
Quantum Algorithms,
Lower Bounds,

and Time-Space Tradeoffs

Robert Špalek

Quantum Algorithms,
Lower Bounds,

and Time-Space Tradeoffs

ILLC Dissertation Series DS-2006-04

For further information about ILLC-publications, please contact

Institute for Logic, Language and Computation
Universiteit van Amsterdam
Plantage Muidergracht 24

1018 TV Amsterdam
phone: +31-20-525 6051
fax: +31-20-525 5206

e-mail: illc@science.uva.nl
homepage: http://www.illc.uva.nl/

Quantum Algorithms,
Lower Bounds,

and Time-Space Tradeoffs

Academisch Proefschrift

ter verkrijging van de graad van doctor aan de
Universiteit van Amsterdam

op gezag van de Rector Magnificus
prof.mr. P.F. van der Heijden

ten overstaan van een door het college voor
promoties ingestelde commissie, in het openbaar

te verdedigen in de Aula der Universiteit
op donderdag 7 september 2006, te 12.00 uur

door

Robert Špalek

geboren te Žilina, Slowakije.

Promotiecommissie:

Promotor: Prof.dr. H.M. Buhrman

Co-promotor: Dr. R. de Wolf

Overige leden: Dr. P. Pudlák
Prof.dr. A. Schrijver
Prof.dr. M. Szegedy
Prof.dr.ir. P.M.B. Vitányi

Faculteit der Natuurwetenschappen, Wiskunde en Informatica

Copyright c© 2006 by Robert Špalek

Cover design by Roman Kozub́ık.
Printed and bound by PrintPartners Ipskamp.

ISBN-10: 90–5776–155–6
ISBN-13: 978–90–5776–155–3

The highest technique is to have no technique.

Bruce Lee

v

Contents

Acknowledgments xiii

1 Quantum Computation 1
1.1 Postulates of quantum mechanics 5

1.1.1 State space . 5
1.1.2 Evolution . 7
1.1.3 Measurement . 10
1.1.4 Density operator formalism 12

1.2 Models of computation . 14
1.2.1 Quantum circuits . 15
1.2.2 Quantum query complexity 17

1.3 Quantum search . 20
1.3.1 Searching ones in a bit string 20
1.3.2 Searching an unstructured database 26
1.3.3 Amplitude amplification 26

1.4 Quantum random walks . 28
1.4.1 Element distinctness . 28
1.4.2 Walking on general graphs 32

1.5 Quantum counting . 36
1.5.1 General counting algorithm 37
1.5.2 Estimating the Hamming weight of a string 39

1.6 Summary . 39

2 Quantum Lower Bounds 41
2.1 Introduction . 41
2.2 Distinguishing hard inputs . 42
2.3 Adversary lower bounds . 44
2.4 Applying the spectral method . 46
2.5 Limitations of the spectral method 49

vii

2.6 Polynomial lower bounds . 51
2.7 Applying the polynomial method 53
2.8 Challenges . 56
2.9 Summary . 56

I Algorithms 59

3 Matching and Network Flows 61
3.1 Introduction . 61
3.2 Preliminaries . 63
3.3 Finding a layered subgraph . 64
3.4 Bipartite matching . 65
3.5 Non-bipartite matching . 67
3.6 Integer network flows . 71
3.7 Summary . 74

4 Matrix Verification 75
4.1 Introduction . 75
4.2 Previous algorithm for matrix verification 76
4.3 Algorithm for matrix verification 78
4.4 Analysis of the algorithm . 78

4.4.1 Multiplication by random vectors 78
4.4.2 Analysis of Matrix Verification 82
4.4.3 Comparison with other quantum walk algorithms 84

4.5 Fraction of marked pairs . 84
4.5.1 Special cases . 85
4.5.2 Proof of the main lemma 87
4.5.3 The bound is tight . 88

4.6 Algorithm for matrix multiplication 88
4.7 Boolean matrix verification . 92
4.8 Summary . 92

II Lower Bounds 93

5 Adversary Lower Bounds 95
5.1 Introduction . 95
5.2 Preliminaries . 100
5.3 Equivalence of adversary bounds 101

5.3.1 Equivalence of spectral and weighted adversary 104
5.3.2 Equivalence of primal and dual adversary bounds 109
5.3.3 Equivalence of minimax and Kolmogorov adversary 112

viii

5.4 Limitation of adversary bounds 112
5.5 Composition of adversary bounds 114

5.5.1 Adversary bound with costs 114
5.5.2 Spectral norm of a composite spectral matrix 115
5.5.3 Composition properties . 118

5.6 Summary . 121

6 Direct Product Theorems 123
6.1 Introduction . 123
6.2 Classical DPT for OR . 128

6.2.1 Non-adaptive algorithms 128
6.2.2 Adaptive algorithms . 129
6.2.3 A bound for the parity of the outcomes 130
6.2.4 A bound for all functions 130

6.3 Quantum DPT for OR . 131
6.3.1 Bounds on polynomials . 131
6.3.2 Consequences for quantum algorithms 135
6.3.3 A bound for all functions 139

6.4 Quantum DPT for Disjointness 139
6.4.1 Razborov’s technique . 139
6.4.2 Consequences for quantum protocols 141

6.5 Summary . 141

7 A New Adversary Method 143
7.1 Introduction . 143
7.2 Quantum DPT for symmetric functions 145
7.3 Measurement in bad subspaces . 149
7.4 Total success probability . 152
7.5 Subspaces when asking one query 153
7.6 Norms of projected basis states 160
7.7 Change of the potential function 164
7.8 Summary . 166

8 Time-Space Tradeoffs 167
8.1 Introduction . 167
8.2 Preliminaries . 170
8.3 Time-space tradeoff for sorting . 171
8.4 Time-space tradeoffs for matrix products 172

8.4.1 Construction of a hard matrix 172
8.4.2 Boolean matrix products 173

8.5 Communication-space tradeoffs 175
8.6 Time-space tradeoff for linear inequalities 178

8.6.1 Classical algorithm . 178

ix

8.6.2 Quantum algorithm . 178
8.6.3 Matching quantum lower bound 181

8.7 Summary . 183

Bibliography 185

List of symbols 199

Samenvatting 201

Abstract 205

x

List of Figures

1.1 Double-slit experiment . 3
1.2 Classical circuit computing the parity of 4 bits 15
1.3 Quantum circuit computing the parity of n bits 17
1.4 Quantum algorithm Grover search [Gro96] 21
1.5 The Grover iteration G drawn as a rotation in two dimensions . . 22
1.6 Quantum algorithm Generalized Grover search [BBHT98] . 23
1.7 Quantum algorithm Older Element distinctness [BDH+01] . 28
1.8 Quantum algorithm Element distinctness [Amb04] 29
1.9 Quantum algorithm Decide Marked Vertices [Sze04] 33
1.10 Quantum algorithm Quantum Counting [BHMT02] 37

3.1 Quantum algorithm Find Layered Subgraph 64
3.2 Classical algorithm [HK73] Find Bipartite Matching 66
3.3 Vertex-disjoint augmenting paths in an example layered graph . . 66
3.4 Classical algorithm [Edm65, Gab76] Find Augmenting Path . 69
3.5 Progress of Find Augmenting Path on an example graph . . . 70
3.6 Quantum algorithm Find Blocking Flow 72

4.1 Quantum algorithm Older Matrix Verification [ABH+02] . 77
4.2 Quantum algorithm Matrix Verification 79
4.3 Quantum algorithm Matrix Multiplication 90

7.1 States and subspaces used in the adversary-type DPT 148

8.1 Quantum algorithm Bounded Matrix Product 179

xi

Acknowledgments

First, I would like to thank my advisor Harry Buhrman. After supervising my
Master’s Thesis, he offered me a PhD position. He was always a good source
of interesting new problems, and let me work on topics that I liked. Second, I
want to thank my co-advisor Ronald de Wolf. He spent much time in discussions
with me, proofread all my papers and always had plenty of comments, refined my
style, corrected my English, and drank many bottles of good wine with me.

I thank my coauthors: Andris Ambainis (2×), Harry Buhrman, Peter Høyer
(3×), Hartmut Klauck, Troy Lee, Mario Szegedy, and Ronald de Wolf (2×), for
the wonderful time spent in our research. It was very exciting to collaborate
on frontier research. I also thank the members of my thesis committee: Pavel
Pudlák, Lex Schrijver, Mario Szegedy, and Paul Vitányi.

A lot of my results was done in different time-zones. I thank the following
people for their hospitality, for fruitful scientific discussions, or both. My first
steps overseas went to the Rutgers University in New Jersey in the autumn
2004, and I thank André Madeira, Martin Pál, Peter Richter, Xiaoming Sun,
and Mario Szegedy and his family, among others for carrying me everywhere
in their cars. In the summer 2005, I visited two research groups in Canada.
I thank Scott Aaronson, Andris Ambainis, Elham Kashefi, and Ashwin Nayak
from the University of Waterloo, and Dmitry Gavinsky, Peter Høyer, Mehdi
Mhalla, Barry Sanders, Andrew Scott, Jonathan Walgate, and John Watrous
from the University of Calgary for a wonderful time, and the quantum physics
group in Calgary for stunning trips to the Rocky Mountains. At the end of
2005, I visited LRI in Orsay, and spent a great week in Paris thanks to Julia
Kempe, Sophie Laplante, Frédéric Magniez, and Miklos Santha. I thank Ben
Reichardt and Umesh Vazirani for discussions at UC Berkeley during my round-
the-world trip in 2006. I learned a lot during my one-month stay at the quantum
information group of the University of Queensland in Brisbane, and I thank
Juliet Aylmer, Sean Barrett, Aggie Branczyk, Jennifer Dodd, Andrew Doherty,
Mark Dowling, Mile Gu, Nick Menicucci, Michael Nielsen, Roman Orus, Peter

xiii

Rohde, and Guifré Vidal, for a warm welcome in their group and a lot of social
activities.

Back in Amsterdam, I thank Troy Lee and Falk Unger, who often went
climbing with me, brought me into salsa, and generally helped my last 4 years
to become one long neverending party. I also thank all other friends from our
hallway: Manuel Ballester, Harry Buhrman, Rudi Cilibrasi, Tim van Erven, Mart
de Graaf, Peter Grünwald, Hartmut Klauck, Wouter Koolen-Wijkstra, Michal
Koucký, Zvi Lotker, Steven de Rooij, Hein Röhrig, Caspar Treijtel, John Tromp,
Paul Vitányi, Stephanie Wehner, and Ronald de Wolf, for interesting discussions
we had over the years.

With the risk of forgetting someone, I thank Luis Antunes, Dave Bacon, Piotr
Berman, Amit Chakrabarti, Matthias Christandl, Scott Diehl, Chris Dürr, Steve
Fenner, Lance Fortnow, Fred Green, Sean Hallgren, Johan H̊astad, Steve Homer,
Karol Horodecki, Piotr Indyk, Valentine Kabanets, Marek Karpinski, Eike Kiltz,
Jan Kraj́ıček, Jan Kratochv́ıl, Dieter van Melkebeek, Chris Moore, Mike Mosca,
Ilan Newman, Pavel Pudlák, Oded Regev, Pranab Sen, Jǐŕı Sgall, Yaoyun Shi,
Mikkel Thorup, Kolya Vereshchagin, Andreas Winter, and Shengyu Zhang, for
discussions and inspiration.

Finally, I thank my parents, sister, family, and friends for support and dis-
traction from science.

Robert Špalek
July 2006, Amsterdam

xiv

Chapter 1

Quantum Computation

A little more than a century ago, before the birth of quantum physics, the physical
description of the world was, as we would say today, classical. Every particle had
a defined position and velocity, and one could, in principle, predict the state of
a closed physical system at any future moment from the complete description of
its current state. Although the physical description of the world seemed nearly
complete, some experiments were still incompatible with the physical theories of
that age. In fact, it turned out that the whole foundation of physics had to be
changed to fully explain these phenomena.

Old quantum theory The first such phenomenon was black body radiation,
studied from 1850. According to classical physics, the amount of energy radiated
out of an ideal black body in thermal equilibrium would be infinite. This follows
from summing up the contributions of all possible wave forms. This obvious in-
consistency was resolved by Planck in 1900 [Pla01], who postulated that energy
is quantized, that is it comes in discrete chunks instead of a continuous range of
energies. In 1905, Einstein explained the photoelectric effect [Ein05] by postulat-
ing that light also comes in quanta called photons ; he later got the Nobel prize
for it. The photoelectric effect is an emission of electrons from matter upon the
absorption of a photon with wavelength smaller than a certain threshold; if the
wavelength is too big, no electron is emitted. In 1913, Bohr explained the spec-
tral lines of the hydrogen atom [Boh13], again using quantization, and in 1924
de Broglie stated that also particles can exhibit wave characteristics and vice
versa [Bro24]; we call this wave-particle duality. These theories, though success-
ful, were strictly phenomenological, without formal justification for quantization.
Shortly afterward, mathematical formalisms arose that possessed quantization as
an inherent feature.

Modern quantum physics In 1925, Heisenberg developed matrix mechan-
ics and Schrödinger developed wave mechanics ; these two approaches were later

1

2 Chapter 1. Quantum Computation

shown to be equivalent. A few years later, Dirac and von Neumann formulated the
rigorous basis for quantum mechanics as the theory of linear operators on Hilbert
spaces. Here physical observables correspond to eigenvalues of these operators
and thus may be discrete.

Quantum physics satisfactorily explains both quantization and wave-particle
duality. It also exhibits two new interesting phenomena, both later verified in the
laboratory. The uncertainty principle, formulated by Heisenberg in 1927 [Hei27],
is a phenomenon that two consecutive measurements on the same object (say
position and velocity) possess a fundamental limitation on accuracy. Entangle-
ment is a phenomenon that certain quantum states of two objects have to be
described with reference to each other even if they are spatially separated. Quan-
tum physics, however, does not contradict classical physics. The correspondence
principle, formulated by Bohr in 1923, states that quantum systems reduce to
classical in the limit of large quantum numbers.

Quantum mechanics is needed to explain certain macroscopic systems such
as superconductors and superfluids. Despite initial reluctance on the part of
many physicists, quantum physics turned out to be one of the most successful
physical theories ever. The whole world nowadays is dependent on electronics
and computers. They are based on semiconductors that could not be understood
let alone built without quantum physics.

Quantum physics has several interpretations. Being built on the same basis,
they do not differ in predictions, but some of them are more suitable to explain
certain effects. The Copenhagen interpretation, largely due to Bohr in 1927, is the
most widely accepted one among physicists. According to it, quantum mechanics
provides probabilistic results because the physical universe is itself probabilistic
rather than deterministic. The many-worlds interpretation, formulated by Everett
in 1956, instead postulates that all the possibilities described by quantum theory
simultaneously occur in a multiverse composed of independent parallel universes.
In this thesis, we will stick to the Copenhagen interpretation, because it nicely
describes the process of quantum measurement.

Double-slit experiment To illustrate quantum mechanics, consider the fol-
lowing simple experiment, first performed by Young in 1801. It is outlined in
Figure 1.1. We send a beam of coherent light through a double-slit to a light
sensitive film. When the film is developed, we see a pattern of light and dark
fringes, called the interference pattern. This pattern is well explained by the wave
theory of light formulated by Huygens, as follows. When a wave goes through
the double-slit, two waves similar to the waves on the water level are formed.
These two waves interfere: in the light spots constructively and in the dark spots
destructively. This explains why the film is lit more on some places.

There is another theory of light, the corpuscular theory, formulated by Newton
and supported by Einstein that claims that light is quantized—there is a smallest

3

two waves

interfere

corpuscular
theory

wave
theory

Figure 1.1: Double-slit experiment

amount of light, a photon, that one can produce. This photon behaves like a
particle, a little ball that has its own trajectory. Consider thus the following
thought experiment. We attenuate the light source such that at every moment,
at most one photon is produced. Assuming the corpuscular theory, this photon
goes along one concrete trajectory chosen at random. The final position should
then be distributed according to a bell-like distribution with one maximum in
the middle. Let us send many single photons one after another so that the film is
exposed enough, and develop the film. One would expect the picture to contain
the bell-like pattern. However, it turns out that the interference pattern arises
instead. It seems as if each of the individual photons behaves like a wave and
interferes with itself.

Since it is very difficult to produce single photons, this experiment has been
so far just a thought experiment. However, one can perform a similar experiment
with other particles. In 1961, Jönsson performed it with electrons, and in 1974
Merli et al. performed it in the setting “one electron at a time”, both observing the
interference pattern described above. Interestingly, if one puts a detector behind
the slits that measures which trajectory the electron has chosen, the interference
pattern disappears. None of this could be explained with classical physics!

Postulates of quantum physics Quantum physics postulates that a photon
(and also any other particle) is a kind of wave. It does not possess a concrete
position, but instead a so-called wave function assigns amplitudes to all possible
positions. An amplitude somehow corresponds to the probability of measuring
the photon at a given position. The wave function evolves in time according
to Schrödinger’s equation. This equation is linear, as is its solution, and hence
a principle of superposition holds—any linear combination of solutions to the
equation is also a solution. When a system is in a linear combination, called
superposition, of two states, then any future state is the same linear combination

4 Chapter 1. Quantum Computation

of the two individual evolved states. An observer, however, does not have access
to the wave function and can only observe the system, which usually causes a
disturbance. There are systems, for which quantum physics cannot, even in prin-
ciple, predict the outcome of a measurement with certainty. This profound result
was unacceptable for many physicists, including Einstein who initially helped to
develop the theory.

Quantum computation Let us move from continuous quantum systems (such
as position or velocity of a particle) to discrete ones, for example electron spin (a
non-classical feature of electron corresponding to presence of angular momentum)
or polarization of light (which can be horizontal or vertical, or a superposition
of both). Consider a system of n such particles. Label the classical states of
each particle by 0 and 1. There are 2n possible classical states of the system and
each has assigned a quantum amplitude. Since simulating this quantum system
involves computation of exponentially many amplitudes, classical computers seem
to be of little help and the best way to understand a quantum system is building
it and experimenting with it. It was Feynman who first proposed [Fey82, Fey85]
that since computers based on quantum physics can easily simulate quantum
systems, they may be more powerful than classical computers. Deutsch then laid
the foundations of quantum computing [Deu85] by defining a universal quantum
Turing machine.

The real interest in quantum computing started in 1994, when Shor discov-
ered a polynomial-time quantum algorithm for factoring [Sho97], a problem for
which no fast classical algorithm is known (it may exist though). Since several
widely used cryptosystems rely on the intractability of this problem, even a slight
possibility of building a quantum computer is a threat. Two years later, Grover
discovered a universal quantum search algorithm [Gro96] that is quadratically
faster than the best classical algorithm. Thanks to its universality, quantum
computers can solve many problems that include some form of search faster.
Since that time, much progress has been made in various areas, including but not
limited to quantum cryptography, quantum error correction, and quantum com-
munication. Several books on these topics have been written; let us just mention
the excellent textbook [NC00] by Nielsen and Chuang that covers the foundations
in much more detail than presented in this chapter.

Structure of the thesis In this thesis, we explore fast quantum algorithms
and also lower bounds, that is proofs of optimality of the algorithms. In the
rest of Chapter 1, we introduce the basic principles of quantum computing and
present several quantum algorithms, including the analysis of their running time.
In Chapter 2, we introduce two basic lower-bound techniques: the quantum ad-
versary method and the polynomial method. In Chapter 3, we present new faster
quantum algorithms for matching and network flows, based on quantum search.

1.1. Postulates of quantum mechanics 5

In Chapter 4, we present a new faster quantum algorithm for matrix verification,
based on quantum random walks. In Chapter 5, we present new results unifying
and extending the quantum adversary method. In Chapter 6 and Chapter 7, we
prove several direct product theorems, and we apply them in Chapter 8, where
we prove several new and tight time-space tradeoffs for quantum computation.

1.1 Postulates of quantum mechanics

1.1.1 State space

Information Classical information is measured in bits. A bit is a unit of in-
formation that represents a binary outcome b ∈ {0, 1}. If we want to store more
information, we can split it into several bits. For example, an outcome with 256
possible values can be stored in 8 bits, which is often called a byte, because there
are 28 = 256 possible combinations of the values of 8 bits. Bits are not the only
way of measuring information. We could instead decide that the basic unit is a
trit that represents a ternary outcome t ∈ {0, 1, 2}. However, the theory would
stay the same, hence we rather stick to the (simpler) bit.

One qubit A quantum variant of a bit is called a quantum bit, or simply qubit.
If a qubit represents one of the two classical outcomes b ∈ {0, 1}, we say that it
is in a computational basis state and denote it by |b〉. The term |b〉 is a column
vector with one 1 at the bth position and zeroes everywhere else, that is

|0〉 =

(
1
0

)
, and |1〉 =

(
0
1

)
.

As we have already said, a quantum computer may not only be in a com-
putational basis state, but also in a linear combination of those; we call it a
superposition state. A general state of a qubit ϕ can thus be expressed as

|ϕ〉 = α0|0〉+ α1|1〉 =

(
α0

α1

)
,

where α0, α1 ∈ C are so-called quantum amplitudes. The amplitude αx is related
to the probability of the qubit being in the state x. A vector like |ϕ〉 is called a
ket-vector.

Scalar product Let us define a scalar product on states so that we can define
a norm and measure distances between states. For a ket-vector |ϕ〉, let 〈ϕ| =
|ϕ〉† = |ϕ〉T denote the complex conjugate of the transpose of |ϕ〉. We call it a
bra-vector and it is used as a linear operator. The scalar product of |ϕ〉, |ψ〉 is the
usual matrix product 〈ϕ|·|ψ〉, often shortened as 〈ϕ|ψ〉, which looks like a bracket

6 Chapter 1. Quantum Computation

and that is where the names bra- and ket- come from. The norm of a quantum
state |ϕ〉 is defined as ‖ϕ‖ =

√
〈ϕ|ϕ〉. Quantum mechanics requires that physical

quantum states are normalized, hence the amplitudes of a qubit satisfy

1 = ‖ϕ‖2 = 〈ϕ|ϕ〉 = (α0〈0|+α1〈1|)(α0|0〉+α1|1〉) = α0α0 +α1α1 = |α0|2 + |α1|2 .

It will often be convenient to work with unnormalized states. Quantum bits
are elements of the two-dimensional complex Hilbert space H = C2. In a finite
dimension, a Hilbert space is a vector space with a scalar product. The compu-
tational basis {|0〉, |1〉} is an orthonormal basis for H, that is every basis vector
is normalized and the scalar product between different basis vectors is 0.

Quantum phase The amplitude αx of a basis state |x〉 can be decomposed as
αx = |αx| · eiθ for some real θ, that is as a product of the absolute value of the
amplitude and a complex unit; the latter is called a quantum phase. The quantum
phase is something new that classical randomized computers do not have. We
say that two states |ϕ〉, |ψ〉 differ by a global phase eiθ, if |ϕ〉 = eiθ|ψ〉. If the
quantum states are parts of a larger quantum system, for example 1√

2
(|0〉 + |1〉)

versus 1√
2
(|0〉+ eiθ|1〉), we call the quantum phase a relative phase.

There are two important one-qubit states that have their own names: the plus
state and the minus state. The plus state is a uniform superposition of both basis
states, that is a superposition with equal amplitudes of all states, and the minus
state differs by the relative phase of |1〉 as follows.

|+〉 =
|0〉+ |1〉√

2
=

1√
2

(
1
1

)
, and |−〉 =

|0〉 − |1〉√
2

=
1√
2

(
1
−1

)
.

The Hadamard basis {|+〉, |−〉} is an orthonormal basis of H different from the
computational basis. This means that the quantum phase is as important a
quantity as the absolute value of the amplitude.

Many qubits A classical computer with n-bit memory is at every moment in
exactly one of 2n possible states. We can index them by n-bit strings x ∈ {0, 1}n or
by integers 0, 1, . . . , 2n−1. Again, a quantum computer can be in a superposition
of these states. We describe it formally as follows.

Let a1, a2 be two vectors of dimensions n1, n2. The tensor product a = a1⊗a2

is the vector of dimension n = n1n2 such that

a[i1n2 + i2] = a1[i1]a2[i2] . (1.1)

If the vectors are quantum states, we often write |x〉|y〉, |x, y〉, or even |xy〉 instead
of the longer |x〉 ⊗ |y〉. For example, if x = x1 . . . xn is an n-bit string, then
|x〉 = |x1〉⊗ · · ·⊗ |xn〉 is a column vector with one 1 at the position whose binary
representation is x and zeroes everywhere else.

1.1. Postulates of quantum mechanics 7

Let S1,S2 be two Hilbert spaces spanned by vectors {|s1,i〉}i and {|s2,j〉}j. The
direct sum S = S1⊕S2 is the Hilbert space spanned by {|s1,i〉}i∪{|s2,j〉}j. For ex-
ampleH = C⊕C. The tensor product S = S1⊗S2 is the Hilbert space spanned by
{|s1,i〉⊗ |s2,j〉}i,j. For example, H⊗H is spanned by {|0〉|0〉, |0〉|1〉, |1〉|0〉, |1〉|1〉},
which we shorten as {|00〉, |01〉, |10〉, |11〉}. Let S⊗1 = S and S⊗(n+1) = S ⊗ S⊗n
denote a tensor power of S. A state of an n-qubit quantum computer is an
element of H⊗n, which is spanned by all n-bit strings {|x〉 : x ∈ {0, 1}n}.

Entanglement If a state of a composite quantum system |ϕ〉 ∈ S1 ⊗ S2 can
be written as |ϕ〉 = |ϕ1〉|ϕ2〉 with |ϕ1〉 ∈ S1 and |ϕ2〉 ∈ S2, we call it a product
state, otherwise we call it an entangled state. An entangled state is similar to a
probability distribution of two random variables that are not independent.

All computational basis states are by definition product states, but there are
states which cannot be written as a direct product of two states. Perhaps the
simplest example is the following quantum state. It is called a singlet or an EPR-
pair after the inventors Einstein, Podolsky, and Rosen who first showed [EPR35]
its peculiar properties. It can be expressed as

|00〉+ |11〉√
2

. (1.2)

We will say more about this state in the section about quantum measurement, in
Example 1.1.3. The EPR-pair is at the heart of a physical experiment designed by
Bell [Bel64] that provably cannot be explained by classical physics, and that thus
gives strong indications in favor of the validity of quantum physics. Most quantum
states are entangled. This follows from a counting argument: the Hilbert space
on n qubits has dimension 2n whereas product states can be described using just
2n complex parameters.

1.1.1. Remark. In this thesis, we mostly use numbers, roman letters, and En-
glish names for computational basis states (|2〉, |i〉, |good〉), and Greek letters and
punctuation for superposition quantum states (|ϕ〉, |+〉), unless stated otherwise.

1.1.2 Evolution

Linear evolution Physical operations are linear on quantum states. If the
original state is denoted by |ϕ〉 and the state after applying the operation U is
denoted by U|ϕ〉, then

U(α|ϕ〉+ β|ψ〉) = αU|ϕ〉+ βU|ψ〉 .

Therefore it is sufficient to specify the effect of U on all basis states from some
fixed basis, and the effect on all superposition states follows from linearity. If
{|x〉}Nx=1 is an orthonormal basis for the Hilbert space and U : |x〉 →

∑N
y=1 uy,x|y〉

8 Chapter 1. Quantum Computation

for some complex coefficients uy,x, then U is represented in this basis by the N×N
matrix

U =


u1,1 u1,2 . . . u1,N

u2,1 u2,2 . . . u2,N
...

...
. . .

...
uN,1 uN,2 . . . uN,N

 =
∑
x,y

uy,x|y〉〈x| .

This matrix representation illuminates why we have chosen the syntax U|ϕ〉 for the
state of the quantum system after applying the operation—the state is determined
by the matrix-vector product of U and |ϕ〉.

Unitary operations Physical quantum states are normalized. It is therefore
reasonable to require that a quantum operation does not violate this constraint,
but it preserves the norm of the quantum state.

‖U|ϕ〉‖ = ‖ϕ‖

A norm-preserving linear operator is called a unitary operator. Elementary linear
algebra implies that every unitary operator U satisfies U†U = UU† = I, where the
adjoint operator U† = UT is the complex conjugate of the transpose of U and I is
the identity. It follows that unitary operators

• are reversible (that is they have an inverse) and U−1 = U†,

• are diagonalizable and all their eigenvalues are complex units,

• preserve scalar product, because 〈ϕ|U† · U|ψ〉 = 〈ϕ|ψ〉,

• map orthonormal bases to orthonormal bases.

Since unitary operators are reversible, quantum computers cannot perform
any irreversible operations, such as storing a number into memory or removing
an unused register. The most common ways to load a number are to add it
modulo some fixed number or to xor it bitwise, that is add it bitwise modulo 2.

Elementary quantum gates Let us present a few simple one-qubit gates.
We represent them in the computational basis. The simplest ones are the Pauli
operators I,X,Y,Z.

I =

(
1 0
0 1

)
, X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
. (1.3)

I is the identity operator that does nothing, X is the bit flip, and Z is the phase
flip. The Pauli operators form a group if we ignore the global phase. Other useful
one-qubit operators are

Rθ =

(
1 0
0 eiθ

)
, H =

1√
2

(
1 1
1 −1

)
. (1.4)

1.1. Postulates of quantum mechanics 9

Rθ is the phase shift by angle θ and H is the Hadamard gate. The Hamadard
gate is very remarkable. It is self-inverse, that is H2 = I, and it maps the com-
putational basis {|0〉, |1〉} to the Hadamard basis {|+〉, |−〉} and vice-versa. Very
roughly, one can think of H as a reversible coin flip operator, because it replaces
a computational basis state by a superposition of both states, on the other hand
one can still recover the original state by another application of H. As we will
see, it is very often used in quantum algorithms.

Two important two-qubit operators are the controlled-NOT operator, which
maps |x〉|y〉 → |x〉|x⊕ y〉, where x⊕ y = (x+ y) mod 2, and the controlled-Z op-
erator, which maps |x〉|y〉 → (−1)xy|x〉|y〉. In matrix form, they are respectively

controlled-NOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 , controlled-Z =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 .

An important three-qubit operator is the Toffoli gate, which maps |x, y〉|z〉 →
|x, y〉|z ⊕ xy〉, that is it computes the logical AND of the first two bits.

Many qubits The quantum gates presented above act on 1–3 qubits. If we
apply a quantum gate on a subset of bits in a many-qubit quantum system, then
the overall quantum operation can be expressed in terms of a tensor product. If
U1,U2 are operators, then U = U1 ⊗ U2 maps |ϕ〉 ⊗ |ψ〉 → U1|ϕ〉 ⊗ U2|ψ〉. For
example, if we have a 4-qubit system and apply the Hadamard transform on
the second qubit and the controlled-NOT operator on the last two qubits, then
the quantum operation is I ⊗ H ⊗ controlled-NOT. In matrix form, the tensor
product of two matrices is analogous to the tensor product of two vectors defined
by equation (1.1).

We can apply several gates in parallel on different qubits. For example, if we
apply the Hadamard gate on each qubit in an n-qubit system, the operator maps

|x〉 = |x1 . . . xn〉
H⊗n

−−→ (H|x1〉)⊗ · · · ⊗ (H|xn〉) =
n⊗
i=1

H|xi〉

=
1

2n/2

n⊗
i=1

∑
yi∈{0,1}

(−1)yixi|yi〉

=
1

2n/2

∑
y∈{0,1}n

n⊗
i=1

(−1)yixi|yi〉

=
1

2n/2

∑
y∈{0,1}n

(−1)
Pn

i=1 yixi|y〉 =
1

2n/2

∑
y∈{0,1}n

(−1)x•y|y〉 ,

(1.5)

where x • y is the bitwise scalar product of x and y.

10 Chapter 1. Quantum Computation

1.1.3 Measurement

We have described what quantum states are like and what kind of operations
one can apply on them. If all quantum systems were closed and did not interact
with the environment, then the description would be complete. However, we
often want to look at the quantum state at the end of the computation and read
the outcome. By reading the outcome we perform a (unitary) interaction on the
joint system computer–user, but this operation is not unitary on the subsystem
containing only the computer.

One can describe the interaction in two ways: as a probabilistic measurement
or using the density matrix formalism. We use both of them in this thesis,
because some aspects of quantum computing are better understood in terms of a
measurement and some in terms of a density matrix.

Projective measurement The simplest kind of measurement is a projective
measurement. It can be described as follows. The Hilbert space of the quantum
system is split into a direct sum of orthogonal subspaces S = S1⊕· · ·⊕Sm. Each
subspace corresponds to one possible outcome of the measurement. Decompose
the measured quantum state |ϕ〉 ∈ S as

|ϕ〉 =
m∑
i=1

αi|ϕi〉 ,

where αi ∈ C and |ϕi〉 ∈ Si is a normalized quantum state. This decomposition is
unique modulo quantum phases of the sub-states |ϕi〉 thanks to the orthogonality
of the subspaces. If the quantum state |ϕ〉 is measured using this projective
measurement, then the outcome is a random variable I ∈ {1, 2, . . . ,m} with

Pr [I = i] = |αi|2 .

This illuminates why we want quantum states to be normalized—the probabilities
have to sum up to 1. After the measurement, if the outcome was i, then the
quantum state collapses to |ϕi〉.

Measuring often disturbs the quantum state. Roughly speaking, the more
information we get, the more the quantum state gets collapsed. The only way to
not collapse an arbitrary quantum state is to have only one subspace S = S1, that
is to not measure at all. On the other hand, if we have a promise that the quantum
state lies in a restricted set of possible quantum states, then it may be possible
to configure the subspaces such that the collapsed state is equal to the original
state. For example, if we know that the quantum state lies in some orthonormal
basis, then we simply measure in this basis and obtain full information while not
disturbing the state at all.

A convenient way of representing a projective measurement is in terms of
projectors. A projector is a linear operator P such that P2 = P. Projectors only

1.1. Postulates of quantum mechanics 11

have eigenvalues 1 and 0, and they thus have two eigenspaces: the subspace that
stays untouched and the subspace that is mapped to the zero vector. We represent
the ith subspace Si by the projector to this subspace, denoted by Pi = ΠSi

, and
require that

P2
i = Pi, and

m∑
i=1

Pi = I .

If a state |ϕ〉 is measured by the projective measurement {Pi}mi=1, then the prob-
ability of obtaining the outcome i is ‖Pi|ϕ〉‖2 = 〈ϕ|Pi|ϕ〉 and the quantum state
then collapses to Pi|ϕ〉/‖Pi|ϕ〉‖.

1.1.2. Example. The measurement of all qubits of an n-qubit system in the
computational basis is described by the projective measurement {|i〉〈i| : i ∈
{0, 1}n}. Measuring nothing at all is described by the projective measurement
{In}, where In is the identity operator on n qubits. The measurement of the 1st

qubit of an n-qubit system in the Hadamard basis is described by the projective
measurement {|+〉〈+| ⊗ In−1, |−〉〈−| ⊗ In−1}.

1.1.3. Example. (EPR-pair) Let us measure the first qubit of the singlet
1√
2
(|00〉 + |11〉) from equation (1.2) in the computational basis. The projectors

are {|00〉〈00|+ |01〉〈01|, |10〉〈10|+ |11〉〈11|}. The quantum state hence collapses
to |00〉 with probability 1

2
and to |11〉 with probability 1

2
. The interesting thing is

that both qubits collapse to the same value, but we cannot tell beforehand which
one. If we measure any of these two qubits first, we get a completely random
outcome and that outcome determines the value of the other qubit when mea-
sured next. The measurement on the first qubit thus influences the state of the
second qubit that can be physically or even causally separated (the collapse of the
wave function is immediate and there is no limit such as the speed of light). This
was the reason why Einstein strongly argued [EPR35] for many decades against
quantum physics. It, however, turns out that no information can be transferred
by measuring entangled states, hence the general theory of relativity is not con-
tradicted. Note that this behavior only occurs with entangled states. Elementary
linear algebra implies that if a sub-state of a product state is measured in an
arbitrary basis, the other sub-state is not influenced.

POVM measurement Projective measurements are not the most general mea-
surements. A very popular and elegant generalization is the POVM measurement,
named after Positive Operator Valued Measure. An operator E is called self-
adjoint or Hermitian, if E† = E, and it is called positive semidefinite, denoted
by E � 0, if 〈v|E|v〉 ≥ 0 for every vector v. Positive semidefinite operators are
Hermitian and all their eigenvalues are non-negative. A POVM measurement is

12 Chapter 1. Quantum Computation

described by a list of positive semidefinite operators {Ei}mi=1 such that

Ei � 0, and
m∑
i=1

Ei = I .

The difference between a projective and POVM measurement is that Ei may not
be a projector, but it can have non-negative eigenvalues smaller than 1. The
probability of obtaining the outcome i is 〈ϕ|Ei|ϕ〉 = Tr (Ei · |ϕ〉〈ϕ|). If we care
how the quantum state looks like after the measurement, we need to specify
the measurement operators in more detail. In particular, we have to choose the
Cholesky decomposition Ei = M†

iMi; it always exists. The state then collapses to
Mi|ϕ〉/‖Mi|ϕ〉‖. The probabilities, however, do not depend on the decomposition.

The elegant mathematical formulation of POVM measurements in terms of
semidefinite programs allows solving several measurement related problems by
techniques of semidefinite optimization.

1.1.4 Density operator formalism

The formalism of quantum measurements is a bit inconvenient for some problems,
because it uses the concept of randomness to determine the state of the quantum
system after a measurement. It is often useful to have an object that completely
describes the quantum system and manipulate it deterministically. Classically,
for example, such an object may be a probability distribution. If the evolution
of a system is not fully deterministic, but depends on the outcome of a random
process, we simply track the probabilities of possible states instead of concrete
states during time.

Density operator Let us show how to combine probability distributions with
quantum states. Let an n-qubit quantum system be in one of the states |ϕi〉, with
respective probabilities pi. We call {pi, |ϕi〉}mi=1 an ensemble of pure states. The
density operator for the system is

ρ =
m∑
i=1

pi|ϕi〉〈ϕi| . (1.6)

For example, if the system is in the computational basis state |x〉, then ρ = |x〉〈x|
contains exactly one 1 on the main diagonal and it contains 0 everywhere else. If
the system is in an arbitrary quantum state |ϕ〉 with certainty, then ρ = |ϕ〉〈ϕ| is
a rank-1 Hermitian operator. Finally, if the system is in a probabilistic mixture of
computational basis states described by the probability distribution p, then ρ =∑2n−1

x=0 px|x〉〈x| is a diagonal operator whose diagonal represents the probability
distribution. If ρ = |ϕ〉〈ϕ| for some |ϕ〉, we call it a pure state, otherwise we call
it a mixed state.

1.1. Postulates of quantum mechanics 13

Evolution and measurement Suppose that a quantum system ρ undergoes a
unitary evolution U. Since |ϕ〉 is mapped to U|ϕ〉, the density operator is mapped
as

ρ
U−→

m∑
i=1

piU|ϕi〉〈ϕi|U† = UρU† .

Suppose that we apply a POVM measurement (or a simpler projective measure-
ment) specified by positive semidefinite operators Ej � 0 with Cholesky decom-

position Ej = M†
jMj such that

∑
j Ej = I. It is not hard to see that the probability

of obtaining the outcome j is Tr (Ejρ). The density operator after observing j
and remembering the result is

ρj =
MjρM

†
j

Tr (Ejρ)
.

Imagine that a quantum system is prepared in the state ρj with probability qj.
The density operator is then ρ =

∑
j qjρj. It follows that if we measure the

quantum system ρ and forget the result, then the density operator is

ρ
M−→
∑
j

Tr (Ejρ)ρj =
∑
j

MjρM
†
j .

Properties of the density operator It is immediate from equation (1.6) that
ρ is a positive semidefinite operator with trace 1. The trace of an operator is the
sum of its diagonal entries; it does not depend on the basis. The rules of quantum
evolution and measurement imply that two quantum ensembles that lead to an
equal density operator ρ are indistinguishable. For example, the uniform mixture
of |0〉, |1〉 is the same as the uniform mixture of |+〉, |−〉, because |0〉〈0|+ |1〉〈1| =
I = |+〉〈+|+ |−〉〈−|. We cannot say, when we get an ensemble, whether someone
flipped a coin and picked a state at random from the computational basis or from
the Hadamard basis. Hence it is not important what states we use to define a
quantum ensemble and the only thing that matters is the density operator.

Reduced density operator Perhaps the most important application of the
density operator is the description of subsystems of a composite system. Let ρAB
be the state of a composite system AB. Then the reduced density operator for
system A is

ρA = TrB (ρAB) ,

where TrB the partial trace over system B. The partial trace is the (unique)
linear operator such that

TrB (ρA ⊗ ρB) = ρA · Tr (ρB)

14 Chapter 1. Quantum Computation

for all operators ρA, ρB. The usual trace operator is a special case of the partial
trace when we trace out the whole system Tr = TrAB.

One may wonder why the reduced density operator ρA should be defined
this way. The answer is that ρA is the only density operator that gives correct
probabilities for all measurements on the subsystem A alone, meaning the same
probabilities as if the measurement was done on the joint system AB.

1.1.4. Example. Let us calculate the reduced density operator for the 1st qubit
of the singlet (1.2). The density matrix of the joint system is ρAB = 1

2
(|00〉〈00|+

|00〉〈11| + |11〉〈00| + |11〉〈11|). If we trace out the second qubit, the reduced
density operator is ρA = 1

2
(|0〉〈0| + |1〉〈1|) = 1

2
· I, that is the completely mixed

state.

Purification Purification is a mathematical procedure that allows us to asso-
ciate pure states with mixed states. Given a density operator ρA, we introduce
a new fictitious quantum system R, called the reference system, such that the
quantum state of the joint system AR is a pure state and the reduced density
matrix for system A is exactly ρA. This trick allows us to handle mixed states
using the same techniques as pure states.

The purification can be done as follows. Suppose the density operator ρA has
rank `. We find the eigenvectors of ρA, denote them by |ϕi〉, and write ρA =∑`

i=1 pi|ϕi〉〈ϕi|. Let R be an `-dimensional Hilbert space with computational
basis |i〉. It is not hard to verify that

ρA = TrR (|ϕ〉〈ϕ|), where |ϕ〉 =
∑̀
i=1

√
pi|ϕi〉A|i〉R .

1.2 Models of computation

The laws of quantum physics allow us to perform any unitary operation or POVM
measurement in principle. This does not mean that all operations can be done ef-
ficiently, that is using a small number of elementary quantum gates. By a simple
counting argument, there are many more operations than short sequences of ele-
mentary quantum gates, hence to compute or even approximate some operations
one needs (exponentially) many elementary quantum gates.

In this section we present models for classical and quantum computation.
There are two basic models: the Turing machine and the circuit model. The
circuit model is much more convenient for quantum algorithms, hence we will
stick to it.

1.2. Models of computation 15

¬

∨
∧

x1

x2

¬

∧

¬

¬

∨
∧

x3

x4

¬

∧

¬

∧

∧

∨

x1 ⊕ x2

x3 ⊕ x4

x1 ⊕ x2 ⊕ x3 ⊕ x4

Figure 1.2: Classical circuit computing the parity of 4 bits

1.2.1 Quantum circuits

Classical circuits A circuit is represented by an acyclic oriented graph. The
leaves are labeled by input bits and the other vertices are labeled by gates from
the set {¬,∧,∨}. A computation is naturally induced by the graph as follows.
We sort the vertices into a topological order, that is every vertex is placed after all
its ancestors; if the graph is acyclic, then such an order always exists. Then the
values of all vertices are computed in this sorted order. A vertex labeled by an
input bit gets the value of the input bit, and a vertex labeled by a gate gets the
value of the logical operation on the values of its ancestors. The outcome of the
computation is the list of values of all vertices without descendants. A classical
circuit computing the parity of 4 bits is outlined in Figure 1.2.

If all gates have at most d inputs, we say that the circuit has fan-in d. The
fan-out is the maximal number of outgoing edges. Two important complexity
measures are associated to a circuit: the size is the number of gates, and the
depth is the length of the longest path. The above set of gates is universal, that
means any function f : {0, 1}n → {0, 1}m is computed by a finite circuit composed
of these gates.

Reversible circuits Reversible computation is a slightly restricted model of
computation, where each individual computational step must be reversible, that
is the state of the computation before any step can be computed from the state
after applying the step. It is clear that reversible computers can only compute
reversible functions.

We model reversible computation by reversible circuits as follows. When the
input size is n, the memory is of fixed size m ≥ n and it is initialized to the
state x1 . . . xn0 . . . 0. One computational step consists of applying a gate from

16 Chapter 1. Quantum Computation

the set {¬, controlled-NOT,Toffoli} on a subset of bits. Every bit is used exactly
once, the fan-in and fan-out of each gate are equal, and each elementary gate is
reversible. The controlled-NOT gate flips the target bit if the value of the source
bit is 1. The Toffoli gate flips the target bit if the logical AND of the two source
bits is 1. We use reversible circuits with constant fan-in, and the logical AND of
n bits can thus be computed using O(log n) operations.

The set of gates above is universal, that means any permutation f : {0, 1}n →
{0, 1}n is computed by a finite circuit composed of these gates. The restriction of
reversibility is not as big a handicap as one might think, because there are several
known classical tricks that turn any computation into a reversible one at little
cost—at most quadratic slowdown and twice bigger memory consumption. One
of them is called uncomputation and it works as follows. If A tries to overwrite
a register, we use a fresh ancilla register instead. The computation thus leaves a
lot of garbage behind. We clean it by running the computation of A backwards,
which is possible since no data was overwritten.

|x〉|0〉|0〉 A−→ |x〉|garbage〉|0〉 copy−−→ |x〉|garbage〉|outcome〉 A−1

−−→ |x〉|0〉|outcome〉 .

Since we copied the outcome into an ancilla register, we end up with the input, the
outcome, and an array of fresh zero bits. Any classical computation of a function
f1 : {0, 1}n → {0, 1}m can thus be turned into a reversible computation of the
permutation f2 : {0, 1}n+m → {0, 1}n+m such that f2 : |x〉|y〉 → |x〉|y ⊕ f1(x)〉.
For details and tradeoffs, see [Ben89].

Quantum circuits Quantum computation can be modelled by quantum cir-
cuits that are a straightforward extension of reversible circuits. We simply extend
classical reversible gates {¬, controlled-NOT,Toffoli} by linearity to unitary oper-
ators and add a few purely quantum gates, in particular the Hadamard gate H
and all phase shifts Rθ. It follows that every reversible circuit is automatically a
valid quantum circuit.

An example quantum circuit which is very different from any classical circuit
is outlined in Figure 1.3. Classically, computing the parity of n bits is hard even
if we allow {∧,∨}-gates with unbounded fan-in and fan-out, that is one needs a
circuit of logarithmic depth [Raz87, Smo87]. In the quantum case, unbounded
fan-out, that is the mapping

(α|0〉+ β|1〉)|0 . . . 0〉 → α|0 . . . 0〉+ β|1 . . . 1〉

implies unbounded parity in constant depth. The trick behind the circuit is that
when the controlled-NOT gate is applied in the Hadamard basis, the control qubit
and the target qubit get swapped.

Adding H, {Rθ}θ∈[0,2π] is sufficient to get the full power of quantum computing.
The Pauli operators do not have to be added, because X is the gate ¬, Z = Rπ,

1.2. Models of computation 17

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

= = =

2

parity controlled-NOT fan-out

Figure 1.3: Quantum circuit computing the parity of n bits

and Y can be expressed using X and Rθ. The controlled-Z can be expressed
using the controlled-NOT and the Hadamard gate. The set of gates above is
universal, that is every unitary operator on n qubits is computed by a finite
quantum circuit composed of these gates. In fact, there exist smaller sets of gates
that are universal. For example, unlike the classical case, the Toffoli gate is not
necessary and it can be computed using only one-qubit gates and the controlled-
NOT [BBC+95]. There even exist finite universal sets of gates where we only
allow phase shifts Rθ with angle θ taken from a finite set, such that the gates can
approximate efficiently any unitary operator within any precision [ADH97].

1.2.2 Quantum query complexity

Oracle model Many quantum algorithms are developed for the so-called oracle
model, also called the black-box model, in which the input is given as an oracle so
that the only knowledge we can gain about the input is in asking queries to the
oracle. The input is a finite string x ∈ Σn of some length n, where x = x1x2 . . . xn
and Σ is the input alphabet. The goal is to compute some function f : Σn → Σ′ of
the input x, where Σ′ is the output alphabet. We associate letters from the input
alphabet with numbers {0, 1, . . . , |Σ| − 1}. Some of the functions we consider
are Boolean, that is Σ = Σ′ = {0, 1}, some not. We use the shorthand notation
[n] = {1, 2, . . . , n}.

As our measure of complexity in this model, we use query complexity. The
query complexity of an algorithm A computing a function f is the number of
queries used by A. The query complexity of f is the minimum query complexity
among all algorithms computing f .

An alternative measure of complexity would be to use the time complexity
which counts the number of basic operations used by an algorithm, that is the
number of queries plus the number of (bounded fan-in) elementary gates. The
time complexity is always at least as large as the query complexity, and thus a
lower bound on the query complexity is also a lower bound on the time complex-
ity. For most existing quantum algorithms, including Grover’s search [Gro96],
the time complexity is within polylogarithmic factors of the query complexity.
A notorious exception is the so-called Hidden Subgroup Problem which has poly-
nomial query complexity [EHK04], yet polynomial time algorithms are known

18 Chapter 1. Quantum Computation

only for some instances of the problem.

