
The Multiplicative Quantum Adversary

Robert Špalek∗

spalek@eecs.berkeley.edu

Abstract

We present a new variant of the quantum adversary method. All adversary methods give lower bounds
on the quantum query complexity of a function by bounding the change of a progress function caused by
one query. All previous variants upper-bound the difference of the progress function, whereas our new
variant upper-bounds the ratio and that is why we coin it the multiplicative adversary. Our new method
generalizes the quantum lower-bound method by Ambainis [Amb05, AŠW06], based on the analysis of
eigenspaces of the density matrix, to all functions. We prove a strong direct product theorem for all
functions that have a multiplicative adversary lower bound.

1 Introduction

We consider the problem of proving a lower bound on the number of quantum queries needed to compute a
function with bounded error. One of the most successful method for proving quantum query lower bounds
is the adversary method [BBBV97, Amb02, HNS02, BS04, BSS03, Amb06, LM04, Zha05, ŠS06, HLŠ07]; see
the survey [HŠ05] for the history of the method. It intuitively works as follows: The computation starts
in a fixed quantum state independent of the input. The quantum algorithm consecutively applies arbitrary
unitary transformations on its workspace and the input oracle operator. The quantum state corresponding to
two different inputs x, y gradually diverges to two output states |ψTx 〉, |ψTy 〉. Since the algorithm has bounded
error, there exists a measurement on the output state that gives the right outcome with high probability,
hence the scalar product |〈ψTx |ψTy 〉| must be low whenever f(x) 6= f(y) [BV97]. We define a progress function
in time t as a weighted average of these scalar products over many input pairs:

W t =
∑
x,y

f(x) 6=f(y)

wx,y〈ψtx|ψty〉. (1)

Since the scalar products are all one at the beginning and below a constant at the end, the value of the
progress function must drop a lot. On the other hand, one can show that one query only causes little additive
change to the progress function, hence the algorithm must ask many queries. The quality of the lower bound
depends on the adversary matrix w—one typically has to put more weight on input pairs that are hard to
distinguish to get a good bound.

The progress function can be equivalently formulated in terms of density matrices. If we run the quantum
algorithm on a superposition of inputs instead of a fixed input, then during the computation the algorithm
register becomes entangled with the input register. We trace out the algorithm and input register and look
at the reduced density matrix ρtI of the input register. We define the progress function as a scalar product

W t = 〈Γ, ρtI〉 (2)

for some Hermitian matrix Γ with Γ[x, y] = 0 if f(x) = f(y). This definition is equivalent with Eqn. (1) (see
Section 2), and since it is easier to work with, we will stick to it in the whole paper.

∗University of California, Berkeley. Supported by NSF Grant CCF-0524837 and ARO Grant DAAD 19-03-1-0082.

1

The (additive) adversary method suffers one severe limitation: the lower bound is proportional to the
success probability of the algorithm and hence is negligible for exponentially small success probabilities.
Several many-output functions, such as t-fold search, however, have strong lower bounds even with exponen-
tially small success (proved first in [KŠW07] using the polynomial method [BBC+01]). These bounds are
useful for proving quantum time-space tradeoffs.

Ambainis reproved [Amb05] and extended [AŠW06] these polynomial lower bounds using a new quantum
lower-bound method based on the analysis of subspaces of the reduced density matrix of the input register.
His method seemed tailored to the problem of quantum search, and is quite complicated.

In this paper, we reformulate Ambainis’s new method in the adversary framework, generalize it to all
functions, and provide some additional intuition. We use syntactically the same progress function Eqn. (2),
but in a different way: (1) we require different conditions on the adversary matrix Γ, and (2) we show
that one query can only multiply the value of the progress function by a small constant—whence the name
multiplicative adversary. Surprisingly, the final formula for the multiplicative adversary lower bound is quite
similar to the additive adversary. Unfortunately, the similarity is only illusive, and our new formula is
significantly harder to bound than the old one and we thus don’t simplify Ambainis’s calculations much.

We, however, split Ambainis’s original proof into several independent logical blocks and dovetail them
together: upper-bounding the success probability based on the structure of the subspaces, upper-bounding
the change caused by one query, simultaneous block-diagonalization of Γ and the query operator, and sim-
plification of the final formula into a form similar to the additive adversary. This simplification allows us to
generalize the method to all functions. Furthermore, we separate the quantum part and the combinatorial
part of the proof—the quantum part is hidden inside the proof of the general lower-bound theorem (Sec-
tion 3), and the user of the method who wants to get a lower bound for some function only has to evaluate
its combinatorial properties (see Section 4 for new proofs of all known bounds in our new framework).

Finally, we show that the multiplicative adversary bound inherently satisfies the strong direct product
theorem (DPT). Roughly speaking it says that to compute k independent instances of a function we need
Ω(k) times more queries even if we are willing to decrease the (worst-case) success probability exponentially.
It is not clear whether this theorem holds for all functions or not. Ambainis proved a (more complicated)
DPT for all symmetric functions directly, whereas we show that it is sufficient to prove just a (simpler)
multiplicative adversary lower bound, and the DPT then automatically follows (Section 5).

The biggest open problem, not addressed here, is to find a new stronger lower bound using the multi-
plicative adversary. A promising function is the element distinctness problem (tight Ω(n2/3) bound due to
the polynomial method [AS04], but only Ω(

√
n) adversary lower bound). It also doesn’t seem completely

unlikely that one could find a reduction from the additive adversary to the multiplicative adversary—if a
lower bound for some function can be proved using one method, then it can be proved also using the other
one. If this is true, then many extensive computations could be avoided. The multiplicative adversary
method may also have potential to prove a quantum time-space tradeoff for some Boolean function (again,
element distinctness), because small workspace implies small Schmidt-rank of the reduced density matrix. It
would be interesting to look at the dual of the multiplicative adversary bound. The bound is not described
by a semidefinite program, however one may be able to use general Lagrange multipliers.

2 Adversary framework

2.1 Quantum query complexity

As with the classical model of decision trees, in the quantum query model we wish to compute some function
f and we access the input through queries. Let f : X → ΣO be a function, with X ⊆ ΣnI the set of inputs. We
assume ΣI = {0, 1, . . . , σ − 1} with σ = |ΣI |, and call this the input alphabet and ΣO the output alphabet.
The complexity of f is the number of queries needed to compute f on a worst-case input x. Unlike the
classical case, however, we can now make queries in superposition.

The memory of a quantum query algorithm is described by three registers: the input register, HI , which
holds the input x ∈ X, the query register, HQ, which holds two integers 1 ≤ i ≤ n and 0 ≤ p < σ, and the

2

working memory, HW , which holds an arbitrary value. The query register and working memory together
form the accessible memory, denoted HA.

The accessible memory of a quantum query algorithm is initialized to a fixed state. For convenience, on
input x we assume the state of the algorithm is |x〉I |1, 0〉Q|0〉W where all qubits in the working memory are
initialized to 0. The state of the algorithm then evolves through queries, which depend on the input register,
and accessible memory operators which do not. We now describe these operations.

We will model a query by a unitary operator where the oracle answer is given in the phase. This operator
O is defined by its action on the basis state |x〉|i, p〉 as

O : |x〉|i, p〉 → e
2πi
σ pxi |x〉|i, p〉,

where 1 ≤ i ≤ n is the index of the queried input variable and 0 ≤ p < σ is the phase multiplier. This
operation can be extended to act on the whole space by interpreting it as O× IW , where IW is the identity
operation on the workspace HW . In the sequel, we will refer to the action of O both on HI ⊗HQ and the
full space HI ⊗HQ ⊗HW , and let context dictate which we mean.

For a function with Boolean input ΣI = {0, 1}, the query operator simply becomes

O : |x〉|i, p〉 → (−1)pxi |x〉|i, p〉,

An alternative, perhaps more common, way to model a quantum query is through an operator O′ :
|x〉|i, p〉 → |x〉|i, (xi+p) mod σ〉 that encodes the result in a register. These two query models are equivalent,
as can be seen by conjugating with the quantum Fourier transform on |p〉. For our results, it is more
convenient to work with the phase oracle.

An accessible memory operator is an arbitrary unitary operation U on the accessible memory HA. This
operation is extended to act on the whole space by interpreting it as II⊗U, where II is the identity operation
on the input space HI . Thus the state of the algorithm on input x after t queries can be written

|φtx〉 = UtOUt−1 · · ·U1OU0|x〉|1, 0〉|0〉.

