
1110 b d c a b a c d
1100 d b d c a b a c
1000 c d b d c a b a

As we have remarked, all Γ◦Di matrices are equivalent up to permutation, and it can be shown
that they consist of four 4-by-4 disjoint blocks, each of these blocks being some permutation of
rows and columns of the following matrix B:

B =


c b d d
b c d a
d d c b
d a b c

 . (8)

The particular block B above is one of the four blocks of Γ ◦ D1 with columns indexed by
zero-inputs 0010, 0100, 0101, 0110, and rows indexed by one-inputs 1000, 1110, 1111, 1100. A
principal eigenvector of Γ is given by the uniform vector, which has eigenvalue 2(a + b + c + d).
Thus our optimization problem is to maximize 2(a + b + c + d) while keeping ‖B‖ ≤ 1. The
optimal setting of the four variables can be found numerically by semidefinite programming and is
the following:

ADV ADV±

a 3/4 0.5788
b 1/2 0.7065
c 0 0.1834
d 0 −0.2120
λ 5/2 2.5135

(9)

The eigenvalues of Γ ◦ Di are {1, 1, 1
4
, 1

4
}, and the eigenvalues of Γ± ◦ Di are

{1, 1,−1,−0.2664}. Both spectral bounds are tight due to the existence of matching dual so-
lutions; we, however, omit them here.

2

24

7.2 Breaking the certificate complexity barrier
We now consider a function on six bits. We will consider this function in two guises. We first define
a partial function f to show that ADV± can break the property testing barrier. We then extend this
partial function to a total monotone function g which gives a larger separation between the ADV
and ADV± bounds, and also shows that ADV± can break the certificate complexity barrier.

We define the partial function f on six bits as follows:

• The zero inputs of f are: 111000, 011100, 001110, 100110, 110010, 101001, 010101,
001011, 100101, 010011.

• The one inputs of f are: 000111, 100011, 110001, 011001, 001101, 010110, 101010,
110100, 011010, 101100.

Notice that f is defined on all inputs with Hamming weight three, and only on these inputs. This
function is inspired by a function defined by Kushilevitz which appears in [NW95] and is also
discussed by Ambainis [Amb06]. Kushilevitz’s function has the same behavior as the above on
inputs of Hamming weight three; it is additionally defined to be 0 on inputs with Hamming weight
0, 4, or 5, and to be 1 on inputs with Hamming weight 1, 2, or 6.

All zero inputs of f have Hamming distance at least 2 from any one input, thus the relative
Hamming distance between any zero and one input is ε = 1/3. In Theorem 21 we show that
ADV±(f) ≥ 2 + 3

√
5/5 ≈ 3.341. This implies ADV±(f) ≥ (1/ε(f))1.098, and as both bounds

compose we obtain ADV±(fd) ≥ (1/ε(fd))1.098. This shows that the property testing barrier does
not apply to ADV± as it does to ADV. The relative Hamming distance ε(fd), however, goes to
zero when d increases. We don’t know of an asymptotic separation for constant ε.

We also consider a monotone extension of f to a total function, denoted g. It is additionally
defined to be 0 on inputs with Hamming weight 0, 1, or 2, and to be 1 on inputs with Hamming
weight 4, 5, or 6. Recall that the maxterms of a monotone Boolean function are the maximal,
under subset ordering, inputs x which evaluate to 0, and similarly the minterms are the minimal
inputs which evaluate to 1. The zero inputs of f become maxterms of g and the one inputs become
minterms. Since f is defined on all inputs with Hamming weight three, g is a total function. The
extended function g is at least as hard as its sub-function f , hence ADV±(g) ≥ ADV±(f). The
0-certificates of g are given by the location of 0’s in the maxterms and the 1-certificates are given
by the location of 1’s in the minterms, thus C0(g) = C1(g) = 3. Both bounds compose thus
C0(g

d) = C1(g
d) = 3d.

Applying the composition theorem Theorem 13 we obtain ADV±(gd) ≥ (C0(g)C1(g))
0.549. As

ADV(h) ≤
√
C0(h)C1(h) for a total function h, we also conclude ADV±(gd) ≥ ADV(gd)1.098.

Theorem 21 ADV±(f) ≥ 2 + 3
√

5/5.