One query The oracle model in the classical setting is called the model of
decision trees [BBC+01]. A classical query consists of an index i ∈ [n], and the
answer of the number xi. There is a natural way of modelling a query so that
it is reversible. The input is a pair (i, b), where i ∈ [n] is an index and b ∈ Σ
a number. The output is the pair (i, (b + xi) mod |Σ|). There are (at least) two
natural ways of generalizing a query to the quantum setting, in which we require
all operations to be unitary. The first way is to consider a quantum query as
a unitary operator that takes two inputs |i〉|b〉, where i ∈ [n] and b ∈ Σ, and
outputs |i〉|(b + xi) mod |Σ|〉. The oracle is then simply just a linear extension
of the reversible query given above. We allow the oracle to take some arbitrary
ancilla state |z〉 as part of the input that is untouched by the query.

O′
x|i, b, z〉 = |i, (b+ xi) mod |Σ|, z〉 (1.7)

The ancilla |z〉 contains any additional information currently part of the quantum
state that is not involved in the query.

The second way is to consider a quantum query as a unitary operator Ox

that takes two inputs |j〉 and |b〉, and outputs e
2πi
|Σ| xjb|j〉|b〉, where j ∈ [n] and

b ∈ Σ. Here we use the letter j to denote the index, because i =
√
−1 denotes

the complex unit. Again, we allow the query to take some arbitrary ancilla state
|z〉 that is untouched by the query. We say that the oracle is computed in the
phases by Ox. Both operators O′

x and Ox and unitary. The two operators are
equivalent in that one query to either oracle can be simulated by a superposition
query to the other oracle preceded and followed by a basis change (in particular
by the Fourier transform). Hence the choice of Ox or O′

x only influences the query
complexity and the time complexity by a multiplicative constant. Though the
first way is possibly the more intuitive, we often adopt the second way as it is
very convenient.

Ox|j, b, z〉 = e
2πi
|Σ| xjb|j, b, z〉

We mostly work with binary input alphabet Σ = {0, 1} and then the oracle
Ox can be expressed in the following simpler form.

Ox|i, b, z〉 =

{
|i, b, z〉 b = 0, also called non-query

(−1)xi|i, b, z〉 b = 1, also called query
(1.8)

We may think of one query as a one-round exchange of information between two
parties, the algorithm and the oracle. In the classical binary setting, the algorithm
sends an index i ∈ [n] to the oracle, and the oracle responds with one bit of
information, namely xi. In the quantum setting, the algorithm sends the log2(n)
qubits |i〉 to the oracle Ox, and the oracle responds with (−1)xi|i〉. The algorithm
and oracle thus exchange a total number of 2 log2(n) qubits, and thus, a quantum

1.2. Models of computation 19

query to Ox can convey up to 2 log2(n) classical bits of information about the
oracle by Holevo’s theorem [Hol73, CDNT98]. The super-dense coding [BW92]
achieves this upper bound.

Information theoretically, a function f : {0, 1}n → {0, 1}log2(n) that outputs at
most log2(n) bits, can potentially be solved by a constant number of queries to the
oracle. An example of such a problem is the Deutsch-Jozsa problem [DJ92], which
is to distinguish balanced Boolean functions from constant functions. (A function
f is constant if f(x) = f(y) for all inputs x, y, and it is balanced if it is not
constant and |f−1(f(x))| = |f−1(f(y))| for all inputs x, y.) The deterministic
complexity of the Deutsch-Jozsa problem is bn

2
c+1 and its randomized complexity

is constant.

Quantum algorithms A quantum algorithm in the oracle model starts in a
state that is independent of the oracle. For convenience, we choose the state |~0〉 in
which all qubits are initialized to 0. It then evolves by applying arbitrary unitary
operators U to the system, alternated with queries Ox to the oracle x, followed
by a measurement of the final state, the outcome of which is the result of the
computation. In symbols, a quantum algorithm A that uses t queries computes
the final state

|ψtx〉 = UtOxUt−1 · · ·U1OxU0|~0〉 ,
which is then measured. If the algorithm computes some function f : Σn →
Σ′, we measure the log |Σ′| leftmost bits of the final state |ψtx〉, producing some
outcome r.

Without loss of generality, we assume that quantum algorithms only perform
one final measurement at the end of the computation. If a measurement is needed
in the middle, it can be postponed and the following quantum operations that
depend on the outcome of that measurement are replaced by controlled quantum
operations, like the controlled-NOT.

Query complexity The success probability px of A on input x ∈ Σn is the
probability that r = f(x). For total functions f : Σn → Σ′, we define the success
probability of A as the minimum of px over all x ∈ Σn. For partial functions
f : S → Σ′, where S ⊆ Σn, we take the minimum over S only. A quantum
algorithm A has error at most ε if the success probability of A is at least 1 − ε.
We say that an algorithm A for a Boolean function has 1-sided error if its success
probability is 1 on all zero-inputs (or on all one-inputs), otherwise we call the
error 2-sided.

1.2.1. Definition. For an ε ≥ 0, let Qε(f) denote the minimum query com-
plexity of any quantum algorithm that computes f with 2-sided error at most ε,
and as is common, let Q2(f) = Q 1

3
(f) denote the 2-sided bounded error quantum

query complexity with ε = 1
3
. Let QE(f) = Q0(f) denote the exact quantum query

complexity of f .

20 Chapter 1. Quantum Computation

Sometimes we run a classical algorithm (possibly using quantum subroutines)
whose query complexity depends on random choices made by the algorithm. In
such a case, it makes sense to talk about the expected query complexity on an
input, which is the average query complexity over all random choices. Note
that we do not define this concept for quantum algorithms, where we only use
one measurement at the end of the computation and thus have no information
whatsoever about the progress of the computation.

1.3 Quantum search

One of the two most important quantum algorithms is Grover search [Gro96]
invented by Lov Grover in 1996. The algorithm can be used for searching any
unstructured database and it is quadratically faster than the best classical al-
gorithm. Several improved variants of the basic algorithm are known and we
describe the most important ones here [BBHT98, BHMT02].

1.3.1 Searching ones in a bit string

For simplicity, let us restrict our attention to the following simple problem.

1.3.1. Problem. (Unordered search) Decide whether a given n-bit input
string x contains a one, and if it does, find the position of some.

Assume for simplicity that n is a power of 2; this allows us to implement
the algorithm in a very simple way. The famous quantum algorithm Grover
search that optimally solves this problem is outlined in Figure 1.4.

1.3.2. Theorem ([Gro96, BBHT98]). Let w = |x| be the number of ones in
the input string. If the number of iterations can be written as t = (1+2k+ε)π

4

√
n
w

for some integer k ≥ 0 and real |ε| ≤ 1
2
, then Grover search (n, t) finds a one

with probability at least 1
2
.

Proof. The algorithm starts in a uniform superposition over all input bits. We
show that after performing the Grover iteration t times, the quantum state will
be close to a uniform superposition over all ones, and hence a measurement will
yield an index of some one with high probability. The analysis is based on the
fact that in the Grover iteration, the n-dimensional quantum state actually lies
in a two-dimensional real subspace S spanned by the uniform superposition over
all zeroes |ψ0〉 = 1√

n−w
∑

i:xi=0 |i〉 and the uniform superposition over all ones

|ψ1〉 = 1√
w

∑
i:xi=1 |i〉.

1.3. Quantum search 21

Grover search (input string of length n = 2`, number of iterations t)
returns some i such that xi = 1.

1. Let i denote a log n-bit number that indexes the input bits. Put
the quantum register into the superposition

|ψ〉 =
1√
n

n−1∑
i=0

|i〉 .

2. Repeat t times the following so-called Grover iteration G:

(a) Phase flip. Multiply the quantum phase of |i〉 by−1 if xi = 1.

Ox : |i〉 → (−1)xi|i〉

(b) Diffusion. Apply the diffusion operator as follows.

• Apply the Hadamard gate on each qubit of |i〉.
• Multiply the quantum phase of |i〉 by −1 if i 6= 0.

• Apply the Hadamard gate on each qubit of |i〉.

D : |i〉 → −|i〉+
2√
n
|ψ〉 (1.9)

3. Measure |i〉 in the computational basis and return it.

Figure 1.4: Quantum algorithm Grover search [Gro96]

First, the initial state of the algorithm can be written as

|ψ〉 =

√
n− w

n
|ψ0〉+

√
w

n
|ψ1〉 = cosα|ψ0〉+ sinα|ψ1〉 ,

where sinα = 〈ψ|ψ1〉 =

√
w

n
, (1.10)

and hence it is in S. Second, the phase flip computed by the oracle Ox maps
|ψ0〉 → |ψ0〉 and |ψ1〉 → −|ψ1〉 and hence it preserves S. Third, the diffusion
operator can be decomposed as D = H⊗ logn · O0 · H⊗ logn, because

|i〉 H⊗ log n

−−−−→ 1√
n

n−1∑
j=0

(−1)i•j|j〉 by equation (1.5)

O0−→− 1√
n

n−1∑
j=0

(−1)i•j|j〉+
2√
n
|0〉 using 0 • j = 0

22 Chapter 1. Quantum Computation

|ψ0〉

|ψ〉

|ψ1〉

2α

1

4
π3

4
π

5

4
π 7

4
π

good
success

probability

|ψ1〉

−|ψ1〉

α

|ψt〉

Figure 1.5: The Grover iteration G drawn as a rotation in two dimensions

H⊗ log n

−−−−→− |i〉+ 2|ψ〉 · 〈ψ|i〉 . H is self-inverse

and 〈ψ|i〉 = 1√
n

Here i • j denotes the bitwise scalar product of i and j. We conclude that

D = −I + 2|ψ〉〈ψ| ,

and it maps

|ψ0〉 → −|ψ0〉+ 2 cosα (cosα|ψ0〉+ sinα|ψ1〉) = cos 2α|ψ0〉+ sin 2α|ψ1〉
|ψ1〉 → −|ψ1〉+ 2 sinα (cosα|ψ0〉+ sinα|ψ1〉) = sin 2α|ψ0〉 − cos 2α|ψ1〉 ,

and hence it also preserves S. The Grover iteration G can thus be written in the
basis {|ψ0〉, |ψ1〉} as a unitary matrix

G = D · Ox =

(
cos 2α sin 2α
sin 2α − cos 2α

)
·
(

1 0
0 −1

)
=

(
cos 2α − sin 2α
sin 2α cos 2α

)
.

The operator G is a rotation by an angle of 2α in the two-dimensional subspace
S, so its t-th power is Gt = (cos 2tα − sin 2tα

sin 2tα cos 2tα). We visualize the Grover iteration in
Figure 1.5. The phase flip is a reflection around the vector |ψ0〉, the diffusion is a
reflection around the vector |ψ〉, and their composition is hence a rotation of the
plane spanned by |ψ0〉 and |ψ〉 by twice the angle α between the two vectors.

The initial state of the algorithm is |ψ〉 and the desired final state is |ψ1〉. The
total angle one has to rotate by is thus A = π

2
− α. It follows that the optimal

number of Grover iterations is t = A
2α

= π
4α
− 1

2
= π

4

√
n
w
− 1

2
− O(

√
w
n
), because

α = arcsin
√

w
n

=
√

w
n

+ O((w
n
)3/2) by expanding the power series. However, the

algorithm has good success probability in a much wider range of t. Let

|ψt〉 = Gt|ψ〉 = cos((2t+ 1)α) · |ψ0〉+ sin((2t+ 1)α) · |ψ1〉

1.3. Quantum search 23

Generalized Grover search (n-bit input string x)
returns some i such that xi = 1, or “zero string”.

1. Let λ = 4
√

4/3
.
= 1.07 and M = logλ(20

√
n).

2. For m = 0, 1, . . . ,M , do the following:

• Pick t uniformly at random from {0, 1, . . . , λm}.
• Run Grover search (x, t) and return i if xi = 1.

3. Return “zero string”.

Figure 1.6: Quantum algorithm Generalized Grover search [BBHT98]

denote the quantum state after t Grover iterations. If the overlap between |ψt〉
and |ψ1〉 is at least 1√

2
, that is if |〈ψt|ψ1〉| = | sin((2t+ 1)α)| ≥ 1√

2
, then the final

measurement yields an i from the superposition over all ones with probability at
least 1

2
, hence the success probability is at least 1

2
. The overlap is at least 1√

2
for

any angle from the intervals

A ∈ [1
4
π, 3

4
π] ∪ [5

4
π, 7

4
π] ;

in the first interval the final state is close to |ψ1〉 and in the second interval
the final state is close to −|ψ1〉. Since the rotation is periodical, one can add
any integer multiple of 2π without changing the success probability. Expressing
t = A

2α
as t = (kπ+ π

2
+επ

2
)/(2

√
w
n
), where k ∈ Z and |ε| ≤ 1

2
finishes the proof. 2

Unknown number of solutions It may seem that to apply Grover search,
one needs to know beforehand a good estimate of the Hamming weight of the input
string, that is the number of ones. This is not a problem, because one can run the
algorithm with t ∈ {1, λ, λ2, λ3, . . . , n} for some fixed λ > 1. At least one guess
will be close enough and the algorithm will have constant success probability. By
refining this idea a bit further (so that we do not gain an additional logarithmic
factor), we get the following algorithm.

1.3.3. Theorem (Quantum search [BBHT98]). The algorithm General-
ized Grover search stops after O(

√
n) queries. If the Hamming weight of the

input string is |x| ≥ 1, then the algorithm finds a one with probability at least
1− 1

(4|x|)2 ≥
15
16

and its expected query complexity is O(
√
n/|x|).

Proof. The algorithm is outlined in Figure 1.6. It runs Grover search several
times with exponentially increasing numbers of iterations.

24 Chapter 1. Quantum Computation

Assume that x is not a zero string. Let µ = logλ(10
√
n/|x|). The crucial

observation is that once m ≥ µ, that is when the value of λm exceeds more than
12 times the optimal number of Grover iterations π

4

√
n/|x|, the total rotation after

λm iterations is λmα ≥ 3 ·2π. Since t is actually picked uniformly at random from
{0, 1, . . . , λm}, the final state |ψt〉 ends in a random position distributed almost
uniformly around the circle. With probability 1

2
, the state lies in the good region

where Grover search has success probability at least 1
2
. Hence in every round

after m ≥ µ, the success probability is at least 1
4
, that is the error probability is

at most p ≤ 3
4
. (With more care, the expected error probability is 1

2
.)

Let J be the random variable denoting the number of rounds after which the
algorithm finishes. The expected query complexity can be expressed as a sum

T =
M∑
j=0

Pr [J = j] ·
j∑

m=0

O(λj) =
M∑
j=0

Pr [J ≥ j] ·O(λj)

≤
µ−1∑
j=0

1 ·O(λj) +
∞∑
j=µ

pj−µO(λj) = O(λµ) ·

(
1 +

∞∑
j=0

(pλ)j

)
≤ O(λµ) = O(

√
n/|x|) ,

where the last inequality holds because pλ ≤ 3
4
· 1.07 ≤ 0.81. The number of

rounds is limited by M + 1, hence the total query complexity is at most O(
√
n).

If there is at least one 1 in the input string, then it will be missed with probability
at most pk, where

k = M − µ = logλ
20
√
n

10
√
n/|x|

=
logλ(4|x|)

2
=

logp(4|x|)
2 logp λ

= −2 logp(4|x|)

is the number of iterations after λm ≥ 10
√
n/|x|. We use that λ = p−1/4. The

success probability is hence at least 1− pk = 1− 1
(4|x|)2 . 2

Running time We show later in Chapter 2 that the query complexity of un-
ordered search is Ω(

√
n) and thus Grover search uses an asymptotically op-

timal number of queries. The running time of Grover search is, however,
O(log n) times bigger than its query complexity, because 2 log n Hadamard trans-
forms and a logical OR of log n qubits are computed in each diffusion step. Grover
showed [Gro02] how to reduce the running time to O(

√
n log log n) while increas-

ing the query complexity only by a constant factor, using techniques introduced in
the rest of this chapter. Most algorithms presented in this thesis are efficient, that
is their running time is within a polylogarithmic factor of their query complexity.

Exact quantum search Quantum search algorithms can be made exact, that
is the error probability can be made zero, if we know exactly the number of ones

1.3. Quantum search 25

in the input. From the proof of Theorem 1.3.2, if the number of Grover iterations
is exactly t = A

2α
= π

4α
− 1

2
, where α = arcsin

√
|x|/n, then the final state is exactly

|ψ1〉 and the measurement yields 1 with certainty. For example, if |x| = n
4
, then

α = arcsin 1
2

= π
6

and the optimal number of iterations is just t = 6
4
− 1

2
= 1. We

can always compute t first, but the problem is what to do when the optimal t is
not an integer, because then neither btc nor dte iterations yield exactly |ψ1〉.

The solution is to perform btc normal iterations and one last slower iteration.
We change the last Grover iteration such that quantum phases get multiplied by
eiθ1 for some angle θ1 instead of −1 in the phase flip step and, similarly, by eiθ2

in the step O0. It turns out that for every α′ ∈ [0, α] there exist θ1, θ2 such that
the slower Grover iteration rotates by angle 2α′.

1.3.4. Corollary (Exact quantum search [BHMT02]). For every w ∈
[1, n], there is a quantum algorithm that finds a one with certainty in an n-bit
string containing exactly w ones, and uses O(

√
n/w) queries.

Finding all ones If we want to find all ones in the input string instead of just
one of them, we can iterate Generalized Grover search. We keep a list of
all found ones in the memory and modify the oracle such that it flips the phase
of |i〉 only if xi = 1 and the index i is not yet in the list. At the beginning, the
quantum search proceeds quite fast thanks to the existence of many solutions,
and it gets slower at the end when only a few of them are left. The expected
query complexity of finding all ones in a string of Hamming weight |x| is

|x|∑
k=1

O

(√
n

|x| − k + 1

)
=

|x|∑
k=1

O

(√
n

k

)
= O(

√
n|x|) . (1.11)

We need to take into account additional O(
√
n) queries for the final check that

there are no more solutions.

1.3.5. Corollary ([BBC+01]). There is a quantum algorithm that finds all
ones in an n-bit input string with probability at least 8

9
. It worst-case query

complexity is O((|x|+1)
√
n) and its expected query complexity is O(

√
n(|x|+ 1)).

Proof. As stated above, we run Generalized Grover search while it suc-
ceeds in finding ones. The worst-case bound holds because there are at most
|x| + 1 iterations, each with O(

√
n) queries. The bound on the expected query

complexity follows from Theorem 1.3.3 and (1.11). The algorithm succeeds if
none of the |x| ones is missed. By the same Theorem 1.3.3, when there are w
remaining ones, the error probability is at most 1

(4w)2
. By the union bound, the

total error probability is at most 1
16

∑|x|
w=1

1
w2 ≤ π2

16·6 <
1
9
. 2

26 Chapter 1. Quantum Computation

1.3.2 Searching an unstructured database

Finding ones in a bit string is a rather specific problem. However, using a simple
trick, Grover search can be used to search any unstructured database. Let Σ
be any finite alphabet, for example [n]. Consider an input consisting of a string
x ∈ Σn and an item y ∈ Σ. The problem is to decide whether there exists an
index i ∈ [n] such that xi = y. We define the following oracle Px.

Px : |i〉|y〉 →

{
−|i〉|y〉 xi = y

|i〉|y〉 otherwise

If our new oracle Px is used instead of the original oracle Ox, then Grover
search implements searching for y in the string x.

The oracle Px can be computed using O′
x as follows. Assume we have a clean

ancilla register z. First, we load xi into z using O′
x. Then we compare y with z

and flip the quantum phase if they are equal. Finally, we unload xi, that is clear
the contents of the register z by another application of O′

x. The computation only
takes 2 queries and time O(log n) for the comparison of two numbers.

1.3.3 Amplitude amplification

Quantum computers offer substantial speedup in a yet more general setting. As-
sume we have a subroutine that performs some computational task with success
probability p > 0, and another subroutine that verifies deterministically whether
the first subroutine succeeded. Classically, to amplify the success probability
to a constant, we repeat the subroutines c/p times for some constant c. The
probability that the computation has always failed is (1 − p)c/p ≤ e−c. We call
this process probability amplification, because for p � 1, the success probability
after t iterations gets amplified to roughly tp. This probability amplification is
optimal as there is no algorithm that runs faster for all black-box subroutines.
Quantum computers, however, perform quadratically better and they can amplify
any subroutine using just O(

√
1/p) applications. This process is called amplitude

amplification, because the quantum amplitudes of the solutions get amplified in
a similar way as the probabilities in the classical case.

1.3.6. Theorem (Amplitude amplification [BHMT02]). Let S be a sub-
set of [n] and let OS be a quantum algorithm that flips the phase of |i〉 if i ∈ S;
the elements of S are solutions we are looking for. Let A be a quantum algorithm
that does not perform any measurements and that computes some superposition
of elements |ψ〉 =

∑n
i=1 αi|i〉. Let p =

∑
i∈S |αi|2 denote the probability that we

obtain an element from S if we measure |ψ〉 in the computational basis. Then
there is a quantum algorithm that uses O(

√
1/p) applications of A,A−1,OS, and

finds an element of S with constant probability.

1.3. Quantum search 27

Proof (sketch). The algorithm is similar to Grover search, but it uses
the subroutines A and A−1 instead of the Hadamard transform on each qubit.
The final state after t iterations is

|ψt〉 = (A · O0 · A−1 · OS)
t · A|0〉 ,

where A|0〉 = |ψ〉 is the superposition computed by the algorithm and O0 flips
the phase of |i〉 if i 6= 0. Here we see why measurements are not allowed in A; we
need to be able to reverse the computation.

By the same arguments as in Theorem 1.3.2, the quantum state stays in a
two-dimensional real subspace S spanned by |ϕ0〉 and |ϕ1〉, where |ϕ0〉 is the
projection of |ψ〉 onto the bad subspace spanned by the set of basis states |i〉 for
which i 6∈ S, and |ϕ1〉 is the projection of |ψ〉 onto the good subspace. Note that

p = ‖ϕ1‖2. Normalize |ψ1〉 = |ϕ1〉
‖ϕ1‖ . Then 〈ψ|ψ1〉 = 〈ψ|ϕ1〉

‖ϕ1‖ = 〈ϕ1|ϕ1〉
‖ϕ1‖ = ‖ϕ1‖ =

√
p.

A simple computation yields that the optimal number of iterations is t = π
4α
− 1

2
,

where α = arcsin〈ψ|ψ1〉 like in equation (1.10), which is roughly π
4〈ψ|ψ1〉 = π

4

√
1
p
. 2

Let us show a non-trivial application of quantum amplitude amplification.

1.3.7. Problem (Element distinctness). The input is a sequence of n num-
bers x1, . . . , xn ∈ [n]. A collision is a pair (i, j) ∈ [n] × [n] such that i 6= j and
xi = xj. The problem is to decide whether there is a collision in x.

The classical complexity of element distinctness is Ω(n). The best known
algorithm sorts the input numbers and then it looks for a collision in another
round. Quantum computers cannot sort faster than O(n log n), however they can
solve element distinctness polynomially faster.

1.3.8. Theorem ([BDH+01]). There is a bounded-error quantum algorithm for
element distinctness that uses O(n3/4) queries and runs in time O(n3/4 log2 n).

Proof. The algorithm is outlined in Figure 1.7. The first step uses O(
√
n)

queries. Sorting in the second step does not use any query. The Grover search
in the third step uses O(

√
n) queries, because each Grover iteration uses 2 queries

to load and unload the input number. In each iteration, O(log n) rounds of
classical binary search within the contents of the memory are performed, however
they use no further queries. Hence the first three steps together use O(

√
n)

queries. Assume that there is a collision (i, j) in x. The probability that we
have picked the right interval I containing at least one of i, j is at least 1

|I| = 1√
n
.

The success probability of Grover search is at least 1
2
, hence the success

probability of the first three steps is p ≥ 1
2

1√
n
. Amplitude amplification hence

takes O(
√

1/p) = O(n1/4) rounds and the total query complexity is O(n3/4).
The running time is O(log2 n) times bigger than the query complexity, be-

cause both sorting and binary searching in the first three steps take O(
√
n log n)

operations on log n-bit numbers. 2

28 Chapter 1. Quantum Computation

Older Element distinctness (n input numbers x1, . . . , xn)
returns whether there are i 6= j such that xi = yi.

1. Pick a random number s ∈ [
√
n]. Let I denote the interval

[(s− 1)
√
n+ 1, s

√
n]. Read the numbers indexed by I.

2. Sort classically the numbers in I according to their x-value.

3. For a specific j ∈ [n], one can check if there is an i ∈ I such that
xi = xj using classical binary search on I. Use Generalized
Grover search to find out whether there is a j ∈ [n] for which
such an i ∈ I exists.

4. Apply quantum amplitude amplification on the first three steps of
the algorithm.

Figure 1.7: Quantum algorithm Older Element distinctness [BDH+01]

1.4 Quantum random walks

A quantum walk is a quantum variant of a classical random walk on a graph.
Instead of flipping a coin at random and walking based on the outcome of the
coin flip, we put the coin into a quantum superposition and thus walk in a super-
position of all directions. Quantum effects, such as negative interference, cause
the properties of quantum walks to be different from those of random walks.

1.4.1 Element distinctness

In the previous section, we defined the element distinctness problem and presented
a fast quantum algorithm for it based on quantum search. In this section, we
show a fundamental quantum algorithm based on quantum walks that solves this
problem even faster; in fact it is optimal. This algorithm is novel and quite
universal, and a whole branch of quantum algorithms for several important and
natural problems are inferred from it. We will see more examples later.

1.4.1. Definition. The Johnson graph J(n, k) is defined as follows: its vertices
are all subsets of [n] of size k, and two vertices are connected by an edge if and
only if their symmetric difference is 2, that is one can get one subset from the
other one by replacing one number.

Ambainis’s quantum walk algorithm Element distinctness [Amb04] is out-
lined in Figure 1.8. It walks on the Johnson graph J(n, k) for k = n2/3. A graph
vertex corresponds to a subset of k input numbers loaded into the memory and
one step of the walk corresponds to replacing one number by another one.

1.4. Quantum random walks 29

Element distinctness (n input numbers x1, . . . , xn)
returns whether there are i 6= j such that xi = yi.

1. Let k = n2/3 denote the number of elements kept in the memory in
each basis state. Put the quantum register into the superposition

1√(
n
k

) 1√
n− k

∑
S⊆[n]
|S|=k

|S〉
∑

y∈[n]−S

|y〉 .

Read the numbers indexed by S into a third register.

2. Repeat t1 = Θ(n/k) times the following:

(a) Phase flip OS. Multiply the quantum phase of |S〉 by −1 if
there is a collision inside S.

(b) Diffusion D′. Apply t2 = Θ(
√
k) steps of quantum walk by

running t2 times One Step (|S〉|y〉).

3. Measure S and verify classically whether there is a collision in the
observed set S.

One Step (subset |S〉 of size k, index |y〉 outside S)
is a quantum subroutine applying a unitary operation on its arguments.

4. Diffuse |y〉 by mapping |S〉|y〉 → |S〉
(
−|y〉+ 2

n−k
∑

y′ 6∈S |y′〉
)
.

5. Insert y into the set S and read xy by querying the input.

6. Diffuse |y〉 by mapping |S〉|y〉 → |S〉
(
−|y〉+ 2

k+1

∑
y′∈S |y′〉

)
.

7. Erase xy by querying the input and remove y from the set S.

Figure 1.8: Quantum algorithm Element distinctness [Amb04]

30 Chapter 1. Quantum Computation

At first glance, Element distinctness resembles Grover search. At the
beginning, the quantum register is put into the uniform superposition of all basis
states. Then a sequence of phase flips and diffusions is performed. Note that
if a set S is picked uniformly at random, then the probability that it contains
a collision is roughly p = (k/n)2 (assuming there is exactly one collision), and
the number of iterations is proportional to

√
1/p = n/k exactly like in Grover

search. There is, however, one crucial difference between the algorithms and
that is the implementation of the diffusion step. An ideal diffusion operator maps

D : |S〉 → −|S〉+
2√(
n
k

) · 1√(
n
k

) ∑
S′⊆[n]
|S′|=k

|S ′〉 ,

exactly like in equation (1.9). Had we performed exactly this operator D, we
could apply Theorem 1.3.2 and conclude that the algorithm finds a collision with
a constant probability. We do not do this for a simple reason: the ideal diffusion
operator D costs k queries to x, because it can replace a subset S by another
subset S ′ consisting of elements outside S. This means that the total number of
queries of such an algorithm would be at least n

k
·k ≥ n, which is worse than that

of Older Element distinctness!

New diffusion operator This difficulty can be overcome as follows. We define
a different diffusion operator D′ that can be computed using only O(

√
k) queries

and prove that D′ behaves equally well as the ideal diffusion operator D for the
purpose of quantum search. D′ is computed by t2 applications of the quantum
subroutine One Step. The quantum walk uses an additional register |y〉 called
a coin flip register. It determines which number is to be added to or deleted
from S, and the ideal diffusion operator (1.9) is applied on |y〉 in between these
operations. This is the second difference from Grover search, which does not
need to use any coin flip register. Basically, all discrete-time quantum walks use
coin flip registers.

1.4.2. Theorem ([Amb04]). Let x1, . . . , xn contain either no collision or ex-
actly one collision. Then Element distinctness uses O(n2/3) queries and it
has constant success probability.

Proof (sketch). The algorithm has already been described in Figure 1.8. Its
total query complexity is O(k + n

k
(0 +

√
k)) = O(k + n√

k
). We minimize it by

setting k = n2/3 and thus use O(n2/3) queries.
Assume that there is a collision (i, j). It remains to prove that the subset S at

the end contains the collision with probability at least a constant. We analyze the
eigenspaces of the unitary operator G = D′ ·OS. The analysis is feasible because,
like in Grover search, the quantum state stays in a constant-dimensional sub-
space S. Here S has 5 dimensions and it is spanned by {|ψ1〉, |ψ2〉, |ψ3〉, |ψ4〉, |ψ5〉},

1.4. Quantum random walks 31

where |ψ`〉 is the uniform superposition of states of type ` as follows. Each state
|S〉|y〉 has a type assigned according to the following table:

type = 1 if |S ∩ {i, j}| = 0 y 6∈ {i, j}
2 |S ∩ {i, j}| = 0 y ∈ {i, j}
3 |S ∩ {i, j}| = 1 y 6∈ {i, j}
4 |S ∩ {i, j}| = 1 y ∈ {i, j}
5 |S ∩ {i, j}| = 2 y 6∈ {i, j}

(1.12)

For example |ψ1〉 =
∑

S:|S∩{i,j}|=0

∑
y 6∈S∪{i,j} |S〉|y〉. Note that there is no 6th

subspace, because when both i, j ∈ S, they cannot be simultaneously equal to y.
It is straightforward to verify that both OS and D′ preserve S.

The operator One Step has 5 different eigenvalues. One of them is 1 with the
uniform superposition being the eigenvector. The other ones are e±iθj for j = 1, 2
with θj = (2

√
j + o(1)) 1√

k
. Let us perform t2 = d π

3
√

2

√
ke quantum walk steps

in the diffusion operator; this means that the eigenvalues are raised to the power

of t2. Hence D′ = One Stept2 has eigenvalues 1 and e±i(
2π
3

√
j
2
+o(1)) for j = 1, 2.

The latter eigenvalues are bounded away from 1; they are eiθ with θ ∈ [c, 2π − c]
for a constant c > 0 independent of n, k. Recall that the ideal diffusion operator
D of Grover search in the proof of Theorem 1.3.2 has the same properties: it
has one eigenvalue 1 with the uniform superposition being the eigenvector, and
one eigenvalue −1 (which is bounded away from 1).

Ambainis showed [Amb04, Lemma 3] that these two properties are sufficient.
He proved that any operator like this can be used instead of the ideal diffusion
operator D and the quantum search will still behave like Grover search. It
follows that t1 = Θ(

√
1/p) = Θ(n/k) iterations are enough to find the collision

with constant probability. 2

Running time The running time of Element distinctness can be much
bigger than its query complexity. The phase flip costs 0 queries, because all
elements from S are read in the memory, but the computation takes some time.
Two simple approaches fail: naive comparison of all pairs takes time O(k2) and
sorting takes timeO(k log k), hence the total running time would be Ω(n), which is
slower than Older Element distinctness. One may try to store the elements
in a balanced search tree, such as a red-black tree [Bay72], that takes timeO(log k)
per operation. This approach is fast, but it fails too for a different reason. The
same set of elements can be encoded by many trees of different shapes depending
on the order of insertions and deletions. We need to have a unique encoding for
the sake of the quantum interference. The correct solution is to use a random
hash function and compare all pairs within the same collision group.

1.4.3. Corollary ([Amb04]). There is a bounded-error quantum algorithm for
element distinctness with 0 or 1 collision running in time O(n2/3 logc n) for some
c > 0.

32 Chapter 1. Quantum Computation

Many collisions It remains to solve element distinctness in the case when there
might be more than one collision. The proof of Theorem 1.4.2 does not work in
this setting— the subspace S can have much more than 5 dimensions because
the states cannot be classified into a constant number of cases like in equation
(1.12). A simple trick of Valiant and Vazirani [VV86] helps here. If there are
roughly w collisions, we first pick a random subset T ⊆ [n] of size n/

√
w and

then run Element distinctness on T . With constant probability, the number
of collisions inside T is 1 and hence the algorithm has constant success probability.
If we do not know the value of w, then we probe all values from an exponentially
decreasing sequence like in Theorem 1.3.3. The running time is decreased when
there are many collisions.

1.4.2 Walking on general graphs

The quantum algorithm Element distinctness from the previous section walks
on a Johnson graph and the analysis in Theorem 1.4.2 is specific for this graph.
There are many efficient classical algorithms that walk on different graphs, such
as grids or hypercubes, therefore it is interesting to investigate whether quantum
computing is of any help in the general case. It turns out that quantum walks
converge quadratically faster on any undirected regular graph.

Let us define a few concepts from the classical theory of random walks on
graphs.

1.4.4. Definition. Let G = (V,E) be an undirected d-regular graph, that is a
graph where each vertex has degree d. The normalized adjacency matrix A is
defined as A[i, j] = 1

d
if (i, j) ∈ E, and 0 otherwise. A has principal eigenvalue 1

with the all-ones vector being the eigenvector. The spectral gap of G, denoted by
δG, is the difference between 1 and the second largest eigenvalue of A.

The spectral gap is nonzero if and only if G is connected. The spectral gap
is proportional to the inverse of the mixing time of a random walk on the graph,
that is the number of random walk steps after which the probability distribution
on the vertices is close to uniform regardless of the starting vertex.

Many practical algorithms can be modelled as instances of the following ab-
stract problem.

1.4.5. Problem. Let G be a fixed graph on a vertex set V . Some subset of
vertices M ⊆ V are marked. The input is a bit string of vertex marks. The
promise is that |M | is either zero or at least ε|V |. The task is to decide which is
the case.

Szegedy [Sze04] solved this problem by the algorithm Decide Marked Ver-
tices outlined in Figure 1.9. The algorithm is a quantum walk algorithm. This
means that if it queries a vertex x at some moment, then only neighbors of x

1.4. Quantum random walks 33

Decide Marked Vertices (undirected graph G = (V,E), marked
vertices M ⊆ V , maximal number of iterations t)
returns whether M 6= ∅.

1. Initialization. Put the quantum register into the superposition

|ψ〉 =
1√
|V |

∑
x∈V

|x〉|ψx〉, where |ψx〉 =
1√
d

∑
y:(x,y)∈E

|y〉

is a uniform superposition of all neighbors of x.

2. Pick a number of iterations ` ∈ {1, 2, . . . , t} uniformly at random.
Repeat ` times the following:

(a) Phase flip. Multiply the phase of |x〉 by −1 if x ∈M .

(b) Diffusion. Perform one step of quantum walk on G. Map

|x〉|y〉 → |x〉 ⊗ Dx|y〉

and, then, map

|x〉|y〉 → Dy|x〉 ⊗ |y〉 ,

where |x〉, |y〉 are computational basis states, and

Dx = −I + 2|ψx〉〈ψx| . (1.13)

3. Return “non-empty” if the final quantum state has small scalar
product with the uniform superposition |ψ〉. The scalar product is
estimated using Lemma 1.4.7.

Figure 1.9: Quantum algorithm Decide Marked Vertices [Sze04]

34 Chapter 1. Quantum Computation

can be queried next time. The algorithm follows the same line as other quantum
search algorithms: it starts in a fixed superposition and it interleaves phase flips
and diffusion steps. However, the structure of its coin flip register is a bit more
general than that of Element distinctness. Instead of using one additional
register of dimension equal to the degree of the graph, the vertex register is dou-
bled. It always holds that these two registers contain two adjacent vertices. At
each step, one of the two registers is used as a control register and the other one
as a coin flip register, and the roles of the two registers get exchanged after each
application. The diffusion operator Dx defined by equation (1.13) maps

Dx : |y〉 →

{
−|y〉 (x, y) 6∈ E
−|y〉+ 2√

d
|ψx〉 (x, y) ∈ E ,

that is it diffuses the neighbors of x like equation (1.9) and leaves other vertices
untouched up to the phase. It follows that Dx can be implemented efficiently us-
ing only two transitions along an edge in E: we first move from the old neighbor
y back into x and then we move to the new neighbor y′. It is simple to prove
that Dx on a Johnson graph exactly computes the diffusion operator of Element
distinctness up to an isomorphism between quantum registers, hence Decide
Marked Vertices is not really a new quantum algorithm on this graph. How-
ever, as we have said above, Decide Marked Vertices works well even for
more general graphs.

1.4.6. Theorem ([Sze04]). Let G = (V,E) be an undirected regular graph with
spectral gap δG and let M ⊆ V be a subset of vertices such that either |M | = 0 or
|M | ≥ ε|V |. Let t0 = Θ(1/

√
δGε). For every t ≥ t0, Decide Marked Vertices

(G,M, t) decides whether M is non-empty with 1-sided error γ ∈ [1
2
, 7

8
]. The

algorithm never makes an error when M is empty.

Proof (sketch). If there is no marked vertex, then the algorithm only per-
forms the diffusions and both of them are identity on |ψ〉 = 1√

|V |

∑
x∈V |x〉|ψx〉 =

1√
|V |

∑
y∈V |ψy〉|y〉. This means that the scalar product at the end is 1. On the

other hand Szegedy proved [Sze04, Lemma 7, Lemma 10, and Corollary 2] that,
if there are many marked vertices, then after t0 iterations the scalar product is
at most a constant (smaller than 1) with constant probability. We estimate the
scalar product by a swap test as follows. At the beginning, we put a one-qubit
register |z〉 into the superposition |+〉 = |0〉+|1〉√

2
and condition the whole algorithm

by |z〉. At the end, we apply the Hadamard operation on |z〉 and measure it in
the computational basis. By Lemma 1.4.7, we obtain 0 with certainty in the first
case and 1 with constant probability in the second case. 2

1.4. Quantum random walks 35

1.4.7. Lemma (Hadamard test [BCWW01]). Let |ϕ〉 and |ψ〉 be two quan-

tum states, let |X〉 =
√

2
2

(|0, ϕ〉+ |1, ψ〉) be their superposition with a control qubit,
and let |Y 〉 = (H ⊗ I)|X〉 be the state after applying the Hadamard operation on
the control qubit. If the control qubit of |Y 〉 is measured in the computational
basis, then Pr [Y = 1] = 1

2
(1−<〈ϕ|ψ〉).

Proof. We write

|Y 〉 =
|0, ϕ〉+ |1, ϕ〉

2
+
|0, ψ〉 − |1, ψ〉

2
= |0〉|ϕ〉+ |ψ〉

2
+ |1〉|ϕ〉 − |ψ〉

2
,

hence

Pr [Y = 1] =
∥∥∥ |ϕ〉 − |ψ〉

2

∥∥∥2

=
(〈ϕ| − 〈ψ|)(|ϕ〉 − |ψ〉)

4

=
〈ϕ|ϕ〉+ 〈ψ|ψ〉 − 〈ϕ|ψ〉 − 〈ψ|ϕ〉

4
=

1−<〈ϕ|ψ〉
2

.
2

Application to element distinctness Let us show how to solve element dis-
tinctness using the general quantum walk algorithm. As before, we walk on the
Johnson graph J(n, k) (see Definition 1.4.1). A vertex is marked if and only if the
corresponding subset contains a collision; this can be tested by only looking at the
elements of the subset. If the quantum register is in state |S〉, then the numbers
indexed by S are read in the memory. In the initialization step we need to read
them all, hence it takes O(k) queries. The phase flip on the other hand takes 0
queries. One step of the quantum walk takes 2 queries, one for an insertion and
one for a deletion, because edges only connect subsets that differ by replacing one
number.

1.4.8. Lemma ([Knu03]). The spectral gap of J(n, k) is δJ = n
(n−k)k .

If there is at least one collision, then the fraction of marked vertices is at least
ε = (k

n
)2. By Theorem 1.4.6, t0 = Θ(

√
1/δJε) = Θ(n√

k
) iterations of the quantum

walk are sufficient. The total number of queries is thus O(k + n√
k
), which gives

query complexity O(n2/3) for k = n2/3. This complexity equals the complexity of
Element distinctness.

Comparison between the two quantum walk algorithms On a Johnson
graph, Szegedy’s quantum walk algorithm Decide Marked Vertices is just
an extended version of Ambainis’s algorithm Element distinctness with a
slightly different coin-flip register. The main differences between these two algo-
rithms are: (1) Szegedy’s walk performs a phase flip after every diffusion step,
whereas Ambainis’s walk only does it once in every Θ(

√
k) steps, (2) Szegedy’s

36 Chapter 1. Quantum Computation

walk only decides whether there exists a solution, whereas Ambainis’s walk actu-
ally finds a solution. On the other hand, Ambainis’s walk has only been analyzed
for the case of at most one collision, whereas Szegedy’s walk is known to converge
in every case. Moreover, Szegedy’s versatile coin-flip register allows us to apply
it on any graph. These two quantum walks are thus incomparable and there
are algorithms (such as triangle finding [MSS05]) that exploit the faster speed of
Ambainis’s walk and that thus would not work fast with Szegedy’s walk. It is an
interesting open problem whether these two algorithms can be merged.

Walking on Markov chains Let us mention briefly a useful generalization of
Decide Marked Vertices coming from the same paper [Sze04]. Theorem 1.4.6
also works for all symmetric ergodic Markov chains. A Markov chain is roughly
speaking an undirected graph with weights on the edges that represent transition
probabilities. This allows walking on non-regular graphs as long as we tune
the weights such that the transition probabilities are symmetric. Thanks to its
universality, this version can be regarded as a quantum walk version of amplitude
amplification Theorem 1.3.6. It is not known whether quantum walks offer any
speedup for directed graphs.

Finally, let us compare the performance of quantum random walks with clas-
sical random walks and quantum search. Problem 1.4.5 can be solved by classical
random walks in O(1/δGε) iterations. Ordinary quantum search converges faster
in O(1/δG

√
ε) iterations, and, finally, quantum random walks converge fastest in

O(1/
√
δGε) iterations.

1.5 Quantum counting

In several algorithms, one needs to estimate the number of solutions before search-
ing for them, for example for the sake of the initialization of data structures. In
this section, we present an elegant quantum algorithm for this problem. It com-
bines Grover search and the quantum Fourier transform, which is the heart
of the famous polynomial-time quantum factoring algorithm [Sho97] invented by
Peter Shor in 1994.

1.5.1. Definition. For an integer t and a real number β ∈ R, let |ϕt(β)〉 =
1√
t

∑t−1
y=0 e

2πiβy|y〉. The quantum Fourier transform with respect to modulus t

maps Ft : |x〉 → |ϕt(xt)〉.

Coppersmith showed [Cop94] how to compute F2` by a quantum circuit of
depth and size both O(`2) using no ancilla qubits. It is folklore that the depth
can be improved to O(`). Hales and Hallgren showed [HH99] how to approximate
Ft by Ft′ with polynomially small error for any t′ ≥ t3. By concatenating these
two constructions, Ft for any integer t can be approximated in depth O(log t),

1.5. Quantum counting 37

Quantum Counting (input string x, number of queries t)
returns an estimate of w = |x|.

1. Initialize two registers to the state Ft|0〉 ⊗ |ψ〉.

2. If the first register is |y〉, apply y Grover iterations on the second
register, that is map |y〉|ψ〉 → |y〉 ⊗ Gy|ψ〉.

3. Apply F−1
t to the first register.

4. Measure the first register and denote the outcome by ỹ.

5. Return w̃ = n · sin2(π ỹ
t
).

Figure 1.10: Quantum algorithm Quantum Counting [BHMT02]

which is good enough for our purposes. Cleve and Watrous [CW00] later showed
how to approximate Ft in depth O(log log t), however we do not need their better
construction here.

1.5.1 General counting algorithm

The algorithm is outlined in Figure 1.10.

1.5.2. Theorem ([BHMT02]). For any integers k, t > 0, the algorithm Quan-
tum Counting (x, t) outputs an estimate w̃ of w = |x| such that

|w̃ − w| ≤ 2πk

√
w(n− w)

t
+ π2k2 n

t2

with probability at least 8
π2 when k = 1, and with probability greater than 1− 1

2(k−1)

for k ≥ 2. If w = 0, then w̃ = 0 with certainty, and if w = n and t is even, then
w̃ = n with certainty.

Proof. Following the proof of Theorem 1.3.2, the Grover iteration can be ex-
pressed in the basis {|ψ0〉, |ψ1〉} as G = (cos 2α − sin 2α

sin 2α cos 2α), where sin2 α = w
n
. G has

eigenvectors |ψ±〉 = |ψ0〉±i|ψ1〉√
2

with eigenvalues e∓2iα. The starting vector can be

decomposed as |ψ〉 = cosα|ψ0〉 + sinα|ψ1〉 = e−iα|ψ+〉+eiα|ψ−〉√
2

. Hence, after the
first step, the quantum state is

|ϕt(0)〉|ψ〉 =
1√
2t

t−1∑
y=0

|y〉
(
e−iα|ψ+〉+ eiα|ψ−〉

)
,

38 Chapter 1. Quantum Computation

which gets mapped in the second step to

→ 1√
2t

t−1∑
y=0

|y〉
(
e−iαGy|ψ+〉+ eiαGy|ψ−〉

)
=
e−iα√

2t

t−1∑
y=0

e−2iαy|y〉|ψ+〉+
eiα√
2t

t−1∑
y=0

e2iαy|y〉|ψ−〉

=
e−iα√

2
|ϕt(−α

π
)〉|ψ+〉+

eiα√
2
|ϕt(απ)〉|ψ−〉 .

Assume for a moment that y = α
π
t is an integer. Let us pretend that we

measure the second register in the |ψ±〉 basis and the outcome is |ψ−〉. Then
the first register is in the state |ϕt(yt)〉 and the inverse of the quantum Fourier
transform F−1

t maps it to |y〉. We know that w = n · sin2 α = n · sin2(π y
t
), which

is exactly what the algorithm computes as w̃ in its last step. If the value of the
second register was |ψ+〉, then the computation of w̃ gives the same value thanks
to sin2(−α) = sin2 α. This means that we do not have to measure the second
register at all and the outcome will be right anyway.

In reality it is very unlikely that y = α
π
t would be an integer, hence it remains

to prove that in such a case the inverse of the quantum Fourier transform gives
a good approximation ỹ of y. Let α̃ = π ỹ

t
be the approximation of the true angle

α. For any two numbers β0, β1 ∈ R, let d(β0, β1) = minz∈Z(z + β1 − β0); thus
2πd(β0, β1) is the length of the shortest arc on the unit circle going from e2πiβ0

to e2πiβ1 . By the following Lemma 1.5.3, with probability at least 1 − 1
2(k−1)

,

d(α, α̃) ≤ k
t
π. Using Lemma 1.5.4 with ε = k

t
π, and w = n · sin2 α, the result

easily follows. 2

1.5.3. Lemma ([BHMT02, Theorem 11]). Let Y be the discrete random vari-
able corresponding to the classical result of measuring F−1

t |ϕt(β)〉. If βt is an
integer, then Pr [Y = βt] = 1, otherwise, letting ∆ = d(β, ỹ

t
),

• Pr [Y = ỹ] ≤ 1
(2t∆)2

,

• for any k > 1 we also have Pr [∆ ≤ k
t
] ≥ 1− 1

2(k−1)
,

• and, in the case k = 1 and t > 2, Pr [∆ ≤ 1
t
] ≥ 8

π2 .

Proof (sketch). First, Pr [Y = ỹ] = |〈ỹ|(F−1
t |ϕt(β)〉)|2 = |〈ϕt(ỹt)|ϕt(β)〉|2

which, after some manipulations, is equal to sin2(t∆π)

M2 sin2(∆π)
≤ 1

(2t∆)2
. The second and

the third part follow by summing probabilities from the first point and finding
the minimum. 2

1.6. Summary 39

1.5.4. Lemma ([BHMT02, Lemma 7]). Let a = sin2 α and ã = sin2 α̃ with
α, α̃ ∈ [0, 2π]. Then

|α̃− α| ≤ ε =⇒ |ã− a| ≤ 2ε
√
a(1− a) + ε2 .