As the input register is left unchanged by the algorithm, we can decompose |φtx〉 as |φtx〉 = |x〉|ψtx〉, where
|ψtx〉 is the state of the accessible memory after t queries.

The output of a T -query algorithm on input x is chosen according to a probability distribution which
depends on the final state of the accessible memory |ψTx 〉. Namely, the probability that the algorithm outputs
some b ∈ ΣO on input x is ‖Πb|ψTx 〉‖2, for a fixed set of projectors {Πb} which are orthogonal and complete,
that is, sum to the identity. The ε-error quantum query complexity of a function f , denoted Qε(f), is the
minimum number of queries made by an algorithm which outputs f(x) with probability at least 1 − ε for
every x.

2.2 Progress function

Imagine that we run some quantum algorithm on a superposition of inputs |δ〉 =
∑
x∈X δx|x〉|1, 0〉|0〉. The

quantum state after t queries is

|Ψt〉 = UtOUt−1 · · ·U1OU0|δ〉 =
∑
x

δx|x〉|ψtx〉.

The reduced density matrix of the input register is

ρtI = Tr
Q,W

|Ψt〉〈Ψt| =
∑
x,y

δxδ
∗
y〈ψty|ψtx〉 · |x〉〈y|.

We define a progress function in terms of the reduced density matrix of the input register and a special
Hermitian matrix Γ, coined the adversary matrix. We then present two kinds of adversary method, each
using the progress function in a different way to get a quantum query lower bound.

3

Definition 1 Let Γ be an |X| × |X| Hermitian matrix. Let 〈A,B〉 = Tr(A∗B). Define the progress function

W t = 〈Γ, ρtI〉.

Note that W t is a real number, because both Γ and ρtI are Hermitian.

In the paper, we will use the following matrices.

Definition 2 Define the following set of |X| × |X| matrices indexed by i ∈ [n], p ∈ ΣI , and z ∈ ΣO:

Di[x, y] =

{
1 xi 6= yi

0 xi = yi
, Oi,p[x, x] = e

2πi
σ pxi , and Fz[x, x] =

{
1 f(x) = z

0 f(x) 6= z
.

Di’s are real (zero-one) symmetric matrices. Oi,p’s are diagonal unitary matrices decomposing the query
operator O =

⊕n
i=1

⊕
p∈ΣI

Oi,p. {Fz}z∈ΣO
is a complete set of diagonal orthogonal projectors, that is∑

z Fz = I, Fz1Fz2 = 0 for z1 6= z2, and F2
z = Fz.

2.3 Additive adversary

In this version of the adversary method, one upper-bounds the difference of the value of the progress function
caused by one query. This method is the original adversary method, developed in a series of papers [BBBV97,
Amb02, HNS02, BS04, BSS03, Amb06, LM04, Zha05, ŠS06, HLŠ07].

Theorem 1 ([HLŠ07]) Let Γ be a nonzero |X| × |X| Hermitian matrix such that Γ[x, y] = 0 for f(x) =
f(y). Consider a quantum algorithm with error probability at most ε and query complexity T . We run it on
the superposition of inputs |δ〉, where δ is a normalized principal eigenvector of Γ, i.e. corresponding to the
spectral norm ‖Γ‖. Then

1. W 0 = ‖Γ‖

2. W t −W t+1 ≤ 2 maxi ‖Γ ◦Di‖ for every time step t = 0, 1, . . . , T − 1

3. WT ≤ 2(
√
ε(1− ε) + ε) · ‖Γ‖

The third item can be strengthened to 2
√
ε(1− ε)‖Γ‖ if f has Boolean output [HLŠ07].

Corollary 2 ([BSS03, HLŠ07]) For every sufficiently small ε,

Qε(f) ≥ ADVε(f) def.=
(

1
2
−
√
ε(1− ε)− ε

)
max

Γ

‖Γ‖
maxi ‖Γ ◦Di‖

.

If all coefficients of the adversary matrix Γ are nonnegative, then Γ corresponds to a hard distribution
over input pairs and its principal eigenvector δ to a hard distribution over inputs. The initial value of the
progress function W is large, because all scalar products are one in the beginning, and it must decrease a lot.
This is because the weight is only put on input pairs evaluating to different outputs, whose scalar product
must be low at the end, otherwise one would not be able to distinguish them. This intuition does not tell
the whole truth if some coefficients are negative, but the adversary bound still holds.

3 Multiplicative adversary

In this version of the adversary method, one upper-bounds the ratio of the value of the progress function
before and after a query. This method is a simplification and generalization of the new adversary method
developed by Ambainis [Amb05, AŠW06]. Here, Γ has a different semantics. We require the eigenspaces of Γ
corresponding to small eigenvalues to be spanned by vectors (superpositions of inputs) that do not determine

4

the function value with high probability. The algorithm is then run on a superposition |δ〉 corresponding to
the smallest eigenvalue (which is typically a uniform superposition of all inputs), and the progress function
W is slowly increasing (instead of decreasing) in time. To achieve good success probability, most of the
quantum amplitude must move to the higher subspaces.

Theorem 3 Let Γ be positive definite with smallest eigenvalue 1; then W t ≥ 1. Fix a number 1 < λ ≤ ‖Γ‖.
Let Πbad be the projector onto the eigenspaces of Γ corresponding to eigenvalues smaller than λ. Assume
that ‖FzΠbad‖2 ≤ η for every output letter z ∈ ΣO. Consider a quantum algorithm with success probability
at least η+4ζ and query complexity T . We run it on the superposition of inputs |δ〉, where δ is a normalized
eigenvector of Γ with Γδ = δ. Then

1. W 0 = 1

2. W t+1

W t ≤ maxi,p ‖Γi,pΓ−1‖, where Γi,p
def.= O∗

i,pΓOi,p

3. WT ≥ ζ2λ

Corollary 4

Q1−η−4ζ(f) ≥ MADVη,4ζ(f) def.= max
Γ,λ

log(ζ2λ)
log(maxi,p ‖Γi,pΓ−1‖)

.

Proof of Theorem 3(1) Trivial, because 〈ψ0
x|ψ0

y〉 = 1 and thus W 0 = 〈Γ, ρ0
I〉 = δ∗Γδ = 1. 2

Proof of Theorem 3(2) After the (t+ 1)-st query, the quantum state is |Ψt+1〉 = Ut+1O|Ψt〉 and thus

ρt+1
I = Tr

Q,W
(Ut+1O|Ψt〉〈Ψt|O∗U∗

t+1) = Tr
Q,W

(O|Ψt〉〈Ψt|O∗),

because the unitary operator Ut+1 acts as identity on the input register. The oracle operator O only
acts on the input register and the query register, hence we can trace out the working memory. Denote
ρ = TrW |Ψt〉〈Ψt| and ρ′ = OρO∗. Then ρtI = TrQ(ρ) and ρt+1

I = TrQ(ρ′). We re-express the progress
function in terms of ρ, ρ′. Define a block-diagonal matrix on HI ⊗HQ:

G = Γ⊗ In ⊗ Iσ =
⊕n

i=1

⊕
p∈ΣI

Γ.

Then

W t = 〈Γ, ρtI〉 = 〈G, ρ〉
W t+1 = 〈Γ, ρt+1

I 〉 = 〈G, ρ′〉 = 〈G,OρO∗〉
= 〈O∗GO, ρ〉 = 〈G′, ρ〉,

where G′ = O∗GO =
⊕

i,p Γi,p is a block-diagonal matrix with Γi,p’s on the main diagonal.
We upper-bound the change of the progress function as follows. We show that

〈G′, ρ〉 ≤ max
i,p

‖Γi,pΓ−1‖ · 〈G, ρ〉. (3)

Since the scalar products 〈G, ρ〉 and 〈G′, ρ〉 are linear in ρ and mixed states are convex combinations of pure
states, it suffices to show this inequality for pure states ρ = |ρ〉〈ρ|. Since both Γ and all Γi,p’s are positive
definite, both G and G′ are also positive definite. Let |τ〉 =

√
G|ρ〉, that is |ρ〉 = G− 1

2 |τ〉.