Proof. To design an adversary matrix for f , we again first consider its automorphisms. The
automorphism group G of f contains a subgroup isomorphic to A5, the alternating group on five
elements. As we have listed the zero and one instances of the function, one can easily see that the
permutation (12345), in cycle notation, is an automorphism. This automorphism fixes the sixth

25

bit. It turns out that for every 1 ≤ i ≤ 6 there is an automorphism of f of order 5 which fixes the
ith bit. Here are some examples: (25643), (15643), (12456), (16235), (14362), (12345). Taking
the closure of these elements gives a group isomorphic to A5. This group is f -transitive and index
transitive, thus we know that the uniform eigenvector will be a principal eigenvector of our eventual
adversary matrix, and that all Γ ◦Di will have the same spectral norm.

Any two pairs (x, y) and (x′, y′) with the same Hamming distance are related by automorphism,
thus the (x, y) entry of Γ will only depend on Hamming distance. As all valid inputs to f have
Hamming weight three, the Hamming distance between x and y is even and is either two, four, or
six. We label the matrix entries a, b, c respectively for Hamming distances two, four, six.

000 100 110 011 001 010 101 110 011 101
111 011 001 001 101 110 010 100 010 100

111000 c b a a b b a a a a
011100 b c b a a a b a a a
001110 a b c b a a a b a a
100110 a a b c b a a a b a
110010 b a a b c a a a a b
101001 b a a a a c a b b a
010101 a b a a a a c a b b
001011 a a b a a b a c a b
100101 a a a b a b b a c a
010011 a a a a b a b b a c

Notice that all rows have the same sum, thus the uniform vector is an eigenvector with eigenvalue
6a+ 3b+ c.

From this ordering of rows and columns, one can easily read off the matrix Γ ◦ D6. This is a
block diagonal matrix with each block equal, up to permutation, to a matrix B:

B =


c b a a b
b c b a a
a b c b a
a a b c b
b a a b c

 .

Our optimization problem then becomes: maximize 6a+3b+c while keeping the spectral norm of
B at most one. As B is a sum of circulants, its eigenvalues will be c+ bωk + aω2k + aω3k + bω4k,
for 0 ≤ k ≤ 4, where ω is a 5th root of unity. An optimal solution is obtained by setting a =
(1+

√
5)/5, b = (1−

√
5)/5, c = 1/5. This makes the eigenvalues of B equal to {1, 1, 1,−1,−1},

while 6a+ 3b+ c = 2 + 3
√

5/5. 2

8 Conclusion
Breaking the certificate complexity and property testing barriers opens the possibility that ADV±

can prove better lower bounds where we know ADV cannot. Salient examples are element distinct-

26

ness, the collision problem, and triangle finding. For element distinctness, the best bound provable
by the standard adversary method is O(

√
n) while the polynomial method is able to prove a tight

lower bound of Ω(n2/3) [AS04]. For the collision problem, the adversary method is only able
to prove a constant lower bound while the polynomial method again proves a tight lower bound
of Ω(n1/3) [AS04]. Finally, for the problem of determining if a graph contains a triangle, the
best bound provable by the adversary method is O(n) and the best known algorithm is O(n1.3)
[MSS05].

It is also interesting to determine what limitations our new adversary method might face. The
only limitation we are aware of is that the square of ADV± is a lower bound on formula size.
This is probably not a limitation, however, as [FGG07, CRŠZ07] have recently taken a major step
towards proving the conjecture of Laplante, Lee, and Szegedy that the square of bounded-error
quantum query complexity is in general a lower bound on formula size.

Acknowledgements
We would like to thank Aram Harrow and Umesh Vazirani for interesting discussions on the topics
of this paper, and Ronald de Wolf for many valuable comments on an earlier draft.

References
[Amb02] A. Ambainis. Quantum lower bounds by quantum arguments. Journal of Computer

and System Sciences, 64(4):750–767, 2002. Earlier version in STOC’00.

[Amb06] A. Ambainis. Polynomial degree vs. quantum query complexity. Journal of Computer
and System Sciences, 72(2):220–238, 2006. Earlier version in FOCS’03.

[AS04] S. Aaronson and Y. Shi. Quantum lower bounds for the collision and the element
distinctness problem. Journal of the ACM, 51(4):595–605, 2004.