Proof. For ε ≥ 0, using standard trigonometric identities, we obtain

sin2(α+ ε)− sin2 α =
√
a(1− a) sin 2ε+ (1− 2a) sin2 ε ,

sin2 α− sin2(α− ε) =
√
a(1− a) sin 2ε+ (2a− 1) sin2 ε .

The inequality follows directly from sin ε ≤ ε. 2

1.5.2 Estimating the Hamming weight of a string

If we want to estimate |x| within a few standard deviations, we can run Quantum
Counting with t =

√
n queries and k = 1.

1.5.5. Corollary. For an n-bit string x, Quantum Counting (x,
√
n) out-

puts an estimate w̃ of w = |x| such that |w̃ − w| ≤ 2π
√

min(w, n− w) + 10 with
probability at least 8/π2.

In several algorithms, one needs to decide whether some string contains at
least t > 0 ones. This problem is called a t-threshold function, denoted by Thrt.
Formally, Thrt(x) = 1 if and only if |x| ≥ t. One call to Quantum Count-
ing with t = O(

√
t(n− t+ 1)) queries gives a correct outcome with constant

probability. Beals et al. [BBC+01] showed that this is optimal; we will present
a different proof in Corollary 2.4.3. Quantum Counting is not the only way
to compute this function. One could repeatedly use Grover search like in
Corollary 1.3.5, however Quantum Counting has two significant advantages:
the strong upper bound holds for the worst-case running time instead of for the
expected running time, and the computation only uses O(log n) qubits instead of
potentially Ω(n) qubits to remember all ones found so far.

1.5.6. Corollary ([BHMT02]). For every n, t, there is a quantum algorithm
that computes the t-threshold function on an n-bit string using O(

√
t(n− t+ 1))

queries with constant success probability.

1.6 Summary

We have explained the basic concepts of quantum mechanics: superposition, evo-
lution, and measurement. We have introduced the model of quantum circuits and
defined the quantum query complexity. We have presented one of the two ma-
jor quantum algorithms Grover search that searches quickly any unordered

40 Chapter 1. Quantum Computation

database, and several its variations. We have analyzed its success probability
and running time. We have sketched the model of quantum random walks and
outlined two important quantum walk algorithms. Finally, we have presented
algorithm Quantum Counting that approximates the number of solutions.

Chapter 2

Quantum Lower Bounds

This chapter is based on the following survey:

[HŠ05] P. Høyer and R. Špalek. Lower bounds on quantum query com-
plexity. Bulletin of the European Association for Theoretical
Computer Science, 87:78–103, October 2005.

2.1 Introduction

In this chapter, we offer an introduction to the study of limitations on the power of
quantum computers. Can quantum computers really be more powerful than tradi-
tional computers? What can quantum computers not do? What proof techniques
are used for proving bounds on the computational power of quantum computers?
This is a highly active area of research and flourishing with profound and beautiful
theorems. Though deep, it is fortunately also an accessible area, based on basic
principles and simple concepts, and one that does not require specialized prior
knowledge. One aim of this chapter is to show this by providing a fairly complete
introduction to the two most successful methods for proving lower bounds on
quantum computations, the adversary method and the polynomial method. The
text is biased towards the adversary method since it is often used in this thesis
and it yields very strong lower bounds. This text can be supplemented by the
excellent survey of Buhrman and de Wolf [BW02] on decision tree complexities,
published in 2002 in the journal Theoretical Computer Science.

The rest of the chapter is organized as follows. We discuss very basic principles
used in proving quantum lower bounds in Section 2.2 and use them to establish our
first lower-bound method, the adversary method, in Section 2.3. We discuss how
to apply the method in Section 2.4, and its limitations in Section 2.5. We then give
an introduction to the second method, the polynomial method, in Section 2.6.
We compare the two methods in Section 2.7, discuss some open problems in
Section 2.8, and give a few final remarks in Section 2.9.

41

42 Chapter 2. Quantum Lower Bounds

We demonstrate the methods on a running example, and for this, we use one
of the most basic algorithmic questions one may think of: that of searching an
ordered set.

2.1.1. Problem. (Ordered search) In the oracle model, the input to ordered
search is an n-bit string x = x1 . . . xn. We are promised that xi ≤ xi+1 for all
1 ≤ i < n and that xn = 1, and the goal is to find the leftmost 1, that is f(x) is
the index i ∈ [n] for which xi = 1 and no index j < i exists with xj = 1.

2.1.2. Question. Can one implement ordered search significantly faster on a
quantum computer than applying a standard Θ(log n) binary search algorithm?

The classical query complexity of ordered search is dlog2(n)e and is achieved
by standard binary search. The quantum query complexity of ordered search
is at most 0.45 log2 n, due to the work of high school student M. B. Jacokes
in collaboration with Landahl and Brookes [JLB05] (See also [FGGS99, BW98,
HNS02]). Using the adversary method, we show that their algorithm is within a
factor of about two of being optimal.

2.2 Distinguishing hard inputs

The first quantum lower bound using adversary arguments was given by Bennett,
Bernstein, Brassard, and Vazirani in [BBBV97]. They show that any quantum
query algorithm can be sensitive to at most quadratically many oracle bits, which
implies a lower bound of Ω(

√
n) for unordered search (Problem 1.3.1) and thus

proves that the O(
√
n) algorithm Grover search [Gro96] is optimal. Interest-

ingly, the lower bound of Bennett et al. was proved in 1994, well before Grover
defined his search problem. In 2000, Ambainis [Amb02] found an important gen-
eralization of the method and coined it adversary arguments.

A constructive interpretation of basic adversary arguments is in terms of dis-
tinguishability. We will thus not be concerned with computing the function f ,
but merely interested in distinguishing oracles. Consider some algorithm A that
computes some function f : Σn → Σ′ in the oracle model, and consider two inputs
x, y ∈ Σn for which f(x) 6= f(y). Since A computes f , it must in particular be
capable of distinguishing between oracle x and oracle y. For a given problem we
try to identify pairs of oracles that are hard to distinguish. If we can identify
hard input pairs, we may derive a good lower bound. However, a caveat is that
using only the very hardest input pairs does not yield good lower bounds for some
problems, and we are thus naturally led to also consider less hard input pairs.
A remedy is to use weights that capture the hardness of distinguishing each pair
of oracles, and to do so, we define a matrix Γ of dimension 2n × 2n that takes
non-negative real values,

Γ : Σn × Σn → R+
0 . (2.1)

2.2. Distinguishing hard inputs 43

We require that Γ is symmetric and that Γ[x, y] = 0 whenever f(x) = f(y). We
say that Γ is a spectral adversary matrix for f if it satisfies these two conditions.
The symmetry condition on Γ states that we are concerned with distinguishing
between any two inputs x, y. We are not concerned with distinguishing x from
y, nor distinguishing y from x. We discuss this subtlety further in Section 2.4
below when considering alternative definitions of weighted adversary arguments.
The spectral adversary matrix Γ allows us to capture both total and partial
functions, as well as non-Boolean functions. Since we are only concerned with
distinguishability, once we have specified the entries of Γ, we may safely ignore
the underlying function f .

Weighted adversary arguments were first used by Høyer, Neerbek, and Shi
in [HNS02] to prove a lower bound of Ω(log n) for ordered search and a lower
bound Ω(n log n) for sorting. Barnum and Saks [BS04] used weighted adversary
arguments to prove a lower bound of Ω(

√
n) for read-once formulae, and intro-

duced the notion Γ that we adapt here. Barnum, Saks, and Szegedy extended
their work in [BSS03] and derived a general lower bound on the query complexity
of f in terms of spectral properties of matrix Γ. Their lower bound has a very
elegant and short formulation, a basic proof, and captures important properties
of adversary methods, and we shall thus adapt much of their terminology.

As discussed above, the key to prove a good lower bound is to pick a good
adversary matrix Γ. For our running example of ordered search, which is a partial
non-Boolean function, we use the following weights.

2.2.1. Example. (Ordered Search) The weight on the pair (x, y) is the in-
verse of the Hamming distance of x and y,

Γsearch[x, y] =


1

|f(x)−f(y)| if x and y are valid and distinct inputs to f

(f(x) is the position of the leftmost 1 in x)

0 otherwise ,

The larger the Hamming distance between x and y, the easier it is to distinguish
them, and the smaller weight is assigned to the pair.

We have to choose how to measure distinguishability. The possibly simplest
measure is to use inner products. Two quantum states are distinguishable with
certainty if and only if they are orthogonal, and they can be distinguished with
high probability if and only if their inner product has small absolute value.

2.2.2. Fact. ([BV97]) Suppose we are given one of two known states |ψx〉, |ψy〉.
There exists a measurement that correctly determines which of the two states
we are given with error probability at most ε if and only if |〈ψx|ψy〉| ≤ ε′, where

ε′ = 2
√
ε(1− ε).

Since a unitary operator is just a change of basis, it does not change the inner
product between any two quantum states, and thus the inner product can only
change as a consequence of queries to the oracle.

44 Chapter 2. Quantum Lower Bounds

2.3 Adversary lower bounds

Adversary lower bounds are of information theoretical nature. A basic idea in
adversary lower bounds is to upper-bound the amount of information that can be
learned in a single query. If little information can be learned in any one query,
then many queries are required. We use spectral properties of Γ to put an upper
bound on the amount of information the algorithm learns about the oracle.

Let A be some quantum algorithm that computes some function f with
bounded 2-sided error. For every integer t ≥ 0 and every oracle x, let

|ψtx〉 = UtOx · · ·U1OxU0|0〉

denote the quantum state after t queries to the oracle. To measure the progress
of the algorithm, we define similarly to [Amb02, HNS02, BS04, BSS03] a weight
function

W t =
∑
x,y

Γ[x, y]δxδy · 〈ψtx|ψty〉 ,

where δ is a fixed principal eigenvector of Γ, that is a normalized eigenvector
corresponding to the largest eigenvalue of Γ, and where δx denotes the xth entry
of δ.

The algorithm starts in a quantum state |ψ0
x〉 = U0|0〉 which is independent

of the oracle x, and thus the total initial weight is

W 0 =
∑
x,y

Γ[x, y]δxδy = δTΓδ = λ(Γ) ,

where δT denotes the transpose of δ and λ(Γ) denotes the spectral norm of Γ.
The final state of the algorithm after t queries is |ψtx〉 if the oracle is x, and it
is |ψty〉 if the oracle is y. If f(x) 6= f(y), we must have that |〈ψtx|ψty〉| ≤ ε′ by
Fact 2.2.2, and hence W t ≤ ε′W 0. If the total weight can decrease by at most ∆
by each query, the algorithm requires Ω(W

0

∆
) queries to the oracle.

Following Barnum, Saks, and Szegedy [BSS03], we upper-bound ∆ by the
largest spectral norm of the matrices Γi, defined by

Γi[x, y] =

{
Γ[x, y] if xi 6= yi

0 if xi = yi ,
(2.2)

for each 1 ≤ i ≤ n. The theorem of [BSS03] is here stated (and proved) in a
slightly more general form than in [BSS03] so that it also applies to non-Boolean
functions. Our proof aims at emphasizing distinguishability and differs from the
original.

2.3.1. Theorem (Spectral method [BSS03]). For any partial function f :
S → Σ′ with domain S ⊆ Σn, and any adversary matrix Γ for f ,

Q2(f) = Ω

(
λ(Γ)

maxi λ(Γi)

)
.

2.3. Adversary lower bounds 45

Proof. We prove that the drop in total weight W t −W t+1 by the t+ 1st query
is upper-bounded by the largest eigenvalue of the matrices Γi.

For each i ∈ [n] and b ∈ Σ, let Pi,b =
∑

z≥0 |i, b; z〉〈i, b; z| denote the projection

onto the subspace querying the ith oracle number with multiplicative factor b, and
let Pi =

∑
b∈Σ Pi,b. Let βx,i = ‖Pi|ψtx〉‖ denote the absolute value of the amplitude

of querying the ith number in the t+ 1st query, provided the oracle is x. Note
that

∑n
i=1 Pi = I and

∑n
i=1 β

2
x,i = 1 for any oracle x, since the algorithm queries

one of the n numbers x1, . . . , xn. The t+ 1st query changes the inner product by
at most the overlap between the projections of the two states onto the subspace
that corresponds to indices i on which xi and yi differ,∣∣∣〈ψtx|ψty〉 − 〈ψt+1

x |ψt+1
y 〉

∣∣∣ =
∣∣∣〈ψtx|(I− O†

xOy)|ψty〉
∣∣∣

=
∣∣∣〈ψtx|(I− O†

xOy)
(∑
i∈[n], b∈Σ

Pi,b
)
|ψty〉

∣∣∣
=
∣∣∣ ∑
i∈[n], b∈Σ

(
1− e

2π
√
−1

|Σ| (yi−xi)b
)

︸ ︷︷ ︸
=∆i[b,b]

〈ψtx|Pi,b|ψty〉
∣∣∣

≤
∑
i:xi 6=yi

∣∣∣〈ψtx|∑
b∈∆

∆i[b, b]Pi,b|ψty〉
∣∣∣ (

∆i is diagonal
λ(∆i) ≤ 2

)
=
∑
i:xi 6=yi

∣∣∣〈ψtx|Pi ·∆i · Pi|ψty〉
∣∣∣ ≤ 2

∑
i:xi 6=yi

βx,iβy,i . (2.3)

The bigger the amplitudes of querying the numbers i on which xi and yi differ,
the larger the drop in the inner product can be.

Define an auxiliary |S|-dimensional vector ai[x] = δxβx,i and note that
n∑
i=0

‖ai‖2 =
n∑
i=0

∑
x

δ2
xβ

2
x,i =

∑
x

δ2
x

n∑
i=0

β2
x,i =

∑
x

δ2
x = 1 .

The drop in the total weight is upper-bounded by∣∣W t −W t+1
∣∣ =

∣∣∣∑
x,y

Γ[x, y]δxδy
(
〈ψx|ψy〉 − 〈ψ′x|ψ′y〉

)∣∣∣
≤ 2

∑
x,y

∑
i

Γi[x, y]δxδy · βx,iβy,i

= 2
∑
i

aTi Γiai

≤ 2
∑
i

λ(Γi)‖ai‖2

≤ 2 max
i
λ(Γi) ·

∑
i

‖ai‖2

= 2 max
i
λ(Γi) .

46 Chapter 2. Quantum Lower Bounds

The first inequality bounds the drop in inner product for a specific pair and
follows from equation (2.3). The second inequality follows from the spectral norm
of Γ. The second and third inequalities state that the best possible query dis-
tributes the amplitude of the query according to the largest principal eigenvector
of the query matrices Γi. 2

2.3.2. Example. Returning to our example of ordered search, for n = 4, the
adversary matrix with respect to the ordered basis (0001, 0011, 0111, 1111) is
given by

Γsearch(4)
=


0 1 1

2
1
3

1 0 1 1
2

1
2

1 0 1
1
3

1
2

1 0

 .

The spectral norm is easily seen to be lower-bounded by the sum of the entries

in the first row, λ(Γsearch(4)
) ≥ 1 + 1

2
+ 1

3
. In general, λ(Γsearch) is lower-bounded

by the harmonic number Hn−1 =
∑n−1

k=1
1
k
, which is at least ln(n). By a simple

calculation, the spectral norm of the query matrices λ(Γsearch
i) is maximized when

i = bn/2c, in which case it is upper-bounded by the spectral norm of the infinite
Hilbert matrix [1/(r + s− 1)]r,s≥1, which is π. We thus reprove the lower bound

of (1− ε′) ln(n)
π

for ordered search given in [HNS02].

2.4 Applying the spectral method

The spectral method is very appealing in that it has a simple formulation, a basic
proof, and gives good lower bounds for many problems. However, estimating the
spectral norm of a matrix may be difficult in general, so let us present a few
variants of the spectral method that are easier to apply.

The first general quantum lower bound using adversary arguments was intro-
duced by Ambainis in [Amb02]. It can be derived from the spectral method by
applying simple bounds on the spectral norm of Γ and each Γi. By definition, the
numerator λ(Γ) is lower-bounded by 1

‖d‖2d
TΓd for any non-negative vector d, and

by the following lemma by Mathias, the denominator λ(Γi) is upper-bounded by
the product of a row-norm and a column-norm.

2.4.1. Lemma ([Mat90]). Let M,N ≥ 0 be non-negative rectangular matrices
of the same dimension, and let G = M ◦ N be the entry-wise product of M and
N . Let λ(G) = maxv,w

vTGw
‖v‖·‖w‖ denote the spectral norm of G. Then

λ(G) ≤ max
x,y

rx(M) cy(N) ,

where rx(M) is the `2-norm of the xth row in M , and cy(N) is the `2-norm of the
yth column in N .

2.4. Applying the spectral method 47

Proof. Let v, w be a pair of singular vectors of G corresponding to the principal
singular value, and let ‖v‖ = ‖w‖ = 1. Then λ(G) = vTGw. Using G[x, y] =
M [x, y] ·N [x, y] and one Cauchy-Schwarz inequality,

λ(G) = vTGw =
∑
x,y

G[x, y]vxwy

=
∑
x,y

M [x, y]vx ·N [x, y]wy

≤
√∑

x,y

M [x, y]2v2
x ·
√∑

x,y

N [x, y]2w2
y

=

√∑
x

rx(M)2v2
x ·
√∑

y

cy(N)2w2
y

≤
√

max
x

rx(M)2
∑
x

v2
x ·
√

max
y
cy(N)2

∑
y

w2
y

= max
x,y

rx(M)cy(N) ,

which we had to prove. 2

Applying these two bounds, we can obtain Ambainis’s lower bound in [Amb02]
as follows. We refer to the method as an unweighted adversary method since it
considers only two types of inputs: easy inputs and hard inputs. We construct
an adversary matrix Γ that corresponds to a uniform distribution over the hard
input pairs.

2.4.2. Theorem (Unweighted method [Amb02]). Let f : S → {0, 1} be
a partial Boolean function with domain S ⊆ {0, 1}n, and let A ⊆ f−1(0) and
B ⊆ f−1(1) be subsets of (hard) inputs. Let R ⊆ A × B be a relation, and set
Ri = {(x, y) ∈ R : xi 6= yi} for each 1 ≤ i ≤ n. Let m,m′ denote the minimal
number of ones in any row and any column in relation R, respectively, and let
`, `′ denote the maximal number of ones in any row and any column in any of the
relations Ri, respectively. Then Q2(f) = Ω(

√
mm′/``′).

Proof. Since f is Boolean, any adversary matrix can by written as Γ = (0 G
GT 0

)
for some rectangular matrix G : A× B → R+, and λ(Γ) = λ(G). Define column
vectors v, w as vx = rx(R) and wy = cy(R), and an adversary matrix G as

G[x, y] = 1
vxwy

if (x, y) ∈ R, and 0 otherwise. Then λ(G) ≥ vTGw
‖v‖·‖w‖ = |R|

|R| = 1. For

each Gi, we apply Lemma 2.4.1 withMi[x, y] = 1
vx

and Ni[x, y] = 1
wy

if (x, y) ∈ Ri,

and they are both 0 otherwise. Then rx(Mi) ≤
√
`/v2

x ≤
√
`/m and cy(Ni) ≤√

`′/w2
y ≤

√
`′/m′. Hence, by Lemma 2.4.1, λ(Gi) ≤ maxx,y rx(M)cy(N) ≤√

``′/mm′, and the result follows from Theorem 2.3.1. 2

48 Chapter 2. Quantum Lower Bounds

2.4.3. Corollary. The threshold function Thrt, defined by Thrt(x) = 1 if and
only if |x| ≥ t, has quantum query complexity Ω(

√
t(n− t+ 1)).

Proof. This result was first proven using the polynomial method in [BBC+01];
here we reprove it using the adversary method. Let A = {x : |x| = t − 1},
B = {y : |x| = t}, and R = {(x, y) : x ∈ A, y ∈ B, |y − x| = 1}. Then every
zero-input x is connected with n − t + 1 one-inputs y, and every one-input y is
connected with t zero-inputs x. On the other hand, if we set a restriction that the
two inputs must differ in some fixed ith bit, then the number of connections of any
input is either 0 or 1. By Theorem 2.4.2, Q2(Thrt) = Ω(

√
(n− t+ 1)t/(1 · 1)) =

Ω(
√
t(n− t+ 1)). 2

The unweighted adversary method is very simple to apply as it requires only
to specify a set R of hard input pairs. It gives tight lower bounds for many
computational problems, including inverting a permutation [Amb02], computing
any symmetric function and counting (lower bound first proven by the polyno-
mial method in [NW99, BBC+01], upper bound in [BHMT02]), constant-level
AND-OR trees (lower bound in [Amb02], upper bounds in [BCW98, HMW03]),
and various graph problems [DHHM04]. For some computational problems, the
hardness does however not necessarily rely only on a few selected hard instances,
but rather on more global properties of the inputs. Applying the unweighted
method on ordered search would for instance only yield a constant lower bound.
In these cases, we may apply the following weighted variant of the method, due
to Ambainis [Amb03] and Zhang [Zha05].

2.4.4. Theorem (Weighted method [Amb03, Zha05]). Let S ⊆ Σn and
let f : S → Σ′ be a function. Let w,w′ denote a weight scheme as follows:

• Every pair (x, y) ∈ S2 is assigned a non-negative weight w(x, y) = w(y, x)
that satisfies w(x, y) = 0 whenever f(x) = f(y).

• Every triple (x, y, i) ∈ S2 × [n] is assigned a non-negative weight w′(x, y, i)
that satisfies w′(x, y, i) = 0 whenever xi = yi or f(x) = f(y), and the
inequality w′(x, y, i)w′(y, x, i) ≥ w2(x, y) for all x, y, i with xi 6= yi.

Then

Q2(f) = Ω

(
min
x,y,i

w(x,y)>0
xi 6=yi

√
wt(x)wt(y)

v(x, i)v(y, i)

)
,

where wt(x) =
∑

y w(x, y) and v(x, i) =
∑

y w
′(x, y, i) for all x ∈ S and i ∈ [n].

At first glance, the weighted method may look rather complicated, both in its
formulation and use, though it is not. We first assign weights to pairs (x, y) of
inputs for which f(x) 6= f(y), as in the spectral method. We require the weights

2.5. Limitations of the spectral method 49

to be symmetric so that they represent the difficulty in distinguishing between x
and y.

We then afterwards assign weights w′(x, y, i) that represent the difficulty in
distinguishing x from y by querying index i. The harder it is to distinguish x from
y by index i, compared to distinguishing y from x by index i, the more weight we
put on (x, y, i) and the less on (y, x, i), and vice versa.

To quantify this, define t(x, y, i) = w′(x, y, i)/w′(y, x, i). Then t(x, y, i) repre-
sents the relative amount of information we learn about input pairs (x, z) com-
pared to the amount of information we learn about input pairs (u, y) for an
average u, z, by querying index i. If we, by querying index i, learn little about x
compared to y, we let t(x, y, i) be large, and otherwise small. Suppose we query
an index i for which xi 6= yi. Then we learn whether the oracle is x or y. How-
ever, at the same time, we also learn whether the oracle is x or z for any other
pair (x, z) for which xi 6= zi and f(x) 6= f(z); and similarly, we learn whether
the oracle is u or y for any other pair (u, y) for which ui 6= yi and f(u) 6= f(y).
The less information querying index i provides about pairs (x, z) compared to
pairs (u, y), the larger we choose t(x, y, i). Having thus chosen t(x, y, i), we set
w′(x, y, i) = w(x, y)

√
t(x, y, i) and w′(y, x, i) = w(x, y)/

√
t(x, y, i).

We show next that the weighted method yields a lower bound of Ω(log n) for
the ordered search problem. This proves that the weighted method is strictly
stronger than the unweighted method. We show in Section 5.3 that the weighted
method is equivalent to the spectral method. The weighted method yields strong
(though not necessarily tight) lower bounds for read-once formula [BS04] and
iterated functions [Amb03]. Aaronson [Aar04b], Santha and Szegedy [SS04], and
Zhang [Zha06] use adversary arguments to prove lower bounds for local search.

2.4.5. Example. To apply the weighted method on ordered search, we pick
weights w(x, y) = Γsearch[x, y] δxδy; they are exactly the coefficients of the weight
functionW t for the input pair (x, y). Now, consider t(x, y, i) with f(x) ≤ i < f(y)
so that xi 6= yi. By querying index i, we also distinguish between x and z for
each of the f(y) − i inputs z with i < f(z) ≤ f(y), and we learn to distinguish
between u and y for each of the i− f(x) + 1 inputs u with f(x) ≤ f(u) ≤ i. We
thus choose to set

t(x, y, i) =
|f(x)− i|+ 1

|f(y)− i|+ 1
.

Plugging these values into the weighted method yields a lower bound of Ω(log n)
for ordered search.

2.5 Limitations of the spectral method

The spectral method and the weighted adversary method bound the amount of
information that can be learned in any one query. They do not take into account

50 Chapter 2. Quantum Lower Bounds

that the amount of information that can be learned in the jth query might differ
from the amount of information that can be learned in the kth query.

In 1999, Zalka [Zal99] successfully managed to capture the amount of infor-
mation that can be learned in each individual query for a restricted version of
unordered search. In this restricted version, we are promised that the input x is
either the zero-string (so |x| = 0) or exactly one entry in x is one (so |x| = 1), and
the goal is to determine which is the case. By symmetry considerations, Zalka
demonstrates that Grover search saturates some improved inequalities (which
are similar to equation (2.3)) and hence is optimal, even to within an additive
constant.

Since current adversary methods do not capture the amount of information
the algorithm currently knows, we may simply assume that the algorithm already
knows every number of the oracle and that it tries to prove so. This motivates
a study of the relationship between the best bound achievable by the spectral
method and the certificate complexity.

2.5.1. Definition. For any function f , the adversary bound for f is

Adv(f) = max
Γ

λ(Γ)

maxi λ(Γi)
,

where Γ ranges over all adversary matrices for f , that is Γ is non-negative and
symmetric, and Γ[x, y] = 0 whenever f(x) = f(y).

2.5.2. Definition. A certificate for an input x ∈ Σn, is a subset C ⊆ [n] of input
indices such that for any other input y in the domain of f that may be obtained
from x by flipping some of the indices not in C, we have that f(x) = f(y).
The certificate complexity Cx(f) of input x is the size of a smallest certificate
for x. The certificate complexity C(f) of a function f is the maximum certificate
complexity among its inputs. We also define the z-certificate complexity Cz(f)
when taking the maximum only over inputs that map to z.

The spectral theorem can never yield a lower bound better than a quantity
that can be expressed in terms of certificate complexity.

2.5.3. Theorem ([LM04, Zha05, ŠS06], Section 5.4). Let f : S → {0, 1}
be any Boolean function. If f is partial, that is if S ({0, 1}n, then the adversary
bound Adv(f) is at most min

{√
C0(f)n,

√
C1(f)n

}
. If f is total, that is if

S = {0, 1}n, then the bound is limited by
√

C0(f)C1(f).

The spectral adversary method is also not suitable for proving lower bounds
for problems related to property testing. If function f : S → Σ′ is a partial
function with domain S ⊆ Σn such that every pair of inputs that evaluate to
different function values has Hamming distance at least εn, then the spectral
theorem does not yield a lower bound better than 1/ε [LLS06].

2.6. Polynomial lower bounds 51

The certificate complexity of a function f : {0, 1}n → Σ′ is itself polynomially
related to the block sensitivity of the function.

2.5.4. Definition. An input x ∈ {0, 1}n is sensitive to a block B ⊆ [n] if
f(x) 6= f(xB), where xB denotes the input obtained by flipping the bits in x
with indices from B. The block sensitivity bsx(f) of input x is the maximum
number of disjoint blocks B1, B2, . . . , Bk ⊆ [n] on which x is sensitive. The block
sensitivity bs(f) of f is the maximum block sensitivity of any of its inputs. We
also define the z-block sensitivity bsz(f) when taking the maximum only over
inputs that map to z.

For any Boolean function f : {0, 1}n → {0, 1}, the certificate complexity is
upper-bounded by C(f) ≤ bs0(f)bs1(f), and so is the spectral adversary bound.
Conversely, Adv(f) ≥

√
bs(f) by a zero-one valued adversary matrix Γ, as fol-

lows: Let x′ ∈ {0, 1}n be an input that achieves the block sensitivity of f , and let
B1, B2, . . . , Bk ⊆ [n] be disjoint blocks on which x′ is sensitive, where k = bs(f).
Set Γ(f)[x, xB] = 1 if and only if x = x′ and B is one of the k blocks Bi, and
then close Γ under transposition. Then λ(Γ) =

√
k and maxi λ(Γi) = 1, and thus√

bs(f) ≤ Adv(f) ≤ bs0(f)bs1(f) .

A useful property of the adversary method is that it composes for Boolean
functions. Consider a function on kn bits of the form h = f ◦ (g, . . . , g), where f :
{0, 1}k → {0, 1} and g : {0, 1}n → {0, 1} are Boolean functions. A composition
theorem states the complexity of function h in terms of the complexities of f
and g. Barnum and Saks [BS04] use composition properties to prove a query
lower bound of Ω(

√
n) for any read-once formula, Ambainis [Amb03] proves a

composition lower bound for iterated Boolean functions, and Laplante, Lee, and
Szegedy [LLS06] prove a matching upper bound.

2.5.5. Theorem (Composition theorem [Amb03, LLS06]). For every pair
of Boolean functions f : {0, 1}k → {0, 1} and g : {0, 1}n → {0, 1},

Adv(f ◦ (g, . . . , g)) = Adv(f) · Adv(g) .

2.6 Polynomial lower bounds

There are essentially two different methods known for proving lower bounds on
quantum computations. The historically first method is the adversary method
we discuss above. It was introduced in 1994 by Bennett, Bernstein, Brassard,
and Vazirani, and published in 1997 in the SIAM Journal on Computing, in a
special section that contains some of the most outstanding papers on quantum
computing. The second method was introduced shortly after, in 1998, by Beals,

52 Chapter 2. Quantum Lower Bounds

Buhrman, Cleve, Mosca, and de Wolf [BBC+01], and implicitly used by Fortnow
and Rogers in [FR99]. Their approach is algebraic and follows earlier very suc-
cessful work on classical lower bounds via polynomials (see for instance Nisan
and Szegedy [NS94] on real polynomials, and Beigel’s 1993 survey [Bei93] and
Regan’s 1997 survey [Reg97] on polynomials modulo 2). We first establish that
any partial Boolean function can be represented by a real-valued polynomial.

2.6.1. Definition. Let f : S → {0, 1} be a partial Boolean function with do-
main S ⊆ {0, 1}n, and let p be a real-valued n-variable polynomial p : Rn → R
such that 0 ≤ p(x) ≤ 1 for all x ∈ {0, 1}n. We say that p represents f if
p(x) = f(x) for all x ∈ S, and p approximates f if |p(x)−f(x)| ≤ 1

3
for all x ∈ S.

The degree of f , denoted deg(f), is the minimal degree of a polynomial repre-
senting f . The approximate degree of f , denoted d̃eg(f), is the minimal degree
of a polynomial approximating f .

The crux in [BBC+01] is in showing that any quantum algorithm A comput-
ing some function f gives rise to some polynomial pA that represents or approxi-
mates f .

2.6.2. Theorem ([BBC+01]). Let A be a quantum algorithm that computes a
partial Boolean function f : S → {0, 1} with domain S ⊆ {0, 1}n, using at
most t queries to the oracle O′

x. Then there exists an n-variate real-valued multi-
linear polynomial pA : Rn → R of degree at most 2t, which equals the acceptance
probability of A.

Proof. In this theorem, we use the oracle O′
x which is equivalent to the oracle Ox,

since it allows for simple formulations. We first rewrite the action of O′
x as

O′
x|i, b; z〉 = (1− xi)|i, b; z〉+ xi|i, b⊕ 1; z〉 , (2.4)

where we define xi = 0 for i = 0 so that we can simulate a non-query by querying
xi with i = 0. Suppose we apply O′

x on some superposition
∑

i,b,z αi,b,z|i, b; z〉
where each amplitude αi,b,z is an n-variate complex-valued polynomial in x of
degree at most j. Then, by equation (2.4), the resulting state

∑
i,b,z βi,b,z|i, b; z〉 is

a superposition where each amplitude βi,b,z is an n-variate complex-valued poly-
nomial in x of degree at most j+1. By induction, after t queries, each amplitude
can be expressed as a complex-valued polynomial in x of degree at most t. The
probability that the final measurement yields the outcome 1, corresponding to
accepting the input, is obtained by summing the absolute values of some of the
amplitudes squared. The square of any of the absolute amplitudes can be ex-
pressed as a real-valued polynomial pA in x of degree at most 2t. The theorem
follows. 2

The above theorem states that to any quantum algorithm A computing a
Boolean function f : S → {0, 1} with domain S ⊆ {0, 1}n, we can associate an

2.7. Applying the polynomial method 53

n-variate polynomial pA : Rn → R that expresses the acceptance probability of
the algorithm on any given input. If algorithm A is exact, that is if A always
stops and outputs the correct answer, then pA(x) = f(x) for all x ∈ S, and thus
pA represents f . If A has bounded error, then 0 ≤ pA(x) ≤ 1/3 if f(x) = 0 and
2/3 ≤ pA(x) ≤ 1 if f(x) = 1, and thus pA approximates f . Furthermore, since the
acceptance probability of any algorithm on any input is between 0 and 1, it holds
that 0 ≤ p(x) ≤ 1 for every x ∈ {0, 1}n. The degree of pA is at most twice the
number of queries used by algorithm A. Consequently, the degree of a function is
a lower bound on the quantum query complexity, up to a factor of two.

2.6.3. Corollary (Polynomial method [BBC+01]). Let f be any Boolean
function. Then QE(f) ≥ deg(f)/2 and Q2(f) ≥ d̃eg(f)/2.

2.7 Applying the polynomial method

The challenge in applying the polynomial method lies in the dimensionality of
the input. Typically, the method is applied by first identifying a univariate or
bivariate polynomial that captures essential properties of the problem, and then
proving a lower bound on the degree of that polynomial. The second part is
typically reasonably straightforward since polynomials have been studied for cen-
turies and much is known about their degrees. The possibly simplest nontrivial
example is when f is the threshold function Thrt defined by Thrt(x) = 1 if and
only if |x| ≥ t. It is easy to see that deg(Thrt) = Θ(n) for all nontrivial threshold
functions, and thus QE(Thrt) = Ω(n). Paturi [Pat92] shows that d̃eg(Thrt) =
Θ
(√

t(n− t+ 1)
)
, and we thus readily get that Q2(Thrt) = Ω

(√
t(n− t+ 1)

)
,

which is tight by Quantum Counting [BHMT02, BBC+01]. This degree ar-
gument extends to any symmetric function f by writing f as a sum of threshold
functions. The same tight lower bounds for symmetric functions can also be
obtained by the unweighted adversary method (see Corollary 2.4.3).

For general non-symmetric functions, the polynomial method is, however, sig-
nificantly harder to apply. For problems that are “close” to being symmetric, we
can sometimes succeed in constructing a univariate or bivariate polynomial that
yields a non-trivial lower bound. The first and, in our view, most important such
a result was obtained by Aaronson in [Aar02] in which he proves a lower bound
of Ω(n1/5) on any bounded-error quantum algorithm for the collision problem.

The collision problem is a non-Boolean promise problem. The oracle is an
n-tuple of positive integers between 1 and m, which we think of as a function
X : [n] → [m]. We model the oracle O′′

X so that a query to the ith entry of
the oracle returns the integer X(i). Specifically, O′′

X takes as input |i, r; z〉 and
outputs |i, r ⊕ X(i); z〉 where 0 ≤ r < 2k for k = dlog2(m + 1)e, and r ⊕ X(i)
denotes bitwise addition modulo 2. We are promised that either X is a one-to-one
function, or X is two-to-one, and the goal is to determine which is the case.

54 Chapter 2. Quantum Lower Bounds

The result of Aaronson was soon improved by Shi [Shi02] to Ω(n1/4) for general
functions X : [n] → [m], and to Ω(n1/3) in the case the range is larger than the
domain by a constant factor, m ≥ 3

2
n. The lower bound of Aaronson and Shi

appears as a joint article [AS04]. Finally, Kutin [Kut05] and Ambainis [Amb05b]
independently found remedies for the technical limitations in Shi’s proof, yielding
an Ω(n1/3) lower bound for all functions, which is tight by an algorithm that uses
Grover search on subsets by Brassard, Høyer, and Tapp [BHT97].

The best lower bound for the collision problem that can be obtained us-
ing the adversary method is only a constant, since any one-to-one function is
of large Hamming distance to any two-to-one function. Koiran, Nesme, and
Portier [KNP05] use the polynomial method to prove a lower bound of Ω(log n)
for Simon’s problem [Sim97], which is tight [Sim97, BH97]. Simon’s problem is a
partial Boolean function having properties related to finite Abelian groups. Also
for this problem, the best lower bound that can be obtained using the adversary
method is a constant.

In contrast, for any total Boolean function f : {0, 1}n → {0, 1}, the adversary
and polynomial method are both polynomially related to block sensitivity,√

bs(f)/6 ≤ d̃eg(f) ≤ deg(f) ≤ bs3(f)√
bs(f) ≤ Adv(f) ≤ bs2(f) .

Beals et al. [BBC+01] showed that deg(f) ≤ bs3(f), and it follows from Nisan and
Szegedy [NS94] that 6d̃eg(f)2 ≥ bs(f). Buhrman and de Wolf [BW02] provide
an excellent survey of these and other complexity measures of Boolean functions.

The polynomial lower bound is known to be inferior to the weighted adversary
method for some total Boolean functions. In [Amb03], Ambainis gives a Boolean
function f : {0, 1}4 → {0, 1} on four bits, which can be described as “the four
input bits are sorted” [LLS06], for which deg(f) = 2 and for which there exists an
adversary matrix Γf satisfying λ(Γf)/maxi λ(Γfi) = 2.5. We compose the function
with itself and obtain a Boolean function f2 = f◦(f, f, f, f) : {0, 1}16 → {0, 1} de-
fined on 16 bits for which deg(f2) = 4, and for which λ(Γf2)/maxi λ(Γf2i) = 2.52,
by Theorem 2.5.5. Iterating d times, yields a function fd on n = 4d bits of degree
deg(fd) = 2d, with adversary lower bound 2.5d = deg(fd)

1.32..., by the composition
theorem. Thus the constructed function fd is an example of an iterated function
of low degree and high quantum query complexity. It is the currently biggest
known gap between the polynomial method and the adversary method for a total
function. Another iterated total function for which the adversary methods yield
a lower bound better than the degree, is the function described as “all three input
bits are equal” [Amb03].

The polynomial method is very suitable when considering quantum algorithms
computing functions with error ε that is sub-constant, whereas the adversary
method is not formulated so as to capture such a fine-grained analysis. Buhrman,
Cleve, de Wolf, and Zalka [BCWZ99] show that any quantum algorithm for un-

2.7. Applying the polynomial method 55

ordered search that succeeds in finding an index i for which xi = 1 with probability
at least 1− ε, provided one exists, requires Ω(

√
n log(1/ε)) queries to the oracle,

and show that this is tight. A possibly more familiar example is the following
one.

2.7.1. Example. Any polynomial approximating the parity function with any
positive bias ε > 0 (as opposed to bias 1

6
where 1

6
= 2

3
− 1

2
) has degree n, since

any such polynomial gives rise to a univariate polynomial of no larger degree
with n roots. Hence, any quantum algorithm computing the parity function with
arbitrary small bias ε > 0 requires n/2 queries to the oracle [BBC+01, FGGS98],
which is tight.

A useful property of representing polynomials is that they compose. If p is
a polynomial representing a function f , and polynomials q1, q2, . . . , qk represent
functions g1, . . . , gk, then p ◦ (q1, . . . , qk) represents f ◦ (g1, . . . , gk), when well-
defined. This composition property does not hold for approximating polynomials:
if each sub-polynomial qi takes the value 0.8, say, then we cannot say much about
the value p(0.8, . . . , 0.8) since the value of p on non-integral inputs is not restricted
by the definition of being an approximating polynomial. To achieve composition
properties, we require that the polynomials are insensitive to small variations of
the input bits. Buhrman, Newman, Röhrig, and de Wolf give in [BNRW05] a
definition of such polynomials, and refer to them as being robust.

2.7.2. Definition. (Robust polynomials [BNRW05]) An approximate n-
variate polynomial p is robust on S ⊆ {0, 1}n if |p(y)− p(x)| ≤ 1

3
for every x ∈ S

and y ∈ Rn such that |yi − xi| ≤ 1
3

for every i = 1, . . . , n. The robust degree of
a Boolean function f : S → {0, 1}, denoted rdeg(f), is the minimal degree of a
robust polynomial approximating f .

Robust polynomials compose by definition. Buhrman et al. [BNRW05] show
that the robust degree of any total function f : {0, 1}n → {0, 1} is O(n) by giving
a classical algorithm that uses a quantum subroutine for unordered search [Gro96]
which is tolerant to errors, due to Høyer, Mosca, and de Wolf [HMW03]. Buhrman
et al. [BNRW05] also show that rdeg(f) ∈ O(d̃eg(f) log d̃eg(f)) by giving a
construction for turning any approximating polynomial into a robust polyno-
mial at the cost of at most a logarithmic factor in the degree of f . This im-
plies that for any composite function h = f ◦ (g, . . . , g), we have d̃eg(h) ∈
O(d̃eg(f)d̃eg(g) log d̃eg(f)). It is not known whether this is tight. Neither is
it known if the approximate degree of h can be significantly smaller than the
product of the approximate degrees of f and g. The only known lower bound on
the approximate degree of h is the trivial bound Ω(d̃eg(f) + d̃eg(g)).

An AND-OR tree of depth two is the composed function f ◦(g, . . . , g) in which
the outer function f is the logical AND of

√
n bits, and the inner function g is the

logical OR of
√
n bits. By the unweighted adversary method, computing AND-OR

56 Chapter 2. Quantum Lower Bounds

trees of depth two requires Ω(
√
n) queries. Høyer, Mosca, and de Wolf [HMW03]

give a bounded-error quantum algorithm that uses O(
√
n) queries, which thus

is tight. The existence of that algorithm implies that there exists an approxi-
mating polynomial for AND-OR tree of depth two of degree O(

√
n). No other

characterization of an approximating polynomial for AND-OR trees of depth two
of degree O(

√
n) is currently known. The best known lower bound on the ap-

proximate degree of AND-OR trees of depth two is Ω(n1/3), up to logarithmic
factors in n, by a reduction [Amb05b] from the element distinctness problem on√
n integers [AS04].

2.8 Challenges

There is a range of problems for which we do not currently know tight quantum
query bounds. One important example is binary AND-OR trees of logarithmic
depth. A binary AND-OR tree on n = 4d variables is obtained by iterating the
function f(x1, x2, x3, x4) = (x1∧x2)∨(x3∧x4) in total d times. The classical query
complexity for probabilistic algorithms is Θ(n0.753) (see [Sni85] for a zero-error
algorithm, [SW86] for a matching lower bound, and [San95] for a similar lower
bound for all bounded-error algorithms). No better bounded-error quantum algo-
rithm is known. The best known lower bound on the quantum query complexity
is Ω(

√
n) by embedding the parity function on

√
n bits and noting that the parity

function has linear query complexity, which can be shown by either method.

In Chapter 4, we present a quantum algorithm for verifying whether a product
of two n× n matrices is equal to a third one that runs in time O(n5/3). The best
known lower bound is Ω(n3/2) by the unweighted adversary method, and we
conjecture that it is not tight. Magniez, Santha, and Szegedy give in [MSS05] a
quantum algorithm for determining if a graph on n vertices contains a triangle
which uses O(n1.3) queries to the adjacency matrix. The best known lower bound
is Ω(n) by the unweighted adversary method, and has also been conjectured not
to be tight [Amb03].

None of the adversary lower bounds above can be strengthened due to the
limitation by the certificate complexity. The polynomial method might give a
better bound, however coming up with such a bound is difficult due to the high
dimensionality of the problem.

2.9 Summary

We have been focusing on two methods for proving lower bounds on quantum
query complexity: the adversary method and the polynomial method. Adversary
lower bounds are in general easy to compute, but are limited by the certificate
complexity. Known lower bounds are constructed by identifying hard input pairs,

2.9. Summary 57

finding weights accordingly, and computing either the spectral norm of some ma-
trices, or applying the weighted method. Polynomial lower bounds may yield
stronger bounds, but are often hard to prove. Known lower bounds by the poly-
nomial methods are constructed by identifying symmetries within the problem,
reducing the number of input variables to one or two, and proving a lower bound
on the degree of the reduced polynomial.

Barnum, Saks, and Szegedy give in [BSS03] a third lower-bound method that
exactly characterizes the quantum query complexity in terms of a semidefinite
program, but this strength turns out also to be its weakness: it is very hard to
apply and every known lower bound obtained by the method can also be shown
by one of the other two methods. A significant body of work has been conducted
on lower bounds on communication complexity. We refer to de Wolf’s excellent
survey [Wol02] as a possible starting point.

Part I

Algorithms

59

Chapter 3

Matching and Network Flows

This chapter is based on the following paper:

[AŠ06] A. Ambainis and R. Špalek. Quantum algorithms for matching
and network flows. In Proceedings of 23rd Annual Symposium on
Theoretical Aspects of Computer Science, pages 172–183, 2006.
Lecture Notes in Computer Science 3884.

3.1 Introduction

Matching Finding a matching in a graph is the following combinatorial opti-
mization problem. We are given an undirected graph. If the graph is bipartite,
one can think of its vertices as sets of boys on the left and girls on the right, and
edges denote whether they like each other. A matching is a set of edges such that
each vertex is connected to at most one of its neighbors, called a mate. The task
is to find a matching of maximal size. A matching is perfect if each vertex has a
mate.

Let n denote the number of vertices and let m denote the number of edges.
The simplest classical algorithm based on augmenting paths runs in time O(n3)
[Edm65, Gab76]. If the graph is bipartite, then the same simple algorithm finds
a maximal matching in faster time O(n5/2) [HK73]. Finding a bipartite match-
ing can be reduced to finding a maximal flow in a directed unit network, and
one can achieve running time O(min(n2/3m,m3/2)) [ET75] using algorithms pre-
sented further in this section. The fastest known algorithm for general sparse
graphs by Micali and Vazirani [MV80] runs in time O(

√
nm). Recently, Mucha

and Sankowski published a new randomized algorithm [MS04] based on matrix
multiplication that finds a maximal matching in general graphs in time O(nω),
where 2 ≤ ω ≤ 2.38 is the exponent of the best matrix multiplication algorithm.

Network flows Network flows is one of the most studied problems in computer
science. We are given a directed graph with two designated vertices: a source and

61

62 Chapter 3. Matching and Network Flows

a sink. Each edge is assigned a capacity. One can think of the graph as a pipe
network where we want to push as much water from the source to the sink as
possible. A network flow is an assignment of flows to the edges such that the flow
going through each edge is less than or equal to the capacity of the edge, and the
flow is conserved in each vertex, that is the total incoming and outgoing flow are
equal for each vertex except for the source and the sink. The size of a flow is the
total flow leaving the source. The task is to find a flow of maximal size.

After the pioneering work of Ford and Fulkerson [FF56], many algorithms
were proposed. For networks with real capacities, the fastest algorithms run in
time O(n3) [Kar74, MKM78]. They are based on augmenting the flow by blocking
flows in layered residual networks [Din70]. Each augmentation takes time O(n2)
and the number of iterations is at most n, because the depth of the residual
network is increased in each step. If the network is sparse, one can achieve faster
time O(nm(log n)2) [GN79].

If all capacities are integers bounded by u, then the maximal flow can be
found by a simple capacity scaling algorithm in time O(nm log u) [EK72, Din70].
The fastest known algorithm runs in time O(min(n2/3m,m3/2) log(n2/m) log u)
[GR98]. For unit networks with u = 1, the logarithmic factor is not necessary
and a simple combination of the capacity scaling algorithm and the blocking-
flow algorithm runs in time O(min(n2/3m,m3/2)) [ET75]. For undirected unit
networks, there is an algorithm running in time O(n3/2

√
m) [GR99], the fastest

known deterministic algorithm runs in time O(n7/6m2/3), and the fastest known
probabilistic algorithm runs in time O(n20/9) [KL98].

Our results In this chapter, we analyze the quantum time complexity of these
problems. We use Grover search to speed up searching for an edge. We
present quantum algorithms for finding a maximal bipartite matching in time

O(n
√
m log2 n) ,

a maximal non-bipartite matching in time

O(n2(
√
m/n+ log n) log2 n) ,

and a maximal flow in an integer network in time

O(min(n7/6
√
m · u1/3,

√
num) log2 n)

when capacities are at most u ≤ n1/4. A similar approach was successfully ap-
plied by Dürr et al. [DHHM04] to the following graph problems: connectivity,
strong connectivity, minimum spanning tree, and single source shortest paths.
Our bipartite matching algorithm is polynomially faster than the best classical
algorithm when m = Ω(n1+ε) for some ε > 0, and the network flows algorithm
is polynomially faster when m = Ω(n1+ε) and u is small. Our non-bipartite
matching algorithm is worse than the best known classical algorithm [MV80].