〈G′, ρ〉
〈G, ρ〉

=
〈ρ|G′|ρ〉
〈ρ|G|ρ〉

=
〈τ |G− 1

2G′G− 1
2 |τ〉

〈τ |τ〉
=

(
‖
√
G′G−1|τ〉‖2
‖τ‖2

)2

≤ ‖
√
G′G−1‖2 = ‖G′G−1‖ = max

i,p
‖Γi,pΓ−1‖

We conclude that Eqn. (3) holds for pure states and consequently also for all density matrices. 2

5

Since the spectral norm of Γi,pΓ−1 is hard to upper-bound, we simplify it to a form similar to the additive
adversary.

Lemma 5 Fix the index of the queried bit i. Assume that Γ and Oi,1 are simultaneously block-diagonal in
some “basis”, that is there exists a complete set of orthogonal projectors Π = {Π`}` such that Γ =

∑
` Γ(`)

and Oi,1 =
∑
` O

(`)
i,1, where Γ(`) denotes Π`ΓΠ`. Note that since Oi,p = (Oi,1)p, all Oi,p are block-diagonal in

this basis, too. Then

‖Γi,pΓ−1‖ = max
`
‖Γ(`)

i,p(Γ
(`))−1‖ ≤ 1 + 2 max

`

‖Γ(`) ◦Di‖
λmin(Γ(`))

,

where λmin(M) denotes the smallest eigenvalue of M .

Corollary 6 Let Γ � I and 1 < λ ≤ ‖Γ‖. Assume that ‖FzΠbad‖2 ≤ η for every z ∈ ΣO, where Πbad is
the projector onto the eigenspaces of Γ smaller than λ. For a fixed i, block-diagonalize simultaneously Γ and
Oi,1, and let Γ(`) denote the `-th block.

MADVη,4ζ(f) ≥ max
Γ,λ

log(ζ2λ) ·min
i,`

λmin(Γ(`))
2‖Γ(`) ◦Di‖

.

Note that for most functions, one typically does not want to apply this statement using the trivial block-
diagonalization Π = {I} with just one projector onto the whole space. In this case, ‖Γ ◦ Di‖ is way too
large compared to λmin(Γ) and the final bound is too weak. For some functions, such as unordered search,
however, even this approach gives a reasonable bound; see Lemma 7.
Proof of Lemma 5 Denote Yi,p = O∗

i,pEOi,p, where E is the all-ones matrix; then Γi,p = O∗
i,pΓOi,p = Γ◦Yi,p.

Note that Yi,0− 1
σ

∑σ−1
p=0 Yi,p = Di (by summing a geometrical sequence depending on xi−yi). Since Γ and all

Oi,p are block-diagonal in Π, it follows that Γi,p, Γi,pΓ−1, and Γ ◦Di are block-diagonal in Π, too. Therefore
it suffices to compute an upper bound on ‖Γi,p/Γ−1‖ in each subspace of Π separately and take the maximum
as the total upper bound. This proves the first part of the lemma that ‖Γi,pΓ−1‖ = max` ‖Γ(`)

i,p(Γ
(`))−1‖.

Henceforth, fix the index ` of one such subspace and let Γ := Γ(`) denote the matrix projected onto Π`.

‖Γi,pΓ−1‖ = max
v∈Π`

‖Γi,pΓ−1v‖2
‖v‖2

v = Γw

= max
w∈Π`

‖Γi,pw‖2
‖Γw‖2

‖Γi,pw‖2
‖Γw‖2

=
‖Γw + (Γi,p − Γ)w‖2

‖Γw‖2

≤ 1 +
‖(Γi,p − Γ)w‖2

‖Γw‖2
‖Γw‖2 ≥ λmin(Γ)︸ ︷︷ ︸

µ

‖w‖2

≤ 1 +
1
µ
· ‖(Γi,p − Γ)w‖2

‖w‖2
Γi,p − Γ = (Γi,p − Γ) ◦Di

= 1 +
1
µ
· ‖(Γi,p ◦Di)w − (Γ ◦Di)w‖2

‖w‖2
Γi,p = Γ ◦ Yi,p

≤ 1 +
1
µ
· ‖(Γ ◦ Yi,p ◦Di)w‖2 + ‖(Γ ◦Di)w‖2

‖w‖2
(Γ ◦Di) ◦ Yi,p = O∗

i,p(Γ ◦Di)Oi,p

≤ 1 +
‖O∗

i,p(Γ ◦Di)Oi,p‖+ ‖Γ ◦Di‖
µ

Oi,p is unitary

= 1 + 2
‖Γ ◦Di‖
λmin(Γ)

,

which proves the second part of the lemma, because Γ here denotes Γ(`). 2

6

Proof of Theorem 3(3) At the end of the computation, we measure the input register in the computational
basis and the accessible memory according to the output projectors {Πb}. Denote the outcomes x ∈ X and
b ∈ ΣO. Since the algorithm has good success probability, f(x) = b with probability at least η + 4ζ. Let us
prove an upper bound on this success probability in terms of the progress function.

Let Πgood = I− Πbad denote the projector onto the orthogonal complement of the bad subspace, coined
the good subspace. We upper-bound the success probability in the bad subspace by η and in the good
subspace by 1. Consider the final state of the computation |ΨT 〉; recall that ρTI = TrQ,W |ΨT 〉〈ΨT |. Let

|Ψbad〉 = Πbad|ΨT 〉
‖Πbad|ΨT 〉‖2 , |Ψgood〉 = Πgood|ΨT 〉

‖Πgood|ΨT 〉‖2 , and β = 〈Πgood, ρ
T
I 〉 = ‖Πgood|ΨT 〉‖22. (When using a projector

on a larger Hilbert space than defined, we first extend it by a tensor product with identity. For example,
|Ψbad〉 = (Πbad⊗IA)|ΨT 〉

‖(Πbad⊗IA)|ΨT 〉‖2 , where A is the accessible memory.) Decompose

|ΨT 〉 =
√

1− β|Ψbad〉+
√
β|Ψgood〉.

Assume for a moment that the final state was |Ψbad〉 instead of |ΨT 〉. We measure the accessible memory
first and fix the output of the computation b ∈ ΣO, then we trace out the accessible memory completely and
end up with a mixed state ρ over the input register (not necessarily equal to ρTI , because we remember b).
We then measure the input register according to the projectors {Fz} (set of inputs x such that f(x) = z)
and test whether z = b. Now, for every z ∈ ΣO, including the right result z = b,

Pr[obtaining z] = 〈Fz, ρ〉 ρ is only supported on Πbad

= 〈Fz,ΠbadρΠbad〉
= 〈ΠbadFzΠbad, ρ〉 〈A,B〉 ≤ ‖A‖ · ‖B‖tr
≤ ‖ΠbadFzΠbad‖ · ‖ρ‖tr ‖ρ‖tr = 1

= ‖ΠbadFzΠbad‖ Fz = F2
z

= ‖ΠbadFzFzΠbad‖ ‖AB‖ ≤ ‖A‖ · ‖B‖
≤ ‖ΠbadFz‖ · ‖FzΠbad‖ Fz,Πbad are Hermitian

= ‖FzΠbad‖2

≤ η.

Therefore the success probability of the algorithm would be at most η, had the input register been in the
state |Ψbad〉. The real output state is |ΨT 〉. Since the trace distance of these two states is

‖|ΨT 〉 − |Ψbad〉‖2 ≤ (1−
√

1− β) +
√
β ≤ 2

√
β,

by [BV97], the success probability on |ΨT 〉 could be at most η+ 4
√
β. On the other hand, we assumed that

the algorithm has success probability at least η + 4ζ, hence β ≥ ζ2. The progress function at the end takes
value

WT = 〈Γ, ρTI 〉 ≥ 〈λ ·Πgood, ρ
T
I 〉 = βλ ≥ ζ2λ,

which is what we had to prove. 2

4 Applications

In this section, we reprove all known bounds obtained by the subspace-analysis technique of Ambainis. We
only consider functions with Boolean input. The input oracle rotates the phase by a factor of (−1)pxi and
the only nontrivial case is p = 1. We thus omit p and write just Oi,Γi instead of Oi,1,Γi,1.

7

4.1 Search

Let X = {x ∈ {0, 1}n : |x| = 1} and Searchn(x) = i such that xi = 1. In other words, there is exactly one
1 in an n-bit string and we have to find it. One can quickly estimate the multiplicative adversary bound as
follows.

Lemma 7 MADVn−1,4ζ(Searchn) = Ω(ζ2
√
n).