[BBC+01] R. Beals, H. Buhrman, R. Cleve, M. Mosca, and R. de Wolf. Quantum lower bounds by
polynomials. Journal of the ACM, 48(4):778–797, 2001. Earlier version in FOCS’98.

[Bha97] R. Bhatia. Matrix Analysis. Springer-Verlag, 1997.

[BS04] H. Barnum and M. Saks. A lower bound on the quantum query complexity of read-
once functions. Journal of Computer and System Sciences, 69(2):244–258, 2004.

[BSS03] H. Barnum, M. Saks, and M. Szegedy. Quantum decision trees and semidefinite pro-
gramming. In Proc. of 18th IEEE Complexity, pages 179–193, 2003.

[BW02] H. Buhrman and R. de Wolf. Complexity measures and decision tree complexity: A
survey. Theoretical Computer Science, 288(1):21–43, 2002.

27

[CRŠZ07] A. M. Childs, B. W. Reichardt, R. Špalek, and S. Zhang. Every NAND formula of size
N can be evaluated in time O(N1/2+ε) on a quantum computer. quant-ph/0703015,
2007.

[FGG07] E. Farhi, J. Goldstone, and S. Gutmann. A quantum algorithm for the Hamiltonian
NAND tree. quant-ph/0702144, 2007.

[Gro96] L. K. Grover. A fast quantum mechanical algorithm for database search. In Proc. of
28th ACM STOC, pages 212–219, 1996.

[HLŠ05] P. Høyer, T. Lee, and R. Špalek. Tight adversary bounds for composite functions.
quant-ph/0509067, 2005.

[HLŠ06] P. Høyer, T. Lee, and R. Špalek. Source codes of semidefinite programs for ADV±.
http://www.ucw.cz/˜robert/papers/adv/, 2006.

[HŠ05] P. Høyer and R. Špalek. Lower bounds on quantum query complexity. EATCS Bulletin,
87:78–103, October, 2005.

[KN97] E. Kushilevitz and N. Nisan. Communication Complexity. Cambridge University Press,
1997.

[KW88] M. Karchmer and A. Wigderson. Monotone connectivity circuits require super-
logarithmic depth. In Proc. of 20th ACM STOC, pages 539–550, 1988.

[LLS06] S. Laplante, T. Lee, and M. Szegedy. The quantum adversary method and classical
formula size lower bounds. Computational Complexity, 15:163–196, 2006. Earlier
version in Complexity’05.

[LM04] S. Laplante and F. Magniez. Lower bounds for randomized and quantum query com-
plexity using Kolmogorov arguments. In Proc. of 19th IEEE Complexity, pages 294–
304, 2004.

[MSS05] F. Magniez, M. Santha, and M. Szegedy. Quantum algorithms for the triangle problem.
In Proc. of 16th ACM-SIAM SODA, pages 1109–1117, 2005.

[NC00] M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum Information.
Cambridge University Press, 2000.

[NW95] N. Nisan and A. Wigderson. A note on rank vs. communication complexity. Combi-
natorica, 15(4):557–566, 1995.

[sed06] SeDuMi version 1.1. available from http://sedumi.mcmaster.ca/, 2006.

[Sho97] P. Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on
a quantum computer. SIAM Journal on Computing, 26(5):1484–1509, 1997. Earlier
version in FOCS’94.

28

http://www.ucw.cz/~robert/papers/adv/
http://sedumi.mcmaster.ca/

[Slo] N. Sloane. On-line encyclopedia of integer sequences. http://www.research.
att.com/˜njas/sequences/.

[ŠS06] R. Špalek and M. Szegedy. All quantum adversary methods are equivalent. Theory of
Computing, 2(1):1–18, 2006. Earlier version in ICALP’05.

[Zha05] S. Zhang. On the power of Ambainis’s lower bounds. Theoretical Computer Science,
339(2–3):241–256, 2005. Earlier version in ICALP’04.

29

http://www.research.att.com/~njas/sequences/
http://www.research.att.com/~njas/sequences/

	Introduction
	Comparison with previous methods

	Preliminaries
	Linear algebra
	Quantum query complexity

	Bounded-error quantum query complexity
	Formula size
	Automorphism Principle
	Composition theorem
	Composition Lemma
	Composition lower bound
	Composition upper bound

	Examples
	Ambainis function
	Breaking the certificate complexity barrier

	Conclusion