3.2. Preliminaries 63

There is an Ω(n3/2) quantum adversary lower bound for the bipartite matching
problem [BDF+04, Zha05]. Since the bipartite matching problem is a special case
of the other problems studied in this chapter, this implies an Ω(n3/2) quantum
lower bound for all problems in this chapter.

The structure of this chapter is as follows. In Section 3.3, we present a quan-
tum algorithm for computing a layered network from a given network. It is used
as a tool in almost all our algorithms. In Section 3.4, we present a simple quan-
tum algorithm for bipartite matching. In Section 3.5, we show how to quantize
the classical algorithm for non-bipartite matching. In Section 3.6, we present a
quantum algorithm for network flows.

3.2 Preliminaries

Graph theory A very good book about network flows is the book by Ahuja,
Magnanti, and Orlin [AMO93]. It, however, does not contain most of the newest
algorithms that we compare our algorithms to. In this chapter, we only use the
following concepts. A layered network is a network whose vertices are ordered
into layers such that the edges only go from the ith layer to the i+ 1st layer. For a
given network and some flow, the residual network is a network whose capacities
denote residual capacities of the edges with respect to the flow. When an edge
has a capacity c and carries a flow f , then its residual capacity is either c− f or
c+f depending on the direction. An augmenting path in a network is a path from
the source to the sink whose residual capacity is bigger than 0. An augmenting
path for the matching problem is a path that starts and ends in an unmatched
vertex, and consists of alternated non-edges and edges of the current matching. A
blocking flow in a layered residual network is a flow whose size cannot be increased
by monotone operations, that is by only increasing the flow along some edges. A
blocking flow may not be maximal; in such a case one has to decrease the flow
along some edges to get out of a local maximum. A cut in a network is a subset
of edges such that there is no path from the source to the sink if we remove these
edges. The size of a cut is the sum of the capacities of its edges. Flows and cuts
are dual to each other, and the size of a maximal flow is equal to the size of a
minimal cut.

Black-box model Let us define our computational model. Let V be a set of
vertices and let E ⊆

(
V
2

)
be a set of edges. V is fixed and E is a part of the

input. Let n ≥ 1 denote the number of vertices and let m denote the number of
edges. We assume that m ≥ n−1, since one can eliminate zero-degree vertices in
classical time O(n). We consider the following two black-box models for accessing
directed graphs:

• Adjacency model: the input is specified by an n × n Boolean matrix A,
where A[v, w] = 1 if and only if (v, w) ∈ E.

64 Chapter 3. Matching and Network Flows

Find Layered Subgraph (fixed vertex set V , input edge set E and
starting vertex a) returns layer numbers ` : V → N0.

1. Set `(a) = 0 and `(x) = ∞ for x 6= a.

Create a one-entry queue W = {a}.

2. While W 6= ∅, do the following:

• take the first vertex x from W ,

• find by Grover search all its neighbors y with `(y) = ∞,
set `(y) := `(x) + 1, and append y to W ,

• and remove x from W .

Figure 3.1: Quantum algorithm Find Layered Subgraph

• List model: the input is specified by n arrays {Nv : v ∈ V } of length
1 ≤ dv ≤ n. Each entry of an array is either a number of a neighbor or a
hole, and all neighbors are included in the list without repetition, that is
{Nv[i] : i = 1, . . . , dv} − {hole} = {w : (v, w) ∈ E}.

Logarithmic factors Our algorithms are classical at a higher level, and they
use quantum algorithms as subroutines. Quantum subroutines used in our algo-
rithms may output an incorrect answer with a small constant probability. Our
algorithms use a polynomial number nc of these subroutines. Because of that, we
have to repeat each quantum subroutine O(log n) times, to make sure that the
probability of an incorrect answer is at most α = n−c+1. Then the probability
that some quantum subroutine in our algorithm outputs an incorrect answer is at
most 1/n. This increases the running time of all our algorithms by a logarithmic
factor. Furthermore, the running time of Grover search is bigger that its
query complexity by another logarithmic factor.

3.2.1. Remark. For simplicity, we often omit logarithmic factors in the proofs,
but we state them correctly in the statements of our theorems.

3.3 Finding a layered subgraph

We are given a connected directed black-box graph G = (V,E) and a starting
vertex a ∈ V , and we want to assign layers ` : V → N0 to its vertices such that
`(a) = 0 and `(y) = 1 + minx:(x,y)∈E `(x) otherwise. The quantum algorithm
described in Figure 3.1 based on Dijkstra’s algorithm computes layer numbers for
all vertices.

3.4. Bipartite matching 65

3.3.1. Theorem. Find Layered Subgraph runs in time O(n3/2 log2 n) in the
adjacency model and in time O(

√
nm log2 n) in the list model.

Proof. The algorithm is a quantum implementation of breadth-first search. The
initialization costs time O(n). Every vertex is processed at most once. Recall that
we omit logarithmic factors. In the adjacency model, every vertex contributes by
time at most O(

√
n), because finding a vertex from its ancestor costs time at

most O(
√
n) and discovering that a vertex has no descendant costs the same.

In the list model, processing a vertex v costs time O(
√
nvdv+

√
dv + 1), where

nv is the number of vertices inserted into W when processing v. Let q be the
total number of processed vertices. Since

∑
v nv ≤ q ≤ n and

∑
v(dv + 1) ≤

m+ q = O(m), the total running time is upper-bounded by the Cauchy-Schwarz
inequality as follows:∑

v

√
nvdv ≤

√∑
v

nv

√∑
v

dv = O(
√
nm) ,

and
∑

v

√
dv + 1 ≤ √

q
√
m+ q = O(

√
nm) is upper-bounded in the same way. 2

3.4 Bipartite matching

We are given an undirected bipartite black-box graph G = (V1, V2, E) and we
want to find a maximal matching among its vertices. This can be done classically
in time O(n5/2) [HK73] by the algorithm from Figure 3.2.

The algorithm is correct because (1) a matching is maximal if and only if there
exists no augmenting path [HK73], and (2) the minimal length of an augmenting
path is increased by at least one after every iteration. Classically, the construc-
tion of H and the depth-first search both cost O(n2). The maximal number of
iterations is O(

√
n) due to the following statement.

3.4.1. Lemma. [HK73] If M1 and M2 are two matchings of size s1 and s2 with
s1 < s2, then there exist s2 − s1 vertex-disjoint augmenting paths in M1.

Proof (sketch). Consider the symmetric difference X of the two matchings.
X consists of isolated vertices, vertex disjoint circles of even length, and vertex
disjoint paths. There must be at least s2− s1 paths of odd length with one more
edge from M2 than from M1. These are the augmenting paths. 2

Let s be the size of the maximal matching M in G, and let si be the size
of the matching Mi computed after the ith iteration. Let j be the number of
the last iteration with sj < s −

√
n. The total number of iterations is at most

j + 1 +
√
n, because the algorithm finds at least one augmenting path in every

66 Chapter 3. Matching and Network Flows

Find Bipartite Matching (fixed vertex sets V1, V2, input edge set E)
returns a maximal matching M .

1. Set M to the empty matching.

2. Let a, b denote two new vertices not present in V1 or V2.
Let G′ = (V ′, E ′) denote the following directed graph.

V ′ = V1 ∪ V2 ∪ {a, b}
E ′ = {(a, x) : x ∈ V1, x ∈ W}
∪ {(x, y) : x ∈ V1, y ∈ V2, (x, y) ∈ E, (x, y) 6∈M}
∪ {(y, x) : x ∈ V1, y ∈ V2, (x, y) ∈ E, (x, y) ∈M}
∪ {(y, b) : y ∈ V2, y ∈ W} ,

where W is the set of vertices that are unmatched.

Find a maximal (with respect to inclusion) set S of vertex-disjoint
augmenting paths of minimal length. This is done as follows:

(a) Construct H = Find Layered Subgraph (V ′, E ′, a).

(b) Perform depth-first search for vertex-disjoint paths from a to
b in H. Each such path corresponds to an augmenting path in
M . They all have the same length and this length is minimal,
becauseH is a layered graph. Figure 3.3 illustrates an example
vertex disjoint set of augmenting paths.

3. Augment the matching M by S.

4. If S 6= ∅, go back to step 2, otherwise output the matching M .

Figure 3.2: Classical algorithm [HK73] Find Bipartite Matching

a

b

V1

{

V2

{

M −→

∈W

Figure 3.3: Vertex-disjoint augmenting paths in an example layered graph

3.5. Non-bipartite matching 67

iteration. On the other hand, by Lemma 3.4.1, there exist s − sj >
√
n vertex-

disjoint augmenting paths in Mj. Since all augmenting paths in the jth iteration
are of length at least j + 2 (each iteration adds at least 1 to the minimal length
of an augmenting path, and there are two more edges going from and to vertices
a, b), it must be that j <

√
n, otherwise the paths could not be disjoint. We

conclude that the total number of iterations is at most 2
√
n.

3.4.2. Theorem (Bipartite matching). There exists a quantum algorithm
that finds a maximal bipartite matching in time O(n2 log2 n) in the adjacency
model and O(n

√
m log2 n) in the list model.

Proof. Recall that we omit logarithmic factors. We present a quantum al-
gorithm that finds all augmenting paths in one iteration in time O(n3/2), resp.
O(
√
nm). Since the number of iterations is O(

√
n), the upper bound on the

running time follows. Our algorithm works similarly to the classical one; it also
computes the layered graph H and then searches in it.

The intermediate graph G′ is not pre-computed, but it is generated on-line
from the input graph G and the current matching M . One edge query is answered
using a constant number of queries as follows. The restriction of G′ to V1 × V2 is
a subgraph of G with some edges removed; here we exploit the fact that lists of
neighbors can contain holes. We also add two new vertices a and b, add one list of
neighbors of a with holes of length n, and at most one neighbor b to every vertex
from V2. Find Layered Subgraph computes H from G′ fast by Theorem 3.3.1.
It remains to show how to find the augmenting paths.

This is simple once we have assigned layer numbers to all vertices. We find a
maximal set of vertex-disjoint paths from a to b by depth-first search. A descen-
dant of a vertex is found by Grover search over all unmarked vertices with a
layer number that is bigger by one. All vertices are unmarked in the beginning.
When we find a descendant of some vertex, we mark it and continue backtrack-
ing. Either the vertex will become a part of an augmenting path, or it does not
belong to any and hence it need not be probed again. Each vertex is thus visited
at most once.

In the adjacency model, every vertex costs time O(
√
n) to be found and time

O(
√
n) to discover that it does not have any descendant. In the list model,

a vertex v costs time O(
√
nvdv +

√
dv), where nv is the number of unmarked

vertices found from v. The sum over all vertices is upper-bounded like in the
proof of Theorem 3.3.1. Note that during the construction of G′ from G,

∑
v dv

is increased by at most 2n. 2

3.5 Non-bipartite matching

We are given an undirected black-box graph G = (V,E) and we want to find
a maximal matching among its vertices. There is a classical algorithm [Edm65,

68 Chapter 3. Matching and Network Flows

Gab76] running in total time O(n3) in n iterations of time O(n2).
Each iteration consists of searching for one augmenting path. The algorithm

Find Augmenting Path performs breadth-first search from some unmatched
vertex a. The algorithm is described in Figure 3.4 and its progress on an example
graph is outlined in Figure 3.5. Find Augmenting Path browses paths that
consist of alternated non-edges and edges of the current matching. For each
vertex, we store a pointer mate that either points to a mate of the vertex if
it is matched, or it is set to nil. Let us call a vertex v even if we have found
such an alternating path of even length from a to v; otherwise we call it odd.
Newly reached vertices are considered odd. For each even vertex v, we store two
pointers link and link2 for constructing the alternating path back, and a pointer
first pointing at the last odd vertex on this path. Basically, if link2 is nil, then
v was discovered by the quantum search and link points to the previous even
vertex on this path; it has always distance 2. If link2 is not nil, then v became
even by collapsing an odd-length circle and (link, link2) is the edge that caused
the collapse.

If no augmenting path has been found from some vertex, then there will be
none even later after more iterations of the algorithm. Hence it suffices to search
for an augmenting path from each vertex exactly once.

3.5.1. Theorem (Non-bipartite matching). There exists a quantum algo-
rithm that finds a maximal non-bipartite matching in time O(n5/2 log2 n) in the
adjacency model and O(n2(

√
m/n+ log n) log2 n) in the list model.

Proof. Recall that we omit logarithmic factors. The quantum algorithm it-
eratively augments the current matching by single augmenting paths, like the
classical algorithm. An augmenting path is found by the quantum version of
Find Augmenting Path that uses Grover search in faster time O(n3/2),
resp. O(n(

√
m/n + log n)). This implies the upper bound on the total running

time, since there are n vertices and each of them is used as the starting vertex a
at most once. Let us prove the time bound for the list model.

Let q denote the number of even vertices found by Find Augmenting Path.
For every even vertex v, we perform the following 3 quantum searches:

1. We look for an unmatched neighbor of v in time O(
√
dv).

2. Let ov be the number of odd neighbors of v whose mate is also odd. We
find them all in total time O(

√
ovdv).

3. Let bv be the number of bridges that are found during processing v. We
find all even neighbors of v whose pointer first is different from v’s pointer
first in time O(

√
bvdv).

Clearly
∑

v ov ≤ q ≤ n and
∑

v bv ≤ q ≤ n, and, since
∑

v dv ≤ m, by the Cauchy-
Schwarz inequality, the total time spent in all quantum searches is O(

√
nm).

3.5. Non-bipartite matching 69

Find Augmenting Path (fixed vertex set V , input edge set E, match-
ing mate, unmatched vertex a) returns an augmenting path from a.

1. Create a one-entry queue of even vertices W = {a}.

2. Take the first vertex v from W and delete it from W .

3. If there is an unmatched vertex w connected to v, then construct
the augmenting path a→ v, add the edge (v, w) to it, and exit.

A subpath g → h for arbitrary even vertices g, h on the augmenting
path is constructed recursively using the pointers of h as follows:

• If link2 is nil, then link points at the last even vertex on the
subpath. Construct thus subpath g → link and add 2 edges
(link,mate) and (mate, h) to it.

• Otherwise h was reached via a bridge, link points at h’s side
of the bridge, and link2 at the other side. Construct subpath
g → link2, then construct subpath h → link (it goes in the
opposite direction), and join the two paths via (link, link2).

4. For every odd vertex w connected to v, do the following:

• Let w be connected to a mate w′. If w′ is even, do nothing.

• Otherwise mark w′ as even, append it to W , and set its point-
ers as follows: link to v, link2 to nil, and first to w.

5. For every even vertex w connected to v, do the following:

• If the pointers first of v and w are equal, do nothing.

• Otherwise v and w lie on a circle of odd length, and the edge
(v, w) is a bridge via which odd vertices turn to even. Find the
nearest common odd ancestor p of v and w using the link-list
of pointers first . Collapse the circle as follows:

– Mark all odd vertices between v and p as even, append
them to W , and set their pointers as follows: link to v,
link2 to w, and first to p.

– Do the opposite for all odd vertices between w and p.
– Finally, rewrite to p all pointers first pointing at the odd

vertices that have just become even.

6. If W is empty, then there is no augmenting path from a and we
quit, otherwise go back to step 2.

Figure 3.4: Classical algorithm [Edm65, Gab76] Find Augmenting Path

70 Chapter 3. Matching and Network Flows

7

8

6

5 4

3

2

1
bridges

a = 0

• Thick solid lines denote the current matching and dotted
lines are the remaining edges of the graph. Unmatched
vertices are white.

• The vertices are numbered in the order in which they have
turned even. The augmenting path is 0, 7, 1, 6, 3, 4, 5, 2,
8, and the final unmatched vertex.

• Vertices 5, 6, 7, and 8 have been reached via the 3 high-
lighted bridges.

Figure 3.5: Progress of Find Augmenting Path on an example graph

Let us estimate the running time of collapsing one circle. Let p1 be the length
of the link-list of pointers first from one side of the bridge to the nearest common
ancestor, let p2 be the other one, and let p = max(p1, p2). The nearest common
ancestor is found in time O(p log p) as follows. We maintain two balanced binary
trees for each link-list, add vertices synchronously one-by-one, and search for
every newly inserted vertex in the opposite tree until we find a collision. Let
rv be the number of odd vertices collapsed during processing v. It holds that
rv = p1 + p2 = Θ(p) and

∑
v rv ≤ q. Hence the total time spent in collapsing

circles is O(q log q). Immediate rewriting of the pointers first of even vertices
inside collapsed circles would be too slow. We instead maintain aside a union
tree of these pointers, and for every odd vertex converted to even, we just append
its subtree to the node of the nearest common ancestor. The total time spent in
doing this is O(q log q).

The augmenting path has length at most n and it is constructed in linear
time. We conclude that the total running time of finding an augmenting path is
O(
√
nm+ n log n) = O(n(

√
m/n+ log n)), and it is O(

√
nm) for m ≥ n(log n)2.

The running time in the adjacency model is equal to the running time in the list
model for m = n2, and it is O(n3/2). 2

Our quantum algorithm is slower than the fastest known classical algorithm
by Micali and Vazirani [MV80] running in total time O(

√
nm). Their algorithm

is quite complicated and it actually took a few years to prove it correct. It may
be interesting to apply our techniques to that algorithm.

3.6. Integer network flows 71

3.6 Integer network flows

We are given a black-box directed network with integer capacities bounded by u,
and we want to find a maximal flow from the source to the sink. We present a
fast quantum algorithm based on Grover search and combining three classical
techniques: blocking flows in layered residual networks [Din70], searching single
augmenting paths [EK72], and switching between them at a good time [ET75].

3.6.1. Lemma. [ET75] Consider an integer network with capacities bounded by
u, and a flow whose layered residual network has depth k. Then the size of the
residual flow is at most min((2n/k)2,m/k) · u.

Proof.

(1) There exist layers V` and V`+1 that both have less than 2n/k vertices. This is
because if for every i = 0, 1, . . . , k/2, at least one of the layers V2i, V2i+1 had
size at least 2n/k, then the total number of vertices would exceed n. Since
V` and V`+1 form a cut, the residual flow has size at most |V`| · |V`+1| · u ≤
(2n/k)2u.

(2) For every i = 0, 1, . . . , k − 1, the layers Vi and Vi+1 form a cut. These cuts
are disjoint and they together have at most m edges. Hence at least one of
them has at most m/k edges, and the residual flow has thus size at most
O(mu/k). 2

3.6.2. Theorem (Network flows). Let u ≤ n1/4. There exists a quantum
algorithm that finds a maximal network flow with integer capacities bounded by
u in time O(n13/6 · u1/3 log2 n) in the adjacency model and O(min(n7/6

√
m · u1/3,√

num) log2 n) in the list model.

Proof. The algorithm iteratively augments the flow by blocking flows in layered
residual networks until the depth of the network exceeds k = min(n2/3u1/3,

√
mu).

Then it switches to searching augmenting paths while there are some. Our al-
gorithm uses classical memory of size O(n2) to store the current flow and its
direction for every edge of the network, and a 1-bit status of each vertex. Its first
subroutine Find Blocking Flow is outlined in Figure 3.6.

The layered subgraph of G′ is actually never explicitly constructed in the
memory. When we need to find a neighbor of a vertex v in it, we search among
the neighbors of v in G′ conditioned on that their layer number is bigger by one;
arrays with holes are used here to mask out unwanted vertices. Layer numbers
are assigned to the vertices of G′ fast by Theorem 3.3.1. When the flow F is
augmented by µ along a path ρ, no update of data structures is needed. Saturated
edges will be automatically omitted at the next query, because the edges of G′

and their capacities are computed on-line (in constant time per query).

72 Chapter 3. Matching and Network Flows

Find Blocking Flow (fixed vertex set V , input edge set E, capacities,
current flow, source, and sink) returns a blocking flow F .

1. Run Find Layered Subgraph (V,E ′, source) to compute layer
numbers of vertices of the residual network G′ = (V,E ′). The
capacity of each edge in E ′ is equal to the original capacity plus
or minus the current flow depending on the direction. Only edges
with nonzero capacities are included in E ′.

2. Mark all vertices in V as enabled. Set F to the empty flow.

3. Run depth-first search using Grover search as a subroutine, and
find a path ρ in the layered subgraph of G′ from the source to the
sink that only goes through enabled vertices. If there is no such
path, exit. During back-tracking, disable all vertices from which
there is no path to the sink.

4. Compute the minimal capacity µ of an edge on ρ.
Augment F by µ along ρ.

5. Go back to step 3.

Figure 3.6: Quantum algorithm Find Blocking Flow

Let us compute how much time the algorithm spends in total in a vertex v
during the search the augmenting paths. Let av denote the number of augmenting
paths going through v and let ev,i denote the number of outgoing edges from v at
the moment when there are still i remaining augmenting paths in comparison to
the final set that will be output by the algorithm. The capacity of every edge is
at most u, hence ev,i ≥ di/ue. We will again omit logarithmic factors. The time
spent in quantum searches leading to an augmenting path in v is thus at most

av∑
i=1

√
dv
ev,i

≤
√
u ·

av∑
i=1

√
dv
i

= O(
√
uavdv) .

Let cv denote the number of enabled vertices found from v that do not lie on
an augmenting path and are thus disabled. The time spent in quantum searches
for these vertices is at most O(

√
cvdv). Furthermore, it takes additional time

O(
√
dv + 1) to discover that there is no augmenting path from v, and in this case

v is disabled and never visited again.
Let j denote the depth of the residual network and let bj be the size of its

blocking flow. The total number of augmenting paths going through vertices in
any given layer is at most bj. We conclude that

∑
v av ≤ jbj. We also know that∑

v cv ≤ n. Since
∑

v dv ≤ m, by the Cauchy-Schwarz inequality, the total time

3.6. Integer network flows 73

spent by finding one blocking flow is∑
v

(
√
uavdv +

√
cvdv +

√
dv + 1) ≤

√
u

√∑
v

av

√∑
v

dv + 2
√
nm

= O(
√
jmbju+

√
nm) .

Our algorithm performs at most

k = min(n2/3u1/3,
√
mu)

iterations of finding the blocking flow in total time at most
√
mu ·

∑k
j=1

√
jbj +

k
√
nm. Let us assume that the algorithm has not finished, and estimate the

size of the residual flow and thus upper-bound the number of augmenting paths
that need to be found. The algorithm constructs in the kth iteration a layered
network of depth bigger than k. By Lemma 3.6.1, the residual flow has size
O(min((n/k)2,m/k) · u) = O(k), hence the algorithm terminates in O(k) more
iterations. From this point on, the algorithm only looks for one augmenting path
in each layered network, hence its complexity drops to O(

√
nm) per iteration,

omitting the factor
√
bju. The total running time is thus at most

O
(√

mu ·
k∑
j=1

√
jbj + k

√
nm
)

+O(k
√
nm) .

Let us prove that
∑

j

√
jbj = O(k3/2). We split the sequence [1, k] into log k

intervals Si = [2i, 2i+1 − 1] of length 2i. By Lemma 3.6.1, the residual flow after
` = k/2i iterations is at most O(min((n/k)2 · 22i,m/k · 2i) · u) ≤ O(22ik) =
O((k/`)2`) = O(k2/`). Since the total size of all blocking flows cannot exceed the
residual flow,

∑2`−1
j=` bj = O(k2/`). By applying the Cauchy-Schwarz inequality

independently on each block, we get

k∑
j=1

√
jbj =

log k∑
i=0

2i+1−1∑
j=2i

√
jbj ≤

log k∑
i=0

√
2i · 2i+1

√√√√2i+1−1∑
j=2i

bj

≤
√

2

log k∑
i=0

2i
√
k2/2i =

√
2 · k

log k∑
k=0

2i/2 = O(k3/2) .

The total running time is thus O(k
√
m(
√
ku +

√
n)). Now, ku ≤ n, because we

assume that u ≤ n1/4 and ku = min(n2/3u4/3,
√
m · u3/2) ≤ n2/3n1/3 = n. The

running time is therefore O(k
√
nm) = O(min(n7/6

√
m · u1/3,

√
num)). The time

for the adjacency model follows from setting m = n2 and it is O(n13/6 · u1/3). 2

It is actually simpler to compute a similar (weaker) upper bound on the run-
ning time of the network flows algorithm in the more general setting without

74 Chapter 3. Matching and Network Flows

assuming u ≤ n1/4. One obtains O(min(n7/6
√
m,
√
nm) · u log n) for arbitrary

u by setting k = min(n2/3,
√
m). It would be interesting to apply techniques of

Goldberg and Rao [GR98] to improve the multiplicative factor in Theorem 3.6.2
from poly(u) to log u. That would make our algorithm useful in the more realistic
setting of polynomially large capacities. If m = Ω(n1+ε) for some ε > 0 and u is
small, then our algorithm is polynomially faster than the best classical algorithm.
For constant u and m = O(n), it is slower by at most a polylogarithmic factor.
The speedup is biggest for dense networks with m = Ω(n2).

3.6.3. Theorem. Any bounded-error quantum algorithm for network flows with
integer capacities bounded by u = n has quantum query complexity Ω(n2).

Proof. Consider the following layered graph with m = Θ(n2) edges. The
vertices are ordered into 4 layers: the first layer contains the source, the second
and the third layer contain p = n

2
−1 vertices each, and the last layer contains the

sink. The source and the sink are both connected to all vertices in the neighboring
layer by p edges of full capacity n. The vertices in the second and third layer
are connected by either p2

2
or p2

2
+ 1 edges of capacity 1 chosen at random. The

edges between these two layers form a minimal cut. Now, deciding whether the
maximal flow is p2

2
or p2

2
+ 1 allows us to compute the majority on p2 bits. By

Corollary 2.4.3, majority requires Ω(p2) = Ω(n2) queries, hence the same lower
bound also holds for the computation of a maximal flow. 2

3.7 Summary

We have presented two quantum algorithms for the problem of finding a maximal
matching in a graph. If the graph is bipartite, then our quantum algorithm
is polynomially faster than the best classical algorithm. In the non-bipartite
case, there exists a more complicated classical algorithm that is faster than our
quantum algorithm. It is possible that one can use similar techniques to quantize
that algorithm too.

We have shown how to find quantumly a maximal flow in an integer network.
If the capacities are upper-bounded by a polynomial of small degree, then our
quantum algorithm is polynomially faster than the best classical algorithm. There
is a classical algorithm whose complexity depends on the logarithm of the maximal
capacity instead of on some polynomial function. If one could quantize that
algorithm, then quantum computers would outperform classical ones in a much
wider range of capacities.

Chapter 4

Matrix Verification

This chapter is based on the following paper:

[BŠ06] H. Buhrman and R. Špalek. Quantum verification of matrix
products. In Proceedings of 17th Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 880–889, 2006.

4.1 Introduction

The computational complexity of matrix multiplication is the subject of extensive
study. Matrix multiplication is the central algorithmic part of many applications,
like for example solving linear systems of equations and computing the transitive
closure of a graph. A fast algorithm for matrix multiplication thus implies a
fast algorithm for a variety of computational tasks. Strassen [Str69] was the
first to show that surprisingly two n × n matrices can be multiplied in time
O(nω) for ω < 3. His result was improved by many subsequent papers. The
best known bound to date is an algorithm with ω ≈ 2.376 by Coppersmith and
Winograd [CW90]. It is a major open problem to determine the true value of ω.
Freivalds showed [Fre79] that verifying whether the product of two n×n matrices
is equal to a third can be done with high probability in time proportional to n2.
We refer to this latter problem as matrix verification.

We study the computational complexity of matrix multiplication and veri-
fication on a quantum computer. The first to study matrix verification in the
quantum mechanical setting were Ambainis, Buhrman, Høyer, Karpinski, and
Kurur [ABH+02] who used a clever recursive version of Grover search to ver-
ify whether two n× n matrices equal a third in time O(n7/4), thereby improving
the optimal classical bound of Freivalds.

In this chapter we construct a bounded-error quantum algorithm for the
matrix verification problem that runs in time O(n5/3). Suppose we are ver-
ifying whether AB = C. An entry (i, j) in C is called wrong if C[i, j] 6=

75

76 Chapter 4. Matrix Verification

∑n
k=1A[i, k] · B[k, j]. When the number of wrong entries in C is w ≤

√
n, our

algorithm runs in expected time

O

(
n5/3

w1/3

)
.

For w =
√
n we have a matching lower bound. For larger values of w, the

algorithm may run faster, but its performance depends on the concrete pattern
of wrong entries. We use our fast quantum matrix verification algorithm as a
building block to construct a quantum algorithm for computing the actual matrix
product A·B. When the number of nonzero entries in the final product is w ≤

√
n,

our algorithm runs in expected time

O(n5/3w2/3 log n) ,

that is substantially faster than any classical method. For larger values of w, the
classical algorithm by Indyk [Ind05] running in time Õ(n2 + nw) takes over.

Our algorithm uses the quantum random walk formalism by Szegedy [Sze04]
that he developed as a generalization of the quantum random walk technique of
Ambainis [Amb04], see Section 1.4.1 and Section 1.4.2. Ambainis used a quantum
random walk to obtain an optimal quantum algorithm for the element distinctness
problem. If one were to adapt that method directly to the setting of matrix
verification, one does obtain an O(n5/3) algorithm in terms of queries to the
input. However that algorithm still requires Ω(n2) time, because it computes
several times a matrix product of sub-matrices. This costs no additional queries,
because the sub-matrices are loaded in the memory, but it takes additional time.
Using random vectors, we improve the running time of the quantum algorithm
to O(n5/3).

We perform a quantum random walk on the product of two Johnson graphs,
analyze its spectral gap, and estimate that in our setting enough of the vertices
are marked if AB 6= C. See Section 4.3 for a detailed description of our ma-
trix verification algorithm and Section 4.4 for the analysis of its running time.
In Section 4.5, we introduce a combinatorial tool to analyze the behavior of our
algorithm when many of the entries are wrong. In Section 4.6, we describe our ma-
trix multiplication algorithm, and in Section 4.7, we discuss products of Boolean
matrices.

4.2 Previous algorithm for matrix verification

Ambainis, Buhrman, Høyer, Karpinski, and Kurur [ABH+02] discovered a quan-
tum algorithm for matrix verification running in time O(n7/4). Since it was never
published, we briefly sketch it in Figure 4.1. It uses Freivalds’s trick [Fre79]
with multiplying the matrices by a random vector. The trick works as follows.

4.2. Previous algorithm for matrix verification 77

Older Matrix Verification (input n× n matrices A,B,C)
returns whether AB 6= C.

1. Partition the matrices B and C into
√
n blocks of

√
n columns each.

Let Bi and Ci be the individual sub-matrices of size n×
√
n. It holds

that AB = C if and only if ABi = Ci for every i.

2. The verification of ABi = Ci is done with bounded error in time
O(n3/2) by the following subroutine Vi:

(a) Choose a random vector x of dimension
√
n.

(b) Multiply both sides of the equation by x from the right side.
Compute classically y = Bix and z = Cix in time O(n3/2).

(c) Verify the matrix-vector product Ay = z by Grover search.
Search for a row j such that (Ay − z)j 6= 0. Quantum search
over n rows cost O(

√
n) iterations and a verification of one row

takes time n.

3. If we pick a block i at random, the probability that we have picked
a block with a wrong entry is at least 1/

√
n. Apply amplitude

amplification on top of this procedure, and verify all
√
n blocks

with bounded error using O(n1/4) calls to Vi.

Figure 4.1: Quantum algorithm Older Matrix Verification [ABH+02]

Consider matrices A,B of the same dimension over some field. If A = B, then
Av = Bv for every vector v. On the other hand, if A 6= B and v is chosen
uniformly at random, then Av 6= Bv with probability at least one half. There-
fore matrix verification can be solved with constant 1-sided error in time O(n2).
The quantum algorithm Older Matrix Verification uses this trick and two
recursive applications of Grover search.

It seems that one cannot improve on this algorithm using only Grover
search. Our algorithm is based on quantum walks and achieves better running
time. It is inspired by Ambainis’s quantum walk algorithm Element Distinct-
ness [Amb04] from Section 1.4.1.

4.2.1. Remark. The running time of all algorithms presented in this chapter is
polylogarithmic in the size of the field the matrices are over. We assume that
the field has constant size and hide the dependency in the big-O constant. If the
field contains polynomially many elements, then the running time is longer by a
polylogarithmic factor.

78 Chapter 4. Matrix Verification

4.3 Algorithm for matrix verification

Let A,B,C be n× n matrices over some integral domain. An integral domain is
a commutative ring with identity and no divisors of 0. Any field, such as R or
GF(2), is an integral domain and so is N. Matrix verification is deciding whether
AB = C. We construct an efficient quantum walk algorithm for this problem. It
is described in Figure 4.2 and its expected running time is analyzed in Section 4.4
and Section 4.5.

4.3.1. Definition. For a set R ⊆ [n], let A|R denote the |R| × n sub-matrix of
A restricted to the rows from R. Analogously, for a set S ⊆ [m], let A|S denote
the n×|S| sub-matrix of A restricted to the columns from S. These two notation
can be combined, for example A|SR.

The intuition behind the algorithm is the following: The subroutine Verify
Once performs a quantum walk on subsets R of rows of A and subsets S of
columns of B, multiplied by phase flips whenever C|SR contains at least one wrong
entry. It then estimates the scalar product of the superposition computed by the
quantum walk and the uniform superposition. If AB = C, then the phase flip is
never performed and the diffusion on a uniform superposition is equal to identity.
Hence the superposition computed by the quantum walk stays uniform, and the
scalar product is 1. On the other hand, if AB 6= C and k is sufficiently large,
then for the number of quantum walk steps ` drawn uniformly from {1, 2, . . . , k},
with high probability, the quantum walk converges to a superposition almost
orthogonal to the uniform superposition. Since the optimal value of k is not
known beforehand, the main routine Matrix Verification tries a sequence
of exponentially increasing k. We also use the following trick to improve the
performance of the algorithm. Instead of checking all of A|R and B|S, we multiply
the matrices in Verify Once from both sides by random vectors p, q. This allows
us to achieve both better running time and smaller space complexity.

4.4 Analysis of the algorithm

In this section, we prove that Matrix Verification has 1-sided bounded error
and estimate its expected running time depending on the set of wrong entries.
We use the formalism of Szegedy’s quantum walk described in Section 1.4.2.

4.4.1 Multiplication by random vectors

Let Verify Full denote a modified version of Verify Once that does not use
the random vectors p, q, but instead reads all sub-matrices into the memory and
verifies A|R · B|S = C|SR in the phase-flip step (6a). Verify Full has the same
query complexity as Verify Once, but its space complexity and running time

4.4. Analysis of the algorithm 79

Matrix Verification (input n× n matrices A,B,C)
returns whether AB 6= C.

1. Take any 1 < λ < 8
7
, for example λ = 15

14
.

2. For i = 0, 1, . . . , logλ(n
2/3) + 9, repeat 16 times the following:

• Run Verify Once (2 · λi).
• If it returns 1, then return “not equal”.

3. Return “equal”.

Verify Once (number of rows k) returns 1 when AB 6= C is detected.

4. Pick a number of iterations ` uniformly at random between 1 and
k. Pick a random row vector p and a random column vector q of
dimension n.

5. Initialization. Put the quantum register into the superposition∑
R⊆[n]
|R|=k

∑
S⊆[n]
|S|=k

|R〉|S〉 . Think of R as a subset of the rows of A and

S as a subset of the columns of B. Compute vectors aR = p|R ·A|R
and bS = B|S ·q|S, and number cR,S = p|R ·C|SR ·q|S in time 2kn+k2.
Add a one-qubit control register set to |+〉. The quantum state is

|+〉
∑
R,S

|R, aR〉 |S, bS〉 |cR,S〉 .

6. Quantum walk. Conditioned on the value of the control register,
perform ` iterations of the following:

(a) Phase flip. Multiply the quantum phase of |R〉|S〉 by −1 if
aR · bS 6= cR,S. The scalar product is verified in time n using
no queries.

(b) Diffusion. Perform one step of quantum walk on (R,S), that
is exchange one row, and then one column. The update of aR,
bS, and cR,S costs 2n queries to A, 2n queries to B, and 4k
queries to C.

7. Apply the Hadamard transform on the control register, measure it
in the computational basis, and return the outcome.

Figure 4.2: Quantum algorithm Matrix Verification

80 Chapter 4. Matrix Verification

are bigger. Although the phase flip costs no additional queries, the time needed
to compute classically A|R ·B|S is at least kn, whereas the scalar product aR · bS
is computed in time n.

The multiplication by p, q complicates the analysis. For example, if there is
exactly one wrong entry and the multiplication is over GF(2), then the wrong
entry is completely hidden by a multiplication by zero with probability 3

4
. How-

ever, we prove that 16 independent calls to Verify Once have a better success
probability than one call to Verify Full.

Let R,S ⊆ [n] denote subsets of rows of A and columns of B, and let

W = {(i, j) |(AB − C)[i, j] 6= 0}

be the set of wrong entries of the matrix product. We mark (R,S) if and
only if C|SR contains a wrong entry, formally A|R · B|S 6= C|SR, or equivalently
W ∩R× S 6= ∅. Let

ε(W, k) = PrR,S [(R,S) is marked]

be the fraction of marked pairs for |R| = |S| = k.
We call (R,S, p, q) revealing if and only if p|R · (A|R ·B|S) · q|S 6= p|R ·C|SR · q|S,

because it reveals the existence of a wrong entry in the matrix product. The
condition is equivalent to (p|R · A|R) · (B|S · q|S) = aR · bS 6= cR,S due to the
associativity of matrix multiplication. The performance of the algorithm depends
on the fraction of revealing pairs

ζp,q(W, k) = PrR,S [(R,S, p, q) is revealing] ,

where |R| = |S| = k. By the above example, not every marked pair is revealing.
However, the fraction of revealing pairs is expected to be not too far from the
fraction of marked pairs.

4.4.1. Lemma. Let G be an integral domain with g ≥ 2 elements, let (R,S) be
marked, and let p, q be picked uniformly at random from Gn. The probability τ
that a quadruple (R,S, p, q) is revealing is τ ≥ (1− 1

g
)2 ≥ 1

4
.

Proof. Let D = AB − C, that is the wrong entries correspond to the nonzero
entries of D. Assume that (R,S) is marked and pick any D[i0, j0] 6= 0. Now,
(R,S, p, q) is not revealing if and only if

0 =
∑

i∈R,j∈S

piqjD[i, j] =
∑

i∈R,j∈S
D[i,j] 6=0

piqjD[i, j] = pi0(qj0D[i0, j0] + c1) + c2qj0 + c3 ,

where c1, c2, c3 are some constants depending on D and other coordinates of p, q.
Fix these constants and pick pi0 , qj0 at random from G. Let τ ′ = Pr [qj0D[i0, j0]+

4.4. Analysis of the algorithm 81

c1 = 0]. Since G is an integral domain with g elements, τ ′ ≤ 1
g
. For every qj0 such

that qj0D[i0, j0] + c1 6= 0, the equality is equivalent to c4pi0 + c5 = 0 for other
constants c4 6= 0 and c5, which is again satisfied by at most 1 value of pi0 ∈ G.
Hence the probability of having equality is at most

τ ′ · 1 + (1− τ ′) · 1

g
=

1

g
+ τ ′ · g − 1

g
≤ 1

g
+
g − 1

g2
=

2g − 1

g2
.

The probability that (R,S, p, q) is revealing is thus τ ≥ 1− 2g−1
g2

= (1− 1
g
)2 ≥ 1

4

and equality holds when g = 2. 2

4.4.2. Claim. Let 0 ≤ X ≤ 1 and E [X] ≥ α. Then Pr [X ≥ β] ≥ α− β.

Proof. Decompose the expected value of X conditioned on X ≥ β: E [X] =
E [X|X < β] · (1 − Pr [X ≥ β]) + E [X|X ≥ β] · Pr [X ≥ β]. Rearrange, plug in

0 ≤ X ≤ 1, and obtain Pr [X ≥ β] = E[X]−E[X|X<β]
E[X|X≥β]−E[X|X<β]

≥ α−β
1−0

= α− β. 2

4.4.3. Lemma. Let p, q be picked uniformly at random. Then Pr [ζp,q(W, k) ≥
1
8
ε(W, k)] ≥ 1

8
.

Proof. Consider the following Boolean random variables: VR,S,p,q = 1 if and
only if (R,S, p, q) is revealing. Let vp,q be the fraction of marked sets that are also
revealing when p, q multiply the equation, formally vp,q = Emarked (R,S) [VR,S,p,q].
By Lemma 4.4.1, for every marked (R,S), Ep,q [VR,S,p,q] ≥ 1

4
. It follows that

Emarked (R,S) [Ep,q [VR,S,p,q]] ≥ 1
4

and so Ep,q [Emarked (R,S) [VR,S,p,q]] = Ep,q [vp,q] ≥ 1
4
.

By Claim 4.4.2, when p, q is picked uniformly at random, Pr [vp,q ≥ 1
8
] ≥ 1

8
. Hence

in this “good” case, ζp,q(W, k) ≥ 1
8
ε(W, k). 2

The constant probability 1
8

of picking “good” random vectors is compensated
by a constant number of repetitions. Using the following lemma, it is sufficient
to analyze the error of the algorithm as if it is performing Verify Full in each
step.

4.4.4. Lemma. Let AB 6= C. The probability that Verify Once (2k) outputs
1 at least once in 16 independent trials, each time with new random p, q, is bigger
than the success probability of one call to Verify Full (k).

Proof. By Lemma 4.4.3, the success probability of Verify Once is at least τ
8
,

where τ is the success probability of Verify Once given that it guesses “good”
vectors p, q with ζ(W, k) ≥ 1

8
ε(W, k). By Theorem 1.4.6, τ = 1 − γ ∈ [1

8
, 1

2
]

for every sufficiently large k ≥ k0. The factor 1
8

between ε(W, k) and ζ(W, k) is
compensated by taking a twice bigger k0; this follows from equations (4.1) and
(4.2) in the next section. The success probability of 16 independent trials is at
least 1− (1− τ

8
)16 ≥ 1− (e−τ)2 ≥ 1− (1− 0.64τ)2 ≥ 1.28τ − 0.4τ 2 ≥ τ, because

1− x ≤ e−x ≤ 1− 0.64x for x ∈ [0, 1], and τ < 0.7. 2

82 Chapter 4. Matrix Verification

4.4.2 Analysis of Matrix Verification

In this section, we analyze the expected running time of the main algorithm. We
need the following two statements.

4.4.5. Definition. The strong product graph of two graphs G1 = (V1, E1) and
G2 = (V2, E2), denoted by G = G1 × G2, is defined as follows: G = (V,E), V =
V1 × V2, and ((g1, g2), (g

′
1, g

′
2)) ∈ E if and only if (g1, g

′
1) ∈ E1 and (g2, g

′
2) ∈ E2.

Walking on a strong product graph corresponds to walking simultaneously and
independently on two graphs.

4.4.6. Lemma. Let 1 ≤ k ≤ n
2
. The spectral gap of Gk = J(n, k) × J(n, k) is

δ(Gk) = Θ(1/k).

Proof. By Lemma 1.4.8, the spectral gap of the Johnson graph J(n, k) is n
(n−k)k ,

which is Θ(1/k) for 1 ≤ k ≤ n
2
. The eigenvalues of the normalized adjacency

matrix (see Definition 1.4.4) of a product graph are exactly all products of one
eigenvalue of one graph and one eigenvalue of the other graph. Since the largest
eigenvalue of each graph is one and the spectral gap is the difference between the
largest two eigenvalues, it immediately follows that δ(J×J) = δ(J). We conclude
that δ(Gk) = Θ(1/k). 2

4.4.7. Definition. A set of matrix entries W ⊆ [n]2 is called an independent
set if and only if it contains at most one item in every row and column.

4.4.8. Lemma (Fraction of marked pairs). Let

ρ(W) = max(w′,min(|W |,
√
n)) ,

where w′ is the largest possible size of a subset of W that is an independent set.
For every W and k ≤ n2/3/ρ(W)1/3, it holds that

ε(W, k) = Ω
(k2

n2
ρ(W)

)
. (4.1)

The main Lemma 4.4.8 is proved using simple combinatorics in Section 4.5.

4.4.9. Theorem. Matrix Verification always returns “equal” if AB = C.
If AB 6= C, then it returns “not equal” with probability at least 2

3
. Its worst-case

running time is O(n5/3), its expected running time is O(n5/3/ρ(W)1/3), and its
space complexity is O(n).

4.4. Analysis of the algorithm 83

Proof. We compute an upper bound on the expected number of iterations of
Verify Full. By Lemma 4.4.4, the number of calls to Verify Once achieving
the same success probability is less than 16, if we double the value of the parameter
k that we pass to Verify Once in comparison with what we would pass to
Verify Full. Verify Once walks ` quantum steps on the strong product
graph of two Johnson graphs Gk = J(n, k)× J(n, k). The marked vertices of Gk

correspond to marked pairs (R,S), those are pairs such that A|R · B|S 6= C|SR.
The initialization costs time O(kn), a phase flip costs time n, and one step of the
quantum walk costs time 4n+4k = O(n). The running time of Verify Once is
thus O((k + `)n) = O(kn). The scalar product of the two quantum distributions
is estimated using Lemma 1.4.7.

Let W 6= ∅. By Theorem 1.4.6, Verify Once recognizes a wrong matrix
product with bounded error for every k ≥ k0, where k0 = Θ(1/

√
δ(Gk0) ε(W, k0)).

Note that the same k is used twice: once as an upper bound on the number of it-
erations `, and once as the number of rows/columns read into memory, which
determines δ(Gk) and ε(W, k). Plug in δ(Gk) = Θ(1

k
) by Lemma 4.4.6 and

ε(W, k) = Ω(k
2

n2ρ(W)) by Lemma 4.4.8. We get that k0 = O(n/
√
k0ρ(W)), which

means that the optimal k0 is at most O(n2/3/ρ(W)1/3). Hence for every

k = Ω

(
n2/3

ρ(W)1/3

)
, (4.2)

Verify Once makes only small 1-sided error. The algorithm Matrix Veri-
fication does not know ρ(W) and k0, but it instead tries different values of k
from the exponentially increasing sequence λi.

Let Ti = O(λin) denote the running time of the ith call to Verify Once, and
let L be the number of the last call. The expected running time can be written
as a sum

E [T] =
∞∑
j=0

(
j∑
i=0

Ti

)
· Pr [L = j] =

∞∑
i=0

Ti · Pr [L ≥ i] .

Each call after k ≥ k0 fails with probability γ ≤ 7
8
, so

E [T] =
∞∑
i=0

λin · Pr [L ≥ i] ≤
(logλ k0)−1∑

i=0

λin · 1 +
∞∑

i=logλ k0

λin · γi−logλ k0

≤ O(k0n)

(
1 +

∞∑
i=0

(λγ)i

)
= O

(
n5/3

ρ(W)1/3

)
,

because λγ < 8
7
· 7

8
= 1. The probability that a wrong product is never recognized

is at most γ9 < 1
3
, where 9 is the number of calls after k ≥ n2/3.

Matrix Verification never makes an error when AB = C. In this case, the
phase flip is never performed. The diffusion is equal to identity on the uniform

84 Chapter 4. Matrix Verification

superposition, hence the whole quantum walk in Verify Once does nothing
and the control register stays untouched. Finally, Matrix Verification always
terminates when k ≥ λ9n2/3, hence its worst-case running time is O(n5/3). 2

4.4.3 Comparison with other quantum walk algorithms

Matrix Verification resembles a few other quantum algorithms. The first
quantum algorithm of this type was the quantum walk algorithm for element dis-
tinctness [Amb04]. The same technique was subsequently successfully applied to
triangle finding [MSS05] and group commutativity testing [MN05]. The triangle
algorithm walks on the Johnson graph J(n, k) and the commutativity algorithm
walks on a product of two Johnson graphs. The analysis of Ambainis [Amb04] re-
lies on the fact that the quantum state stays in a constant-dimensional subspace.
This constraint is satisfied if there is at most one solution; then the subsets can
be divided into a constant number of cases. In the non-promise version, the
number of cases is, however, not constant. The latter papers [Amb04, MSS05]
solve the non-promise case by running the algorithm on a random subset of the
input. With high probability, there is exactly one solution in the subset; this
trick originally comes from Valiant and Vazirani [VV86]. Since it is not known
whether this technique can be used in more than one dimension, we solve the
non-promise version of matrix verification using the more general quantum walk
by Szegedy [Sze04] instead of the original one by Ambainis [Amb04].

Had we not multiplied the equation by random vectors from both sides, the
running time of the algorithm would be much bigger. It seems that this slowdown
“time � #queries” is a typical property of algorithms using quantum walks: the
quantum algorithm for element distinctness [Amb04] needs to use random hash
functions to remedy it, and it is open whether triangle finding [MSS05] can be
improved this way.

Theorem 1.4.6 by Szegedy [Sze04] allows us to analyze directly the general
case with many wrong entries. On the other hand, the algorithm Verify Once
obtained by it is a bit slower than the original Ambainis walk [Amb04, MSS05].
First, Verify Once only solves the decision version of the problem and it does
not find the actual position of a wrong entry. We will resolve it by binary search.
Second, Verify Once does a phase flip after every step of quantum walk instead
of doing it once per block of steps. For both element distinctness and matrix
verification, the additional cost is subsumed by the cost of the quantum walk,
but this is not the case for triangle finding.

4.5 Fraction of marked pairs

In this section, we address the following combinatorial problem.