Proof Let q > 1 be a constant whose value we fix later. Define the following unit vectors: v = 1√
n
(1, . . . , 1)

and vi = 1√
n(n−1)

(1, . . . , 1, 1− n, 1, . . . , 1) with 1− n on the i-th position. Note that v ⊥ vi, but vi 6⊥ vj for

i 6= j. Define the following adversary matrix:

Γ = (1− q)|v〉〈v|+ qI, (4)

where I is the identity matrix. Γ has two eigenspaces: Γv = v, and Γvi = qvi. The success probability in the
subspace of v is η = 1/n. Let λ = ‖Γ‖ = q.

We apply Corollary 6 with trivial block-diagonalization Π = {I}. Then λmin(Γ) = 1. Γ ◦Di consists of
an 1× (n− 1) block 1−q

n (1, . . . , 1) and its adjoint, hence ‖Γ ◦Di‖ =
√
n− 1 · (q− 1)/n < (q− 1)/

√
n. Hence

MADVn−1,4ζ(Searchn) ≥
log(ζ2q)
2(q − 1)

√
n. (5)

We set q = 2/ζ2 to make the logarithm positive. 2

It turns out that the rough analysis in the previous lemma loses a quadratic factor in the success prob-
ability. Let us compute exactly the eigenvalues of ΓiΓ−1. Thanks to the symmetry, it is sufficient to only
consider one case i = 1.

Theorem 8 MADVn−1,4ζ(Searchn) = Ω(ζ
√
n).

Proof We use the same adversary matrix Eqn. (4). We could compute Γ1Γ−1 explicitly, but we instead
choose to demonstrate the block-diagonalization process. Define a complete set of orthogonal projectors
Π = {Π2,Πtriv} with a 2-dimensional subspace Π2 = |v〉〈v|+ |v1〉〈v1| and its orthogonal complement Πtriv =
I − Π2. Define |w2〉 = Πtriv|v2〉 = |v2〉 − 〈v1|v2〉|v1〉 =

√
n

(n−1)3 (0, 2 − n, 1, . . . , 1) for which v1 ⊥ w2, and

define similarly w3, . . . , wn. Then Πtriv is spanned by w2, . . . , wn. O1wi = wi implies ΠtrivO1 = Πtriv. Since
O1 is unitary, O1 is block-diagonal in Π. Now,

Π2Γ = |v〉〈v|+ q|v1〉〈v1|

and ΠtrivΓ = q(I− |v〉〈v| − |v1〉〈v1|) = qΠtriv, and hence Γ is also block-diagonal in Π. We now analyze the
diagonal blocks of Γ1Γ−1 in this “basis”. We already know that ΠtrivO1 = Πtriv and hence Γ1Γ−1 = I on the
trivial subspace. It remains to examine the non-trivial subspace Π2.

In the orthonormal basis {|v〉, |v1〉},

Γ =
(

1 0
0 q

)
, O1 =

1
n

(
n− 2 2

√
n− 1

2
√
n− 1 2− n

)
,

and the eigenvalues of Γ1Γ−1 = O∗
1ΓO1Γ−1 are 1 ± 2(q−1)√

qn + O(1
n). Hence ‖Γ1Γ−1‖ ≈ 1 + 2(q−1)√

qn , and by
Corollary 4, the multiplicative adversary bound is

MADVn−1,4ζ(Searchn) ≥
log(ζ2λ)

log(1 + 2(q − 1)/
√
qn)

≥
log(ζ2q)

√
q

2(q − 1)
√
n,

where we have used that log(1 + x) ≤ x. This is by a factor of
√
q larger than the bound given by Eqn. (5).

Again, we set q = 2/ζ2 and finish the proof. 2

8

4.2 t-fold search

This is a generalization of the search problem, where we have to find t ones. Let X = {x ∈ {0, 1}n : |x| = t}
and Searcht,n(x) = J such that J ⊆ [n], |J | = t, and xJ = 1. The additive adversary implies that the
bounded-error quantum query complexity of Searcht,n is Ω(

√
tn). The multiplicative adversary gives the

same bound even for an exponentially small success probability! A part of this section is based on the
analysis by Ambainis [Amb05] translated to our framework.

4.2.1 Combinatorial matrices

The additive adversary matrix for Searcht,n is very simple [Amb02]: Γadd = Jn,t,t−1, where Jn,t,d is a zero-
one

(
n
t

)
×
(
n
t

)
matrix indexed by subsets of [n] of size t such that Jn,t,d[x, y] = 1 iff |x∩ y| = d. The intuition

is that we only put the weight on input pairs that are hardest to distinguish (because they have the smallest
possible Hamming distance).

The matrices Jn,t,d are called combinatorial matrices [Knu03]. For fixed n, t, the matrices Jn,t,d commute
and they thus all diagonalize in the same basis. This basis can be written in the bracket syntax as follows.

Definition 3 ([Amb05]) Let ΠSj
denote the projector onto the subspace Sj, where Sj = Tj ∩T⊥j−1, and Tj

is the space spanned by

|ψJ〉 =
1√(
n−j
t−j
) ∑
x:|x|=t
xJ=1

|x〉 for J ⊆ [n] with |J | = j.

Intuitively, |ψJ〉 is a superposition of input states compatible with fixing the input bits from J to 1, Tj is the
subspace where we “know” at most j ones, and Sj is the subspace where we “know” exactly j ones. Denote
|ψ̃J〉 = ΠT⊥j−1

|ψJ〉. Note that these projected states are neither normalized nor orthogonal for j > 0. Denote

|ψ̈J〉 = |ψ̃J 〉
‖ψ̃J‖2

. Note that Sj is spanned by |ψ̈J〉.

Claim 9 ([Knu03, Eqn. (4.4)]) Jn,t,d has eigenspaces {Sj}tj=0 with eigenvalues

ed(j) =
j∑
r=0

(−1)j−r
(
j

r

)(
t− r

d− r

)(
n− t− j + r

t− d− j + r

)
.

The eigenvalues of Jn,t,t−1 can be expressed explicitly as

et−1(j) = (n− t− j)(t− j + 1)− (n− t). (6)

4.2.2 Multiplicative adversary matrix for constant ζ

Let us utilize the knowledge of the best known additive adversary matrix Γadd = Jn,t,t−1 =
∑t
j=0 et−1(j)Sj

to design a good multiplicative adversary matrix for the same function. Note that et−1 is a quadratic
polynomial in j, decreasing in the range of interest j ∈ [0, t], and et−1(t) = −t. It follows that, assuming
t < n

2 , Γ′ = Γadd + (n − t)I is a positive definite matrix with smallest eigenvalue n − 2t and principal
eigenvalue (n− t)(t+ 1).

We want to assign higher weights to higher eigenspaces (because the success probability is higher there),
whereas the eigenvalues of Γ′ are decreasing in j. Let us thus compute its inverse and renormalize the
outcome. We will show that

Γ′′ = ‖Γ′‖ · (Γ′)−1 = (n− t)(t+ 1)
(
Γadd + (n− t)I

)−1

(7)

gives rise to a good multiplicative adversary matrix for Searcht,n, in the range ζ ≥ 0.78 and exponentially
small η. The only change we have to do to get this bound, is compressing the high eigenspaces of Γ′′ by

9

decreasing their eigenvalues. Unfortunately, 4ζ > 1, which makes the final lower bound trivial. However, we
show in the next section how to amplify ζ to roughly ζt and thus get a lower bound for an exponentially
small success probability.

Theorem 10 For every t ≤ n
4e and ζ ≥ 0.78, MADV2−t/2,4ζ(Searcht,n) = Ω(

√
tn).

Proof Denote the eigenvalues of Γ′′ by qj = (n−t)(t+1)
et−1(j)+(n−t) = (n−t)(t+1)

(n−t−j)(t−j+1) and set λ = qt/2. Take the

matrix Γ′′ =
∑t
j=0 qjΠSj from Eqn. (7) and change it to

Γ =
t/2−1∑
j=0

qjΠSj + λ

t∑
j=t/2

ΠSj , (8)

i.e., compress the eigenspaces for j ≥ t/2 into one eigenspace with the lowest eigenvalue among them.