4.5. Fraction of marked pairs 85

4.5.1. Problem. Given an n×n Boolean matrix W and two integers 1 ≤ r, s ≤
n, what is the probability ε(W, r, s) that a random r× s sub-matrix of W contains
a 1? Or, equivalently: Given a bipartite graph on n, n vertices, what is the proba-
bility that a randomly chosen induced subgraph with r, s vertices contains at least
one edge?

It is simple to prove that ε(W, r, s) is monotone in all its three parameters. As
we have seen in Theorem 4.4.9, the expected running time of Matrix Verifi-
cation depends on the fraction of marked pairs, which is ε(W, k, k), also denoted
there by ε(W, k). Our algorithm only tries balanced choices r = s = k. Since
the initialization costs O((r+ s)n), setting one of the variables smaller would not
decrease the query complexity, but it would decrease the success probability of
Verify Once. Let us compute ε when W contains exactly one 1:

ε(W, r, s) =

(
n− 1

r − 1

)(
n− 1

s− 1

)/(
n

r

)(
n

s

)
=
rs

n2
.

With this bound, monotonicity, and Theorem 4.4.9, we conclude that Matrix
Verification finds the correct answer with bounded error in time O(n5/3). The
rest of this section contains a more detailed analysis of the expected running
time of the algorithm for larger W . Unfortunately, we are only able to prove
weak lower bounds on ε for general W . However, if one improves them, then
we automatically get an improved upper bound on the running time of the same
algorithm.

The average probability over matrices W with t ones is EW :|W |=t [ε(W, r, s)] =
Ω(t rs

n2) (Lemma 4.5.2). We prove the same bound for all W with |W | ≤
√
n

(Lemma 4.5.3), when the ones in W form an independent set (Lemma 4.5.4), or
when the ones in W form a rectangle (again Lemma 4.5.3). However, the latter
rectangle bound only holds for a limited class of r, s, which does not include the
balanced case r = s = k in the range used by our algorithm. As a consequence,
if the ones in W form a full row or a column, our algorithm is slower than what
one might expect from this formula. We, however, show that in this case our
algorithm is optimal (Theorem 4.5.5); this is the only known tight lower bound
for our algorithm. The main Lemma 4.4.8, which we prove here, is a corollary of
Lemma 4.5.3 and Lemma 4.5.4.

4.5.1 Special cases

The following lemma is not needed for the analysis of Matrix Verification.
We include it, because it gives an insight into what may be the true bound on
ε(W, r, s) for most W .

4.5.2. Lemma. Let rs ≤ n2

t
. Then EW :|W |=t [ε(W, r, s)] = Ω(t rs

n2).

86 Chapter 4. Matrix Verification

Proof. Consider the following random variables: VR,S,W = 1 if and only if
W ∩R× S 6= ∅. Then for every pair (R,S), it holds that EW :|W |=t [VR,S,W] =
PrW [W ∩R× S 6= ∅] and, when |R| = r and |S| = s,

PrW :|W |=t [W ∩R× S 6= ∅] = 1− n2 − rs

n2
· n

2 − rs− 1

n2 − 1
· · · n

2 − rs− t+ 1

n2 − t+ 1

≥ 1−
(
n2 − rs

n2

)t
≥ 1− e−

rs
n2 t = Ω

(
t
rs

n2

)
,

because 1− x ≤ e−x and, on any fixed interval x ∈ [0, A], also e−x ≤ 1− 1−e−A

A
x.

The claim is now proved using standard arguments. Since ∀R,S : EW [VR,S,W] ≥
t rs
n2 , also ER,S [EW [VR,S,W]] ≥ t rs

n2 . Exchange the order of summation and obtain
EW [ER,S [VR,S,W]] = EW [ε(W, r, s)] ≥ t rs

n2 . 2

4.5.3. Lemma. Let w be the number of nonzero rows of W , and let v be the
maximal number of nonzero entries in a row. Then for every r ≤ n

w
and s ≤ n

v
,

ε(W, r, s) = Ω(|W | rs
n2).

Proof. Let Z denote the event “W ∩R× S 6= ∅”. For j = 0, 1, . . . , w, let Zj
denote the event “W ∩ R × [n] has exactly j nonempty rows”. Since the events
{Zj} are disjoint and

∑w
j=0 Pr [Zj] = 1, we decompose the probability

Pr [Z] =
w∑
j=0

Pr [Zj]·Pr [Z |Zj] ≥
w∑
j=1

Pr [Zj]·Pr [Z |Z1] = (1−Pr [Z0])·Pr [Z |Z1] ,

because Pr [Z |Zj] ≥ Pr [Z |Z1] for j ≥ 1; when we replace an empty row by a
nonempty, the probability can only increase. Now, Pr [Z0] = Pr [W ∩ R × [n] =
∅] = n−w

n
· n−w−1

n−1
· · · n−w−r+1

n−r+1
≤ (n−w

n
)r = (1− w

n
)r ≤ e−

rw
n , because 1− x ≤ e−x.

For every constant A, it holds that e−x ≤ 1 − 1−e−A

A
x on x ∈ [0, A]. By our

assumption, r ≤ n
w
, hence rw

n
≤ 1 and e−

rw
n ≤ 1 − 1−e−1

1
rw
n

= 1 − α rw
n

for
α = 1− e−1. We conclude that 1− Pr [Z0] ≥ α rw

n
.

To lower-bound the other term, we decompose Z1. For i = 1, 2, . . . , n, let Yi
denote the event “W ∩ R × [n] has the ith row nonempty and all other rows are
empty”. Let wi be the number of entries in the ith row of W . Since {Yi} are
disjoint and Y1 ∪ · · · ∪ Yn = Z1,

Pr [Z |Z1] =
∑
i:wi 6=0

Pr [Z |Yi] · Pr [Yi |Z1] =
1

w

∑
i:wi 6=0

Pr [Z |Yi] .

Pr [Z |Yi] is easy to evaluate, since the ith row of W contains wi entries and S is
picked uniformly at random. Let Wi be the ith row of W . By the same arguments
as above, Pr [Z |Yi] = Pr [Wi ∩ S 6= ∅] = 1− Pr [Wi ∩ S = ∅] ≥ 1− e−

swi
n . By our

assumption, s ≤ n
wi

, hence e−
swi
n ≤ 1− α swi

n
and Pr [Z |Yi] ≥ α swi

n
.

4.5. Fraction of marked pairs 87

Put both lower bounds together and obtain

Pr [Z] ≥ α
rw

n
· 1

w

∑
i

α
swi
n

= α2 rs

n2

∑
i

wi = Ω
(
|W |rs

n2

)
,

which is what we had to prove. 2

4.5.4. Lemma. Let W have at most one entry in every row and column. Then
for every r, s satisfying rs ≤ n4/3/|W |2/3, ε(W, r, s) = Ω(|W | rs

n2).

Proof. Let w = |W |. If w ≤
√
n, then the result follows from Lemma 4.5.3

as follows. We are promised that min(r, s) ≤ n2/3/w1/3, which is at most n
w

for
w ≤

√
n. The parameters in that lemma for our set W are w = |W | and v = 1,

hence the bound Ω(|W | rs
n2) we have to prove holds for all r ≤ n

w
and all s. If

r ≤ s, then we are done. If r > s, then we observe that there is nothing special
about rows in Lemma 4.5.3 and that the lemma holds also for columns. Hence
our bound holds also for all s ≤ n

w
and all r.

Let us assume that w >
√
n. Let Z denote the event “W ∩R× S 6= ∅” and,

for j = 0, 1, . . . , r, let Zj denote the event “W ∩R× [n] has exactly j nonempty
rows”. Then

1− Pr [Z |Zj] = Pr [W ∩R× S = ∅ |Zj] =
n− s

n
· n− s− 1

n− 1
· · · n− s− j + 1

n− j + 1

≤
(
n− s

n

)j
≤ e−

sj
n .

Since j ≤ r and w >
√
n, we get that js ≤ rs ≤ n4/3/w2/3 ≤ n4/3/(

√
n)2/3 = n.

Hence sj
n
≤ 1 and by upper-bounding the exponential we get that Pr [Z |Zj] ≥

1 − e−
sj
n ≥ 1 − (1 − α sj

n
) = α sj

n
for α = 1 − e−1. Now, {Zj} are disjoint and∑r

j=0 Pr [Zj] = 1, hence we decompose the probability

Pr [Z] =
r∑
j=0

Pr [Z |Zj]·Pr [Zj] ≥
r∑
j=0

α
sj

n
Pr [Zj] = α

s

n

r∑
j=0

j·Pr [Zj] = α
s

n
·E [Y] ,

where Y is the number of nonempty rows. There are r rows among n in R and
we pick w entries without returning uniformly at random. An application of
E [Y] = rw

n
completes the proof. 2

4.5.2 Proof of the main lemma

Proof of Lemma 4.4.8 Let us prove that ε(W, k) = Ω(k
2

n2 min(|W |,
√
n)).

First, assume that |W | ≤
√
n, and let us verify the restrictions on r = s = k. For

88 Chapter 4. Matrix Verification

every t ≤
√
n it holds that n2/3/t1/3 ≤ n/t. Hence if |W | ≤

√
n, then for every

k ≤ n2/3/|W |1/3 it holds that k ≤ n/|W | and, since v, w ≤ |W |, also k ≤ n
w

and

k ≤ n
v
. Hence the lower bound ε(W, k) = Ω(k

2

n2 |W |) given by Lemma 4.5.3 holds
for every k in the range required by Lemma 4.4.8. Now, if |W | >

√
n, the bound

follows from the monotonicity of ε(W, k) in W .
Lemma 4.5.4 says that ε(W ′, k) = Ω(k

2

n2 |W ′|) for every independent W ′ and
k in the range required by Lemma 4.4.8. The bound on W follows from the
monotonicity of ε(W, k) in W . If we put these two bounds together, we obtain
that ε(W, k) = Ω(k

2

n2ρ(W)), as desired. 2

4.5.3 The bound is tight

The bound cannot be strengthened to ε(W, k) = Ω(k
2

n2 |W |) for a general W in the
full range of k. We show that no quantum algorithm can be fast if the n ones in
W form a full row.

4.5.5. Theorem. Any bounded-error quantum algorithm distinguishing a correct
matrix product and a matrix product with one wrong row has query complexity
Ω(n3/2).

Proof. We reduce OR of n parities of length n to matrix verification. Let

z = (x1,1 ⊕ · · · ⊕ x1,n) ∨ · · · ∨ (xn,1 ⊕ · · · ⊕ xn,n) .

By the unweighted adversary method (Theorem 2.4.2), computing z requires
Ω(n3/2) quantum queries, and the lower bound holds even if we promise that at
most one of the parities is equal to 1. Since z = 1 if and only if ∃i : 0 6=

⊕n
`=1 xi,`,

one can reduce this problem to the matrix verification AB = C over GF(2), where
A[i, j] = xi,j, B[i, j] = 1, and C[i, j] = 0. The promise is transformed into that
at most one row is wrong. 2

A straightforward calculation shows that ρ(W) for a W that has all n wrong
entries in one row can be at most O(

√
n) if we want the bound on ε to hold for

all k in the interval required by Lemma 4.4.8. We have a lower bound Ω(n3/2)
for this problem and we want to find a value of ρ(W) such that the verification
can be done in time O(n5/3/ρ(W)1/3). It follows that ρ(W) = O(

√
n).

4.6 Algorithm for matrix multiplication

Let m ≥ n2/3. One can modify the algorithm Matrix Verification to verify
the product An×mBm×n = Cn×n in time proportional to n2/3m. The quantum
walk stays the same and only the inner scalar products have dimension m in-
stead of n. Using the new algorithm and binary search, we construct a quantum

4.6. Algorithm for matrix multiplication 89

algorithm that outputs the position of a wrong entry. By iterating this and cor-
recting the wrong entries, we compute the matrix product AB = C whenever a
good approximation to C is known. The algorithms are described in Figure 4.3.

4.6.1. Theorem. Find Wrong Entry has 1-sided polynomially small error,
worst-case running time O(n2/3m log n), and its expected running time is O(n2/3m
log n/ρ(W)1/3) when the set of wrong entries is W .

Proof. Assume that AB 6= C. Let W ` be the set of wrong entries in the `th

recursion level of the binary search. From the definition of ρ(W), if ρ(W `) = ρ,
then ρ(W `

i,j) ≥
ρ
4

for at least one quadrant i, j ∈ {1, 2}. Find Wrong Entry
descends into the first quadrant it finds a solution in, hence it choosesW `+1 = W `

i,j

with high probability and then (n
2
)2/ρ(W `+1) ≤ n2/ρ(W `). There are log n levels

of recursion. Hence its expected running time is at most

logn∑
`=1

4 3

√
(n/2`)2

ρ(W `)
m ≤

logn∑
`=1

4 3

√
n2

ρ(W)
m = O

(
n2/3m

ρ(W)1/3
log n

)
,

as claimed. By Theorem 4.4.9, the probability that a wrong matrix product
is not recognized in one iteration is at most 1

3
. The probability that it is not

recognized in O(log n) iterations is 1/poly(n). If AB = C, then the first iteration
of binary search is repeated O(log n) times and the worst-case running time is
O(n2/3m log n). 2

4.6.2. Remark. It might be that the position of the wrong entry can be ob-
tained from just one call to Matrix Verification in the same way as in the
quantum walk algorithm Element Distinctness—by measuring the subsets
R,S instead of performing the scalar product test (Lemma 1.4.7) on the control
register. However, this is only known to follow from Theorem 1.4.6 for exactly
one wrong entry, that is when |W | = 1 [Sze04, Section 10]. The logarithmic factor
in the total running time is necessary for having a polynomially small error.

One can always start by guessing C = 0, hence the following bound holds.

4.6.3. Theorem. Let m ≥ n2/3. The matrix product An×mBm×n = Cn×n can be
computed with polynomially small error probability in expected time

TM ≤ O(1) ·


m log n · n2/3w2/3 if 1 ≤ w ≤

√
n

m log n ·
√
nw if

√
n ≤ w ≤ n

m log n · n
√
w if n ≤ w ≤ n2 ,

(4.3)

where W is the set of nonzero entries of C and w = |W |.

90 Chapter 4. Matrix Verification

Matrix Multiplication (input matrices An×m, Bm×n)
returns Cn×n = AB.

1. Initialize C = 0.

2. Run Find Wrong Entry (A,B,C).
If it returns “equal”, return C.

3. Otherwise let (r, c) be the wrong position. Recompute C[r, c]. Find
and recompute all wrong entries in the rth row of C using Grover
search. Find and recompute all wrong entries in the cth column
of C using Grover search.

4. Go back to step 2.

Find Wrong Entry (input matrices An×m, Bm×n, Cn×n)
returns a position (r, c) if C[r, c] 6= (AB)[r, c], or “equal” if AB = C.

5. If n = 1, verify the scalar product and exit.

6. Let A1, A2 denote the top and bottom half of A,
let B1, B2 denote the left and right half of B, and
let C1,1, C1,2, C2,1, C2,2 denote the four quadrants of C.

7. Repeat at most O(log n) times the following:

Run in parallel Matrix Verification (Ai, Bj, Ci,j) for i, j ∈
{1, 2}. As soon as one of them returns “not equal”, stop the other
branches of computation and cancel the loop.

8. If Matrix Verification always output “equal”, then return
“equal”.

9. Let Ci,j 6= AiBj be the wrong sub-matrix found. Let (r′, c′) =
Find Wrong Entry (Ai, Bj, Ci,j).

10. If i = 1, set r = r′, otherwise set r = r′ + n
2
.

If j = 1, set c = c′, otherwise set c = c′ + n
2
.

Return (r, c).

Figure 4.3: Quantum algorithm Matrix Multiplication

4.6. Algorithm for matrix multiplication 91

Proof. Finding all r` wrong entries in the `th row is done by iterating Grover
search. By Corollary 1.3.5, it takes time

∑r`
i=1

√
n
i
m = O(

√
nr`m), where the

m-dimensional scalar products are computed on-line. We ensure that there are no
wrong entries left with probability polynomially close to one in additional time
O(
√
nm log n). Let us condition the rest of the analysis on the event that all

quantum searches indeed find all ones.
Let w′ be the largest possible size of an independent subset of W . Clearly,

Matrix Multiplication finishes in at most w′ iterations, because the algorithm
in every iteration first finds a wrong entry and then recomputes all wrong entries
of C in the same row and the same column. If the number of iterations was
more than w′, then the starting wrong entries of these iterations would form an
independent set larger than w′. The total running time is the sum of the time
spent in Find Wrong Entry

TF ≤
w′∑
`=1

n2/3m log n

`1/3
= O((nw′)2/3m log n) ,

and the time TG spent in Grover search. By applying the Cauchy-Schwarz
inequality several times,

TG ≤
w′∑
`=1

(
√
nr`m+

√
nc`m) log n = m

√
n log n

(
w′∑
`=1

1 ·
√
r` +

w′∑
`=1

1 ·
√
c`

)

≤ m
√
n log n

√√√√ w′∑
`=1

1


√√√√ w′∑

`=1

r` +

√√√√ w′∑
`=1

c`


= O(m

√
n log n

√
w′
√
w) .

The algorithm has bounded error, because both Find Wrong Entry and iter-
ated quantum searches have polynomially small error. Put the bounds together
and obtain

TM = TF + TG ≤ m log(n)
√
n
√
w′ · (n1/6(w′)1/6 +

√
w) .

Evaluate separately three cases w ∈ [1,
√
n], w ∈ [

√
n, n], and w ∈ [n, n2], use

that w′ ≤ w and w′ ≤ n, and obtain inequality (4.3), which we had to prove. 2

Let us compare our algorithm to the fastest known classical algorithms. Let
w = |W | be the number of nonzero entries of C and let κ =

√
n/(log n)3/2.

Our algorithm computes sparse matrix products with w = o(κ) in time o(nm).
Classically, dense square matrix products can be computed in time O(n2.376)
[CW90], which is faster than our algorithm for w = Ω(n0.876), and dense rect-
angular matrix products can be computed in time O(n1.844+o(1)m0.533 + n2+o(1))
[Cop97]. Recently, Indyk discovered a classical algorithm for sparse rectangular

92 Chapter 4. Matrix Verification

matrix products running in time Õ(m(n+ w)) [Ind05], which is faster than ours
for w = Ω(κ). The fastest known algorithm for sparse square input matrices
runs in time O(n1.2z0.7 +n2+o(1)) [YZ04], where A,B each have at most z nonzero
elements.

4.7 Boolean matrix verification

The algorithm Verify Once relies on the fact that arithmetical operations are
over some integral domain. If the matrices are over the Boolean algebra {∨,∧},
then the multiplication by random vectors from both sides does not work. How-
ever, Boolean matrix products can be verified even faster by the following simple
algorithm.

4.7.1. Theorem. There exists a quantum Boolean matrix verification algorithm
running in time O(n

√
m) and space O(log n+ logm).

Proof. The condition that three given matrices form a valid product can be
written as an AND-OR tree with an AND of n2 equalities, each being an OR of
m products. There is a bounded-error quantum algorithm [HMW03] running in
time O(

√
n2m) = O(n

√
m) and space O(log(n2m)). 2

Using the technique from Theorem 1.3.3, one can speed up the verification
to time O(n

√
m/t), if the number of wrong entries t is known beforehand. If t

is unknown, then the verification can be done in expected time O(n
√
m/t) and

the worst-case time stays O(n
√
m). The Boolean matrix product with t nonzero

entries can thus be computed in expected time O(n
√
tm).

4.8 Summary

We have presented two new quantum algorithms based on quantum random walks,
one for matrix verification and one for matrix multiplication. Let us close with a
few open problems.

It would be interesting to strengthen the lower bound on the fraction ε(W, k)
of marked pairs and thus also the upper bound on the running time of Matrix
Verification when there are many wrong entries. As we have shown, this
cannot be done in full generality, but perhaps one can show a stronger bound in
terms of the density of wrong entries.

Can one prove a better lower bound on matrix verification than Ω(n3/2)?
This lower bound is tight when there are

√
n wrong entries. Is the true bound

higher with only one wrong entry? Due to the small certificate complexity of
this problem, one cannot prove such a bound using the adversary method (see
Theorem 2.5.3), but it might be provable by the polynomial method [BBC+01].

Part II

Lower Bounds

93

Chapter 5

Adversary Lower Bounds

This chapter is based on the following papers:

[ŠS06] R. Špalek and M. Szegedy. All quantum adversary methods are
equivalent. Theory of Computing, 2(1):1–18, 2006.
Earlier version in Proceedings of 32nd International Colloquium
on Automata, Languages and Programming, pages 1299-1311,
2005. Lecture Notes in Computer Science 3580.

[HŠ05] P. Høyer and R. Špalek. Lower bounds on quantum query com-
plexity. Bulletin of the European Association for Theoretical
Computer Science, 87:78–103, October 2005.

[HLŠ05] P. Høyer, T. Lee, and R. Špalek. Tight adversary bounds for
composite functions. Technical report. quant-ph/0509067, 2005.

5.1 Introduction

In this chapter, we examine the adversary bound of a function. This quantity
was known before under many different names as a (very versatile) lower bound
on the quantum query complexity of the function [BSS03, Amb03, LM04, Zha05].
We show that all these lower bounds are equal and hence we can use the name
adversary bound for all of them. The adversary bound is actually an interesting
quantity on its own. It has both a primal and a dual representation and so it
can be easily lower-bounded and upper-bounded, it possesses tight composition
properties, and perhaps most remarkably it is useful even beyond quantum com-
puting. Indeed, Laplante, Lee, and Szegedy [LLS06] showed that its square is a
lower bound on the formula size of the function. It can be shown that its loga-
rithm is a lower bound on the circuit depth with bounded fan-in [LŠ05]. We also
investigate limitations of the adversary bound, and show that it is limited if the
function has small certificates.

95

96 Chapter 5. Adversary Lower Bounds

History The intuition behind adversary lower bounds has already been ex-
plained in Section 2.2. Let us review here the history of the bounds. Bennett,
Bernstein, Brassard, and Vazirani [BBBV97] showed a tight lower bound for
quantum search, and called it a hybrid method. A generalization of this method
that is applicable to all functions, the original unweighted version of the adver-
sary bound, was invented by Ambainis [Amb02]. This version is very simple to
apply as it only requires to specify a hard set of input pairs; see Theorem 2.4.2.
Despite its simplicity it gives tight lower bounds for many computational prob-
lems. The first attempt to allow weights on the input pairs was due to Høyer,
Neerbek, and Shi [HNS02] who obtained a tight lower bound on binary search
that could not be obtained by the unweighted method. Barnum and Saks used
similar arguments [BS04] for read-once formulas. The two latter bounds were,
however, specialized to narrow classes of functions. Shortly afterwards, Barnum,
Saks, and Szegedy [BSS03] and Ambainis [Amb03] independently discovered a
weighted version of the adversary bound applicable to all functions; see Theo-
rem 2.3.1 and Theorem 2.4.4. Barnum et al. got their bound as a byproduct of
their characterization of the quantum query complexity in terms of semidefinite
programs. Ambainis used his bound to separate the polynomial degree and the
quantum query complexity; he exhibited iterated functions with low exact degree
and high weighted adversary bound. Laplante and Magniez [LM04] then came
up with a Kolmogorov complexity version of the dual of the adversary bound,
and finally Zhang [Zha05] generalized Ambainis’s weighted bound.

Relations between the methods The primordial hybrid method [BBBV97]
is a special case of the unweighted adversary method [Amb02], which is a special
case of the weighted adversary method [Amb03], which can be further generalized
into the strong weighted method [Zha05]. The early extensions of the unweighted
adversary method allowing weights [HNS02, BS04] are also special cases of the
general weighted adversary method. Laplante and Magniez [LM04] showed by
direct constructions that the Kolmogorov complexity method is at least as strong
as any of the methods above.

We extend their work and prove that the spectral method, the weighted
method, and the generalization of the weighted method are at least as strong
as the Kolmogorov complexity method, allowing us to conclude that all these
methods [BSS03, Amb03, LM04, Zha05] are equivalent. We also propose the fol-
lowing simple combinatorial version of the Kolmogorov complexity method that
is stated using only algebraic terms and that is also equivalent with the methods
above. Having such a variety of representations of the same method shows that
the adversary method is very robust, and it captures fundamental properties of
functions.

5.1.1. Theorem (Minimax method [LM04, ŠS06]). Let f : S → Σ′ be a
function with domain S ⊆ Σn, and let A be a bounded-error quantum algorithm

5.1. Introduction 97

for f . Let p : S × [n] → R+
0 be a set of |S| probability distributions over the input

variables such that px(i) denotes the average square amplitude of querying the ith

input variable on input x, where the average is taken over the whole computation
of A. Let

MMp(f) = max
x,y:f(x) 6=f(y)

1∑
i:xi 6=yi

√
px(i) py(i)

.

Then the query complexity of algorithm A satisfies QA ≥ MMp(f).

The adversary methods introduced in Chapter 2, such as the spectral method
or the unweighted method, satisfy the property that if we plug in some matrix
or relation, we get a lower bound that is valid for all quantum algorithms. The
minimax method is principally different. A lower bound computed by the mini-
max theorem holds for one particular algorithm A, and it may not hold for some
other and better algorithm. However, we may obtain a universal lower bound
that holds for every bounded error algorithm by simply taking the minimum of
the bound MMp(f) over all possible sets of probability distributions p.

5.1.2. Definition. Let f : S → Σ′ be a function with domain S ⊆ Σn. The
minimax bound for f is defined as

MM(f) = min
p

MMp(f) ,

where p : S × [n] → R+
0 ranges over all sets of probability distributions.

The spectral adversary bound from Definition 2.5.1 and the minimax bound
from Definition 5.1.2 are in a primal-dual relation. We show below in Section 5.3
that the best lower bound that can be obtained by any adversary matrix Γ equals
the smallest bound that can be obtained by a set of probability distributions p.
Primal methods are used for obtaining concrete lower bounds and dual methods
are used for proving limitations of the method.

Non-Boolean functions The early variants of the adversary method were
stated only for Boolean functions, those are functions of the form f : S → {0, 1}
with domain S ⊆ {0, 1}n. It turned out that these were just technical limitations
of the definitions and proofs. Laplante and Magniez [LM04] were the first to
state their Kolmogorov complexity bound for functions with arbitrary input and
output alphabets. It is quite straightforward to generalize the other variants of the
adversary method to this setting. In fact, the proof of the spectral adversary lower
bound we have given in Theorem 2.3.1 [HŠ05] holds for all functions f : S → Σ′

with domain S ⊆ Σn, where Σ,Σ′ are arbitrary finite alphabets. Our equivalence
result from Section 5.3 also holds in the generalized setting.

98 Chapter 5. Adversary Lower Bounds

Limitations of the method The lower bounds obtained by the adversary
method are limited as follows. Consider a Boolean function f . Szegedy [Sze03]
observed that the weighted adversary method is limited by min(

√
C0n,

√
C1n),

where C0 is the zero-certificate complexity of f and C1 is the one-certificate
complexity of f (see Definition 2.5.2 above). Laplante and Magniez proved the
same limitation for the Kolmogorov complexity method [LM04], which implies
that all other adversary methods are also bounded. Finally, this bound was
improved to

√
C0C1 for total f by Zhang [Zha05] and independently by us.

Here we present a new simple proof of the limitation of the quantum adversary
method that also holds for non-Boolean functions. Let us order the letters from
the output alphabet Σ′ by their certificate complexities such that C0 ≥ C1 ≥
· · · ≥ C|Σ′|−1. Then all adversary lower bounds are at most 2

√
C1n for partial f

and
√

C0C1 for total f .

Composition properties The adversary methods yields good, and often tight,
lower bounds on many computational problems. Ambainis shows in particular
that the weighted method yields good (though not necessarily tight) lower bounds
on iterated Boolean functions. We say that a function is iterated if it is defined
iteratively from a base function f : {0, 1}k → {0, 1} by f 1 = f and fd+1 =
f ◦ (fd, . . . , fd) for d > 1. An example iterated function is the binary AND-OR
tree, where the base function f : {0, 1}4 → {0, 1} is f(x1, x2, x3, x4) = (x1 ∨ x2)∧
(x3 ∨ x4).

Ambainis [Amb03] shows that if we have a good adversary lower bound on
the base function, we get a good adversary lower bound on the iterated functions:
if Adv(f) = a, then Adv(fd) ≥ ad, where Adv(f) was defined in Definition 2.5.1
above. Laplante, Lee, and Szegedy [LLS06] show that this is tight by proving
a matching upper bound, Adv(fd) ≤ ad. We thus conclude that the adversary
method possesses the following composition property.

5.1.3. Theorem ([Amb03, LLS06]). For any function f : {0, 1}k → {0, 1},

Adv(fd) = Adv(f)d .

A natural possible generalization of Theorem 5.1.3 is to consider composed
functions that can be written in the form

h = f ◦ (g1, . . . , gk) . (5.1)

One may think of h as a two-level decision tree with the top node being labelled
by a function f : {0, 1}k → {0, 1}, and each of the k internal nodes at the bottom
level being labelled by a function gi : {0, 1}ni → {0, 1}. We do not require that the
domains of the inner functions gi have the same size. An input x ∈ {0, 1}n to h is
a bit string of length n =

∑
i ni, which we think of as being comprised of k parts,

x = (x1, x2, . . . , xk), where xi ∈ {0, 1}ni . We may evaluate h on input x by first
computing the k bits gi(x

i), and then evaluating f on input (g1(x
1), . . . , gk(x

k)).

5.1. Introduction 99

It is plausible, and not too difficult to prove, that if a1 ≤ Adv(f) ≤ a2 and
b1 ≤ Adv(gi) ≤ b2 for all i, then a1b1 ≤ Adv(h) ≤ a2b2. In particular, if the
adversary bounds of the sub-functions gi are equal (that is Adv(gi) = Adv(gj)
for all i, j), then we can state an exact expression for the adversary bound on h
in terms of the adversary bounds of its sub-functions,

Adv(h) = Adv(f) · Adv(g) ,

where g is any of the sub-functions gi. However, it is not so clear what the exact
adversary bound of h is when the adversary bounds of the sub-functions gi differ.

Adversary bound with costs To formulate a composition theorem for arbi-
trary cases when the functions gi may have different adversary bounds, we require
as an intermediate step, a new generalization of the adversary method. For any
function f : {0, 1}k → {0, 1}, and any vector α ∈ Rk

+ of dimension k of positive
reals, we define below a quantity Advα(f) that generalizes the adversary bound
Adv(f).

5.1.4. Definition. Let f : S → {0, 1} be a Boolean function with domain
S ⊆ {0, 1}n, and α = (α1, . . . , αn) a string of positive reals. The adversary bound
for f with costs α is

Advα(f) = max
Γ

min
i

{
αi
λ(Γ)

λ(Γi)

}
,

where Γ ranges over all adversary matrices for f .

One may choose to think of αi as expressing the cost of querying the ith input
bit xi, for example due to the fact that xi is equal to the parity of 2αi new input
bits, or, alternatively, as if each query to xi reveals only a fraction of 1

αi
bits of

information about xi. When all costs αi = a are equal, the new adversary bound
Advα(f) reduces to a·Adv(f), the product of a and the standard adversary bound
Adv(f). The adversary bound Advα(f) with cost vector α may not in itself be a
query complexity lower bound for f when the costs αi differ. It is, however, still
a very useful quantity for give exact expressions on composed functions on the
form given in (5.1) above.

5.1.5. Theorem. (Composition Theorem [BS04, Amb03, LLS06, ŠS06])
Let h be a composite function of the form h = f ◦(g1, . . . , gk), where f : {0, 1}k →
{0, 1} and gi : {0, 1}ni → {0, 1} are (possibly partial) Boolean functions. Let
α ∈ Rn

+ be any cost vector. Then

Advα(h) = Advβ(f) ,

where α = (α1, . . . , αk) is a k-tuple of strings αi ∈ Rni
+ and β = (β1, . . . , βk) is a

k-tuple of adversary bounds βi = Advαi(gi).

100 Chapter 5. Adversary Lower Bounds

By this theorem, to compute the actual adversary bound Adv(h), it suffices to
first compute all inner adversary bounds βi = Adv(gi) separately, and then com-
pute the outer adversary bound Advβ(f) with costs β. We thus split the problem
of computing an adversary bound into a number of smaller disjoint subproblems.
The main limitation of our approach is that it applies only when the sub-functions
gi act on disjoint subsets of the input bits. Our theorem generalizes in particular
the adversary lower bound of Ω(

√
n) in [BS04] on read-once formulas of size n

over the basis {∧,∨}. We assume throughout this section on composition that
the functions f , gi, and h are Boolean. We do not assume that h is total—if
h = f ◦ (g1, . . . , gk) is partial, the domain of f , and of each sub-function gi, is
given by the possible inputs that may be generated to them via valid inputs to h.

Structure of the chapter In Section 5.3, we prove the equivalence of most
variants of the adversary method, in Section 5.4, we prove the limitation on the
adversary method, and in Section 5.5, we prove the composition theorem.

5.2 Preliminaries

Kolmogorov complexity Kolmogorov complexity describes how difficult it is
to produce a given finite string in terms of the length of the shortest program that
writes the string to the output. An excellent book about Kolmogorov complexity
is the book [LV97] by Li and Vitányi. Deep knowledge of Kolmogorov complexity
is not necessary to understand this chapter. Some results on the relation between
various classical forms of the quantum adversary method and the Kolmogorov
complexity method are taken from Laplante and Magniez [LM04], and the others
just use basic techniques. We just use the following definitions.

5.2.1. Definition. A universal Turing machine is a Turing machine that can
simulate any other Turing machine. Consider a universal Turing machine M . The
Kolmogorov complexity of x given y with respect to M , denoted by CM(x|y), is the
length of the shortest program that prints x if it gets y on the input. Formally,
CM(x|y) = min{length(p) : M(p, y) = x}.

A set of finite strings S ⊆ {0, 1}∗ is called prefix-free if none of its elements
is a proper prefix of another element. Prefix-free sets are self-delimiting, that
is one can concatenate any strings s1, s2, . . . , sk from a prefix-free set S into
s = s1s2 . . . sk and it will always be possible to uniquely determine the individual
strings from s by reading left to right. Let M be a universal Turing machine with
a prefix-free domain, that is a machine that never stops on an input p = p1p2 if
it stops on the input p1, and p2 is some string. We call M a prefix-free universal
Turing machine.

We are interested in the Kolmogorov complexity of a string when programs
are taken from some prefix-free domain. Naturally, such a complexity measure

5.3. Equivalence of adversary bounds 101

depends on the concrete choice of M . We say that a prefix-free machine M is a
Kolmogorov minimal element, if for any other prefix-free machine M ′, there is a
constant c such that

CM(x|y) ≤ CM ′(x|y) + c for all strings x, y .

In some sense, the Kolmogorov minimal element is an optimal prefix-free machine.
The invariance theorem [LV97] says that there exists a Kolmogorov minimal
element. The invariance theorem makes it possible to talk about the prefix-
free complexity of an infinite family of strings without reference to the concrete
machine M . The exact choice of the machine M only affects the result by an
additive constant. However, the following definition does not make much sense
for any single string, because the hidden additive constant can be as big as the
actual complexity.

5.2.2. Definition. Let M be a Kolmogorov minimal element for the set of
prefix-free universal Turing machines. The prefix-free Kolmogorov complexity of
x given y is K(x|y) = CM(x|y).

Semidefinite programming Semidefinite programming is an extremely useful
generalization of linear programming, where one allows non-linear constraints on
input variables in terms of requiring that some matrix must be positive semidef-
inite. Most of the results and techniques of linear programming generalize to
the semidefinite setting. In the section on the equivalence of adversary bounds,
we use a lot the duality theory of semidefinite programming [Lov00]. There are
various forms of the duality principle in the literature. We use a semidefinite
extension of Farkas’s lemma [Lov00, Theorem 3.4].

5.2.3. Definition. A ≥ B denotes the entry-wise comparison, formally ∀x, y :
A[x, y] ≥ B[x, y], and C � D denotes that C−D is positive semidefinite, formally
∀v : vT (C −D)v ≥ 0.

5.3 Equivalence of adversary bounds

In this section we present several equivalent quantum adversary methods. We
categorize these methods into two groups. Some of them solve conditions on the
primal of the quantum system [BSS03]: these are the spectral, weighted, strong
weighted, and generalized spectral adversary; and some of them solve conditions
on the dual : these are the Kolmogorov complexity bound, minimax, and the
semidefinite version of minimax. Primal methods are mostly used to give lower
bounds on the query complexity, while we can use the duals to prove limitations
of the method.

102 Chapter 5. Adversary Lower Bounds

The primal methods known before, that is the spectral, weighted, and strong
weighted adversary, were originally stated only for Boolean functions. The gen-
eralization to the more general non-Boolean case is straightforward and hence we
state them here in the generalized form.

5.3.1. Theorem. Let f : S → Σ′ be a function with domain S ⊆ Σn. For an
ε ∈ (0, 1

2
), let Qε(f) denote the ε-error quantum query complexity of f . Then

Qε(f)

1−2
√
ε(1−ε)

≥ Adv(f) = SA(f) = WA(f) = SWA(f)

= MM(f) = SMM(f) = GSA(f) = Θ(KA(f)) ,

where SA, WA, SWA, MM, SMM, GSA, and KA are lower bounds given by the
following methods.

• Spectral adversary [BSS03] and Theorem 2.3.1. Let Di, F denote
|S| × |S| zero-one valued matrices that satisfy Di[x, y] = 1 if and only if
xi 6= yi for i ∈ [n], and F [x, y] = 1 if and only if f(x) 6= f(y). Let Γ be an
adversary matrix for f , that is an |S| × |S| non-negative symmetric matrix
such that Γ ◦F = Γ; here ◦ denotes the entry-wise product of two matrices,
not the composition of two functions. Then

SA(f) = max
Γ

λ(Γ)

maxi λ(Γ ◦Di)
. (5.2)

• Weighted adversary [Amb03].1 Let w,w′ denote a weight scheme as
follows:

– Every pair (x, y) ∈ S2 is assigned a non-negative weight w(x, y) =
w(y, x) that satisfies w(x, y) = 0 whenever f(x) = f(y).

– Every triple (x, y, i) ∈ S2 × [n] is assigned a non-negative weight
w′(x, y, i) that satisfies w′(x, y, i) = 0 whenever xi = yi or f(x) = f(y),
and w′(x, y, i)w′(y, x, i) ≥ w2(x, y) for all x, y, i such that xi 6= yi and
f(x) 6= f(y).

For all x, i, let wt(x) =
∑

y w(x, y) and v(x, i) =
∑

y w
′(x, y, i). Then

WA(f) = max
w,w′

min
x,y, i,j

f(x) 6=f(y)
v(x,i)v(y,j)>0

√
wt(x)wt(y)

v(x, i)v(y, j)
. (5.3)

1We use a different formulation [LM04] than in the original Ambainis papers [Amb02,
Amb03]. In particular, we omit the relation R on which the weights are required to be nonzero,
and instead allow zero weights. It is simple to prove that both formulations are equivalent.

5.3. Equivalence of adversary bounds 103

• Strong weighted adversary [Zha05]. Let w,w′ denote a weight scheme
as above. Then

SWA(f) = max
w,w′

min
x,y,i

w(x,y)>0
xi 6=yi

√
wt(x)wt(y)

v(x, i)v(y, i)
. (5.4)

• Kolmogorov complexity [LM04].2 Let σ ∈ {0, 1}∗ denote a finite binary
string. Then

KA(f) = min
σ

max
x,y

f(x) 6=f(y)

1∑
i:xi 6=yi

√
2−K(i|x,σ)−K(i|y,σ)

. (5.5)

• Minimax over probability distributions [LM04]. Let p : S × [n] → R
denote a set of probability distributions, that is px(i) ≥ 0 and

∑n
i=1 px(i) = 1

for every x ∈ S. Then

MM(f) = min
p

max
x,y

f(x) 6=f(y)

1∑
i:xi 6=yi

√
px(i) py(i)

(5.6)

= 1

/
max
p

min
x,y

f(x) 6=f(y)

∑
i:xi 6=yi

√
px(i) py(i) . (5.7)

• Semidefinite version of minimax. Let Di, F be matrices as in the spec-
tral adversary. Then SMM(f) = 1/µmax, where µmax is the maximal solu-
tion of the following semidefinite program:

maximize µ
subject to ∀i : Ri � 0∑

iRi ◦ I = I∑
iRi ◦Di ≥ µF .

(5.8)

• Generalized spectral adversary. Let Di, F be matrices as in the spectral
adversary. Then GSA(f) = 1/µmin, where µmin is the minimal solution of
the following semidefinite program:

minimize µ = Tr ∆
subject to ∆ is diagonal

Z ≥ 0
Z · F = 1

∀i : ∆− Z ◦Di � 0 .

(5.9)

2We use a different formulation than Laplante and Magniez [LM04]. They minimize over
all algorithms A computing f and substitute σ = source code of A, whereas we minimize over
all finite strings σ. Our way is equivalent. One can easily argue that any finite string σ
can be “embedded” into any algorithm B as follows. Let C be the source code of B with
appended comment σ that is never executed. Now, the programs B and C are equivalent, and
K(x|σ) ≤ K(x|C) + O(1) for every x.

104 Chapter 5. Adversary Lower Bounds

Proof. The statement is a corollary of several equivalence statements proved in
the following subsections.

• SA(f) = WA(f) = SWA(f) by Theorem 5.3.4 and Theorem 5.3.5,

• MM(f) = SMM(f) by Theorem 5.3.7,

• SMM(f) = GSA(f) by Theorem 5.3.8,

• GSA(f) = SA(f) by Theorem 5.3.9,

• KA(f) = Θ(WA(f)) by Theorem 5.3.10 and Theorem 5.3.11.

This justifies the definition of the new quantity, the adversary bound of f ,
that is equal to all these bounds. Finally, one has to prove that Adv(f) is a
quantum query lower bound. Historically, Ambainis [Amb03] was the first to
prove that Qε(f) ≥ (1− 2

√
ε(1− ε)) WA(f) for every Boolean f . Laplante and

Magniez proved [LM04] that Q2(f) = Ω(KA(f)) for general f . In Theorem 2.3.1,
we presented an alternative proof of the spectral adversary bound that holds for
all non-Boolean functions. 2

5.3.1 Equivalence of spectral and weighted adversary

In this section, we give a linear-algebraic proof that the spectral bound [BSS03]
and the (strong) weighted bound [Amb03, Zha05] are equal. The proof has three
steps. First, we show that the weighted bound is at least as good as the spectral
bound. Second, using a small combinatorial lemma, we show that the spectral
bound is at least as good as the strong weighted bound. The strong weighted
bound is always at least as good as the weighted bound, because every term in
the minimization of (5.4) is included in the minimization of (5.3): if w(x, y) > 0
and xi 6= yi, then f(x) 6= f(y) and both w′(x, y, i) > 0 and w′(y, x, i) > 0. The
generalization of the weighted adversary method thus does not make the bound
stronger, however its formulation is easier to use.

Spectral norm of a non-negative matrix First, let us state two useful state-
ments upper-bounding the spectral norm of a entry-wise product of two non-
negative matrices. Let rx(M) denote the `2-norm of the xth row of M and let
cy(M) denote the `2-norm of the yth column of M . Formally,

rx(M) =

√∑
y

M [x, y]2 , Also, let r(M) = max
x

rx(M) ,

cy(M) =

√∑
x

M [x, y]2 . c(M) = max
y
cy(M) .

5.3. Equivalence of adversary bounds 105

5.3.2. Lemma ([Mat90]). Let M,N ≥ 0 be non-negative rectangular matrices
of the same dimension, and let S = M ◦ N be the entry-wise product of M and
N . Then

λ(S) ≤ r(M)c(N) = max
x,y

rx(M) cy(N) .

Furthermore, for every S ≥ 0 there exist M,N ≥ 0 such that S = M ◦ N and
r(M) = c(N) =

√
λ(S). If S ≥ 0 is a symmetric square matrix, then there exist

matrices M,N ≥ 0 giving the optimal bound that satisfy M = NT .

Proof. The first half of this lemma has already been stated and proved as
Lemma 2.4.1 in the introductory chapter on lower bounds. Let us prove its second
half here. Given a non-negative matrix S, let v, w be a pair of singular vectors of
S corresponding to the principal singular value of S, such that ‖v‖ = ‖w‖ = 1.
Thus Sw = λ(S)v, STv = λ(S)w, and λ(S) = vTSw. Since S is non-negative,
both v, w must also be non-negative. Define

M [x, y] =

√
S[x, y] · wy

vx
and N [x, y] =

√
S[x, y] · vx

wy
. (5.10)

Note that if vx = 0, then S[x, y]wy = 0 for all y, because vx = 1
λ(S)

∑
y S[x, y]wy

and all numbers are non-negative. Hence divisions by zero only occur in the form
0
0

and we define them to be 0. Analogously, divisions by wy are also safe.
Then all row norms of M are the same and they are equal to

rx(M) =

√∑
y
M [x, y]2 =

√∑
y S[x, y]wy

vx
=

√
λ(S)

vx
vx

=
√
λ(S) .

The same argument gives that cy(N) =
√
λ(S). Finally, if S is symmetric,

then the principal singular vectors coincide with the principal eigenvector, that
is v = w and Sv = λ(S)v. A quick look at equation (5.10) reveals that the two
optimal matrices we have just defined satisfy M [x, y] = N [y, x]. 2

We strengthen Mathias’s lemma such that the maximum can be taken over a
smaller set of pairs x, y that satisfy S[x, y] > 0.

5.3.3. Lemma. Let M,N ≥ 0 be non-negative matrices and let S = M ◦N be a
matrix that is not identically zero. Then

λ(S) ≤ max
x,y

S[x,y]>0

rx(M)cy(N) .

Proof. Define an abbreviation

B(M,N) = max
x,y

S[x,y]>0

rx(M)cy(N) .

106 Chapter 5. Adversary Lower Bounds

Without loss of generality, we assume that M [x, y] = 0 ⇔ N [x, y] = 0, other-
wise the term on the right-hand side gets bigger and the inequality is easier to sat-
isfy. Let us prove the existence of matrices M ′, N ′ with B(M ′, N ′) = r(M ′)c(N ′)
such that

M ◦N = M ′ ◦N ′ and B(M,N) = B(M ′, N ′) . (5.11)

We then apply Lemma 5.3.2 and obtain

λ(S) = λ(M ◦N) = λ(M ′ ◦N ′) ≤ r(M ′)c(N ′) = B(M ′, N ′) = B(M,N) .

Take as M ′, N ′ any pair of matrices that satisfies (5.11) and the following two
constraints:

• r(M ′)c(N ′) is minimal, that is there is no pair M ′′, N ′′ satisfying equation
(5.11) and giving a smaller value of the product r(M ′′)c(N ′′),

• and, among those, the set R of maximum-norm rows of M ′ and the set C
of maximum-norm columns of N ′ are both minimal (in the same sense).

Let (r, c) be any maximal entry, that is let S[r, c] > 0 and rr(M
′)cc(N

′) =
B(M ′, N ′). Let R denote the complement of R and let S|CR denote the sub-matrix
of S indexed by R× C. Then one of the following cases happens:

1. (r, c) ∈ R× C: Then B(M ′, N ′) = r(M ′)c(N ′) and we are done.

If (r, c) 6∈ R× C, then we know that S|CR = 0 is a zero sub-matrix.

2. (r, c) ∈ R×C: Then S|C
R

= 0, otherwise we get a contradiction with one of

the minimality assumptions as follows. If S[x, y] 6= 0 for some (x, y) ∈ R×C,
multiply M ′[x, y] by 1 + ε and divide N ′[x, y] by 1 + ε for some small ε > 0
such that the norm of the xth row of M ′ is still smaller than r(M ′). Now, we
have either deleted the yth column from C or, if |C| = 1, decreased c(N ′).
Both cases are a contradiction.

Finally, if S|C
R

= 0, then c(N ′) = 0 due to S|CR = 0 and the fact that C are
the maximum-norm columns. Hence S is the zero matrix, which is also a
contradiction.

3. (r, c) ∈ R× C: This case is similar to the previous case.

4. (r, c) ∈ R × C: First, note that S|cR = 0, otherwise (r, c) would not be a

maximal entry. Now we divide all entries in M ′|CR by 1 + ε and multiply

all entries in N ′|CR by 1 + ε for some small ε > 0 such that the sets R,C of
maximum-norm rows and columns do not change. Since S|CR = 0, we know

that S|CR 6= 0, otherwise S would be the zero matrix due to r(M ′) = 0.

Hence there is a nonzero number in every row of M ′|CR. We have preserved
B(M ′, N ′) and c(N ′), and decreased r(M ′), which is a contradiction.

5.3. Equivalence of adversary bounds 107

We conclude that the only consistent case is (r, c) ∈ R×C. Then B(M ′, N ′) =
r(M ′)c(N ′), and hence λ(S) ≤ B(M,N). 2

Reducing spectral adversary to weighted adversary Now we use Math-
ias’s bound to prove that the weighted adversary gives at least as good a bound
as the spectral adversary.

5.3.4. Theorem. SA(f) ≤ WA(f).

Proof. Let Γ be a non-negative symmetric matrix with Γ ◦ F = Γ as in equa-
tion (5.2) that gives the optimal spectral bound. Assume without loss of general-
ity that λ(Γ) = 1. Let δ be the principal eigenvector of Γ, that is Γδ = δ. Define
the following weight scheme:

w(x, y) = w(y, x) = Γ[x, y]δxδy .

Furthermore, for every i, using the last part of Lemma 5.3.2, decompose Γi =
Γ ◦Di into a entry-wise product of two non-negative matrices Γi = Mi ◦MT

i such
that r(Mi) =

√
λ(Γi). Define w′ as follows:

w′(x, y, i) = Mi[x, y]
2δ2
x .

Let us verify that w,w′ is a weight scheme. First, w(x, y) = w′(x, y, i) = 0 if
f(x) = f(y), and also w′(x, y, i) = 0 if xi = yi. Furthermore, if f(x) 6= f(y) and
xi 6= yi, then w′(x, y, i)w′(y, x, i) = (Mi[x, y] δx)

2(Mi[y, x] δy)
2 = (Γi[x, y] δxδy)

2 =
w(x, y)2. Finally, let us compute the bound (5.3) given by the weight scheme.

wt(x) =
∑
y

w(x, y) = δx
∑
y

Γ[x, y]δy = δx (Γδ)x = δ2
x ,

v(x, i)

wt(x)
=

∑
y w

′(x, y, i)

wt(x)
=

∑
yMi[x, y]

2δ2
x

δ2
x

= rx(Mi)
2 ≤ r(Mi)

2 = λ(Γi) .

The weighted adversary lower bound (5.3) is thus at least

WA(f) ≥ min
x,y, i,j

f(x) 6=f(y)
v(x,i)v(y,j)>0

√
wt(x)wt(y)

v(x, i)v(y, j)

≥ min
i,j

1√
λ(Γi) · λ(Γj)

=
λ(Γ)

maxi λ(Γi)
= SA(f) .

Hence the weighted adversary gives at least as strong a bound as the spectral
adversary (5.2). 2

108 Chapter 5. Adversary Lower Bounds

Reducing strong weighted adversary to spectral adversary Now we use
our stronger version of Mathias’s bound to prove that the spectral adversary gives
at least as good a bound as the strong weighted adversary.

5.3.5. Theorem. SWA(f) ≤ SA(f).

Proof. Let w,w′ be a weight scheme as in equation (5.3) that gives the optimal
strong weighted bound (5.4). Define the following symmetric matrix Γ on S ×S:

Γ[x, y] =
w(x, y)√
wt(x)wt(y)

.

We also define column vector δ on S such that δx =
√
wt(x). Let W =∑

xwt(x). Then

λ(Γ) ≥ δTΓδ

‖δ‖2
=
W

W
= 1 .

Define the following matrix on the index set S × S:

Mi[x, y] =

√
w′(x, y, i)

wt(x)
.

Every weight scheme satisfies w′(x, y, i)w′(y, x, i) ≥ w2(x, y) for all x, y, i such
that xi 6= yi. Hence

Mi[x, y] ·Mi[y, x] =

√
w′(x, y, i)w′(y, x, i)√

wt(x)wt(y)
≥ w(x, y) ·Di[x, y]√

wt(x)wt(y)
= Γi[x, y] .

This means that Γi ≤Mi◦MT
i and, thanks to the non-negativity, it also holds

that λ(Γi) ≤ λ(Mi ◦MT
i). By Lemma 5.3.3 and using cy(M

T) = ry(M),

λ(Γi) ≤ max
x,y

Γi[x,y]>0

rx(M)ry(M) = max
x,y

w(x,y)>0
xi 6=yi

√∑
k

w′(x, k, i)

wt(x)

∑
`

w′(y, `, i)

wt(y)

= max
x,y

w(x,y)>0
xi 6=yi

√
v(x, i)v(y, i)

wt(x)wt(y)
.

The spectral adversary lower bound (5.2) is thus at least

SA(f) ≥ λ(Γ)

maxi λ(Γi)
≥ min

i
min
x,y

w(x,y)>0
xi 6=yi

√
wt(x)wt(y)

v(x, i)v(y, i)
= SWA(f) .

Hence the spectral adversary gives at least as strong a bound as the strong
weighted adversary (5.4). 2

5.3. Equivalence of adversary bounds 109

5.3.6. Remark. The strength of the obtained reduction depends on which state-
ment is used for upper-bounding the spectral norm of Γi.

• Lemma 5.3.3 has given us SWA(f) ≤ SA(f).

• Lemma 5.3.2 would give a weaker bound WA(f) ≤ SA(f).

• Høyer, Neerbek, and Shi used an explicit expression for the norm of the
Hilbert matrix to get an Ω(log n) lower bound for ordered search [HNS02].
Their method is thus a special case of the spectral method.

• As we have shown in Theorem 2.4.2, both versions of the original un-
weighted adversary method [Amb02] are obtained by using a spectral ma-
trix Γ corresponding to a zero-one valued weight scheme w, the lower bound
λ(Γ) ≥ dTΓd/‖d‖2, and Lemma 5.3.2, resp. Lemma 5.3.3.

5.3.2 Equivalence of primal and dual adversary bounds

Equivalence of minimax and generalized spectral adversary Here we
prove that the minimax bound is equal to the generalized spectral bound. We
first remove the reciprocal by taking the max-min bound. Second, we write this
bound as a semidefinite program. An application of duality theory of semidefinite
programming finishes the proof.

5.3.7. Theorem. MM(f) = SMM(f).

Proof. Let p be a set of probability distributions as in equation (5.7). Define
Ri[x, y] =

√
px(i) py(i). Since px is a probability distribution, we get that

∑
iRi

must have all ones on the diagonal. The condition

min
x,y

f(x) 6=f(y)

∑
i:xi 6=yi

Ri[x, y] ≥ µ

may be rewritten

∀x, y : f(x) 6= f(y) =⇒
∑
i:xi 6=yi

Ri[x, y] ≥ µ ,

which is to say
∑

iRi ◦Di ≥ µF . Each matrix Ri should be an outer product of

a non-negative vector with itself: Ri = rir
T
i for a column vector ri[x] =

√
px(i).

We have, however, replaced that condition by Ri � 0 to get the semidefinite
program (5.8). Since rir

T
i � 0, the program (5.8) is a relaxation of the condition

of (5.7) and SMM(f) ≤ MM(f).
Let us show that every solution Ri of the semidefinite program can be changed

to an at least as good rank-1 solution R′
i. Take a Cholesky decomposition Ri =

XiX
T
i . Define a column-vector qi[x] =

√∑
j Xi[x, j]2 and a rank-1 matrix R′

i =

110 Chapter 5. Adversary Lower Bounds

qiq
T
i . It is not hard to show that all R′

i satisfy the same constraints as Ri. First,
R′
i is positive semidefinite. Second, R′

i[x, x] =
∑

j Xi[x, j]
2 = Ri[x, x], hence∑

iR
′
i ◦ I = I. Third, by the Cauchy-Schwarz inequality,

Ri[x, y] =
∑
j

Xi[x, j]Xi[y, j]

≤
√∑

k

Xi[x, k]2
√∑

`

Xi[y, `]2 = qi[x]qi[y] = R′
i[x, y] ,

hence
∑

iR
′
i ◦Di ≥

∑
iRi ◦Di ≥ µF . We conclude that MM(f) ≤ SMM(f). 2

The equivalence of the semidefinite version of minimax and the generalized
spectral adversary is proved using the duality theory of semidefinite programming.
We use the duality principle [Lov00, Theorem 3.4], which is a semidefinite version
of Farkas’s lemma.

5.3.8. Theorem. SMM(f) = GSA(f).

Proof. Let us compute the dual of a semidefinite program without converting
it to/from the standard form, but using Lagrange multipliers. Take the objective
function µ of the semidefinite version of minimax (5.8) and add negative penalty
terms for violating the constraints. Let A · B = Tr (ABT) denote the scalar
product of A and B.

µ+
∑
i

Yi ·Ri +D ·
(∑

i

Ri ◦ I − I
)

+ Z ·
(∑

i

Ri ◦Di − µF
)

for Yi � 0, unconstrained D, and Z ≥ 0

=
∑
i

Ri ·
(
Yi +D ◦ I + Z ◦Di

)
+ µ
(
1− Z · F

)
−D · I .

Its dual system is formed by the constraints on Yi, D, and Z plus the requirements
that both expressions in the parentheses on the third line are zero. The duality
principle [Lov00, Theorem 3.4] says that any primal solution is smaller than or
equal to any dual solution. Moreover, if any of the two systems has a strictly
feasible solution, then the maximal primal solution µmax equals the minimal dual
solution µmin.

Since Yi � 0 only appears once, we remove it by requiring that D◦I+Z◦Di �
0. We substitute ∆ = −D ◦ I and obtain ∆−Z ◦Di � 0. The objective function
is −D · I = Tr ∆. We have obtained the generalized spectral adversary (5.9). Let
us prove its strong feasibility. Assume that the function f is not constant, hence
F 6= 0. Take Z a uniform probability distribution over nonzero entries of F and
a large enough constant ∆. This is a strictly feasible solution. We conclude that
µmax = µmin. 2

5.3. Equivalence of adversary bounds 111

Equivalence of generalized spectral and spectral adversary Here we
prove that the generalized spectral adversary bound is equal to the spectral ad-
versary bound. The main difference between them is that the generalized method
uses an arbitrary positive diagonal matrix ∆ as a new variable instead of the iden-
tity matrix I.

5.3.9. Theorem. GSA(f) = SA(f).

Proof. Let diag (A) denote the column vector containing the main diagonal
of A. Let Z,∆ be a solution of (5.9). First, let us prove that ∆ � 0. Since
both Z ≥ 0 and Di ≥ 0, it holds that diag (−Z ◦ Di) ≤ 0. We know that
∆−Z ◦Di � 0, hence diag (∆−Z ◦Di) ≥ 0, and diag (∆) ≥ 0 follows. Moreover,
diag (∆) > 0 unless Z contains an empty row (together with the corresponding
column), in which case we delete them and continue. The spectral matrix Γ
will then contain zeroes in this row and column, too. Second, since positive
semidefinite real matrices are symmetric, ∆ − Z ◦Di � 0 implies that Z ◦Di is
symmetric (for every i). For every x 6= y there is an index i such that xi 6= yi,
hence Z must be also symmetric.

Take column vector a = diag (∆−1/2) and rank-1 matrix A = aaT � 0. It is
simple to prove that A ◦X � 0 for every matrix X � 0. Since ∆− Z ◦Di � 0,
also A ◦ (∆− Z ◦Di) = I − Z ◦Di ◦ A � 0 and hence λ(Z ◦Di ◦ A) ≤ 1. Now,
define the spectral adversary matrix

Γ = Z ◦ F ◦ A .

Since 0 ≤ Z ◦ F ≤ Z, it follows that

λ(Γ ◦Di) = λ(Z ◦ F ◦ A ◦Di) ≤ λ(Z ◦Di ◦ A) ≤ 1 .

It remains to show that λ(Γ) ≥ 1/Tr ∆. Let b = diag (
√

∆) and B = bbT . Then
A ◦B is the all-ones matrix, and

1 = Z · F = Γ ·B = bTΓb ≤ λ(Γ) · ‖b‖2 = λ(Γ) · Tr ∆ .

It is obvious that Γ is symmetric, Γ ≥ 0, and Γ ◦ F = Γ. The bound (5.2) given
by Γ is bigger than or equal to 1/Tr ∆, hence SA(f) ≥ GSA(f).

For the other direction, let Γ be a non-negative symmetric matrix satisfying
Γ ◦ F = Γ. Let δ be its principal eigenvector with ‖δ‖ = 1. Assume without loss
of generality that λ(Γ) = 1 and let µ = maxi λ(Γi). Take A = δδT , Z = Γ◦A, and
∆ = µI ◦A. Then Z ·F = Γ ·A = δTΓδ = 1 and Tr ∆ = µ. For every i, λ(Γi) ≤ µ,
hence µI − Γ ◦Di � 0. It follows that 0 � A ◦ (µI − Γ ◦Di) = ∆− Z ◦Di. The
semidefinite program (5.9) is satisfied and hence its optimum is µmin ≤ µ. We
conclude that GSA(f) ≥ SA(f). 2

112 Chapter 5. Adversary Lower Bounds

5.3.3 Equivalence of minimax and Kolmogorov adversary

In this section, we prove the last equivalence. We use the results of Laplante and
Magniez, who proved [LM04] that the Kolmogorov complexity bound is asymp-
totically lower-bounded by the weighted adversary bound and upper-bounded by
the minimax bound. The upper bound is implicit in their paper, because they
did not state the minimax bound as a separate theorem.

5.3.10. Theorem. [LM04, Theorem 2] KA(f) = Ω(WA(f)).

The proof of Theorem 5.3.10 uses the symmetry of information [LV97].

5.3.11. Theorem. KA(f) = O(MM(f)).

Proof. Take a set of probability distributions p as in equation (5.6). The query
information lemma [LM04, Lemma 3] says that K(i|x, p) ≤ log 1

px(i)
+ O(1) for

every x, i such that px(i) > 0. This is true, because any i of nonzero probability
can be encoded in dlog 1

px(i)
e bits using the Shannon-Fano code of distribution

px, and the Shannon-Fano code is a prefix-free code. Rewrite the inequality
as px(i) = O(2−K(i|x,p)). The statement follows, because the set of all strings
σ in (5.5) includes among others also the descriptions of all sets of probability
distributions p. 2

5.3.12. Remark. The hidden constant in the equality KA(f) = Θ(WA(f)) de-
pends on the choice of the universal Turing machine and the prefix-free set.

5.4 Limitation of adversary bounds

In this section, we show that there are limits that none of these quantum adversary
methods can go beyond. Recall Definition 2.5.2 of a certificate of a function for an
input, and of the h-certificate complexity Ch(f) of a function f , often shortened
as just Ch. We need the following additional definition.

5.4.1. Definition. Let Cert(f, x) denote the lexicographically first certificate
among the smallest certificates of f for input x.

It is actually not important for us that we take the lexicographically first
certificate, any other certificate would work as well, however the discussion gets
simpler if we can talk about a concrete certificate instead of a set of certificates.

5.4.2. Theorem. Let f : S → Σ′ be a function with domain S ⊆ Σn. Let the
output alphabet be Σ′ = {0, 1, . . . , |Σ′| − 1} with letters h ∈ Σ′ ordered by their
h-certificate complexities such that C0 ≥ C1 ≥ · · · ≥ C|Σ′|−1. Then the max-min
bound (5.7) is upper-bounded by MM(f) ≤ 2

√
C1n. If f is total, that is if S = Σn,

then MM(f) ≤
√

C0C1.

5.4. Limitation of adversary bounds 113

Proof. The following simple argument is due to Ronald de Wolf. We exhibit
two sets of probability distributions p such that

MMp(f) = min
x,y

f(x) 6=f(y)

∑
i:xi 6=yi

√
px(i) py(i) ≥

1

2
√

C1n
, resp.

1√
C0C1

.

The max-min bound (5.7) is equal to MM(f) = 1/maxp MMp(f) and the state-
ment follows.

Let f be partial. For every x ∈ S, distribute one half of the probability
uniformly over Cert(f, x), and one half of the probability uniformly over all input
variables. Formally, px(i) = 1

2n
+ 1

2|Cert(f,x)| if i ∈ Cert(f, x), and px(i) = 1
2n

otherwise. Take any x, y such that f(x) 6= f(y). Assume that Cf(x) ≤ Cf(y), and
take the f(x)-certificate C = Cert(f, x). Since y|C 6= x|C , there is a j ∈ C such
that xj 6= yj. Now we lower-bound the sum of (5.7).∑

i:xi 6=yi

√
px(i) py(i) ≥

√
px(j) py(j)

≥

√
1

|2Cert(f, x)|
· 1

2n
≥ 1

2
√

Cf(x)n
≥ 1

2
√

C1n
.

Since this inequality holds for any x, y such that f(x) 6= f(y), also MMp(f) ≥
1/2

√
C1n. Take the reciprocal and conclude that MM(f) ≤ 2

√
C1n.

For Boolean output alphabet Σ′ = {0, 1}, we can prove a twice stronger bound
MM(f) ≤

√
C1n as follows. Define p as a uniform distribution over Cert(f, x)

for all one-inputs, and a uniform distribution over all input variables for all zero-
inputs. The same computation as above gives the bound.

If f is total, then we can do even better. For every x ∈ Σn, distribute the
probability uniformly over Cert(f, x). Formally, px(i) = 1

|Cert(f,x)| if i ∈ Cert(f, x),

and px(i) = 0 otherwise. Take any x, y such that f(x) 6= f(y), and let C =
Cert(f, x)∩Cert(f, y). There must exist a j ∈ C such that xj 6= yj, otherwise we
could find an input z that is consistent with both certificates. (That would be a
contradiction, because f is total and hence f(z) has to be defined and be equal to
both f(x) and f(y).) After we have found a j, we lower-bound the sum of (5.7)
by 1/

√
Cf(x)Cf(y) in the same way as above. Since

√
Cf(x)Cf(y) ≤

√
C0C1, the

bound follows. 2

Some parts of the following statement have been observed for individual meth-
ods by Szegedy [Sze03], Laplante and Magniez [LM04], and Zhang [Zha05]. This
statement rules out all adversary attempts to prove good lower bounds for prob-
lems with small certificate complexity, such as element distinctness [AS04], binary
AND-OR trees [BS04, HMW03], triangle finding [MSS05], or verification of ma-
trix products (see Chapter 4).

114 Chapter 5. Adversary Lower Bounds

5.4.3. Corollary. Quantum adversary lower bounds are smaller than or equal
to min(

√
C0n,

√
C1n) for partial Boolean functions and

√
C0C1 for total Boolean

functions.

5.5 Composition of adversary bounds

In this section we prove Theorem 5.1.5, that is the composition theorem for
adversary bounds. Unlike in the previous sections, we are only able to prove
this statement for Boolean functions. We first generalize the adversary bound
by introducing a cost of querying an input variable, and sketch the proof of an
equivalence theorem for this bound. Then we express the spectral norm of a com-
posite adversary matrix in terms of spectral norms of the individual adversary
matrices. Finally, we use this expression to prove that the spectral bound com-
poses, which, together with the fact that the minimax bound composes, implies
that our composite bound is tight.

5.5.1 Adversary bound with costs

5.5.1. Definition. Let f : S → {0, 1} be a Boolean function with domain
S ⊆ {0, 1}n, and let α ∈ Rn

+ be a cost vector. The spectral bound for f with costs
α is

SAα(f) = max
Γ

min
i

{
αi
λ(Γ)

λ(Γi)

}
,

where Γ ranges over all adversary matrices for f , that is Γ is non-negative and
symmetric, and Γ[x, y] = 0 if f(x) = f(y). The minimax bound for f with costs
α is

MMα(f) = min
p

max
x,y

f(x) 6=f(y)

1∑
i:xi 6=yi

√
px(i)py(i)/αi

,

where p : S × [n] → [0, 1] ranges over all sets of |S| probability distributions over
input bits, that is, px(i) ≥ 0 and

∑n
i=1 px(i) = 1 for every x ∈ S.

These two bounds are natural generalizations of the spectral adversary bound
(Definition 2.5.1) and the minimax bound (Definition 5.1.2)—we obtain the orig-
inal bounds by setting αi = 1 for all i. The two new bounds are equal, and thus
we give this common quantity a name, the adversary bound of f with costs α,
denoted by Advα(f).

5.5.2. Theorem. For every function f : S → {0, 1} with domain S ⊆ {0, 1}n,
and for every α ∈ Rn

+,

Advα(f) = SAα(f) = MMα(f) .

5.5. Composition of adversary bounds 115

Proof (sketch). We start with the minimax bound with costs, substitute
qx(i) = px(i)/αi, and rewrite the condition

∑
i px(i) = 1 into

∑
i αiqx(i) = 1. Us-

ing similar arguments as in Theorem 5.3.7, we rewrite the bound as a semidefinite
program, compute its dual, and after a few simplifications like in Theorem 5.3.9,
get the spectral bound with costs. 2

5.5.2 Spectral norm of a composite spectral matrix

In this section we construct an adversary matrix for a composite function and
compute its spectral norm. We later show that this construction is in fact optimal
given that the adversary matrices of the inner functions used in this construction
are all optimal. This construction is an extension of the construction that Am-
bainis used to establish the composition theorem for iterated functions [Amb03].

5.5.3. Definition. Let h = f ◦ (g1, . . . , gk) be a composed function, like in
equation (5.1). An input x ∈ {0, 1}n to h is a bit string of length n =

∑
i ni,

which we think of as being comprised of k parts, x = (x1, x2, . . . , xk), where
xi ∈ {0, 1}ni . We may evaluate h on input x by first computing the k bits
x̃i = gi(x

i), and then evaluating f on input x̃ = (x̃1, . . . , x̃k).

5.5.4. Definition. Let Γf be an adversary matrix for f and let δf be a principal
eigenvector of Γf such that ‖δf‖ = 1. Similarly, for each i = 1, . . . , k, let Γgi

be
an adversary matrix for gi and let δgi

be a principal eigenvector of Γgi
such that

‖δgi
‖ = 1. Let Γh be the matrix

Γh[x, y] = Γf [x̃, ỹ] · Γg[x, y] , (5.12)

where

Γg =
k⊗
i=1

Γ?gi
, Γ?gi

= Γ0
gi

+ Γ1
gi
, Γ0

gi
= λ(Γgi

)I, Γ1
gi

= Γgi
, (5.13)

and I is the identity matrix.

It is simple to prove that Γh is an adversary matrix for h, that is Γh is a
non-negative symmetric matrix and Γh[x, y] = 0 if h(x) = h(y).

5.5.5. Theorem. The matrix Γh has spectral norm λ(Γh) = λ(Γf) ·
∏k

i=1 λ(Γgi
)

and principal eigenvector δh[x] = δf [x̃] ·
∏

i δgi
[xi].

116 Chapter 5. Adversary Lower Bounds

Proof. Evaluate dTΓhd for a general column vector d.

dTΓhd =
∑
x,y

Γh[x, y] · dxdy

=
∑
x,y

Γf [x̃, ỹ] · Γg[x, y] · dxdy

=
∑
x′,y′

Γf [x
′, y′]

∑
x:x̃=x′
y:ỹ=y′

Γg[x, y] · dxdy .

Fix any pair x′, y′ of k-bit strings and look at the bit string z = x′ ⊕ y′. Set
Γzg =

⊗k
i=1 Γzi

gi
, that is instead of taking the product of sums Γ?gi

= Γ0
gi

+ Γ1
gi

as in Γg in equation (5.13) we admit exactly one term for each i. Note that

λ(Γzg) =
∏k

i=1 λ(Γzi
gi

) =
∏

i λ(Γgi
). We prove that Γg = Γzg on the rectangle

(x, y) : x̃ = x′, ỹ = y′, because the omitted term in Γ?gi
is zero for each i. There

are two cases. First, if zi = 0, then x̃i = ỹi, that is gi(x
i) = gi(y

i), and hence the
omitted term is Γgi

[xi, yi] = 0, because Γgi
is an adversary matrix for gi. Second,

if zi = 1, then x̃i 6= ỹi, hence it must be that xi 6= yi and so the omitted term is
I[xi, yi] = 0.

For a bit string a ∈ {0, 1}k, let d�a[x] = dx if x̃ = a, and 0 otherwise. Define
a column vector d′[a] = ‖d�a‖ of dimension 2k. It holds that

‖d‖2 =
∑

x∈{0,1}n

|dx|2 =
∑

a∈{0,1}k

∑
x:x̃=a

|dx|2 =
∑

a∈{0,1}k

‖d�a‖2 =
∑

a∈{0,1}k

d′[a]2 = ‖d′‖2 .

We prove the equality in two steps. First, we prove that λ(Γh) ≤ λ(Γf) ·∏k
i=1 λ(Γgi

). This follows from the fact that for any vector d,

dTΓhd =
∑
a,b

Γf [a, b]
∑
x:x̃=a
y:ỹ=b

Γg[x, y] · dxdy

=
∑
a,b

Γf [a, b]
∑
x,y

Γa⊕bg [x, y] · d�a[x]d�b[y] by the above paragraph

≤
∑
a,b

Γf [a, b] · λ(Γa⊕bg) · ‖d�a‖ · ‖d�b‖

=
k∏
i=1

λ(Γgi
) ·
∑
a,b

Γf [a, b] · d′[a]d′[b]

≤
k∏
i=1

λ(Γgi
) · λ(Γf) · ‖d′‖2

= λ(Γf) ·
k∏
i=1

λ(Γgi
) · ‖d‖2 .

5.5. Composition of adversary bounds 117

Second, we prove that the vector δh[x] = δf [x̃] ·
∏

i δgi
[xi] achieves this upper

bound and so is a principal eigenvector of Γh. For a bit c ∈ {0, 1}, let δ�c
gi

[x] = δgi
[x]

if gi(x) = c, and 0 otherwise. Note that δgi
= δ�0

gi
+ δ�1

gi
, Γgi

δgi
= λ(Γgi

)δgi
,

and Γgi
δ�c
gi

= λ(Γgi
)δ�1−c
gi

. The last equality holds because Γgi
[x, y] 6= 0 only if

gi(x) 6= gi(y), that is after rearranging the inputs such that zero-inputs come

first, Γgi
is of the form

(
0 Gi

GT
i 0

)
for some non-negative matrix Gi. This is exactly

the place where we need that the composed functions are Boolean. If the functions
are over alphabets of size bigger than 2, then we cannot say much about how the

vectors δ�c
gi

are mapped. It also follows that ‖δ�0
gi
‖2 = ‖δ�1

gi
‖2 =

‖δgi‖
2

2
= 1

2
.

Let us first evaluate the `2-norm of δh.

‖δh‖2 =
∑
x

δh[x]
2 =

∑
x

δf [x̃]
2
∏
i

δgi
[xi]2

=
∑
a

δf [a]
2
∑
x:x̃=a

∏
i

δgi
[xi]2

=
∑
a

δf [a]
2
∏
i

∑
xi:x̃i=ai

δgi
[xi]2

=
∑
a

δf [a]
2
∏
i

‖δ�ai
gi
‖2

=
1

2k

∑
a

δf [a]
2 =

1

2k
.

We already know that

δh
TΓhδh =

∑
a,b

Γf [a, b]
∑
x:x̃=a
y:ỹ=b

Γa⊕bg [x, y] · δh[x]δh[y]

=
∑
a,b

Γf [a, b]δf [a]δf [b]
∑
x:x̃=a
y:ỹ=b

k∏
i=1

Γai⊕bi
gi

[xi, yi]δgi
[xi]δgi

[yi] .

Swap the inner summation and multiplication as follows:

∑
x:x̃=a
y:ỹ=b

k∏
i=1

Γai⊕bi
gi

[xi, yi]δgi
[xi]δgi

[yi] =
∏
i

∑
xi:x̃i=ai

yi:ỹi=bi

Γai⊕bi
gi

[xi, yi]δgi
[xi]δgi

[yi]

=
∏
i

∑
xi,yi

Γai⊕bi
gi

[xi, yi]δ�ai
gi

[xi]δ�bi
gi

[yi]

=
∏
i

(δ�ai
gi

)TΓai⊕bi
gi

δ�bi
gi

=
∏
i

(
λ(Γgi

) · ‖δ�ai
gi
‖2
)

=
1

2k

∏
i

λ(Γgi
) ,

118 Chapter 5. Adversary Lower Bounds

which is a constant. The penultimate equality holds since Γai⊕bi
gi

δ�bi
gi

= λ(Γgi
)δ�ai
gi

.
Substitute the rewritten expression back into the total sum. Take the constant

out of the sum.

δh
TΓhδh =

1

2k

∏
i

λ(Γgi
) ·
∑
a,b

Γf [a, b]δf [a]δf [b]

=
1

2k

∏
i

λ(Γgi
) · λ(Γf) · ‖δf‖2

= λ(Γf) ·
∏
i

λ(Γgi
) · ‖δh‖2 .

It follows that λ(Γh) ≥ λ(Γf) ·
∏k

i=1 λ(Γgi
), witnessed by δh. Together with the

matching upper bound we conclude that λ(Γh) = λ(Γf)
∏

i λ(Γgi
). 2

5.5.3 Composition properties

In this section, we prove that both the spectral bound with costs and the minimax
bound with costs compose. Then we apply the duality theorem and conclude that
the composite bound is tight. In our composition theorems, we use the following
cost vectors:

• α = (α1, . . . , αk) is a k-tuple of vectors αi ∈ Rni
+ , which are arbitrary cost

vectors for the inner functions gi,

• β = (β1, . . . , βk) is a k-tuple of numbers βi = Advαi(gi), which are adversary
bounds for the inner functions with the prescribed costs. β forms a cost
vector for the outer function.

Composition of the spectral bound Let Di denote the zero-one valued ma-
trix defined by Di[x, y] = 1 if and only if xi 6= yi. Let A◦B denote the entry-wise
product of matrices A and B, that is, (A ◦ B)[x, y] = A[x, y] · B[x, y]. To avoid
confusion with subscripts, we write Γ ◦Di instead of Γi in this section.

5.5.6. Lemma. SAα(h) ≥ SAβ(f).

Proof. Let Γf be an optimal spectral matrix saturating the spectral bound

SAβ(f) =
k

min
i=1

{
βi

λ(Γf)

λ(Γf ◦Di)

}
.

Similarly, for each i = 1, . . . , k, let Γgi
be an optimal spectral matrix saturating

the spectral bound

SAαi(gi) =
ni

min
j=1

{
αij

λ(Γgi
)

λ(Γgi
◦Dj)

}
.

5.5. Composition of adversary bounds 119

Due to the maximization over all matrices Γ, the spectral bound of the com-
posite function h is at least

SAα(h) ≥
n

min
`=1

{
α`

λ(Γh)

λ(Γh ◦D`)

}
, (5.14)

where Γh depends on Γf and Γgi
according to Definition 5.5.4. Recall that

Γh[x, y] = Γf [x̃, ỹ] ·
k∏
i=1

Γ?gi
[xi, yi] .

Theorem 5.5.5 gives an exact expression for λ(Γh). We now compute λ(Γh ◦D`)
for ` = 1, . . . , n. Let the `th input bit be the jth bit in the ith block. Recall the
notation x` = (xi)j = xij. We prove that

(Γh ◦D`)[x, y] = (Γf ◦Di)[x̃, ỹ] · (Γgi
◦Dj)

?[xi, yi] ·
∏
e6=i

Γ?ge
[xe, ye] .

There are the following cases:

1. x` = y`: the left side is zero due to (Γh ◦D`)[x, y] = 0.

(a) x̃i = ỹi: the right side is zero due to (Γf ◦Di)[x̃, ỹ] = 0.

(b) x̃i 6= ỹi: the right side is zero due to (Γgi
◦Dj)

?[xi, yi] = 0. That holds
because (Γgi

◦ Dj)[x
i, yi] = 0 since xij = yij, and I[xi, yi] = 0 since

xi 6= yi.

2. x` 6= y`, x̃i = ỹi: the left side is zero due to Γ?gi
[xi, yi] = 0. That holds

because Γgi
[xi, yi] = 0 since gi(x

i) = gi(y
i), and I[xi, yi] = 0, since xi 6= yi.

The right side is also zero due to (Γf ◦Di)[x̃, ỹ] = 0.

3. x` 6= y`, x̃i 6= ỹi: both sides are equal, because all multiplications by
Di, Dj, D` are multiplications by 1.

Since Γh ◦D` has the same structure as Γh, by Theorem 5.5.5,

λ(Γh ◦D`) = λ(Γf ◦Di) · λ(Γgi
◦Dj) ·

∏
e6=i

λ(Γge) .

By dividing the two spectral norms from equation (5.14),

λ(Γh)

λ(Γh ◦D`)
=

λ(Γf)

λ(Γf ◦Di)
· λ(Γgi

)

λ(Γgi
◦Dj)

.

120 Chapter 5. Adversary Lower Bounds

Since the spectral adversary maximizes over all Γh, we conclude that

SAα(h) ≥
n

min
`=1

λ(Γh)

λ(Γh ◦D`)
· α`

=
k

min
i=1

ni

min
j=1

λ(Γf)

λ(Γf ◦Di)
· λ(Γgi

)

λ(Γgi
◦Dj)

· αij

=
k

min
i=1

λ(Γf)

λ(Γf ◦Di)
· SAαi(gi)

=
k

min
i=1

λ(Γf)

λ(Γf ◦Di)
· βi

= SAβ(f) ,

which we had to prove. 2

Composition of the minimax bound

5.5.7. Lemma. MMα(h) ≤ MMβ(f).

Proof. Let pf and pgi for i = 1, . . . , k be optimal sets of probability distributions
saturating the minimax bounds

MMβ(f) = max
x,y

f(x) 6=f(y)

1∑
i:xi 6=yi

√
pfx(i)p

f
y(i)/βi

,

MMαi(gi) = max
x,y

gi(x) 6=gi(y)

1∑
j:xj 6=yj

√
pgi
x (j)pgi

y (j)/αij
.

Define the set of probability distributions ph as phx(`) = pfx̃(i)p
gi

xi(j), where the
`th input bit is the jth bit in the ith block. This construction was first used by
Laplante, Lee, and Szegedy [LLS06]. We claim that MMα(h) ≤ MMβ(f). The
minimax bound is a minimization problem. If we plug in ph, we get an upper
bound on MMα(h) as follows:

MMα(h) ≤ max
x,y

h(x) 6=h(y)

1∑
`:x` 6=y`

√
phx(`)p

h
y(`)/α`

= 1

/
min
x,y

h(x) 6=h(y)

∑
`:x` 6=y`

√
pfx̃(i)p

f
ỹ(i)
√
pgi

xi(j)p
gi

yi(j)/α
i
j

= 1

/
min
x̃,ỹ

f(x̃) 6=f(ỹ)

∑
i

√
pfx̃(i)p

f
ỹ(i) min

xi,yi

gi(x
i)=x̃i

gi(y
i)=ỹi

∑
j:xi

j 6=yi
j

√
pgi

xi(j)p
gi

yi(j)/α
i
j

5.6. Summary 121

≤ 1

/
min
x̃,ỹ

f(x̃) 6=f(ỹ)

∑
i:x̃i 6=ỹi

√
pfx̃(i)p

f
ỹ(i) min

xi,yi

gi(x
i) 6=gi(y

i)

∑
j:xi

j 6=yi
j

√
pgi

xi(j)p
gi

yi(j)/α
i
j

= 1

/
min
x̃,ỹ

f(x̃) 6=f(ỹ)

∑
i:x̃i 6=ỹi

√
pfx̃(i)p

f
ỹ(i) / MMαi(gi)

= 1

/
min
x̃,ỹ

f(x̃) 6=f(ỹ)

∑
i:x̃i 6=ỹi

√
pfx̃(i)p

f
ỹ(i) / βi

= MMβ(f) ,

where the second inequality follows from that fact that we have removed i : x̃i = ỹi
from the sum. We conclude that MMα(h) ≤ MMβ(f). 2

5.5.8. Remark. Laplante, Lee, and Szegedy [LLS06] proved a similar bound in
a stronger setting where the sub-functions gi can act on the same input bits. They
did not allow costs of input bits. Their setting is, however, not relevant for our
result, because the composition bound for SAα(h) does not hold in this setting.

The composite bound is tight

5.5.9. Theorem. Let h be a composite function of the form h = f ◦ (g1, . . . , gk),
and let α = Rn

+ be any cost vector. Then

Advα(h) = Advβ(f) ,

where α = (α1, . . . , αk), β = (β1, . . . , βk), and βi = Advαi(gi).

Proof. By Theorem 5.5.2,

Advα(h) = SAα(h) = MMα(h)

Advβ(f) = SAβ(f) = MMβ(f) .

By Lemma 5.5.6, SAα(h) ≥ SAβ(f). By Lemma 5.5.7, MMα(h) ≤ MMβ(f). We
conclude that Advα(h) = Advβ(f). 2

5.6 Summary

We have cleaned up the forest of quantum adversary methods and shown that all
of them are equivalent. We have generalized the adversary method to non-Boolean
functions and proved a limitation on the best achievable bound in terms of the
certificate complexity of the function. The adversary bound can be expressed as

122 Chapter 5. Adversary Lower Bounds

an optimal solution of a semidefinite program. Thanks to the duality of semidef-
inite programming, one can efficiently find both upper- and lower-bounds on the
adversary bound. We have found an exact expression for the adversary bound for
a composite function in terms of adversary bounds for the individual composed
functions.

Chapter 6

Direct Product Theorems

This chapter is based on the following papers:

[KŠW04] H. Klauck, R. Špalek, and R. de Wolf. Quantum and classical
strong direct product theorems and optimal time-space tradeoffs.
In Proceedings of 45th Annual IEEE Symposium on Foundations
of Computer Science, pages 12–21, 2004. To appear in SIAM
Journal on Computing.

[AŠW06] A. Ambainis, R. Špalek, and R. de Wolf. A new quantum lower
bound method, with applications to direct product theorems and
time-space tradeoffs. In Proceedings of 38th Annual ACM Sym-
posium on Theory of Computing, pages 618–633, 2006.

6.1 Introduction

For every reasonable model of computation one can ask the following fundamental
question.

6.1.1. Question. How do the resources that we need for computing k indepen-
dent instances of a function f scale with the resources needed for one instance
and with k?

Here the notion of resource needs to be specified. It could refer to time,
space, queries, communication etc. Similarly we need to define what we mean
by computing f , for instance whether we allow the algorithm some probability of
error, and whether this probability of error is average-case or worst-case.

Direct product theorems In this chapter we consider two kinds of resources,
queries and communication, and allow our algorithms some error probability. An
algorithm is given k inputs x1, . . . , xk, and has to output the vector of k an-
swers f(x1), . . . , f(xk). The issue is how the algorithm can optimally distribute

123

124 Chapter 6. Direct Product Theorems

its resources among the k instances it needs to compute. We focus on the rela-
tion between the total amount T of resources available and the best-achievable
success probability σ (which could be average-case or worst-case). Intuitively, if
every algorithm with t resources must have some constant error probability when
computing one instance of f , then for computing k instances we expect a con-
stant error on each instance and hence an exponentially small success probability
for the k-vector as a whole. Such a statement is known as a weak direct product
theorem:

If T ≈ t, then σ ≤ 2−Ω(k).

Here “T ≈ t” informally means that T is not much smaller than t. However,
even if we give our algorithm roughly kt resources, on average it still has only
t resources available per instance. So even here we expect a constant error per
instance and an exponentially small success probability overall. Such a statement
is known as a strong direct product theorem:

If T ≈ kt, then σ ≤ 2−Ω(k).

Strong direct product theorems, though intuitively very plausible, are gen-
erally hard to prove and sometimes not even true. Shaltiel [Sha01] exhibits a
general class of examples where strong direct product theorems fail. This applies
for instance to query complexity, communication complexity, and circuit complex-
ity. In his examples, success probability is taken under the uniform probability
distribution on inputs. The function is chosen such that for most inputs, most
of the k instances can be computed quickly and without any error probability.
This leaves enough resources to solve the few hard instances with high success
probability. Hence for his functions, with T ≈ tk, one can achieve average success
probability close to 1.

Accordingly, we can only establish direct product theorems in special cases.
Examples are Nisan et al.’s [NRS94] strong direct product theorem for decision
forests, Parnafes et al.’s [PRW97] direct product theorem for forests of communi-
cation protocols, Shaltiel’s strong direct product theorems for fair decision trees
and his discrepancy bound for communication complexity [Sha01]. Shaltiel’s re-
sult for discrepancy was recently strengthened to a strong direct product theorem
for the corruption measure under product distributions on the inputs by Beame
et al. [BPSW05]. There also has been recent progress on the related issue of direct
sum results, see for example [CSWY01, BJKS02b, BJKS02a] and the references
therein. A direct sum theorem states that computing k instances with overall er-
ror ε requires roughly k times as many resources as computing one instance with
error ε. Clearly, strong direct product theorems alway imply direct sum results,
since they state the same resource lower bounds even for algorithms whose overall
error is allowed to be exponentially close to 1, rather than at most ε.

6.1. Introduction 125

In the quantum case, much less work has been done. Aaronson [Aar04a,
Theorem 10] established a direct product result for the unordered search problem
that lies in between the weak and the strong theorems. Our main contributions
in this chapter are strong direct product theorems for the OR function in various
settings.

Classical query complexity First consider the case of classical randomized
algorithms. Let ORn denote the n-bit OR function, and let f (k) denote k inde-
pendent instances of a function f . Any randomized algorithm with less than, say,
n/2 queries will have a constant error probability when computing ORn. Hence
we expect an exponentially small success probability when computing OR(k)

n using
� kn queries. We prove this in Section 6.2.

6.1.2. Proposition. (DPT for classical query complexity)
Every randomized algorithm for OR(k)

n using T ≤ αkn queries has worst-case
success probability σ ≤ 2−Ω(k) (formally, there exists a small constant α > 0 such
that the statement holds for all k, n; we will skip these quantifiers later).

For simplicity we have stated this result with σ being worst-case success prob-
ability, but the statement is also valid for the average success probability under a
hard k-fold product distribution that is implicit in our proof.

This statement for OR actually implies a somewhat weaker DPT for all total
Boolean functions f , via the notion of block sensitivity bs(f); see Definition 2.5.4.
Using techniques of Nisan and Szegedy [NS94], we can embed ORbs(f) in f (with
the promise that the weight of the OR’s input is 0 or 1), while on the other
hand we know that the classical bounded-error query complexity R2(f) is upper-
bounded by bs(f)3 [BBC+01]. This implies the following.

6.1.3. Proposition. For every total Boolean f : Every randomized algorithm
for f (k) using T ≤ αkR2(f)1/3 queries has success probability σ ≤ 2−Ω(k).

This theorem falls short of a true strong direct product theorem in having
R2(f)1/3 instead of R2(f) in the resource bound. However, the other two main
aspects of a DPT remain valid: the linear dependence of the resources on k and
the exponential decay of the success probability.

Quantum query complexity Next we turn our attention to quantum algo-
rithms. Buhrman et al. [BNRW05] actually proved that roughly k times the
resources for one instance suffices to compute f (k) with success probability close
to 1, rather than exponentially small: Q2(f

(k)) = O(kQ2(f)), where Q2(f) de-
notes the quantum bounded-error query complexity of f (such a result is not
known to hold in the classical world). For instance, Q2(ORn) = Θ(

√
n) by algo-

rithm Grover search, so O(k
√
n) quantum queries suffice to compute OR(k)

n

126 Chapter 6. Direct Product Theorems

with high success probability. In Section 6.3 we show that if we make the num-
ber of queries slightly smaller, the best-achievable success probability suddenly
becomes exponentially small.

6.1.4. Proposition. (DPT for quantum query complexity)
Every quantum algorithm for OR(k)

n using T ≤ αk
√
n queries has success proba-

bility σ ≤ 2−Ω(k).

Our proof uses the polynomial method [BBC+01] and is completely differ-
ent from the classical proof. The polynomial method was also used by Aaron-
son [Aar04a] in his proof of a weaker quantum direct product theorem for the
search problem, mentioned above. Our proof takes its starting point from his
proof, analyzing the degree of a single-variate polynomial that is 0 on {0, . . . , k−
1}, at least σ on k, and between 0 and 1 on {0, . . . , kn}. The difference between
his proof and ours is that we partially factor this polynomial, which gives us some
nice extra properties over Aaronson’s approach of differentiating the polynomial,
and we use a strong result of Coppersmith and Rivlin [CR92]. In both cases
(different) extremal properties of Chebyshev polynomials finish the proofs.

Again, using block sensitivity we can obtain a weaker result for all total
Boolean functions.

6.1.5. Proposition. For every total Boolean f : Every quantum algorithm for
f (k) using T ≤ αkQ2(f)1/6 queries has success probability σ ≤ 2−Ω(k).

We also prove a slightly stronger direct product theorem for threshold func-
tions. This result is worse than the DPT for OR in applying only to 1-sided error
quantum algorithms, those are algorithms whose 1-bits in the k-bit output vector
are always correct; but it’s better in giving a much stronger upper bound on the
success probability. In Chapter 7, we develop a new version of the quantum ad-
versary method and prove a proper DPT for all threshold functions, however we
have not been able to prove it using the polynomial method. Let Thrt,n denote
the t-threshold function on n bits.

6.1.6. Proposition. Every 1-sided error quantum algorithm for Thr
(k)
t,n using

T ≤ αkQ2(Thrt,n) queries has success probability σ ≤ 2−Ω(kt).

A similar theorem can be proven for the k-fold t-search problem, where in
each of k inputs of n bits, we want to find at least t ones. The different error
bounds 2−Ω(kt) and 2−Ω(k) for 1-sided and 2-sided error algorithms intuitively say
that imposing the 1-sided error constraint makes deciding each of the k individual
t-threshold problems as hard as actually finding t ones in each of the k inputs.

6.1. Introduction 127

Quantum communication complexity The third and last setting where we
establish a strong direct product theorem is quantum communication complexity.
Suppose Alice has an n-bit input x and Bob has an n-bit input y. These x and
y represent sets, and Disjn(x, y) = 1 if and only if those sets are disjoint. Note
that Disjn is the negation of ORn(x∧ y), where x∧ y is the n-bit string obtained
by bitwise AND-ing x and y. In many ways, Disjn has the same central role in
communication complexity as ORn has in query complexity. In particular, it is
co-NP complete [BFS86]. The communication complexity of Disjn has been well
studied: it takes Θ(n) bits of communication in the classical world [KS92, Raz92]
and Θ(

√
n) in the quantum world [BCW98, HW02, AA03, Raz03]. For the case

where Alice and Bob want to compute k instances of Disjointness, we establish a
strong direct product theorem in Section 6.4.

6.1.7. Proposition. (DPT for quantum communication complexity)
Every quantum protocol for Disj(k)n using T ≤ αk

√
n qubits of communication has

success probability σ ≤ 2−Ω(k).

Our proof uses Razborov’s [Raz03] lower-bound technique to translate the
quantum protocol to a polynomial, at which point the polynomial results estab-
lished for the quantum query DPT take over. We can obtain similar results for
other symmetric predicates. The same bound was later obtained independently by
Beame et al. [BPSW05, Corollary 9] for classical protocols under a specific input
distribution, as a corollary of their strong direct product theorem for corruption.
We conjecture that the optimal result in the classical case has a communication
bound of αkn rather than αk

√
n, but cannot prove this.

The stronger direct product theorem for 1-sided error threshold functions can
also be translated to the communication setting.

Parity of the outcomes One may also consider algorithms that compute the
parity of the k outcomes instead of the vector of k outcomes. This issue has
been well studied, particularly in circuit complexity, and generally goes under
the name of XOR lemmas [Yao82, GNW95]. In this chapter we focus mostly on
the vector version, but we can prove similar strong bounds for the parity version.
In particular, we state a classical strong XOR lemma in Section 6.2.3 and can get
similar strong XOR lemmas for the quantum case using the technique of Cleve
et al. [CDNT98, Section 3]. They show how the ability to compute the parity of
any subset of k bits with probability 1/2+ ε, suffices to compute the full k-vector
with probability 4ε2. Hence our strong quantum direct product theorems imply
strong quantum XOR lemmas.

128 Chapter 6. Direct Product Theorems

6.2 Classical DPT for OR

In this section we prove a strong direct product theorem for classical random-
ized algorithms computing k independent instances of ORn. By Yao’s princi-
ple [Yao77], it is sufficient to prove it for deterministic algorithms under a fixed
hard input distribution.

6.2.1 Non-adaptive algorithms

We first establish a strong direct product theorem for non-adaptive algorithms.
We call an algorithm non-adaptive if, for each of the k input blocks, the maximum
number of queries in that block is fixed before the first query. Note that this
definition is non-standard in fixing only the number of queries in each block,
rather than fixing all queried indices in advance. Let Suct,µ(f) be the success
probability of the best algorithm for f under µ that queries at most t input bits.

6.2.1. Lemma. Let f : {0, 1}n → {0, 1} and µ be an input distribution. Every
non-adaptive deterministic algorithm for f (k) under µk using T ≤ kt queries has
success probability σ ≤ Suct,µ(f)k.

Proof. The proof has two steps. First, we prove by induction that non-adaptive
algorithms for f (k) under general product distribution µ1 × · · · × µk that spend
ti queries in the ith input xi have success probability at most

∏k
i=1 Sucti,µi

(f).
Second, we argue that, when µi = µ, the value is maximal for ti = t.

Following [Sha01, Lemma 7], we prove the first part by induction on T =
t1 + · · · + tk. If T = 0, then the algorithm has to guess k independent random
variables xi ∼ µi. The probability of success is equal to the product of the
individual success probabilities, that is

∏k
i=1 Suc0,µi

(f).
For the induction step T ⇒ T + 1: pick some ti 6= 0 and consider two input

distributions µ′i,0 and µ′i,1 obtained from µi by fixing the queried bit xij (the jth

bit in the ith input). By the induction hypothesis, for each value b ∈ {0, 1}, there
is an optimal non-adaptive algorithm Ab that achieves the success probability
Sucti−1,µ′i,b

(f) ·
∏

j 6=i Suctj ,µj
(f). We construct a new algorithm A that calls Ab as

a subroutine after it has queried xij with b as an outcome. A is optimal and it
has success probability(

1∑
b=0

Prµi
[xij = b] · Sucti−1,µ′i,b

(f)

)
·
∏
j 6=i

Suctj ,µj
(f) =

k∏
i=1

Sucti,µi
(f) .