Block-diagonalization of Γ and Oi,p [Amb05] Thanks to the symmetry, it is sufficient to only consider
the case i = 1 of querying the first input bit. As we say above, the only nontrivial case is p = 1. We present
a complete set of orthogonal projectors Π in which both Γ and O1 are block-diagonal. Let

|ψbJ〉 =
1√(
n−j−1
t−j−b

) ∑
x:|x|=t
x1=b
xJ=1

|x〉 for J ⊆ [n] such that 1 6∈ J

|ψ̃bJ〉 = ΠT⊥j−1,b
|ψbJ〉 with Tj,b spanned by |ψbJ〉 with |J | = j

|ψ̈bJ〉 =
|ψ̃bJ〉
‖ψ̃bJ‖2

Let Sj,b = Tj,b ∩ T⊥j−1,b. Then the following holds:

• Let |ψ̈a,bJ 〉 denote the vector a|ψ̈0
J〉+ b|ψ̈1

J〉. Let

α′j =
√
n− t

n− j
‖ψ̃0

J‖2 β′j =

√
t− j

n− j
‖ψ̃1

J‖2

αj =
α′j√

(α′j)2 + (β′j)2
βj =

β′j√
(α′j)2 + (β′j)2

(9)

We also denote them α, β if the index j is clear from the context. Note that α2 + β2 = 1. Then
|ψ̈α,βJ 〉 ∈ Sj and |ψ̈β,−αJ 〉 ∈ Sj+1 [AŠW06, Claim 15]. These two new vectors span the same subspace
as |ψ̈0

J〉 and |ψ̈1
J〉.

• [AŠW06, Claim 16] Sj,0 and Sj,1 have the same dimension and the mapping

M ′|0x2 . . . xn〉 →
∑
`:x`=1

|1x2 . . . x`−10x`+1 . . . xn〉

is a multiple M ′ = cjMj of some unitary operation on Sj,0 → Sj,1 that maps Mj : |ψ̈0
J〉 → |ψ̈1

J〉.

• Pick any orthonormal basis {|ϕj,`〉}` for each Sj,0 (the defining basis |ψ̈0
J〉 is not orthogonal). For j < t,

define projectors Πj,` = |ϕj,`〉〈ϕj,`|+ Mj |ϕj,`〉〈ϕj,`|M∗
j . Note that if some |ϕj,`〉 = |ψ̈0

J〉, then

Πj,` = |ψ̈0
J〉〈ψ̈0

J |+ |ψ̈1
J〉〈ψ̈1

J | = |ψ̈α,βJ 〉〈ψ̈α,βJ |+ |ψ̈β,−αJ 〉〈ψ̈β,−αJ | (10)

10

due to the basis change mentioned in the first item above. Thus Πj = {Πj,`}` is a complete set of
orthogonal projectors for Sj,0 ⊕ Sj,1, or, equivalently, for the subspace of Sj ∪ Sj+1 spanned by |ψ̃J〉
and |ψ̃J∪{1}〉 with |J | = j and 1 6∈ J . It follows that

Π = {Πj,`}j,`︸ ︷︷ ︸
2-dim projectors

∪ {|ϕt,`〉〈ϕt,`|}`︸ ︷︷ ︸
trivial subspace St,0

is a complete set of orthogonal projectors for the whole input space Tt.

Let us verify that Π indeed block-diagonalizes Γ and O1. To compute the images of the basis states
of each projector Πj,`, we use a double decomposition like in Eqn. (10). First, since |ϕj,`〉 ∈ Sj,0 and
Mj |ϕj,`〉 ∈ Sj,1, O1|ϕj,`〉 = |ϕj,`〉 and O1Mj |ϕj,`〉 = −Mj |ϕj,`〉, hence O1 is block-diagonal in Π. Second, if
we denote |ϕa,bj,` 〉 = a|ϕj,`〉+bMj |ϕj,`〉, then |ϕα,βj,` 〉 ∈ Sj and |ϕβ,−αj,` 〉 ∈ Sj+1, because both |ϕj,`〉 and Mj |ϕj,`〉
are just linear combinations with the same coefficients of states |ψ̈0

J〉 and |ψ̈1
J〉 respectively. We conclude

that Γ|ϕα,βj,` 〉 = qj |ϕα,βj,` 〉 and Γ|ϕβ,−αj,` 〉 = qj+1|ϕβ,−αj,` 〉, hence Γ is also block-diagonal in Π.

Eigenvalues of Γ1Γ−1 on Πj,` Consider the orthonormal basis B1 = {|ϕj,`〉,Mj |ϕj,`〉} of Πj,`. Let
U = (α β

β −α) denote the self-adjoint unitary operator changing the basis from B2 = {|ϕα,βj,` 〉, |ϕ
β,−α
j,` 〉} to B1.

Then, in the basis B1,

Γ1Γ−1Πj,` =
(

1 0
0 −1

)
U

(
qj 0
0 qj+1

)
U∗︸ ︷︷ ︸

Γ

(
1 0
0 −1

)
U

(
q−1
j 0
0 q−1

j+1

)
U∗

︸ ︷︷ ︸
Γ−1

=
((

1 + 2α2β2 (q − 1)2

q

)
I + 2αβ

q − 1
q

(
0 α2 + β2q

β2 + α2q 0

))
,

where q = qj+1
qj

is the ratio of two consecutive eigenvalues of Γ′′. Using Eqn. (6) from Claim 9 and j + 1 ≤
t ≤ n

2 − 1,

q =
qj+1

qj
=

et−1(j) + (n− t)
et−1(j + 1) + (n− t)

= 1 +
n− 2j

(n− t− j − 1)(t− j)

1 +
1

t− j
≤ q ≤ 1 +

2
t− j

. (11)

A straightforward calculation shows that Γ1Γ−1Πj,` has eigenvalues

1+2α2β2 (q − 1)2

q
± 2αβ

q − 1
q

√
(α2 + β2q)(β2 + α2q)

≤ 1 + 2αβ(q − 1) + 2α2β2(q − 1)2

≤ 1 + (2 + o(1))αβ(q − 1). (12)

where we have used that q ≥ 1 and α2 + β2 = 1. (The right expression can be strengthened by a factor of√
q for q = O(nt) to get an improvement like in Theorem 8, but we won’t need it here.)

To illustrate the bound in the full range of j, assume for a moment a weaker bound j < t instead of
j < t

2 , i.e., forget about the compression of high eigenspaces. We use the expressions α ≤ 1 and β =
√

t−j
n−2j

[AŠW06, Claim 19], which easily follow from the (non-trivial) computation of ‖ψ̃bJ‖2 =
√

(n−t+b−1)j

(n−j)j [AŠW06,

11

Claim 18], and the bound q ≤ 1 + 2
t−j from Eqn. (11) above. We obtain

‖Γ1Γ−1Πj,`‖ ≤ 1 +
4 + o(1)√

(t− j)(n− 2j)
.

Note that the bound gets extremely weak for j → t. Since we compress the high eigenspaces for j ≥ t
2 , the

norm can be upper-bounded by 1 + 8/
√
tn instead of just O(1).

Eigenvalues of Γ1Γ−1 on the trivial subspace Let us revisit the trivial subspace St,0 and make sure
that the block-diagonalization is right there, too. We claim that St,0 ⊆ St. Since |ψ0

J〉 = |ψJ〉 for |J | = t and
1 6∈ J , we get Tt,0 ⊆ Tt, and thus it suffices to prove St = Tt,0 ∩ T⊥t−1,0 ⊆ T⊥t−1. It holds that Tt,0 ⊆ T⊥t−1,1

due to a different value of the first input bit. Also, we know that Tj ⊆ Tj,0 ⊕ Tj,1, hence T⊥j,0 ∩ T⊥j,1 ⊆ T⊥j
and the proof is finished.

Let |w〉 ∈ St,0. |w〉 is an eigenvector of Γ, because it lies in St. Since O1|w〉 = |w〉, we conclude that
Γ1Γ−1|w〉 = |w〉 and St,0 is indeed a trivial subspace.

Upper-bounding η [Amb05] Since λ = qt/2, we have to upper-bound ‖Fz|ϕ〉‖22 ≤ η for all |ϕ〉 ∈ Tt/2.
Since the dimension of Tt/2 is

(
n
t/2

)
and the number of possible outcomes is

(
n
t

)
, using [Nay99], the success

probability is at most η ≤
(
n
t/2

)
/
(
n
t

)
. Using the bounds (nk)k ≤

(
n
k

)
≤ (enk)k and assuming t ≤ n

4e ,

η ≤

(
n
t/2

)(
n
t

) ≤
(2ent)

t/2

(nt)
t

=
(

2et
n

)t/2
≤ 2−t/2.