Since we are dealing with non-adaptive algorithms here, symmetry reasons
imply: if all k instances xi are independent and identically distributed, then the
optimal distribution of queries t1 + · · ·+ tk = kt is uniform, that is ti = t. (Note
that counterexamples to the analogous property for the general non-adaptive case,

6.2. Classical DPT for OR 129

like the ones given in Remark 6.2.2 below, do not apply here.) In such a case,
the algorithm achieves the success probability Suct,µ(f)k. 2

6.2.2 Adaptive algorithms

In this section we prove a similar statement also for adaptive algorithms.

6.2.2. Remark. The strong direct product theorem is not always true for adap-
tive algorithms. Following [Sha01], define h(x) = x1 ∨ (x2 ⊕ · · · ⊕ xn). Clearly
Suc 2

3
n,µ(h) = 3

4
for µ uniform. By the Chernoff bound, Suc 2

3
nk,µk(h(k)) = 1 −

2−Ω(k), because approximately half of the blocks can be solved using just 1 query
and the unused queries can be used to answer exactly also the other half of the
blocks.

However, the strong direct product theorem is valid for OR(k)
n under νk, where

ν(0n) = 1
2

and ν(ei) = 1
2n

for ei an n-bit string that contains a 1 only at the ith

position. It is simple to prove that Sucαn,ν(ORn) = α+1
2

. Non-adaptive algorithms

for OR(k)
n under νk with αkn queries thus have σ ≤ (α+1

2
)k = 2− log2(2

α+1
)k. We can

achieve any γ < 1 by choosing α sufficiently small. Here we prove that adaptive
algorithms cannot be much better. Without loss of generality, we assume:

1. The adaptive algorithm is deterministic. By Yao’s principle [Yao77], if
there exists a randomized algorithm with success probability σ under some
input distribution, then there exists a deterministic algorithm with success
probability σ under that distribution.

2. Whenever the algorithm finds a 1 in some input block, it stops querying
that block.

3. The algorithm spends the same number of queries in all blocks where it
does not find a 1. This is optimal due to the symmetry between the blocks
(we omit the straightforward calculation that justifies this). It implies that
the algorithm spends at least as many queries in each empty input block as
in each non-empty block.

6.2.3. Lemma. If there is an adaptive T -query algorithm A computing OR(k)
n un-

der νk with success probability σ, then there is a non-adaptive 3T -query algorithm
A′ computing OR(k)

n with success probability σ − 2−Ω(k).

Proof. Let Z be the number of empty blocks. E[Z] = k
2

and, by the Chernoff
bound, δ = Pr [Z < k

3
] = 2−Ω(k). If Z ≥ k

3
, then A spends at most 3T

k
queries in

each empty block. Define non-adaptive A′ that spends 3T
k

queries in each block.

130 Chapter 6. Direct Product Theorems

Then A′ queries all the positions that A queries, and maybe some more. Compare
the overall success probabilities of A and A′:

σA = Pr [Z < k
3
] · Pr [A succeeds | Z < k

3
]

+ Pr [Z ≥ k
3
] · Pr [A succeeds | Z ≥ k

3
]

≤ δ · 1 + Pr [Z ≥ k
3
] · Pr [A′ succeeds | Z ≥ k

3
]

≤ δ + σA′ .

We conclude that σA′ ≥ σA − δ. (Remark. By replacing the k
3
-bound on Z by

a βk-bound for some β > 0, we can obtain arbitrary γ < 1 in the exponent
δ = 2−γk, while the number of queries of A′ becomes T/β.) 2

Combining the two lemmas establishes the following theorem.

6.2.4. Theorem (DPT for OR). For every 0 < γ < 1, there exists an α >
0 such that every randomized algorithm for OR(k)

n using T ≤ αkn queries has
success probability σ ≤ 2−γk.

6.2.3 A bound for the parity of the outcomes

Here we give a strong direct product theorem for the parity of k independent
instances of ORn. The parity is a Boolean variable, hence we can always guess
it with probability at least 1

2
. However, we prove that the advantage (instead of

the success probability) of our guess must be exponentially small.
Let X be a random bit with Pr [X = 1] = p. We define the advantage of X

by Advantage(X) = |2p − 1|. Note that a uniformly distributed random bit has
advantage 0 and a bit known with certainty has advantage 1. It is well known
that if X1, . . . , Xk are independent random bits, then Advantage(X1⊕· · ·⊕Xk) =∏k

i=1 Advantage(Xi). Compare this with the fact that the probability of guess-
ing correctly the complete vector (X1, . . . , Xk) is the product of the individual
probabilities.

We have proved a lower bound for the computation of OR(k)
n (vector of OR’s).

By the same technique, replacing the success probability by the advantage in all
claims and proofs, we can also prove a lower bound for the computation of OR⊕k

n

(parity of OR’s).

6.2.5. Theorem (DPT for parity of OR’s). For every 0 < γ < 1, there
exists an α > 0 such that every randomized algorithm for OR⊕k

n using T ≤ αkn
queries has advantage τ ≤ 2−γk.

6.2.4 A bound for all functions

Here we show that the strong direct product theorem for OR actually implies
a weaker direct product theorem for all functions. In this weaker version, the

6.3. Quantum DPT for OR 131

success probability of computing k instances still goes down exponentially with
k, but we need to start from a polynomially smaller bound on the overall number
of queries.

Recall Definition 2.5.4 of block sensitivity. Block sensitivity is closely related
to deterministic and bounded-error classical query complexity as follows.

6.2.6. Theorem ([Nis91, BBC+01]). R2(f) = Ω(bs(f)) for all f , D(f) ≤
bs(f)3 for all total Boolean f .

Nisan and Szegedy [NS94] showed how to embed a bs(f)-bit OR function
(with the promise that the input has weight at most 1) into f . Combined with
our strong direct product theorem for OR, this implies a direct product theorem
for all functions in terms of their block sensitivity.

6.2.7. Theorem. For every 0 < γ < 1, there exists an α > 0 such that for
every f , every classical algorithm for f (k) using T ≤ αkbs(f) queries has success
probability σ ≤ 2−γk.

This is optimal whenever R2(f) = Θ(bs(f)), which is the case for most func-
tions. For total functions, the gap between R2(f) and bs(f) is not more than
cubic [BBC+01].

6.2.8. Corollary. For every 0 < γ < 1, there exists an α > 0 such that for
every total Boolean f , every classical algorithm for f (k) using T ≤ αkR2(f)1/3

queries has success probability σ ≤ 2−γk.

6.3 Quantum DPT for OR

In this section we prove strong direct product theorems for quantum algorithms
computing k independent instances of OR, and for quantum algorithms comput-
ing k independent instances of 1-sided error threshold functions. Our proofs rely
on the polynomial method of [BBC+01]; see Section 2.6.

6.3.1 Bounds on polynomials

We use three results about polynomials, also used in [BCWZ99]. The first is by
Coppersmith and Rivlin [CR92, p. 980] and gives a general bound for polynomials
bounded by 1 at integer points.

6.3.1. Theorem (Coppersmith & Rivlin [CR92]). Every polynomial p that
has degree d ≤ n and absolute value

|p(i)| ≤ 1 for all integers i ∈ [0, n] ,

132 Chapter 6. Direct Product Theorems

satisfies
|p(x)| < aebd

2/n for all real x ∈ [0, n] ,

where a, b > 0 are universal constants (no explicit values for a and b are given
in [CR92]).

The other two results concern the Chebyshev polynomials Td, defined by (see
for example [Riv90]):

Td(x) =
1

2

((
x+

√
x2 − 1

)d
+
(
x−

√
x2 − 1

)d)
.

Td has degree d and its absolute value |Td(x)| is bounded by 1 if x ∈ [−1, 1]. On
the interval [1,∞), Td exceeds all others polynomials with those two properties
([Riv90, p.108] and [Pat92, Fact 2]).

6.3.2. Theorem. If q is a polynomial of degree d such that |q(x)| ≤ 1 for all
x ∈ [−1, 1] then |q(x)| ≤ |Td(x)| for all x ≥ 1.

Paturi [Pat92, before Fact 2] proved the following:

6.3.3. Lemma (Paturi [Pat92]). Td(1 + µ) ≤ e2d
√

2µ+µ2
for all µ ≥ 0.

Proof. For x = 1 + µ: Td(x) ≤ (x +
√
x2 − 1)d = (1 + µ +

√
2µ+ µ2)d ≤

(1 + 2
√

2µ+ µ2)d ≤ e2d
√

2µ+µ2
(using that 1 + z ≤ ez for all real z). 2

Key lemma The following key lemma is the basis for our direct product theo-
rems for the OR function.

6.3.4. Lemma. Suppose p is a degree-D polynomial such that for some δ ≥ 0

p(i) ∈ [−δ, δ] for all i ∈ {0, . . . , k − 1}
p(k) = σ

p(i) ∈ [−δ, 1 + δ] for all i ∈ {0, . . . , N} .

Then for every integer 1 ≤ C < N − k and µ =
2C

N − k − C
we have

σ ≤ a

(
1 + δ +

δ(2N)k

(k − 1)!

)
·

· exp

(
b(D − k)2

(N − k − C)
+ 2(D − k)

√
2µ+ µ2 − k ln(C

k
)

)
+ δk2k−1 ,

where a, b are the constants given by Theorem 6.3.1.

6.3. Quantum DPT for OR 133

Before establishing this gruesome bound, let us reassure the reader by noting
that we will apply this lemma with δ either 0 or negligibly small, D = α

√
kN for

sufficiently small α, and C = keγ+1, giving

σ ≤ exp
(
(bα2 + 4αeγ/2+1/2 − 1− γ)k

)
≤ e−γk ≤ 2−γk .

Proof of Lemma 6.3.4. Divide p with remainder by
∏k−1

j=0(x− j) to obtain

p(x) = q(x)
k−1∏
j=0

(x− j) + r(x) ,

where d = deg(q) = D−k and deg(r) ≤ k−1. We know that r(x) = p(x) ∈ [−δ, δ]
for all x ∈ {0, . . . , k − 1}. Decompose r as a linear combination of polynomials
ei, where ei(i) = 1 and ei(x) = 0 for x ∈ {0, . . . , k − 1} − {i}.

r(x) =
k−1∑
i=0

p(i)ei(x) =
k−1∑
i=0

p(i)
k−1∏
j=0
j 6=i

x− j

i− j

We bound the values of r for all real x ∈ [0, N] by

|r(x)| ≤
k−1∑
i=0

|p(i)|
i!(k − 1− i)!

k−1∏
j=0
j 6=i

|x− j|

≤ δ

(k − 1)!

k−1∑
i=0

(
k − 1

i

)
Nk ≤ δ(2N)k

(k − 1)!
,

|r(k)| ≤ δk2k−1 .

This implies the following about the values of the polynomial q:

|q(k)| ≥ σ − δk2k−1

k!
,

|q(i)| ≤ (i− k)!

i!

(
1 + δ +

δ(2N)k

(k − 1)!

)
for i ∈ {k, . . . , N} .

In particular,

|q(i)| ≤ C−k
(

1 + δ +
δ(2N)k

(k − 1)!

)
= A for i ∈ {k + C, . . . , N} .

Theorem 6.3.1 implies that there are constants a, b > 0 such that

|q(x)| ≤ A · aebd2/(N−k−C) = B for all real x ∈ [k + C,N] .

134 Chapter 6. Direct Product Theorems

We now divide q by B to normalize it, and re-scale the interval [k + C,N] to
[1,−1] to get a degree-d polynomial t satisfying

|t(x)| ≤ 1 for all x ∈ [−1, 1] ,

t(1 + µ) =
q(k)

B
for µ =

2C

N − k − C
.

Since t cannot grow faster than the degree-d Chebyshev polynomial, we get

t(1 + µ) ≤ Td(1 + µ) ≤ e2d
√

2µ+µ2
.

Combining our upper and lower bounds on t(1 + µ), we obtain

(σ − δk2k−1)/k!

C−k
(
1 + δ + δ(2N)k

(k−1)!

)
aebd2/(N−k−C)

≤ e2d
√

2µ+µ2
.

Rearranging gives the bound. 2

Extended key lemma For the threshold function, we need the following more
general version of the key lemma. It analyzes polynomials that are 0 on the
first m integer points, and that significantly “jump” a bit later. We do not
merge these two key lemmas for the sake of simplicity of the proofs. The second
lemma allows for a more variable jump in the polynomial, on the other hand it
requires the polynomial to be exactly zero at small integer values. The statement
actually holds even when the values of the polynomial at small integer values are
exponentially smaller than σ, rather than equal to 0. We do not need such a
generalized version here, hence we rather simplify the statement.

6.3.5. Lemma. Suppose E,N,m are integers satisfying 10 ≤ E ≤ N
2m

, and let p
be a degree-D polynomial such that

p(i) = 0 for all i ∈ {0, . . . ,m− 1}
p(8m) = σ

p(i) ∈ [0, 1] for all i ∈ {0, . . . , N} .

Then σ ≤ 2O(D2/N+D
√
Em/N−m logE).

Proof. Divide p by
∏m−1

j=0 (x− j) to obtain

p(x) = q(x)
m−1∏
j=0

(x− j) ,

6.3. Quantum DPT for OR 135

where d = deg(q) = D −m. This implies the following about the values of the
polynomial q:

|q(8m)| ≥ σ

(8m)m
,

|q(i)| ≤ 1

((E − 1)m)m
for i ∈ {Em, . . . , N} .

Theorem 6.3.1 implies that there are constants a, b > 0 such that

|q(x)| ≤ a

((E − 1)m)m
ebd

2/(N−Em) = B for all real x ∈ [Em,N] .

We now divide q by B to normalize it, and re-scale the interval [Em,N] to [1,−1]
to get a degree-d polynomial t satisfying

|t(x)| ≤ 1 for all x ∈ [−1, 1] ,

t(1 + µ) =
q(8m)

B
for µ =

2(E − 8)m

N − Em
.

Since t cannot grow faster than the degree-d Chebyshev polynomial, we have

t(1 + µ) ≤ e2d
√

2µ+µ2
.

Combining our upper and lower bounds on t(1 + µ) gives

σ

(8m)m
· ((E − 1)m)m

aeO(d2/N)
≤ eO(d

√
Em/N) ,

which implies the lemma. 2

6.3.2 Consequences for quantum algorithms

The previous result about polynomials implies a strong tradeoff between queries
and success probability for quantum algorithms that have to find k ones in an
N -bit input. A 1-sided error k-threshold algorithm with success probability σ is an
algorithm on N -bit input x, that outputs 0 with certainty if |x| < k, and outputs
1 with probability at least σ if |x| = k.

6.3.6. Theorem. For every γ > 0, there exists an α > 0 such that every 1-
sided error quantum k-threshold algorithm using T ≤ α

√
kN queries has success

probability σ ≤ 2−γk.

136 Chapter 6. Direct Product Theorems

Proof. Fix γ > 0 and consider a 1-sided error T -query k-threshold algorithm.
By Theorem 2.6.2, its acceptance probability is an N -variate polynomial of degree
D ≤ 2T ≤ 2α

√
kN and can be symmetrized to a single-variate polynomial p with

the following properties:

p(i) = 0 if i ∈ {0, . . . , k − 1}
p(k) ≥ σ

p(i) ∈ [0, 1] for all i ∈ {0, . . . , N} .

Choosing α > 0 sufficiently small and δ = 0, the result follows from Lemma 6.3.4.
2

Unordered search The above statement implies a strong direct product theo-
rem for k instances of the n-bit search problem. For each such instance, the goal
is to find the index of a 1-bit among the n inputs bits of the instance (or to report
that none exists). We already studied this problem in the introductory section
as Problem 1.3.1.

6.3.7. Theorem (DPT for Search). For every γ > 0, there exists an α > 0
such that every quantum algorithm for Search(k)

n using T ≤ αk
√
n queries has

success probability σ ≤ 2−γk.

Proof. Set N = kn, fix a γ > 0 and a T -query algorithm A for Search(k)
n with

success probability σ. Now consider the following algorithm that acts on an N -bit
input x.

1. Apply a random permutation π to x.

2. Run A on π(x).

3. Query each of the k positions that A outputs, and return 1 if and only if at
least k

2
of those bits are 1.

This uses T + k queries. We will show that it is a 1-sided error k
2
-threshold

algorithm. First, if |x| < k
2
, it always outputs 0. Second, consider the case

|x| = k
2
. The probability that π puts all k

2
ones in distinct n-bit blocks is

N

N
· N − n

N − 1
· · ·

N − k
2
n

N − k
2

≥

(
N − k

2
n

N

)k/2

= 2−k/2 .

Hence our algorithm outputs 1 with probability at least σ2−k/2. Choosing α
sufficiently small, the previous theorem implies σ2−k/2 ≤ 2−(γ+1/2)k, hence σ ≤
2−γk. 2

6.3. Quantum DPT for OR 137

Our bounds are quite precise for α� 1. We can choose γ = 2 log2(
1
α
)−O(1)

and ignore some lower-order terms to get roughly σ ≤ α2k. On the other hand, it
is known that Grover search with α

√
n queries on an n-bit input has success

probability roughly α2 [BBHT98]. Doing such a search on all k instances gives
overall success probability α2k.

The OR function The unordered search problem and OR are closely related.

6.3.8. Theorem (DPT for OR). There are α, γ > 0 such that every quantum
algorithm for OR(k)

n using T ≤ αk
√
n queries has success probability σ ≤ 2−γk.

Proof. An algorithm A for OR(k)
n with success probability σ can be used to

build an algorithm A′ for Search(k)
n with slightly worse success probability.

1. Run A on the original input and remember which blocks contain a 1.

2. Run simultaneously (at most k) binary searches on the nonzero blocks.
Iterate this s = 2 log2(

1
α
) times. Each iteration is computed by running

A on the parts of the blocks that are known to contain a 1, halving the
remaining instance size each time.

3. Run the exact version of Grover search from Corollary 1.3.4 on each of
the remaining parts of the instances to look for a one there; each remaining
part has size n/2s.

This new algorithm A′ uses (s + 1)T + π
4
k
√
n/2s = O(α log2(

1
α
)k
√
n) queries.

With probability at least σs+1, A succeeds in all iterations, in which case A′

solves Search(k)
n . By the previous theorem, for every γ′ > 0 of our choice we can

choose α > 0 such that
σs+1 ≤ 2−γ

′k ,

which implies the theorem with γ = γ′

s+1
. 2

Choosing our parameters carefully, we can actually show that for every γ < 1
there is an α > 0 such that αk

√
n queries give success probability σ ≤ 2−γk.

Clearly, σ = 2−k is achievable without any queries by random guessing.

Threshold functions with 1-sided error Let Thrt,n denote the t-threshold
function on n bits. Theorem 6.3.6 uses the key lemma to give a (tight) lower
bound for one instance of Thrk,N with 1-sided error. Here we use the extended
key lemma to obtain a strong direct product theorem for this problem. Note
that we are changing the names of the variables here. In a way the following
statement is a direct product theorem of direct product theorems. We say that
an algorithm for Thr

(k)
t,n has 1-sided error if the ones in its k-bit output vector are

always correct.

138 Chapter 6. Direct Product Theorems

6.3.9. Theorem. (DPT for 1-sided error Threshold)

There are α, γ > 0 such that every 1-sided error quantum algorithm for Thr
(k)
t,n

using T ≤ αkQ2(Thrt,n) queries has success probability σ ≤ 2−γkt.

Proof. We assume without loss of generality that t ≤ n
20

, the other cases
can easily be reduced to this. Corollary 1.5.6 and Corollary 2.4.3 imply that
Q2(Thrt,n) = Θ(

√
tn). Consider a quantum algorithm A with T ≤ αk

√
tn queries

that computes Thr
(k)
t,n with success probability σ. Roughly speaking, we use A to

solve one big threshold problem on the total input, and then invoke the extended
key lemma to upper-bound the success probability.

Define a new quantum algorithm B on an input x of N = kn bits as follows.
B runs A on a random permutation π(x), and then outputs 1 if and only if the
k-bit output vector has at least k

2
ones.

Let m = kt
2
. Note that if |x| < m, then B always outputs 0 because the 1-sided

error output vector must have fewer than k
2

ones. Now suppose |x| = 8m = 4kt.
Call an n-bit input block full if π(x) contains at least t ones in that block. Let F
be the random variable counting how many of the k blocks are full. We claim that
Pr [F ≥ k

2
] ≥ 1

9
. To prove this, observe that the number B of ones in one fixed

block is a random variable distributed according to a hyper-geometric distribution
(4kt balls into N boxes, n of which count as success) with expectation µ = 4t and
variance V ≤ 4t. Using Chebyshev’s inequality we bound the probability that
this block is not full.

Pr [B < t] ≤ Pr [|B − µ| > 3t] ≤ Pr

[
|B − µ| > 3

√
t

2

√
V

]
<

1

(3
√
t/2)2

≤ 4

9

Hence the probability that the block is full (B ≥ t) is at least 5
9
. This is true for

each of the k blocks, so using linearity of expectation we have

5k

9
≤ E [F] ≤ Pr [F ≥ k

2
] · k + (1− Pr [F ≥ k

2
]) · k

2
.

This implies Pr [F ≥ k
2
] ≥ 1

9
, as claimed. But then on all inputs with |x| = 8m,

B outputs 1 with probability at least σ
9
.

Algorithm B uses αk
√
tn queries. By Theorem 2.6.2 and symmetrization, the

acceptance probability ofB is a single-variate polynomial p of degreeD ≤ 2αk
√
tn

such that

p(i) = 0 for all i ∈ {0, . . . ,m− 1}
p(8m) ≥ σ

9

p(i) ∈ [0, 1] for all i ∈ {0, . . . , N} .

The result now follows by applying Lemma 6.3.5 with N = kn, m = kt
2
, E = 10,

and α a sufficiently small positive constant. 2

6.4. Quantum DPT for Disjointness 139

6.3.3 A bound for all functions

As in Section 6.2.4, we can extend the strong direct product theorem for OR to a
slightly weaker theorem for all total functions. Block sensitivity is closely related
to bounded-error quantum query complexity.

6.3.10. Theorem ([BBC+01]). Q2(f) = Ω(
√

bs(f)) for all f , D(f) ≤ bs(f)3

for all total Boolean f .

By embedding an OR of size bs(f) in f , we obtain the following:

6.3.11. Theorem. There are α, γ > 0 such that for every f , every quantum
algorithm for f (k) using T ≤ αk

√
bs(f) queries has success probability σ ≤ 2−γk.

This is close to optimal whenever Q2(f) = Θ(
√

bs(f)). For total functions,

the gap between Q2(f) and
√

bs(f) is no more than a 6th power [BBC+01].

6.3.12. Corollary. There are α, γ > 0 such that for every total Boolean f ,
every quantum algorithm for f (k) using T ≤ αkQ2(f)1/6 queries has success prob-
ability σ ≤ 2−γk.

6.4 Quantum DPT for Disjointness

In this section we establish a strong direct product theorem for quantum com-
munication complexity, specifically for protocols that compute k independent
instances of the Disjointness problem. Our proof relies crucially on the beautiful
technique that Razborov introduced to establish a lower bound on the quantum
communication complexity of (one instance of) Disjointness [Raz03]. It allows
us to translate a quantum communication protocol to a single-variate polyno-
mial that represents, roughly speaking, the protocol’s acceptance probability as a
function of the size of the intersection of x and y. Once we have this polynomial,
the results from Section 6.3.1 suffice to establish a strong direct product theorem.

6.4.1 Razborov’s technique

Razborov’s technique relies on the following linear algebraic notions. The spectral
norm λ(A) of a matrix A is its largest singular value σ1. The trace inner product
(a.k.a. Hilbert-Schmidt inner product) between A and B is 〈A,B〉 = Tr (A†B).
The trace norm is ‖A‖tr = max{|〈A,B〉| : λ(B) = 1} =

∑
i σi, the sum of all

singular values of A. The Frobenius norm is ‖A‖F =
√∑

ij |A[i, j]|2 =
√∑

i σ
2
i .

The following lemma is implicit in Razborov’s paper.

140 Chapter 6. Direct Product Theorems

6.4.1. Lemma ([Raz03]). Consider a Q-qubit quantum communication protocol
on N-bit inputs x and y, with acceptance probabilities denoted by P (x, y). Define
P (i) = E|x|=|y|=N

4
,|x∧y|=i[P (x, y)], where the expectation is taken uniformly over

all x, y that each have weight N
4

and that have intersection i. For every d ≤ N
4

there exists a degree-d polynomial q such that |P (i) − q(i)| ≤ 2−d/4+2Q for all
i ∈ {0, . . . , N

8
}.

Proof. We only consider the N =
(
N
N/4

)
strings of weight N

4
. Let P denote the

N × N matrix of the acceptance probabilities on these inputs. We know from
Yao and Kremer [Yao93, Kre95] that we can decompose P as a matrix product
P = AB, where A is an N × 22Q−2 matrix with each entry at most 1 in absolute
value, and similarly for B. Note that ‖A‖F , ‖B‖F ≤

√
N 22Q−2. Using Hölder’s

inequality we have
‖P‖tr ≤ ‖A‖F · ‖B‖F ≤ N 22Q−2 .

Let µi denote the N ×N matrix corresponding to the uniform probability dis-
tribution on {(x, y) : |x ∧ y| = i}. These combinatorial matrices have been well
studied [Knu03]. Note that 〈P, µi〉 is the expected acceptance probability P (i)
of the protocol under that distribution. One can show that the different µi com-
mute, so they have the same eigenspaces E0, . . . , EN/4 and can be simultaneously
diagonalized by some orthogonal matrix U . For t ∈ {0, . . . , N

4
}, let (UPUT)t

denote the block of UPUT corresponding to Et, and at = Tr ((UPUT)t) be its
trace. Then we have

N/4∑
t=0

|at| ≤
N∑
j=1

∣∣(UPUT)[j, j]
∣∣ ≤ ‖UPUT‖tr = ‖P‖tr ≤ N 22Q−2 ,

where the second inequality is a property of the trace norm.
Let λi,t be the eigenvalue of µi in eigenspace Et. It is known [Raz03, Sec-

tion 5.3] that λi,t is a degree-t polynomial in i, and that |λi,t| ≤ 2−t/4/N for
i ≤ N

8
(the factor 1

4
in the exponent is implicit in Razborov’s paper). Consider

the high-degree polynomial p defined by

p(i) =

N/4∑
t=0

atλi,t .

This satisfies

p(i) =

N/4∑
t=0

Tr ((UPUT)t)λi,t = 〈UPUT , UµiU
T 〉 = 〈P, µi〉 = P (i) .

Let q be the degree-d polynomial obtained by removing the high-degree parts
of p.

q(i) =
d∑
t=0

atλi,t

6.5. Summary 141

Then P and q are close on all integers i between 0 and N
8
.

|P (i)− q(i)| = |p(i)− q(i)| =

∣∣∣∣∣∣
N/4∑
t=d+1

atλi,t

∣∣∣∣∣∣ ≤ 2−d/4

N

N/4∑
t=0

|at| ≤ 2−d/4+2Q ,

which concludes the proof. 2

6.4.2 Consequences for quantum protocols

Combining Razborov’s technique with our polynomial bounds we obtain:

6.4.2. Theorem (DPT for Disjointness). There are α, γ > 0 such that ev-
ery quantum protocol for Disj(k)n using Q ≤ αk

√
n qubits of communication has

success probability p ≤ 2−γk.

Proof (sketch). By doing the same trick with s = 2 log2(
1
α
) rounds of binary

search as for Theorem 6.3.8, we can tweak a protocol for Disj(k)n to a protocol that
satisfies, with P (i) defined as in Lemma 6.4.1, N = kn, and σ = ps+1:

P (i) = 0 if i ∈ {0, . . . , k − 1}
P (k) ≥ σ

P (i) ∈ [0, 1] for all i ∈ {0, . . . , N} .

A subtlety : instead of an exact version of distributed Grover search we use an
exact version of the O(

√
n)-qubit Disjointness protocol of [AA03]; the [BCW98]-

protocol would lose a log n-factor. Lemma 6.4.1, using d = 12Q, then gives
a degree-d polynomial q that differs from P by at most δ ≤ 2−Q on all i ∈
{0, . . . , N

8
}. This δ is sufficiently small to apply Lemma 6.3.4, which in turn

upper-bounds σ and hence p. 2

This technique also gives strong direct product theorems for symmetric predi-
cates other than Disjn. As mentioned in the introduction, the same bound was
later obtained independently by Beame et al. [BPSW05, Corollary 9] for classical
protocols.

6.5 Summary

We have proved strong direct product theorems for the OR function in the fol-
lowing settings: randomized query complexity, quantum query complexity, and
quantum communication complexity. We have also proved even stronger direct
product theorems for 1-sided error threshold functions, and weaker direct product

142 Chapter 6. Direct Product Theorems

theorems for all total Boolean functions. Let us conclude with two major open
problems.

First, we would like to know whether a strong direct product theorem holds
in the query and communication setting for all Boolean functions if we consider
worst-case error probability (Shaltiel [Sha01] disproved this for average-case error
probability). Second, does a strong direct product theorem hold for the Disjoint-
ness function in the setting of classical randomized communication complexity?

Chapter 7

A New Adversary Method

This chapter is based on part of the following paper:1

[AŠW06] A. Ambainis, R. Špalek, and R. de Wolf. A new quantum lower
bound method, with applications to direct product theorems and
time-space tradeoffs. In Proceedings of 38th Annual ACM Sym-
posium on Theory of Computing, pages 618–633, 2006.

7.1 Introduction

Quantum query lower bounds In Chapter 2, we introduced two lower-bound
methods for quantum query complexity: the adversary method [Amb02, Amb03]
and the polynomial method [BBC+01]. We gave several examples showing that
these two methods are in general incomparable. On the one hand, the adversary
method proves stronger bounds than the polynomial method for certain iterated
functions [Amb03], and also gives tight lower bounds for constant-depth AND-OR
trees [Amb02, HMW03], where we do not know how to analyze the polynomial
degree.

On the other hand, the polynomial method works well for analyzing zero-
error or low-error quantum algorithms [BBC+01, BCWZ99] and gives optimal
lower bounds for the collision problem and element distinctness [AS04]. As we
showed in Section 5.4, the adversary method fails for the latter problem (and also
for other problems like triangle-finding), because the best bound provable with it
is
√

C0C1. Here C0 and C1 are the certificate complexities of the function on zero-
inputs and one-inputs. In the case of element distinctness and triangle-finding,
one of these complexities is constant. Hence the adversary method in its present

1Most of the contents of this chapter are due to Ambainis. Our main contribution is extend-
ing his direct product theorem that only held for implicit thresholds t ≤

√
n to the full range

t ≤ n
2 . In particular, Claim 7.6.1 gives an exact expression for the norm of a projected quantum

state that holds for all thresholds, whereas the original version of the paper by Ambainis used
different arguments to prove a bound that only held for small thresholds.

143

144 Chapter 7. A New Adversary Method

form(s) can prove at most an Ω(
√
n) bound, where n is the input size, while

the true bound is Θ(n2/3) [AS04, Amb04] in the case of element distinctness and
the best known algorithm for triangle-finding costs O(n13/20) [MSS05]. A second
limitation of the adversary method is that it cannot deal well with the case where
there are many different possible outputs, and a success probability much smaller
than 1

2
would still be considered good.

A new adversary method In this chapter we describe a new version of the
adversary method that does not suffer from the second limitation, and possibly
also not from the first—though we have not found an example yet where the new
method breaks through the

√
C0C1 barrier.

Very roughly speaking, the new method works as follows. We view the algo-
rithm as acting on a 2-register state space HA⊗HI . Here the actual algorithm’s
operations take place in the first register, while the second contains (a superposi-
tion of) the inputs. In particular, the query operation on HA is now conditioned
on the basis states inHI . We start the analysis with a superposition of zero-inputs
and one-inputs in the input register, and then track how this register evolves as
the computation moves along. Let ρt be the state of this register (tracing out
the HA-register) after making the tth query. By employing symmetries in the
problem’s structure, such as invariances of the function under certain permuta-
tions of its input, we can decompose the input space into orthogonal subspaces
S0, . . . , Sm. We can decompose the state accordingly.

ρt =
m∑
i=0

pt,iσi ,

where σi is a density matrix in subspace Si. Thus the tth state can be fully de-
scribed by a probability distribution pt,0, . . . , pt,m that describes how the input
register is distributed over the various subspaces. Crucially, only some of the
subspaces are good, meaning that the algorithm will only work if most of the am-
plitude is concentrated in the good subspaces at the end of the computation. At
the start of the computation, hardly any amplitude will be in the good subspaces.
If we can show that in each query, not too much amplitude can move from the
bad subspaces to the good subspaces, then we get a lower bound on the number
of queries that have to be done.

This idea was first introduced by Ambainis in [Amb05a] and used there to
reprove our strong direct product theorem for the OR function from Section 6.3.
In this chapter we extend it and use it to prove direct product theorems for all
symmetric functions.

Direct product theorems for symmetric functions Consider an algorithm
that simultaneously needs to compute k independent instances of a function f
(denoted f (k)). Direct product theorems deal with the optimal tradeoff between

7.2. Quantum DPT for symmetric functions 145

the resources and success probability of such algorithms. We examined in Sec-
tion 6.2 and Section 6.3 the case where the resource is query complexity and f is
the OR function, and proved an optimal DPT both for classical algorithms and
for quantum algorithms.

Here we generalize these results to the case where f can be any symmetric
function, that is a function depending only on the Hamming weight |x| of its in-
put. In the case of classical algorithms the situation is quite simple. Every n-bit
symmetric function f has classical bounded-error query complexity R2(f) = Θ(n)
and block sensitivity bs(f) = Θ(n), hence an optimal classical DPT follows im-
mediately from Theorem 6.2.4. Classically, all symmetric functions essentially
cost the same in terms of query complexity. This is different in the quantum
world. For instance, the OR function has bounded-error quantum query com-
plexity Q2(OR) = Θ(

√
n), while parity needs n

2
quantum queries; see Exam-

ple 2.7.1. If f is the t-threshold function (Thrt,n(x) = 1 if and only if |x| ≥ t),

then Q2(Thrt,n) = Θ(
√
t(n− t+ 1)); see Corollary 1.5.6 for an upper bound and

Corollary 2.4.3 for a lower bound, also for the OR function with t = 1.
Our main result is an essentially optimal quantum DPT for all symmetric

functions.

7.1.1. Theorem. (Quantum DPT for symmetric functions)
There is a constant α > 0 such that for every symmetric f and every positive
integer k: Every 2-sided error quantum algorithm for f (k) using T ≤ αkQ2(f)
queries has success probability σ ≤ 2−Ω(k).

Our new direct product theorem generalizes the polynomial-based DPT for the
OR function from Theorem 6.3.8, but our current proof uses the above-mentioned
version of the adversary method. The new DPT should also be contrasted to the
DPT for threshold functions from Theorem 6.3.9, which gives a much stronger
bound on the success probability, but only holds for 1-sided error algorithms.

7.2 Quantum DPT for symmetric functions

The main result of this chapter is the proof of Theorem 7.1.1 above. In this
section we give an outline of the proof. Most of the proofs of technical claims are
deferred to the following sections.

Implicit threshold Let us first say something about Q2(f) for a symmetric
function f : {0, 1}n → {0, 1}. Let t denote the smallest non-negative integer such
that f is constant on the interval |x| ∈ [t, n− t]. We call this value t the implicit
threshold of f . For instance, functions like OR and AND have t = 1, while parity
and majority have t = n

2
. If f is the t-threshold function with t ≤ n

2
, then the

implicit threshold is just the threshold. The implicit threshold is related to the

146 Chapter 7. A New Adversary Method

parameter Γ(f) introduced by Paturi [Pat92] via t = n
2
− Γ(f)

2
±1. It characterizes

the bounded-error quantum query complexity of f : Q2(f) = Θ(
√
tn) [BBC+01].

Hence our resource bound in the above theorem will be αk
√
tn for some small

constant α > 0.
We actually prove a stronger statement, applying to any Boolean function f

(total or partial) for which f(x) = 0 if |x| = t− 1 and f(x) = 1 if |x| = t.

Input register Let A be an algorithm that computes k instances of this weight-
(t−1) versus weight-t problem. We recast A into a different form, using a register
that stores the input x1, . . . , xk. LetHA be the Hilbert space on which A operates.
Let HI be an (

(
n
t−1

)
+
(
n
t

)
)k-dimensional Hilbert space whose basis states corre-

spond to inputs (x1, . . . , xk) with Hamming weights |x1| ∈ {t − 1, t}, . . . , |xk| ∈
{t− 1, t}. We transform A into a sequence of transformations on a Hilbert space
H = HA ⊗ HI . A non-query transformation U on HA is replaced with U ⊗ I on
H. A query is replaced by a transformation O that is equal to Ox1,...,xk ⊗ I on the
subspace consisting of states of the form |s〉A⊗|x1 . . . xk〉I . This is an extension of
the standard model of quantum query complexity from Section 1.2.2 that allows
superposition inputs as opposed to allowing only computational basis inputs.

The starting state of the algorithm on Hilbert space H is |ϕ0〉 = |ψstart〉A ⊗
|ψ0〉I where |ψstart〉 is the starting state of A as an algorithm acting on HA and
|ψ0〉 = |ψone〉⊗k is a tensor product of k copies of the state |ψone〉 in which half of
the amplitude is on |x〉 with |x| = t, the other half is on |x〉 with |x| = t− 1, and
any two states |x〉 with the same |x| have equal amplitudes:

|ψone〉 =
1√
2
(
n
t

) ∑
x:|x|=t

|x〉+
1√

2
(
n
t−1

) ∑
x:|x|=t−1

|x〉 .

Let |ϕd〉 be the state of the algorithm A, as a sequence of transformations on
H, after the dth query. Let ρd be the mixed state in HI obtained from |ϕd〉 by
tracing out the HA register.

Subspaces of the input register We define two decompositions of HI into a
direct sum of subspaces. We have HI = (Hone)

⊗k where Hone is the input Hilbert
space for one instance, with basis states |x〉, x ∈ {0, 1}n, |x| ∈ {t− 1, t}. Let

|ψ0
i1,...,ij

〉 =
1√(
n−j
t−1−j

) ∑
x1,...,xn:

x1+···+xn=t−1,
xi1

=···=xij
=1

|x1 . . . xn〉

and let |ψ1
i1,...,ij

〉 be a similar state with x1 + · · · + xn = t instead of x1 + · · · +
xn = t − 1. Let Tj,0 (resp. Tj,1) be the space spanned by all states |ψ0

i1,...,ij
〉

(resp. |ψ1
i1,...,ij

〉) and let Sj,a = Tj,a ∩ T⊥j−1,a. For a subspace S, we use ΠS to

7.2. Quantum DPT for symmetric functions 147

denote the projector onto S. Let |ψ̃ai1,...,ij〉 = ΠT⊥j−1,a
|ψai1,...,ij〉. For j < t, let Sj,+

be the subspace spanned by the states

|ψ̃0
i1,...,ij

〉
‖ψ̃0

i1,...,ij
‖

+
|ψ̃1
i1,...,ij

〉
‖ψ̃1

i1,...,ij
‖

and Sj,− be the subspace spanned by

|ψ̃0
i1,...,ij

〉
‖ψ̃0

i1,...,ij
‖
−
|ψ̃1
i1,...,ij

〉
‖ψ̃1

i1,...,ij
‖
.

For j = t, we define St,− = St,1 and there is no subspace St,+. Thus Hone =⊕t−1
j=0(Sj,+ ⊕ Sj,−) ⊕ St,−. Let us try to give some intuition. In the spaces Sj,+

and Sj,−, we may be said to “know” the positions of j of the ones. In the
good subspaces Sj,− we have distinguished the zero-inputs from one-inputs by the
relative phase, while in the bad subspaces Sj,+ we have not distinguished them.
Accordingly, the algorithm is doing well on this one instance if most of the state
sits in the good subspaces Sj,−.

For the space HI (representing k independent inputs for our function) and
r1, . . . , rk ∈ {+,−}, we define

Sj1,...,jk,r1,...,rk = Sj1,r1 ⊗ Sj2,r2 ⊗ · · · ⊗ Sjk,rk .

Let Sm− be the direct sum of all Sj1,...,jk,r1,...,rk such that exactly m of the signs
r1, . . . , rk are equal to −. Then HI =

⊕
m Sm−. This is the first decomposition.

The above intuition for one instance carries over to k instances: the more
minuses the better for the algorithm. Conversely, if most of the input register
sits in Sm− for low m, then its success probability will be small. More precisely,
in Section 7.3 we prove the following lemma.

7.2.1. Lemma (Measurement in bad subspaces). Let ρ be the reduced den-
sity matrix of HI . If the support of ρ is contained in S0−⊕S1−⊕ · · ·⊕Sm−, then

the probability that measuring HA gives the correct answer is at most

∑m
m′=0

(
k
m′

)
2k

.

Note that this probability is exponentially small in k for, say, m = k
3
. The

following consequence of this lemma is proven in Section 7.4.

7.2.2. Corollary (Total success probability). Let ρ be the reduced den-
sity matrix of HI . The probability that measuring HA gives the correct answer is
at most ∑m

m′=0

(
k
m′

)
2k

+ 4
√

Tr Π(S0−⊕S1−⊕···⊕Sm−)⊥ρ .

148 Chapter 7. A New Adversary Method

|ψai1,...,ij〉 uniform superposition of states with |x| = t− 1 + a

and with j fixed bits set to 1
Tj,a spanned by |ψai1,...,ij〉 for all j-tuples i

Sj,a = Tj,a ∩ T⊥j−1,a that is, we remove the lower-dimensional subspace

|ψ̃ai1,...,ij〉 projection of |ψai1,...,ij〉 onto Sj,a

Sj,± spanned by |ψ̃0〉
‖ψ̃0‖ ±

|ψ̃1〉
‖ψ̃1‖

Rj = Sj,+ for j < t
2

. . . bad
Rt/2 direct sum of Sj,+ for j ≥ t/2, and all Sj,− . . . good

Sm− =
⊕
|r|=m
j

k⊗
i=1

Sji,ri where |r| is the number of minuses in r = r1, . . . , rk

Rm =
⊕

|j|1=m

k⊗
i=1

Rji where |j|1 is the sum of all entries in j = j1, . . . , jk

R′
j =

⊕
m≥j

Rm

|ψa,bi1,...,ij〉 uniform superposition of states with |x| = t− 1 + a,

with j fixed bits set to 1, and x1 = b

Tj,a,b spanned by |ψa,bi1,...,ij〉 for all j-tuples i

Sj,a,b = Tj,a,b ∩ T⊥j−1,a,b that is, we remove the lower-dimensional subspace

|ψ̃a,bi1,...,ij〉 projection of |ψa,bi1,...,ij〉 into Sj,a,b

Sα,βj,a spanned by α |ψ̃a,0〉
‖ψ̃a,0‖ + β |ψ̃a,1〉

‖ψ̃a,1‖

Figure 7.1: States and subspaces used in the adversary-type DPT

Second decomposition To define the second decomposition into subspaces,
we express Hone =

⊕t/2
j=0Rj with Rj = Sj,+ for j < t/2 and

Rt/2 =
⊕
j≥t/2

Sj,+ ⊕
⊕
j≥0

Sj,− .

Intuitively, all subspaces except forRt/2 are bad for the algorithm, since they equal
the bad subspaces Sj,+. Let R` be the direct sum of all Rj1 ⊗ · · · ⊗Rjk satisfying

j1 + · · ·+ jk = `. Then HI =
⊕tk/2

`=0 R`. This is the second decomposition.
Intuitively, the algorithm can only have good success probability if for most

of the k instances, most of the input register sits in Rt/2. Aggregated over all k
instances, this means that the algorithm will only work well if most of the k-input
register sits in R` for ` large, meaning fairly close to kt/2. Our goal below is to
show that this cannot happen if the number of queries is small.

Let R′
j =

⊕tk/2
`=j R`. Note that Sm− ⊆ R′

tm/2 for every m: Sm− is the direct
sum of subspaces S = Sj1,r1 ⊗ · · · ⊗ Sjk,rk having m minuses among r1, . . . , rk;
each such minus-subspace sits in the corresponding Rt/2 and hence S ⊆ R′

tm/2.

7.3. Measurement in bad subspaces 149

This implies
(S0− ⊕ S1− ⊕ · · · ⊕ S(m−1)−)⊥ ⊆ R′

tm/2 .

Accordingly, if we prove an upper bound on Tr ΠR′
tm/2

ρT , where T is the total

number of queries, this bound together with Corollary 7.2.2 implies an upper
bound on the success probability of A.

Potential function To bound Tr ΠR′
tm/2

ρT , we consider the following potential

function

P (ρ) =

tk/2∑
m=0

qm Tr ΠRmρ ,

where q = 1 + 1
t
. Then for every d

Tr ΠR′
tm/2

ρd ≤ P (ρd)q
−tm/2 = P (ρd)e

−(1+o(1))m/2 . (7.1)

P (ρ0) = 1, because the initial state |ψ0〉 is a tensor product of the states
|ψone〉 on each copy of Hone and |ψone〉 belongs to S0,+, hence |ψ0〉 belongs to R0.
In Section 7.7 we prove

7.2.3. Lemma (Change of the potential). There is a constant C such that

P (ρj+1) ≤
(

1 +
C√
tn

(qt/2 − 1) +
C
√
t√
n

(q − 1)

)
P (ρj) .

Since q = 1 + 1
t
, Lemma 7.2.3 means that P (ρj+1) ≤ (1 + C

√
e√
tn

)P (ρj) and

P (ρj) ≤ (1 + C
√
e√
tn

)j ≤ e
2Cj√

tn . By equation (7.1), for the final state after T queries
we have

Tr ΠR′
tm/2

ρT ≤ e
2CT√

tn
−(1+o(1))m

2 .

We take m = k
3
. Then if T ≤ 1

8C
m
√
tn, this expression is exponentially small in

k. Together with Corollary 7.2.2, this implies Theorem 7.1.1.

7.3 Measurement in bad subspaces

In this section we prove Lemma 7.2.1.
The measurement of HA decomposes the state in the HI register as follows:

ρ =
∑

a1,...,ak∈{0,1}

pa1,...,ak
σa1,...,ak

,

with pa1,...,ak
being the probability of the measurement giving (a1, . . . , ak) (where

aj = 1 means the algorithm outputs—not necessarily correctly—that |xj| = t and

150 Chapter 7. A New Adversary Method

aj = 0 means |xj| = t−1) and σa1,...,ak
being the density matrix of HI , conditional

on this outcome of the measurement. Since the support of ρ is contained in S0−⊕
· · · ⊕ Sm−, the support of the states σa1,...,ak

is also contained in S0−⊕ · · · ⊕ Sm−.
The probability that the answer (a1, . . . , ak) is correct is equal to

Tr Π
⊗k

j=1⊕
t−1+aj
l=0 Sl,aj

σa1,...,ak
. (7.2)

We show that, for any σa1,...,ak
with support contained in S0− ⊕ · · · ⊕ Sm−,

(7.2) is at most
Pm

m′=0 (k
m′)

2k .
For brevity, we now write σ instead of σa1,...,ak

. A measurement with respect
to ⊗k

j=1 ⊕l Sl,aj
and its orthogonal complement commutes with a measurement

with respect to the collection of subspaces

⊗k
j=1(Slj ,0 ⊕ Slj ,1) ,

where l1, . . . , lk range over {0, . . . , t}. Therefore

Tr Π⊗k
j=1⊕lSl,aj

σ =
∑
l1,...,lk

Tr Π⊗k
j=1⊕lSl,aj

Π⊗k
j=1(Slj ,0⊕Slj ,1)σ .

Hence to bound (7.2) it suffices to prove the same bound with

σ′ = Π⊗k
j=1(Slj ,0⊕Slj ,1)σ

instead of σ. Since(
⊗k
j=1(Slj ,0 ⊕ Slj ,1)

)
∩
(
⊗k
j=1(⊕lSl,aj

)
)

= ⊗k
j=1Slj ,aj

,

we have
Tr Π⊗k

j=1(⊕lSl,aj
)σ
′ = Tr Π⊗k

j=1Slj ,aj
σ′ . (7.3)

We prove this bound for the case when σ′ is a pure state: σ′ = |ψ〉〈ψ|. Then
equation (7.3) is equal to

‖Π⊗k
j=1Slj ,aj

ψ‖2 . (7.4)

The bound for mixed states σ′ follows by decomposing σ′ as a mixture of
pure states |ψ〉, bounding (7.4) for each of those states and then summing up the
bounds.

We have

(S0− ⊕ · · · ⊕ Sm−) ∩ (
k⊗
j=1

(Slj ,0 ⊕ Slj ,1)) =
⊕

r1,...,rk∈{+,−},
|{i:ri=−}|≤m

k⊗
j=1

Slj ,rj .