By being more careful, one can prove an exponentially small upper bound on η for all t ≤ n
2 . This is the

second reason why we compress the high eigenspaces—we would not be able to get an exponentially small
upper bound on η otherwise.

Multiplicative adversary bound Since λ = qt/2 ≥ (1 + 1
t)
t/2 ≈

√
e by Eqn. (11) and ‖Γ1Γ−1‖ =

maxj ‖Γ1Γ−1Πj,`‖, by Corollary 4, the multiplicative adversary bound for ζ ≥ 0.78 (to make the logarithm
in the numerator positive) is

MADVη,4ζ(Searcht,n) ≥
log(0.782

√
e)

log(1 + 8/
√
tn)

>
0.003077
8/
√
tn

>

√
tn

2600
.

(This bound can be improved to 1
20

√
tn for ζ ≥ 0.96.) 2

4.2.3 Multiplicative adversary matrix for exponentially small ζ

In this section, we show how to improve the parameter ζ of the multiplicative adversary matrix Γ for Searcht,n
to roughly ζt, while preserving the bound. The basic idea is to use the matrix power Γt instead of Γ.

Theorem 11 For every t ≤ n
4e , MADV2−t/2,e−t/8(Searcht,n) = Ω(

√
tn).

Proof We use the multiplicative adversary matrix Γt, where Γ comes from Eqn. (8), and λ = qtt/2. Since
all eigenvalues of Γ are just raised to the power of t, Γt is positive definite with smallest eigenvalue 1. Most
of the proof, such as the common block-diagonalization of Γt and Oi,p, upper-bounding η, and the symbolic
computation of eigenvalues of O∗

i,pΓ
tOi,pΓ−t on Πj,`, are conducted in the same way as in Theorem 10. We

recompute the upper bound on the spectral norm of a sub-matrix in Eqn. (12), changing q := qt, as follows:

‖O∗
i,pΓ

tOi,pΓ−tΠj,`‖ ≤ 1 + (2 + o(1))αβ(qt − 1) α ≤ 1, β ≤
√
t

n
, qt ≤ e4 for j ≤ t

2

< 1 + 108

√
t

n
.

12

Since log(λ) = t log(qt/2) ≥ t log
√
e = t

2 , the multiplicative adversary bound is

MADVη,4ζ(Searcht,n) ≥
log(ζ2) + t

2

log(1 + 108
√
t/n)

≥ t/4
108
√
t/n

=
√
tn

432
,

if ζ ≥ e−t/8. 2

4.2.4 Other possible multiplicative adversary matrices

Let us conclude this section with a few remarks. Ambainis [Amb05] in his proof (and also we, in the previous
versions of this paper) used a different multiplicative adversary matrix:

Γ =
t/2−1∑
j=0

qjΠSj
+

t∑
j=t/2

qt/2ΠSj ,

where q is a fixed constant, i.e., each ratio of two consecutive eigenvalues of Γ is equal. It turns out that
one has a lot of freedom in this respect and almost any matrix with this ratio close to a constant would give
a good bound. We have chosen to use Γ ∼ (Γadd)−t to demonstrate the relationship between the additive
adversary matrix and the multiplicative adversary matrix. Note that the additive term (n− t)I in Eqn. (7)
is not really necessary, because the high eigenspaces of Γ′′ are compressed out and it thus does not matter
what their original eigenvalues were. It would be nice if one could prove a simpler upper bound on Γ1Γ−1

using the explicit expression Γ ∼ J−tn,t,t−1, instead of analyzing the complete structure of the eigenspaces. Is
it true for other functions that one can take Γ−1

add as a good starting point for the multiplicative adversary
matrix?

The powering trick from Theorem 11, lowering the ζ parameter to ζt, is applicable to all functions, as long
as the spectral norms of the blocks are of the form 1+ c1(q−1) with the ratio of eigenvalues q = 1+ c2

t . The
multiplicative adversary bound given by Γ is ≥ log(λ) ·t/(c1c2), and the one given by Γt is ≥ t log(λ)/(c1ec2),
which is not much smaller is c2 is not too large. We are not aware of any other application of this principle,
mainly because we do not know the optimal multiplicative adversary matrix for any non-symmetric function.

4.3 t-threshold function

The decision version of the t-fold search problem is the t-threshold functionX = {x ∈ {0, 1}n : |x| ∈ {t−1, t}}
and Thresholdt,n(x) = |x| − t + 1. Here one can always achieve success probability 1/2 by random guess,
hence we want to upper-bound the bias from 1/2. The analysis in this section is based on Ambainis’s method
[AŠW06] translated to our framework.

Theorem 12 ([AŠW06]) MADV1/2,4ζ(Thresholdt,n) = Ω(ζ2
√
tn).

One may think that the true bound is Ω(ζ
√
tn), however we are unable to prove it using this method. It

is quite hard to analyze the 4× 4 matrix in the following proof exactly, and we rather use the simpler bound
from Corollary 6, which loses exactly this quadratic factor in Lemma 7. We tried to do exact calculations in
Mathematica, but they seem to give the same bound Ω(ζ2

√
tn) even when using Corollary 4.

Proof (sketch) We conduct the proof similarly to Theorem 10, but now we use eigenspaces spanned by
uniform superpositions of both (t − 1)-weight and t-weight strings. Define the following adversary matrix
with q = 1 + 4 log(2/ζ)

t and λ = qt/2:

Γ =
t/2−1∑
j=0

qjΠSj,+︸ ︷︷ ︸
bad

+qt/2

 t−1∑
j=t/2

ΠSj,+ +
t∑

j=0

ΠSj,−

︸ ︷︷ ︸

good

, (13)

13

where Sj,± is spanned by |ψ̈J,±〉 = 1√
2
(|ψ̈J,0〉 ± |ψ̈J,1〉),

|ψJ,a〉 =
1√(
n−j

t−1+a−j
) ∑
x:|x|=t−1+a

xJ=1

|x〉,

and the tilde and double-dot states are defined as usual.
Let us explain the intuition behind this construction. We have to put all minus subspaces inside the

good subspace of Γ, otherwise some |v〉 = |ψ̈J,0〉 = 1√
2
(|ψ̈J,+〉 + |ψ̈J,−〉), for which ‖F0|v〉‖2 = 1, lies in

Sj,+ ⊕ Sj,− ⊆ Tbad, and the success probability in the bad subspaces could only be upper-bounded by the
trivial η = 1. This way, all states from bad subspaces lie inside Tt/2,+ and η = 1/2. On the other hand,
we mark the plus subspaces above j ≥ t/2 as good instead of bad, because it allows us to prove a stronger
bound on the denominator. We do not lose much in the numerator.

Block-diagonalization of Γ and O1 Like in the proof of Theorem 10, we naturally decompose the basis
states |ψ̈J,a〉 with 1 6∈ J onto |ψ̈J,a,b〉 by fixing the first input bit to b. For the same reasons, some linear
combinations of these states lie in Sj,± and Sj+1,±. In particular, if for a v = (v00, v01, v10, v11) we let |ψ̈vJ〉
denote v00|ψ̈J,0,0〉 + v01|ψ̈J,0,1〉 + v10|ψ̈J,1,0〉 + v11|ψ̈J,1,1〉, then Γ|ψ̈vJ〉 = |ψ̈wJ 〉 with w = UGjU

∗v [AŠW06,
Claim 17], where

U =
1√
2

α0 β0 α0 β0

β0 −α0 β0 −α0

α1 β1 −α1 −β1

β1 −α1 −β1 α1

 , Gj =

qj 0 0 0
0 qj+1 0 0
0 0 qt/2 0
0 0 0 qt/2

 , Z =

1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

 ,

and αa, βa for an a ∈ {0, 1} (and an implicit index j) are defined by Eqn. (9) with the threshold value
t := t− 1 + a. In other words, the columns of U are vectors v that put |ψ̈vJ〉 inside Sj,+, Sj+1,+, Sj,−, Sj+1,−,
respectively. Furthermore, the subspaces Sj,a,b for a, b ∈ {0, 1}, spanned by |ψ̈J,a,b〉, have the same dimension
and there are 3 unitaries that map |ψ̈J,0,0〉 → |ψ̈J,a,b〉, hence one can form a complete set of orthogonal
projectors Π = {Πj,`}j,`∪Πtriv that block-diagonalizes Γ. Each projector Πj,` is 4-dimensional. O1 is trivially
block-diagonal in Π, because O1|ψ̈J,a,b〉 = (−1)b|ψ̈J,a,b〉, or, equivalently, O1|ψ̈vJ〉 = |ψ̈wJ 〉 with w = Zv.

Spectral norm of Γ1Γ−1 on Πj,` Recall Γ1 = O∗
1ΓO1 and denote Γ(j) = ΓΠj,` = UGjU

∗ for some `. Then

Γ(j)
1 (Γ(j))−1 = Γ1Γ−1Πj,` = (ZUGjU

∗Z)(UG−1
j U∗).

This matrix is too hard to analyze directly, hence we apply Corollary 6 rather than Corollary 4. Compute

2‖Γ(j) ◦D1‖
λmin(Γ(j))

=
2
qj
‖(UGjU∗) ◦D1‖, where D1 =

(
0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

)
.

Write the matrix (UGjU∗) ◦D1 after swapping the second and third row and column as − qj

2 (0 Hj

H∗
j 0) with

Hj =
(

α0β0(q − 1) α1β0(qt/2−j − 1)− α0β1(qt/2−j − q)
α0β1(qt/2−j − 1)− α1β0(qt/2−j − q) α1β1(q − 1)

)
= (q − 1)

(
α0β0 α0β1

α1β0 α1β1

)
+ (qt/2−j − 1)(α1β0 − α0β1)

(
0 1
−1 0

)
‖Hj‖ ≤ (q − 1)

∥∥∥∥(α0

α1

)
(β0, β1)

∥∥∥∥+ (qt/2−j − 1)(α1β0 − α0β1)
∥∥∥∥ 0 1
−1 0

∥∥∥∥

14

Use αa ≤ 1, and βa ≤
√

2t/n and |α1β0 − α0β1| = O(1/
√
tn) for j ≤ t/2 [AŠW06, Claim 19 and 20]. Then

substitute q = 1 + 4 log(2/ζ)
t and bound λ = qt/2 ≈ e2 log(2/ζ) = 4/ζ2.

‖Hj‖ ≤ 2(q − 1)

√
2t
n

+ (qt/2 − 1)O
(

1√
tn

)
= O(1) · log(2/ζ) + 4/ζ2

√
tn

= O
(1
ζ2
√
tn

)
.

We conclude that

min
j

λmin(Γ(j))
2‖Γ(j) ◦D1‖

= Ω(ζ2
√
tn).

As we say above, this bound is only valid for j ≤ t/2. However, if j ≥ t/2, then Gj = qt/2I, Γ(j)
1 (Γ(j))−1 = I,

and the analysis in this subspace is trivial. This is exactly the reason why we mark the subspaces Sj,+ for
j ≥ t/2 as good.

Analysis of the trivial subspaces For j ∈ {t − 1, t}, the projectors Πj,` have smaller dimension than
4 × 4, because there are not enough basis states. In particular, for |J | = t − 1, there are only 3 types of
basis states |ψ̈J,0,0〉 ∈ St−1,0,0 ⊆ St−1,0, and |ψ̈J,1,0〉 and |ψ̈J,1,1〉 with α|ψ̈J,1,0〉 + β|ψ̈J,1,1〉 ∈ St−1,1 and
β|ψ̈J,1,0〉 − α|ψ̈J,1,1〉 ∈ St,1. Hence their linear combinations fall into the following subspaces: (1, α, β) ∈
St−1,+, (1,−α,−β) ∈ St−1,−, and (0, β,−α) ∈ St,1 = St,−. Note that St,− has a different definition than
other Sj,−, and that there is no subspace St,+. For, |J | = t, the situation is simpler, because there are only
basis states |ψ̈J,1,0〉 ∈ St,1,0 ⊆ St,1 = St,−. We conclude that even the projectors onto the trivial subspaces
block-diagonalize Γ and O1.

Now, the actual analysis of the norm of Γ1Γ−1 on these trivial subspaces is not needed, because Γ = qt/2I
on Πt−1,` or Πt,`. We conclude that the norm there is exactly 1.

Multiplicative adversary bound By Corollary 6, using the symmetry over all i and ζ2λ = ζ2qt/2 ≈ 4,

MADV1/2,4ζ(Thresholdt,n) ≥ log(ζ2λ) ·min
j

λmin(Γ(j))
2‖Γ(j) ◦D1‖

= Ω(ζ2
√
tn).

2

4.4 The OR function

Let us consider a special case of the t-threshold function for t = 1, the OR function. It is the decision version
of the search function from Section 4.1. We show a quadratically better lower bound in terms of the error
probability than the one implied by Theorem 12.

Theorem 13 MADV1/2,4ζ(ORn) = Ω(ζ
√
n) for ζ ≥

√
2/n.

Proof We use the same subspaces and the same adversary matrix Γ like in Eqn. (13):

Γ = ΠS0,+ + q ·
(
ΠS0,− + ΠS1,−

)
,

λ = q = 2/ζ2, and the same block-diagonalization like in the proof of Theorem 12. However, we do the
analysis more carefully, which is feasible thanks to the fact that we only have one nontrivial 3-dimensional
subspace. This subspace is spanned by |ψ̈∅,0,0〉, |ψ̈∅,1,0〉, and |ψ̈∅,1,1〉. In this basis, Γ = UGU∗ and Γ1 = ZΓZ,
where

U =
1√
2

1 1 0
α −α

√
2β

β −β −
√

2α

 , G =

1 0 0
0 q 0
0 0 q

 , Z =

1 0 0
0 1 0
0 0 −1

 .

15

If we applied Corollary 6 on this adversary matrix, we would obtain the same bound as in Theorem 12. We
instead express Γ1Γ−1 = (ZUGU∗Z)(UG−1U∗) explicitly and get that its eigenvalues are 1 and

1 + γ ±
√
γ2 + 2γ, where γ =

(q − 1)2

2q
(2β2 − β4).

We plug in the bound β ≤
√

2/n, expand the Taylor series, and obtain ‖Γ1Γ−1‖ = 1 + 2(q−1)√
qn + O(qn). We

can neglect the remaining terms when ζ ≥
√

2/n. By Corollary 4,

MADV1/2,4ζ(ORn) ≥
log(ζ2λ)

log(1 + 2(q − 1)/
√
qn)

≥
log(ζ2q)

√
q

2(q − 1)
√
n = Ω(ζ

√
n).

2

The multiplicative adversary bound for OR is stronger than the additive adversary bound for polynomially
small success probabilities. Note that success 1

2 + ζ corresponds to error 1
2 − ζ. By Corollary 2, the additive

adversary bound for OR is

ADV 1
2−ζ

(ORn) =
1−

√
(1− 2ζ)(1 + 2ζ)

2
√
n =

1−
√

1− 4ζ2

2
√
n ≈ 1− (1− 2ζ2)

2
√
n = ζ2

√
n.

4.5 Designing Γ for a general function

After having presented optimal multiplicative adversary matrices for several problems, let us make a note
on how to design a good Γ in general. It seems that we don’t have too much freedom. All known good
multiplicative adversary matrices Γ have the following structure: Γ is a linear combination of projectors Sj ,
where Sj is spanned by superpositions of input states consistent with fixing exactly j input variables. This
matrix is then simultaneously block-diagonalized with the query operator. The diagonal blocks typically
overlap with some adjacent subspaces Sj and Sj+1. To get a good estimate of the spectral norm of such a
block, the minimal and maximal eigenvalue in this block must not differ too much. On the other hand, we
want the spectral norm of Γ be as large as possible, hence an optimal choice of the multiplicative coefficients
seems to be qjΠSj

for some constant q, or more generally (Πj
i=1qi)ΠSj , with qi different in each subspace Si

if the subspaces for different i have significantly different properties.
The real difficulty seems to lie not in designing good subspaces Sj , but in their combinatorial analysis.

5 Direct product theorems

In this section we investigate the complexity of evaluating a function f on k independent instances simulta-
neously. We prove that the multiplicative adversary bound satisfies a strong direct product theorem (DPT).
Roughly speaking it says that if we are asked to compute f on k independent inputs in time less than k
times the time for one instance, then the success probability goes exponentially down. Ambainis [AŠW06]
proved a DPT for t-threshold using these techniques. Here we show that his proof actually gives a DPT for
any function that has a multiplicative adversary lower bound.

For a function f : X → ΣO with X ⊆ ΣnI and k ≥ 1, let f (k) : Xk → ΣkO such that f(x1, . . . , xk) =
(f(x1), . . . , f(xk)). An algorithm succeeds with computing f (k) if all individual instances are computed right.

Theorem 14 For every function f with η ≤ 1
2 , and k ≥ 361, MADVη2k/5,ζk/10(f (k)) ≥ k

10 ·MADVη,4ζ(f).

Proof Let Γ, λ denote the optimal multiplicative adversary matrix for f with success η, and its threshold
value for good subspaces. We construct Γ′, λ′ for f (k) as follows [AŠW06, Appendix A.1]:

Γ′ = Γ⊗k, λ′ = λk/10.

16

We prove that maxi′,p ‖Γ′i′,p(Γ′)−1‖ = maxi,p ‖Γi,pΓ−1‖. This is because, for an i′ = jn+i, Γ′i′,p = O∗
i′,pΓ

′Oi′,p
with Oi′,p = I⊗j ⊗ Oi,p ⊗ I⊗(k−1−j), and thus Γ′i′,p(Γ

′)−1 = I⊗j ⊗ (Γi,pΓ−1) ⊗ I⊗(k−1−j). Therefore, by
Corollary 4, if we choose ζ ′ = ζk/10, the multiplicative adversary bound is

MADVη′,4ζ′(f (k)) ≥ log(ζ ′2λ′)
log(maxi,p ‖Γ′i,p(Γ′)−1‖)

=
k

10
· log(ζ2λ)
log(maxi,p ‖Γi,pΓ−1‖)

=
k

10
·MADVη,4ζ(f).

It remains to analyze the success η′ of the composed function f (k) in the bad subspaces.

Upper-bounding η′ Let Tbad, Tgood denote the bad and good subspace of Γ. For a v ∈ {bad, good}k, let
|ϕ〉 ∈ Tv1 ⊗ · · · ⊗ Tvk

be a product quantum state such that ‖Γ′|ϕ〉‖2 < λ′. Since all eigenvalues of Γ are at
least 1, if a subspace of Γ′ corresponds to an eigenvalue less than λ′, only less than k/10 individual subspaces
out of k can be the good ones. This means that more than 9k/10 instances lie in the bad eigenspace of Γ
and have thus success probability at most η. Since |ϕ〉 is a product state, the total success probability of
computing all instances right is at most η9k/10. We, however, have to upper-bound the success probability
for all superposition states than can come from different combinations of Tvi

’s. In general,

|ϕ〉 =
∑

v∈{bad,good}k

|v|<k/10

αv|ϕv〉, where |ϕv〉 ∈ Tv1 ⊗ · · · ⊗ Tvk
and |v| denotes #good subspaces.

Our assumption about f is that ‖Fz|v〉‖22 ≤ η for every z and |v〉 ∈ Tbad. Thus

‖(Fz1 ⊗ · · · ⊗ Fzk
)|ϕ〉‖22 = ‖

∑
v

αv
∏
i

Fzi |ϕv,i〉‖22

≤

(∑
v

αv
∏
i

‖Fzi |ϕv,i〉‖2

)2

≤

(∑
v

|αv|2
)
·

(∑
v

∏
i

‖Fzi |ϕv,i〉‖22

)
≤ 1 · η9k/10

∑
v:|v|<k/10

1

= η9k/10

k/10∑
i=0

(
k

i

)
≤ k

(
k

k/10

)
η9k/10

(
n

k

)
≤
(ne
k

)k
≤ k(10e)k/10η9k/10

5
√

10e < 2

k 5
√

10e
k/2

< 2k/2 for k ≥ 361

< 2k/2ηk/2η2k/5 η ≤ 1
2

≤ η2k/5.

Note that in the case of the t-threshold function as the base function, the success probability is η = 1
2 in

both bad (plus) and good (minus) subspaces, hence we could use a stronger bound 2−k instead of η9k/10.
There is nothing special about the constant k ≥ 361; the DPT holds for all k, but we have to take into
account the multiplicative factor of k in the success η′.

We conclude that MADVη2k/5,ζk/10(f) ≥ k
10 ·MADVη,4ζ(f). 2

This technique also allows us to prove the direct product theorem when the k instances are distinct
functions.

17

Acknowledgments

I thank Andris Ambainis, Peter Høyer, Sophie Laplante, Troy Lee, and Mehdi Mhalla for fruitful discussions,
and Ronald de Wolf for helpful comments.

References

[Amb02] A. Ambainis. Quantum lower bounds by quantum arguments. Journal of Computer and System
Sciences, 64(4):750–767, 2002. Earlier version in STOC’00.

[Amb05] A. Ambainis. A new quantum lower bound method, with an application to strong direct product
theorem for quantum search. quant-ph/0508200, 2005.

[Amb06] A. Ambainis. Polynomial degree vs. quantum query complexity. Journal of Computer and System
Sciences, 72(2):220–238, 2006. Earlier version in FOCS’03.

[AS04] S. Aaronson and Y. Shi. Quantum lower bounds for the collision and the element distinctness
problems. Journal of the ACM, 51(4):595–605, 2004.

[AŠW06] A. Ambainis, R. Špalek, and R. de Wolf. A new quantum lower bound method, with applications
to direct product theorems and time-space tradeoffs. In Proc. of 38th ACM STOC, pages 618–633,
2006.

[BBBV97] H. Bennett, E. Bernstein, G. Brassard, and U. Vazirani. Strengths and weaknesses of quantum
computing. SIAM Journal on Computing, 26(5):1510–1523, 1997.

[BBC+01] R. Beals, H. Buhrman, R. Cleve, M. Mosca, and R. de Wolf. Quantum lower bounds by polyno-
mials. Journal of the ACM, 48(4):778–797, 2001. Earlier version in FOCS’98.

[BS04] H. Barnum and M. Saks. A lower bound on the quantum query complexity of read-once functions.
Journal of Computer and System Sciences, 69(2):244–258, 2004.

[BSS03] H. Barnum, M. Saks, and M. Szegedy. Quantum decision trees and semidefinite programming.
In Proc. of 18th IEEE Complexity, pages 179–193, 2003.

[BV97] E. Bernstein and U. Vazirani. Quantum complexity theory. SIAM Journal on Computing,
26(5):1411–1473, 1997. Earlier version in STOC’93.

[HLŠ07] P. Høyer, T. Lee, and R. Špalek. Negative weights make adversaries stronger. In Proc. of 39th
ACM STOC, pages 526–535, 2007.

[HNS02] P. Høyer, J. Neerbek, and Y. Shi. Quantum complexities of ordered searching, sorting, and
element distinctness. Algorithmica, 34(4):429–448, 2002. Special issue on Quantum Computation
and Cryptography. Earlier version in ICALP’01.

[HŠ05] P. Høyer and R. Špalek. Lower bounds on quantum query complexity. EATCS Bulletin, 87:78–
103, October, 2005.

[Knu03] D. E. Knuth. Combinatorial matrices. In Selected Papers on Discrete Mathematics, volume 106
of CSLI Lecture Notes. Stanford University, 2003.

[KŠW07] H. Klauck, R. Špalek, and R. de Wolf. Quantum and classical strong direct product theorems
and optimal time-space tradeoffs. SIAM Journal on Computing, 36(5):1472–1493, 2007. Earlier
version in FOCS’04.

[LM04] S. Laplante and F. Magniez. Lower bounds for randomized and quantum query complexity using
Kolmogorov arguments. In Proc. of 19th IEEE Complexity, pages 294–304, 2004.

18

[Nay99] A. Nayak. Optimal lower bounds for quantum automata and random access codes. In Proc. of
40th IEEE FOCS, pages 369–377, 1999.

[ŠS06] R. Špalek and M. Szegedy. All quantum adversary methods are equivalent. Theory of Computing,
2(1):1–18, 2006. Earlier version in ICALP’05.

[Zha05] S. Zhang. On the power of Ambainis’s lower bounds. Theoretical Computer Science, 339(2–
3):241–256, 2005. Earlier version in ICALP’04.

19

	Introduction
	Adversary framework
	Quantum query complexity
	Progress function
	Additive adversary

	Multiplicative adversary
	Applications
	Search
	t-fold search
	Combinatorial matrices
	Multiplicative adversary matrix for constant
	Multiplicative adversary matrix for exponentially small
	Other possible multiplicative adversary matrices

	t-threshold function
	The OR function
	Designing for a general function

	Direct product theorems