We express

|ψ〉 =
∑

r1,...,rk∈{+,−},
|{i:ri=−}|≤m

αr1,...,rk |ψr1,...,rk〉 ,

7.3. Measurement in bad subspaces 151

with |ψr1,...,rk〉 ∈ ⊗k
j=1Slj ,rj . Therefore

‖Π⊗k
j=1Slj ,aj

ψ‖2 ≤

(∑
r1,...,rk

|αr1,...,rk | · ‖Π⊗k
j=1Slj ,aj

ψr1,...,rk‖

)2

≤
∑
r1,...,rk

‖Π⊗k
j=1Slj ,aj

ψr1,...,rk‖2 , (7.5)

where the second inequality uses Cauchy-Schwarz and

‖ψ‖2 =
∑
r1,...,rk

|αr1,...,rk |2 = 1 .

7.3.1. Claim. ‖Π⊗k
j=1Slj ,aj

ψr1,...,rk‖2 ≤ 1

2k
.

Proof. Let |ϕj,0i 〉, i ∈ [dimSlj ,0] form a basis for the subspace Slj ,0. Define a

map Uj : Slj ,0 → Slj ,1 by Uj|ψ̃0
i1,...,ilj

〉 = |ψ̃1
i1,...,ilj

〉. Then Uj is a multiple of a

unitary transformation: Uj = cjU
′
j for some unitary U′

j and a constant cj. (This
follows from Claim 7.5.2 below.)

Let |ϕj,1i 〉 = U′
j|ϕ

j,0
i 〉. Since U′

j is a unitary transformation, the states |ϕj,1i 〉
form a basis for Slj ,1. Therefore

k⊗
j=1

|ϕj,aj

ij
〉 (7.6)

is a basis for ⊗k
j=1Slj ,aj

. Moreover, the states

|ϕj,+i 〉 =
1√
2
|ϕj,0i 〉+

1√
2
|ϕj,1i 〉, |ϕj,−i 〉 =

1√
2
|ϕj,0i 〉 −

1√
2
|ϕj,1i 〉

are a basis for Slj ,+ and Slj ,−, respectively. Therefore

|ψr1,...,rk〉 =
∑
i1,...,ik

αi1,...,ik

k⊗
j=1

|ϕj,rjij
〉 . (7.7)

The inner product between ⊗k
i=1|ϕ

j,aj

i′j
〉 and ⊗k

j=1|ϕ
j,rj
ij
〉 is

k∏
j=1

〈ϕj,rjij
|ϕj,aj

i′j
〉 .

Note that rj ∈ {+,−} and aj ∈ {0, 1}. The terms in this product are ± 1√
2

if i′j = ij and 0 otherwise. This means that ⊗k
j=1|ϕ

j,rj
ij
〉 has inner product ± 1

2k/2

with ⊗k
i=1|ϕ

j,aj

ij
〉 and inner product 0 with all other basis states (7.6). Therefore,

Π⊗k
j=1Slj ,aj

⊗k
j=1 |ϕ

j,rj
ij
〉 = ± 1

2k/2
⊗k
i=1 |ϕ

j,aj

ij
〉 .

152 Chapter 7. A New Adversary Method

Together with equation (7.7), this means that

‖Π⊗k
j=1Slj ,aj

ψr1,...,rk‖ ≤
1

2k/2
‖ψr1,...,rk‖ =

1

2k/2
.

Squaring both sides completes the proof of the claim. 2

Since there are
(
k
m′

)
tuples (r1, . . . , rk) with r1, . . . , rk ∈ {+,−} and |{i : ri =

−}| = m′, Claim 7.3.1 together with equation (7.5) implies

‖Π⊗k
j=1Slj ,aj

ψ‖2 ≤
∑m

m′=0

(
k
m′

)
2k

.

7.4 Total success probability

In this section we prove Corollary 7.2.2.

Let |ψ〉 be a purification of ρ in HA ⊗HI . Let

|ψ〉 =
√

1− δ|ψ′〉+
√
δ|ψ′′〉 ,

where |ψ′〉 is in the subspace HA ⊗ (S0− ⊕ S1− ⊕ · · · ⊕ Sm−) and |ψ′′〉 is in the
subspace HA ⊗ (S0− ⊕ S1− ⊕ · · · ⊕ Sm−)⊥. Then δ = Tr Π(S0−⊕···⊕Sm−)⊥ρ.

The success probability of A is the probability that, if we measure both the reg-
ister HA containing the result of the computation and HI , then we get a1, . . . , ak
and x1, . . . , xk such that xj contains t− 1 + aj ones for every j ∈ {1, . . . , k}.

Consider the probability of getting a1, . . . , ak ∈ {0, 1} and x1, . . . , xk ∈ {0, 1}n
with this property, when measuring |ψ′〉 (instead of |ψ〉). By Lemma 7.2.1, this

probability is at most
Pm

m′=0 (k
m′)

2k . We have

‖ψ − ψ′‖ ≤ (1−
√

1− δ)‖ψ′‖+
√
δ‖ψ′′‖ = (1−

√
1− δ) +

√
δ ≤ 2

√
δ .

We now apply the following lemma by Bernstein and Vazirani.

7.4.1. Lemma ([BV97]). For any states |ψ〉 and |ψ′〉 and any measurement M ,
the variational distance between the probability distributions obtained by applying
M to |ψ〉 and |ψ′〉 is at most 2‖ψ − ψ′‖.

Hence the success probability of A is at most∑m
m′=0

(
k
m′

)
2k

+ 4
√
δ =

∑m
m′=0

(
k
m′

)
2k

+ 4
√

Tr Π(S0−⊕···⊕Sm−)⊥ρ .

7.5. Subspaces when asking one query 153

7.5 Subspaces when asking one query

Let |ψd〉 be the state of HA ⊗HI after d queries. Write

|ψd〉 =
kn∑
i=0

ai|ψd,i〉 ,

with |ψd,i〉 being the part in which the query register contains |i〉. Let ρd,i =
TrHA

|ψd,i〉〈ψd,i|. Then

ρd =
kn∑
i=0

a2
i ρd,i . (7.8)

Because of

Tr ΠRmρd =
kn∑
i=0

a2
i Tr ΠRmρd,i ,

we have P (ρd) =
∑kn

i=0 a
2
iP (ρd,i). Let ρ′d be the state after the dth query and

let ρ′d =
∑kn

i=0 a
2
i ρ
′
d,i be a decomposition similar to equation (7.8). Lemma 7.2.3

follows by showing

P (ρ′d,i) ≤
(

1 +
C√
tn

(qt/2 − 1) +
C
√
t√
n

(q − 1)

)
P (ρd,i) (7.9)

for each i. For i = 0, the query does not change the state if the query register
contains |i〉. Therefore, ρ′d,0 = ρd,0 and P (ρ′d,0) = P (ρd,0). This means that
equation (7.9) is true for i = 0. To prove the i ∈ {1, . . . , kn} case, it suffices to
prove the i = 1 case (because of symmetry).

Subspaces of ρd,1 Let |ψa,bi1,...,ij〉 (with a, b ∈ {0, 1} and i1, . . . , ij ∈ {2, . . . , n})
be the uniform superposition over basis states |b, x2, . . . , xn〉 (of Hone) with b +
x2+· · ·+xn = t−1+a and xi1 = · · · = xij = 1. Let Tj,a,b be the space spanned by

all states |ψa,bi1,...,ij〉 and let Sj,a,b = Tj,a,b∩T⊥j−1,a,b. Let |ψ̃a,bi1,...,ij〉 = ΠT⊥j−1,a,b
|ψa,bi1,...,ij〉.

Let Sα,βj,a be the subspace spanned by all states

α
|ψ̃a,0i1,...,ij〉
‖ψ̃a,0i1,...,ij‖

+ β
|ψ̃a,1i1,...,ij〉
‖ψ̃a,1i1,...,ij‖

. (7.10)

7.5.1. Claim. Let αa =
√

n−(t−1+a)
n−j ‖ψ̃a,0i1,...,ij‖ and βa =

√
(t−1+a)−j

n−j ‖ψ̃a,1i1,...,ij‖.
Then (i) Sαa,βa

j,a ⊆ Sj,a and (ii) Sβa,−αa

j,a ⊆ Sj+1,a.

Proof. For part (i), consider the states |ψai1,...,ij〉 in Tj,a, for 1 6∈ {i1, . . . , ij}. We
have

|ψai1,...,ij〉 =
√

n−(t−1+a)
n−j |ψa,0i1,...,ij〉+

√
(t−1+a)−j

n−j |ψa,1i1,...,ij〉 (7.11)

154 Chapter 7. A New Adversary Method

because among the states |x1 . . . xn〉 with |x| = t− 1 + a and xi1 = · · · = xij = 1,

a n−(t−1+a)
n−j fraction have x1 = 0 and the rest have x1 = 1. The projections of

these states to T⊥j−1,a,0 ∩ T⊥j−1,a,1 are√
n−(t−1+a)

n−j |ψ̃a,0i1,...,ij〉+
√

(t−1+a)−j
n−j |ψ̃a,1i1,...,ij〉

which, by equation (7.10) are exactly the states spanning Sαa,βa

j,a . Furthermore,
we claim that

Tj−1,a ⊆ Tj−1,a,0 ⊕ Tj−1,a,1 ⊆ Tj,a . (7.12)

The first containment is true because Tj−1,a is spanned by the states |ψai1,...,ij−1
〉

which either belong to Tj−2,a,1 ⊆ Tj−1,a,1 (if 1 ∈ {i1, . . . , ij−1}) or are a linear com-
bination of states |ψa,0i1,...,ij−1

〉 and |ψa,1i1,...,ij−1
〉 (by equation (7.11)), which belong to

Tj−1,a,0 and Tj−1,a,1. The second containment follows because the states |ψa,1i1,...,ij−1
〉

spanning Tj−1,a,1 are the same as the states |ψa1,i1,...,ij−1
〉 which belong to Tj,a, and

the states |ψa,0i1,...,ij−1
〉 spanning Tj−1,a,0 can be expressed as linear combinations of

|ψai1,...,ij−1
〉 and |ψa1,i1,...,ij−1

〉 which both belong to Tj,a.
The first part of (7.12) now implies

Sαa,βa

j,a ⊆ T⊥j−1,a,0 ∩ T⊥j−1,a,1 ⊆ T⊥j−1,a .

Also, Sαa,βa

j,a ⊆ Tj,a, because Sαa,βa

j,a is spanned by the states

ΠT⊥j−1,a,0∩T⊥j−1,a,1
|ψai1,...,ij〉 = |ψai1,...,ij〉 − ΠTj−1,a,0⊕Tj−1,a,1

|ψai1,...,ij〉

and |ψai1,...,ij〉 belongs to Tj,a by the definition of Tj,a and ΠTj−1,a,0⊕Tj−1,a,1
|ψai1,...,ij〉

belongs to Tj,a because of the second part of (7.12). Therefore, Sαa,βa

j,a ⊆ Tj,a ∩
T⊥j−1,a = Sj,a.

For part (ii), we have

Sαa,βa

j,a ⊆ Sj,a,0 ⊕ Sj,a,1 ⊆ Tj,a,0 ⊕ Tj,a,1 ⊆ Tj+1,a ,

where the first containment is true because Sαa,βa

j,a is spanned by linear combi-

nations of vectors |ψ̃a,0i1,...,ij〉 (which belong to Sj,a,0) and vectors |ψ̃a,1i1,...,ij〉 (which
belong to Sj,a,1) and the last containment is true because of the second part of
equation (7.12). Now let

|ψ〉 = βa
|ψ̃a,0i1,...,ij〉
‖ψ̃a,0i1,...,ij‖

− αa
|ψ̃a,1i1,...,ij〉
‖ψ̃a,1i1,...,ij‖

(7.13)

be one of the vectors spanning Sβa,−αa

j,a . To prove that |ψ〉 is in Sj+1,a = Tj+1,a∩T⊥j,a,
it remains to prove that |ψ〉 is orthogonal to Tj,a. This is equivalent to proving
that |ψ〉 is orthogonal to each of the vectors |ψai′1,...,i′j〉 spanning Tj,a. We distinguish

two cases (note that 1 6∈ {i1, . . . , ij}):

7.5. Subspaces when asking one query 155

1. 1 ∈ {i′1, . . . , i′j}.

For simplicity, assume 1 = i′j. Then |ψai′1,...,i′j〉 is the same as |ψa,1i′1,...,i′j−1
〉, which

belongs to Tj−1,a,1. By definition, the vector |ψ〉 belongs to T⊥j−1,a,0∩T⊥j−1,a,1

and is therefore orthogonal to |ψa,1i′1,...,i′j−1
〉.

2. 1 6∈ {i′1, . . . , i′j}.
We will prove this case by induction on ` = |{i′1, . . . , i′j} − {i1, . . . , ij}|.
In the base step (` = 0), we have {i′1, . . . , i′j} = {i1, . . . , ij}. Since |ψ〉
belongs to T⊥j−1,a,0 ∩ T⊥j−1,a,1, it suffices to prove |ψ〉 is orthogonal to the
projection of |ψai1,...,ij〉 to T⊥j−1,a,0 ∩ T⊥j−1,a,1 which, by the discussion after
equation (7.11), equals

αa
|ψ̃a,0i1,...,ij〉
‖ψ̃a,0i1,...,ij‖

+ βa
|ψ̃a,1i1,...,ij〉
‖ψ̃a,1i1,...,ij‖

. (7.14)

From equations (7.13) and (7.14), we see that the inner product of the two
states is αaβa − βaαa = 0.

For the inductive step (` ≥ 1), assume i′j 6∈ {i1, . . . , ij}. Up to a constant
multiplicative factor, we have

|ψai′1,...,i′j−1
〉 =

∑
i′ /∈{i′1,...,i′j−1}

|ψai′1,...,i′j−1,i
′〉 .

Because |ψai′1,...,i′j−1
〉 is in Tj−1,a,0 ⊕ Tj−1,a,1, we have∑

i′ /∈{i′1,...,i′j−1}

〈ψai′1,...,i′j−1,i
′|ψ〉 = 〈ψai′1,...,i′j−1

|ψ〉 = 0 . (7.15)

As proven in the previous case, 〈ψai′1,...,i′j−1,1
|ψ〉 = 0. Moreover, by the in-

duction hypothesis we have 〈ψai′1,...,i′j−1,i
′|ψ〉 = 0 whenever i′ ∈ {i1, . . . , ij}.

Therefore equation (7.15) reduces to∑
i′ /∈{i′1,...,i′j−1,i1,...,ij ,1}

〈ψai′1,...,i′j−1,i
′|ψ〉 = 0 . (7.16)

By symmetry, the inner products in this sum are the same for every i′.
Hence they are all 0, in particular for i′ = i′j.

We conclude that |ψ〉 is orthogonal to the subspace Tj,a and therefore |ψ〉 is
in Sj+1,a = Tj+1,a ∩ T⊥j,a. 2

156 Chapter 7. A New Adversary Method

7.5.2. Claim. The maps U01 : Sj,0,0 → Sj,0,1, U10 : Sj,0,0 → Sj,1,0 and U11 :

Sj,0,0 → Sj,1,1 defined by Uab|ψ̃0,0
i1,...,ij

〉 = |ψ̃a,bi1,...,ij〉 are multiples of unitary trans-
formations: Uab = cabU

′
ab for some unitary U′

ab and some constant cab.

Proof. We define M : Tj,0,0 → Tj,0,1 by

M|0x2 . . . xn〉 =
∑
`:x`=1

|1x2 . . . x`−10x`+1 . . . xn〉 .

Note that M does not depend on j. We claim

M|ψ̃0,0
i1,...,ij

〉 = c|ψ̃0,1
i1,...,ij

〉 (7.17)

M†|ψ̃0,1
i1,...,ij

〉 = c′|ψ̃0,0
i1,...,ij

〉

for some constants c and c′ that may depend on n, t and j but not on i1, . . . , ij.
To prove that, we need to prove two things. First, we claim that

M|ψ0,0
i1,...,ij

〉 = c|ψ0,1
i1,...,ij

〉+ |ψ′〉 , (7.18)

where |ψ′〉 ∈ Tj−1,0,1 (note that 1 6∈ {i1, . . . , ij}). Equation (7.18) follows by

M|ψ0,0
i1,...,ij

〉 =
1√(
n−j−1
t−1−j

) ∑
x:|x|=t−1,x1=0
xi1

=···=xij
=1,

M|x〉

=
1√(
n−j−1
t−1−j

) ∑
x:|x|=t−1,x1=0
xi1

=···=xij
=1

∑
`:x`=1

|1x2 . . . x`−10x`+1 . . . xn〉

=
n− t+ 1√(

n−j−1
t−1−j

) ∑
y:|y|=t−1,y1=1
yi1

=···=yij
=1

|y〉+
1√(
n−j−1
t−1−j

) j∑
`=1

∑
y:|y|=t−1,y1=1,yi`

=0
yi1

=···=yij
=1

|y〉

=
n− t− j + 1√(

n−j−1
t−1−j

) ∑
y:|y|=t−1,y1=1
yi1

=···=yij
=1

|y〉+
1√(
n−j−1
t−1−j

) j∑
`=1

∑
y:|y|=t−1,y1=1
yi1

=···=yi`−1
=1

yi`+1
=···=yij

=1

|y〉

= (n− t− j + 1)
√

t−1−j
n−t+1

|ψ0,1
i1,...,ij

〉+
√

n−j
n−t+1

j∑
`=1

|ψ0,1
i1,...,i`−1,i`+1,...,ij

〉 .

This proves (7.18), with |ψ′〉 equal to the second term.
Second, for every j, M(Tj,0,0) ⊆ Tj,0,1 and M(T⊥j,0,0) ⊆ T⊥j,0,1. The first state-

ment follows from equation (7.18), because the subspaces Tj,0,0, Tj,0,1 are spanned
by the states |ψ0,0

i1,...,ij
〉 and |ψ0,1

i1,...,ij
〉, respectively, and Tj−1,0,1 ⊆ Tj,0,1. To prove

7.5. Subspaces when asking one query 157

the second statement, let |ψ〉 ∈ T⊥j,0,0, |ψ〉 =
∑

x ax|x〉. We would like to prove

M|ψ〉 ∈ T⊥j,0,1. This is equivalent to 〈ψ0,1
i1,...,ij

|M|ψ〉 = 0 for all i1, . . . , ij. We have

〈ψ0,1
i1,...,ij

|M|ψ〉 =
1√(
n−j−1
t−j−2

) ∑
y:|y|=t−1,y1=1
yi1

=···=yij
=1

〈y|M|ψ〉

=
1√(
n−j−1
t−j−2

) ∑
x:|x|=t−1,x1=0
xi1

=···=xij
=1

∑
`:x`=1

`/∈{i1,...,ij}

ax

=
t− 1− j√(

n−j−1
t−j−2

) ∑
x:|x|=t−1,x1=0
xi1

=···=xij
=1

ax = 0 .

The first equality follows by writing out 〈ψ0,1
i1,...,ij

|, the second equality follows
by writing out M. The third equality follows because, for every x with |x| = t−1
and xi1 = · · · = xij = 1, there are t − 1 − j more ` ∈ [n] satisfying x` = 1. The

fourth equality follows because
∑

x:|x|=t−1,x1=0
xi1

=···=xij
=1

ax is a constant times 〈ψ0,0
i1,...,ij

|ψ〉,

and 〈ψ0,0
i1,...,ij

|ψ〉 = 0 because |ψ〉 ∈ T⊥j,0,0.
To deduce equation (7.17), we write

|ψ0,0
i1,...,ij

〉 = |ψ̃0,0
i1,...,ij

〉+ ΠTj−1,0,0
|ψ0,0
i1,...,ij

〉 .

Since M(Tj−1,0,0) ⊆ Tj−1,0,1 and M(T⊥j−1,0,0) ⊆ T⊥j−1,0,1,

M|ψ̃0,0
i1,...,ij

〉 = ΠT⊥j−1,0,1
M|ψ0,0

i1,...,ij
〉 = cΠT⊥j−1,0,1

|ψ0,1
i1,...,ij

〉 = c|ψ̃0,1
i1,...,ij

〉 ,

with the second equality following from (7.18) and |ψ′〉 ∈ Tj−1,0,1. This proves
the first half of (7.17). The second half follows similarly. Therefore

〈ψ̃0,0
i1,...,ij

|M†M|ψ̃0,0
i′1,...,i

′
j
〉 = c · c′〈ψ̃0,0

i1,...,ij
|ψ̃0,0
i′1,...,i

′
j
〉 .

Hence M is a multiple of a unitary transformation. By equation (7.17), U01 =
M/c and, therefore, U01 is also a multiple of a unitary transformation.

Next, we define M by M|0x2 . . . xn〉 = |1x2 . . . xn〉. Then M is a unitary trans-
formation from the space spanned by |0x2 . . . xn〉, x2 + · · · + x2 = t − 1, to the
space spanned by |1x2 . . . xn〉, 1 + x2 + · · ·+ xn = t. We claim that U11 = M. To
prove that, we first observe that

M|ψ0,0
i1,...,ij

〉 =
1√(
n−j−1
t−j−1

) ∑
x2,...,xn:

xi1
=···=xij

=1

M|0x2 . . . xn〉

=
1√(
n−j−1
t−j−1

) ∑
x2,...,xn:

xi1
=···=xij

=1

|1x2 . . . xn〉 = |ψ1,1
i1,...,ij

〉 .

158 Chapter 7. A New Adversary Method

Since Tj,a,b is defined as the subspace spanned by all |ψa,bi1,...,ij〉, this means that
M(Tj,0,0) = Tj,1,1 and similarly M(Tj−1,0,0) = Tj−1,1,1. Since M is unitary, this
implies M(T⊥j−1,0,0) = T⊥j−1,1,1 and

M|ψ̃0,0
i1,...,ij

〉 = MΠT⊥j−1,0,0
|ψ0,0
i1,...,ij

〉 = ΠT⊥j−1,1,1
|ψ1,1
i1,...,ij

〉 = |ψ̃1,1
i1,...,ij

〉 .

Finally, we have U10 = U′′
10U11, where U′′

10 is defined by U′′
10|ψ̃

1,1
i1,...,ij

〉 = |ψ̃1,0
i1,...,ij

〉.
Since U11 is unitary, it suffices to prove that U′′

10 is a multiple of a unitary trans-
formation and this follows similarly to U01 being a multiple of a unitary transfor-
mation. 2

Let |ψ00〉 be an arbitrary state in Sj,0,0 for some j ∈ {0, . . . , t − 1}. Define
|ψab〉 = U′

ab|ψ00〉 for ab ∈ {01, 10, 11}.

7.5.3. Claim. Let α′a =
√

n−(t−1+a)
n−j ‖ψ̃a,0i1,...,ij‖, β

′
a =

√
(t−1+a)−j

n−j ‖ψ̃a,1i1,...,ij‖,
αa = α′a√

(α′a)2+(β′a)2
, βa = β′a√

(α′a)2+(β′a)2
. Then

1. |φ1〉 = α0|ψ00〉+ β0|ψ01〉+ α1|ψ10〉+ β1|ψ11〉 belongs to Sj,+;

2. |φ2〉 = β0|ψ00〉 − α0|ψ01〉+ β1|ψ10〉 − α1|ψ11〉 belongs to Sj+1,+;

3. Any linear combination of |ψ00〉, |ψ01〉, |ψ10〉 and |ψ11〉 which is orthogonal
to |φ1〉 and |φ2〉 belongs to S− =

⊕t
j=0 Sj,−.

Proof. Let i1, . . . , ij be j distinct elements of {2, . . . , n}. As shown in the
beginning of the proof of Claim 7.5.1,

|ψ̃ai1,...,ij〉 =
√

n−(t−1+a)
n−j |ψ̃a,0i1,...,ij〉+

√
(t−1+a)−j

n−j |ψ̃a,1i1,...,ij〉

= α′a
|ψ̃a,0i1,...,ij〉
‖ψ̃a,0i1,...,ij‖

+ β′a
|ψ̃a,1i1,...,ij〉
‖ψ̃a,1i1,...,ij‖

.

This means that ‖ψ̃ai1,...,ij‖ =
√

(α′a)
2 + (β′a)

2 and

|ψ̃ai1,...,ij〉
‖ψ̃ai1,...,ij‖

= αa
|ψ̃a,0i1,...,ij〉
‖ψ̃a,0i1,...,ij‖

+ βa
|ψ̃a,1i1,...,ij〉
‖ψ̃a,1i1,...,ij‖

.

Since the states |ψ̃0
i1,...,ij

〉 span Sj,0, |ψ00〉 is a linear combination of states
|ψ̃0,0

i1,...,ij
〉

‖ψ̃0,0
i1,...,ij

‖
. By Claim 7.5.2, the states |ψab〉 are linear combinations of

|ψ̃a,b
i1,...,ij

〉

‖ψ̃a,b
i1,...,ij

‖

with the same coefficients. Therefore, |φ1〉 is a linear combination of

α0

|ψ̃0,0
i1,...,ij

〉
‖ψ̃0,0

i1,...,ij
‖

+β0

|ψ̃0,1
i1,...,ij

〉
‖ψ̃0,1

i1,...,ij
‖

+α1

|ψ̃1,0
i1,...,ij

〉
‖ψ̃1,0

i1,...,ij
‖

+β1

|ψ̃1,1
i1,...,ij

〉
‖ψ̃1,1

i1,...,ij
‖

=
|ψ̃0
i1,...,ij

〉
‖ψ̃0

i1,...,ij
‖

+
|ψ̃1
i1,...,ij

〉
‖ψ̃1

i1,...,ij
‖
,

7.5. Subspaces when asking one query 159

each of which, by definition, belongs to Sj,+.
Let i1, . . . , ij be distinct elements of {2, . . . , n}. We claim

|ψ̃a1,i1,...,ij〉
‖ψ̃a1,i1,...,ij‖

= βa
|ψ̃a,0i1,...,ij〉
‖ψ̃a,0i1,...,ij‖

− αa
|ψ̃a,1i1,...,ij〉
‖ψ̃a,1i1,...,ij‖

. (7.19)

By Claim 7.5.1, the right hand side of (7.19) belongs to Sj+1,a. We need to
show that it is equal to |ψ̃a1,i1,...,ij〉. We have

|ψ̃a1,i1,...,ij〉 = ΠT⊥j,a
|ψa1,i1,...,ij〉 = ΠT⊥j,a

|ψa,1i1,...,ij〉

= ΠT⊥j,a
ΠT⊥j−1,a,1

|ψa,1i1,...,ij〉 = ΠT⊥j,a
|ψ̃a,1i1,...,ij〉 ,

where the third equality follows from Tj−1,a,1 ⊆ Tj,a. This is because the states
|ψa,1i1,...,ij−1

〉 spanning Tj−1,a,1 are the same as the states |ψa1,i1,...,ij−1
〉 in Tj,a. Write

|ψ̃a,1i1,...,ij〉 = c1|δ1〉+ c2|δ2〉 ,

where

|δ1〉 = αa
|ψ̃a,0i1,...,ij〉
‖ψ̃a,0i1,...,ij‖

+ βa
|ψ̃a,1i1,...,ij〉
‖ψ̃a,1i1,...,ij‖

,

|δ2〉 = βa
|ψ̃a,0i1,...,ij〉
‖ψ̃a,0i1,...,ij‖

− αa
|ψ̃a,1i1,...,ij〉
‖ψ̃a,1i1,...,ij‖

.

By Claim 7.5.1, we have |δ1〉 ∈ Sj,a ⊆ Tj,a, |δ2〉 ∈ Sj+1,a ⊆ T⊥j,a. Therefore,

ΠT⊥j,a
|ψ̃a,1i1,...,ij〉 = c2|δ2〉 and

|ψ̃a1,i1,...,ij〉
‖ψ̃a1,i1,...,ij‖

= |δ2〉 = βa
|ψ̃a,0i1,...,ij〉

‖ ˜ψa,0i1,...,ij‖
− αa

|ψ̃a,1i1,...,ij〉
‖ψ̃a,1i1,...,ij‖

,

proving (7.19).
Similarly to the argument for |φ1〉, equation (7.19) implies that |φ2〉 is a linear

combination of

β0

|ψ̃0,0
i1,...,ij

〉
‖ψ̃0,0

i1,...,ij
‖
−α0

|ψ̃0,1
i1,...,ij

〉
‖ψ̃0,1

i1,...,ij
‖

+β1

|ψ̃1,0
i1,...,ij

〉
‖ψ̃1,0

i1,...,ij
‖
−α1

|ψ̃1,1
i1,...,ij

〉
‖ψ̃1,1

i1,...,ij
‖

=
|ψ̃0

1,i1,...,ij
〉

‖ψ̃0
1,i1,...,ij

‖
+
|ψ̃1

1,i1,...,ij
〉

‖ψ̃1
1,i1,...,ij

‖

and each of those states belongs to Sj+1,+.
To prove the third part of Claim 7.5.3, we observe that any vector orthogonal

to |φ1〉 and |φ2〉 is a linear combination of

|φ3〉 = α0|ψ00〉+ β0|ψ01〉 − α1|ψ10〉 − β1|ψ11〉 ,

160 Chapter 7. A New Adversary Method

which, in turn, is a linear combination of vectors

|ψ̃0
i1,...,ij

〉
‖ψ̃0

i1,...,ij
‖
−
|ψ̃1
i1,...,ij

〉
‖ψ̃1

i1,...,ij
‖
,

and
|φ4〉 = β0|ψ00〉 − α0|ψ01〉 − β1|ψ10〉+ α1|ψ11〉 ,

which is a linear combination of vectors

|ψ̃0
1,i1,...,ij

〉
‖ψ̃0

1,i1,...,ij
‖
−
|ψ̃1

1,i1,...,ij
〉

‖ψ̃1
1,i1,...,ij

‖
.

This means that we have |φ3〉 ∈ Sj,− and |φ4〉 ∈ Sj+1,−. 2

7.6 Norms of projected basis states

7.6.1. Claim. Let j < t/2 and xj = x(x− 1) · · · (x− j + 1).

1. ‖ψ̃a,bi1,...,ij‖ =

√
(n− t− a+ b)j

(n− j)j
.

2. ‖ψ̃a,0i1,...,ij‖ ≥
1√
2
‖ψ̃a,1i1,...,ij‖ .

3.
‖ψ̃0,0

i1,...,ij
‖ · ‖ψ̃1,1

i1,...,ij
‖

‖ψ̃0,1
i1,...,ij

‖ · ‖ψ̃1,0
i1,...,ij

‖
= 1 +O

(
1

t

)
.

Proof. Define ta = t− 1 + a. We calculate the vector

|ψ̃a,bi1,...,ij〉 = ΠT⊥j−1,a,b
|ψa,bi1,...,ij〉 .

Both vector |ψa,bi1,...,ij〉 and subspace Tj−1,a,b are fixed by

Uπ|x〉 = |xπ(1) . . . xπ(n)〉

for any permutation π that fixes 1 and maps {i1, . . . , ij} to itself. Hence |ψ̃a,bi1,...,ij〉
is fixed by any such Uπ as well. Therefore, the amplitude of |x〉 with |x| = ta,
x1 = b in |ψ̃a,bi1,...,ij〉 only depends on |{i1, . . . , ij} ∩ {i : xi = 1}|, so |ψ̃a,bi1,...,ij〉 is of
the form

|υa,b〉 =

j∑
m=0

κm
∑

x:|x|=ta,x1=b
|{i1,...,ij}∩{i:xi=1}|=m

|x〉 .

7.6. Norms of projected basis states 161

To simplify the following calculations, we multiply κ0, . . . , κj by the same

constant so that κj = 1/
√(

n−j−1
ta−j−b

)
. Then |ψ̃a,bi1,...,ij〉 remains a multiple of |υa,b〉

but may no longer be equal to |υa,b〉.
κ0, . . . , κj−1 should be such that the state is orthogonal to Tj−1,a,b and, in

particular, orthogonal to the states |ψa,bi1,...,i`〉 for all ` ∈ {0, . . . , j− 1}. By writing

out 〈υa,b|ψa,bi1,...,i`〉 = 0,

j∑
m=`

κm

(
n− j − 1

ta −m− b

)(
j − `

m− `

)
= 0 . (7.20)

To show that, we first note that |ψa,bi1,...,i`〉 is a uniform superposition of all
|x〉 with |x| = ta, x1 = b, xi1 = · · · = xi` = 1. If we want to choose x subject
to those constraints and also satisfying |{i1, . . . , ij} ∩ {i : xi = 1}| = m, then
we have to set xi = 1 for m − ` different i ∈ {i`+1, . . . , ij} and for ta − m − b
different i /∈ {1, i1, . . . , ij}. This can be done in

(
j−`
m−`

)
and

(
n−j−1
ta−m−b

)
different ways,

respectively.
By solving the system of equations (7.20), starting from ` = j − 1 and going

down to ` = 0, we get that the only solution is

κm = (−1)j−m

(
n−j−1
ta−j−b

)(
n−j−1
ta−m−b

)κj . (7.21)

Let |υ′a,b〉 =
|υa,b〉
‖υa,b‖

be the normalized version of |υa,b〉. Then

|ψ̃a,bi1,...,ij〉 = 〈υ′a,b|ψ
a,b
i1,...,ij

〉|υ′a,b〉 ,

‖ψ̃a,bi1,...,ij‖ = 〈υ′a,b|ψ
a,b
i1,...,ij

〉 =
〈υa,b|ψa,bi1,...,ij〉

‖υa,b‖
. (7.22)

We have
〈υa,b|ψa,bi1,...,ij〉 = 1 , (7.23)

because |ψa,bi1,...,ij〉 consists of
(
n−j−1
ta−j−b

)
basis states |x〉, x1 = b, xi1 = · · · = xij = 1,

each having amplitude 1/
√(

n−j−1
ta−j−b

)
in both |υa,b〉 and |ψa,bi1,...,ij〉. Furthermore,

‖υa,b‖2 =

j∑
m=0

(
j

m

)(
n− j − 1

ta −m− b

)
κ2
m

=

j∑
m=0

(
j

m

)(n−j−1
ta−j−b

)2(
n−j−1
ta−m−b

)κ2
j

=

j∑
m=0

(
j

m

) (n−j−1
ta−j−b

)(
n−j−1
ta−m−b

)

162 Chapter 7. A New Adversary Method

=

j∑
m=0

(
j

m

)
(ta −m− b)!(n− ta +m− j − 1 + b)!

(ta − j − b)!(n− ta − 1 + b)!

=

j∑
m=0

(
j

m

)
(ta −m− b)j−m

(n− ta − 1 + b)j−m
. (7.24)

Here the first equality follows because there are
(
j
m

)(
n−j−1
ta−m−b

)
vectors x such that

|x| = ta, x1 = b, xi = 1 for m different i ∈ {i1, . . . , ij} and ta − m different
i /∈ {1, i1, . . . , ij}, the second equality follows from equation (7.21) and the third

equality follows from our choice κj = 1/
√(

n−j−1
ta−j−b

)
.

From equations (7.22), (7.23), and (7.24), ‖ψ̃a,bi1,...,ij‖ = 1√
Aa,b

where Aa,b =∑∞
m=0Ca,b(m) and

Ca,b(m) =

(
j

m

)
(ta −m− b)j−m

(n− ta − 1 + b)j−m
.

The terms with m > j are zero because
(
j
m

)
= 0 for m > j.

We compute the combinatorial sum Aa,b using hyper-geometric series [GKP98,
Section 5.5]. Since

Ca,b(m+ 1)

Ca,b(m)
=

(m− j)(m+ n− ta − j + b)

(m+ 1)(m− ta + b)

is a rational function of m, Aa,b is a hyper-geometric series and its value is

Aa,b =
∞∑
m=0

Ca,b(m) = Ca,b(0) · F
(−j, n− ta − j + b

−ta + b

∣∣∣1) .

We apply Vandermonde’s convolution F (−j, x
y
|1) = (x − y)j/(−y)j [GKP98,

Equation 5.93 on page 212], which holds for every integer j ≥ 0, and obtain

Aa,b =
(ta − b)j

(n− ta − 1 + b)j
· (n− j)j

(ta − b)j
=

(n− j)j

(n− ta − 1 + b)j
.

This proves the first part of the claim, that ‖ψ̃a,bi1,...,ij‖ =
√

(n−ta−1+b)j

(n−j)j .

The second part of the claim follows because

‖ψ̃a,0i1,...,ij‖
‖ψ̃a,1i1,...,ij‖

=

√
(n− ta − 1)j

(n− ta)
j =

√
1− j

n− ta
≥

√
1− n/4

n/2
=

1√
2
,

because j ≤ ta/2, and ta ≤ n/2.

7.6. Norms of projected basis states 163

For the third part,

A1,0A0,1

A0,0A1,1

=
((n− t)j)2

(n− t+ 1)j(n− t− 1)j
=

(n− t)(n− t− j + 1)

(n− t+ 1)(n− t− j)

= 1 +
j

(n− t+ 1)(n− t− j)
,

which is 1 + Θ(j/n2) = 1 +O(1
t
) for t ≤ n/2 and j ≤ t/2. The expression in the

third part of the claim is the square root of this value, hence it is 1 +O(1
t
). 2

7.6.2. Claim. If j < t/2, then βa ≤
√

2t

n
.

Proof. Define ta = t − 1 + a. By Claim 7.6.1, ‖ψ̃a,0i1,...,ij‖ ≥
1√
2
‖ψ̃a,1i1,...,ij‖. That

implies

α′a =

√
n− ta√
n− j

‖ψ̃a,0i1,...,ij‖ ≥
1√
2

√
n− ta√
ta − j

√
ta − j√
n− j

‖ψ̃a,1i1,...,ij‖ =

√
n− ta√

2(ta − j)
β′a

and hence

√
(α′a)

2 + (β′a)
2 ≥ β′a

√
n− ta

2(ta − j)
+ 1 = β′a

√
n+ ta − 2j√
2(ta − j)

.

Then, using j ≤ ta
2
,

βa =
β′a√

(α′a)
2 + (β′a)

2
≤

√
2(ta − j)√
n+ ta − 2j

≤
√

2t

n
,

which we had to prove. 2

7.6.3. Claim. If j < t/2, then |α0β1 − α1β0| = O

(
1√
tn

)
.

Proof. We first estimate

α0β1

α1β0

=
α′0β

′
1

α′1β
′
0

=

√
(n− t+ 1)(t− j)√
(n− t)(t− 1− j)

·
‖ψ̃0,0

i1,...,ij
‖‖ψ̃1,1

i1,...,ij
‖

‖ψ̃1,0
i1,...,ij

‖‖ψ̃0,1
i1,...,ij

‖
.

By Claim 7.6.1, we have

α′0β
′
1

α′1β
′
0

=

(
1 +O

(
1

t

)) √
(n− t+ 1)(t− j)√
(n− t)(t− 1− j)

.

164 Chapter 7. A New Adversary Method

Since
√
t−j√
t−1−j =

√
1 + 1

t−1−j = 1+O(1
t−1−j) = 1+O(1

t
) and, similarly,

√
n−t+1√
n−t =

1 + O(1
n−t) = 1 + O(1

t
), we have shown that α0β1

α1β0
is of order 1 + O(1

t
). We thus

have

|α0β1 − β0α1| = O

(
1

t

)
|β0α1| = O

(
1

t
·
√
t

n

)
= O

(
1√
tn

)
,

thanks to Claim 7.6.2 and the fact that |α1| ≤ 1. 2

7.7 Change of the potential function

Proof of Lemma 7.2.3 We first analyze the case when ρd,1 belongs to the
subspace H4 spanned by |ψab〉 ⊗ |ψ2〉 ⊗ · · · ⊗ |ψk〉, where |ψ2〉, . . . , |ψk〉 are some
vectors from subspaces Rj2 , . . . , Rjk for some j2, . . . , jk, |ψ00〉 is an arbitrary state
in Sj,0,0 for some j ∈ {0, . . . , t−1}, |ψab〉 = U′

ab|ψ00〉 for ab ∈ {01, 10, 11}, and U′
ab

are unitaries from Claim 7.5.2.
We pick an orthonormal basis for H4 that has |φ1〉 and |φ2〉 from Claim 7.5.3

as its first two vectors. Let |φ3〉 and |φ4〉 be the other two basis vectors. We
define

|χi〉 = |φi〉 ⊗ |ψ2〉 ⊗ · · · ⊗ |ψk〉 . (7.25)

By Claim 7.5.3, |χ1〉 belongs to Sj,+ ⊗ Rj2 ⊗ · · · ⊗ Rjk which is contained in
Rmin(j,t/2)+j2+···+jk . Similarly, |χ2〉 belongs to Rmin(j+1,t/2)+j2+···+jk and |χ3〉, |χ4〉
belong to Rt/2+j2+···+jk . If j < t/2, this means that

P (ρd,1) = qj2+···+jk ·
(
qj〈χ1|ρd,1|χ1〉+ qj+1〈χ2|ρd,1|χ2〉

+ q
t
2 〈χ3|ρd,1|χ3〉+ q

t
2 〈χ4|ρd,1|χ4〉

)
. (7.26)

If j ≥ t/2, then |χ1〉, |χ2〉, |χ3〉, |χ4〉 are all in Rt/2+j2+···+jk . This means that
P (ρd,1) = qt/2+j2+···+jk and it remains unchanged by a query.

We define γ` = 〈χ`|ρd,1|χ`〉. Since the support of ρd,1 is contained in the
subspace spanned by |χ`〉, we have γ1 + γ2 + γ3 + γ4 = Tr ρd,1 = 1. This means
that equation (7.26) can be rewritten as

P (ρd,1) = qj+j2+···+jkγ1 + qj+j2+···+jk+1γ2 + qt/2+j2+···+jk(γ3 + γ4)

= qt/2+j2+···+jk + qj2+···+jk(qj+1 − qt/2)(γ1 + γ2)

+ qj2+···+jk(qj − qj+1)γ1 . (7.27)

P (ρ′d,1) can be also expressed in a similar way, with γ′j = 〈χj|ρ′d,1|χj〉 instead
of γj. By combining equations (7.27) for P (ρd,1) and P (ρ′d,1), we get

P (ρ′d,1)− P (ρd,1) = qj+j2+···+jk(qt/2−j − q)(γ1 + γ2 − γ′1 − γ′2)

+ qj+j2+···+jk(q − 1)(γ1 − γ′1) .

7.7. Change of the potential function 165

Therefore, it suffices to bound |γ1 + γ2 − γ′1 − γ′2| and |γ1 − γ′1|. W.l.o.g. we
can assume that ρd,1 is a pure state |ϕ〉〈ϕ|. Let

|ϕ〉 = (a|ψ00〉+ b|ψ01〉+ c|ψ10〉+ d|ψ11〉)⊗ |ψ2〉 ⊗ · · · ⊗ |ψk〉 .

Then the state after a query is

|ϕ′〉 = (a|ψ00〉 − b|ψ01〉+ c|ψ10〉 − d|ψ11〉)⊗ |ψ2〉 ⊗ · · · ⊗ |ψk〉

and we have to bound

γ` − γ′` = |〈χ`|ϕ〉|2 − |〈χ`|ϕ′〉|2

for ` ∈ {1, 2}. For ` = 1, we have

〈χ1|ϕ〉 = aα0 + bβ0 + cα1 + dβ1 .

The expression for ϕ′ is similar, with minus signs in front of bβ0 and dβ1.
Therefore,∣∣|〈χ1|ϕ〉|2 − |〈χ1|ϕ′〉|2

∣∣ ≤ 4|a||b|α0β0 + 4|c||d|α1β1 + 4|a||d|α0β1 + 4|b||c|α1β0 .
(7.28)

Since |a|, |b|, |c|, |d| are all at most ‖ϕ‖ = 1 and α0, α1 are less than 1,
equation (7.28) is at most 8β0 + 8β1. By Claim 7.6.2, we have

|γ1 − γ′1| ≤ 8β0 + 8β1 ≤ 16

√
2t

n
.

We also have

|γ1 + γ2 − γ′1 − γ′2| =
∣∣|〈χ1|ϕ〉|2 + |〈χ2|ϕ〉|2 − |〈χ1|ϕ′〉|2 − |〈χ2|ϕ′〉|2

∣∣
≤ 4|a||d||α0β1 − α1β0|+ 4|b||c||α1β0 − α0β1|

≤ 8|α0β1 − α1β0| ≤
8C√
tn

,

where C is the big-O constant from Claim 7.6.3. By taking into account that
P (ρd,1) ≥ qj+j2+···+jk ,

P (|ϕ′〉〈ϕ′|)− P (|ϕ〉〈ϕ|) ≤

(
(qt/2−j − q)

8C√
tn

+ (q − 1)
16
√

2t√
n

)
P (|ϕ〉〈ϕ|)

≤

(
(qt/2 − 1)

8C√
tn

+ (q − 1)
16
√

2t√
n

)
P (|ϕ〉〈ϕ|) . (7.29)

This proves Lemma 7.2.3 for the case when the support of ρd,1 is contained in
H4. (If ρd,1 is a mixed state, we just express it as a mixture of pure states |ϕ〉.
The bound for ρd,1 follows by summing equations (7.29) for every |ϕ〉.)

166 Chapter 7. A New Adversary Method

For the general case, we divide the entire state space HI into 4-dimensional
subspaces. To do that, we first subdivide HI into subspaces

(Sj,0,0 ⊕ Sj,0,1 ⊕ Sj,1,0 ⊕ Sj,1,1)⊗Rj2 ⊗ · · · ⊗Rjk . (7.30)

Let states |ψ0,0
1,i 〉, i ∈ [dimSj,0,0] form a basis for Sj,0,0 and let |ψa,b1,i 〉 = U′

ab|ψ
0,0
1,i 〉

for (a, b) ∈ {(0, 1), (1, 0), (1, 1)}, where the U′
ab are the unitaries from Claim 7.5.2.

Then the |ψa,b1,i 〉 form a basis for Sj,a,b.
Let |ψl,i〉, i ∈ [dimRjl], form a basis for Rjl , l ∈ {2, . . . , k}. We subdivide

(7.30) into 4-dimensional subspaces Hi1,...,ik spanned by

|ψa,b1,i1
〉 ⊗ |ψ2,i2〉 ⊗ · · · ⊗ |ψk,ik〉 ,

where a, b range over {0, 1}. Let Hall be the collection of all Hi1,...,ik obtained by
subdividing all subspaces (7.30). We claim that

P (ρ) =
∑

H∈Hall

P (ΠHρ) . (7.31)

Equation (7.31) together with equation (7.29) implies Lemma 7.2.3. Since
P (ρ) is defined as a weighted sum of traces Tr ΠRmρ, we can prove equation
(7.31) by showing

Tr ΠRmρd,1 =
∑

H∈Hall

Tr ΠRmΠHρd,1 . (7.32)

To prove (7.32), we define a basis for HI by first decomposing HI into sub-
spaces H ∈ Hall, and then for each subspace, taking the basis consisting of |χ1〉,
|χ2〉, |χ3〉 and |χ4〉 defined by equation (7.25). By Claim 7.5.3, each of the basis
states belongs to one of the subspaces Rm. This means that each Rm is spanned
by some subset of this basis.

The left hand side of (7.32) is equal to the sum of squared projections of ρd,1
to basis states |χj〉 that belong to Rm. Each of the terms Tr ΠRmΠHρd,1 on the
right hand side is equal to the sum of squared projections to basis states |χj〉 that
belong to Rm ∩H. Summing over all H gives the sum of squared projections of
ρd,1 to all |χj〉 that belong to Rm. Therefore, the two sides of (7.32) are equal. 2

7.8 Summary

We have described a new version of the adversary method for quantum query
lower bounds, based on analyzing the subspaces of the problem we want to lower-
bound. We have proved a new quantum direct product theorem for all symmetric
functions. The result is tight up to a constant factor.

Chapter 8

Time-Space Tradeoffs

This chapter is based on the following papers:

[KŠW04] H. Klauck, R. Špalek, and R. de Wolf. Quantum and classical
strong direct product theorems and optimal time-space tradeoffs.
In Proceedings of 45th Annual IEEE Symposium on Foundations
of Computer Science, pages 12–21, 2004. To appear in SIAM
Journal on Computing.

[AŠW06] A. Ambainis, R. Špalek, and R. de Wolf. A new quantum lower
bound method, with applications to direct product theorems and
time-space tradeoffs. In Proceedings of 38th Annual ACM Sym-
posium on Theory of Computing, pages 618–633, 2006.

8.1 Introduction

A time-space tradeoff is a relation between the running time and the space com-
plexity of an algorithm. Basically, the more memory we allow the algorithm
to use the faster it could possibly run. Such tradeoffs between the two main
computational resources are well known classically for problems like sorting, el-
ement distinctness, hashing, etc. Our direct product theorems from Chapter 6
and Chapter 7, apart from answering a fundamental question about the compu-
tational models of (quantum) query complexity and communication complexity,
also imply a number of new and optimal time-space tradeoffs.

Sorting First, we consider the tradeoff between the time T and space S that a
quantum circuit needs for sorting N numbers. Classically, it is well known that
TS = Ω(N2) and that this tradeoff is achievable [Bea91]. The classical lower
bound holds for the most general model of branching programs, and the optimal
classical algorithm works in the (more restrictive) circuit model. In the quantum
case, Klauck [Kla03] constructed a bounded-error quantum algorithm that runs

167

168 Chapter 8. Time-Space Tradeoffs

in time T = O((N logN)3/2/
√
S) for all (logN)3 ≤ S ≤ N

logN
. He also claimed

a lower bound TS = Ω(N3/2), which would be close to optimal for small S but
not for large S. Unfortunately there is an error in the proof presented in [Kla03]
(Lemma 5 appears to be wrong). Here we use our quantum DPT for one threshold
function from Theorem 6.3.6 to prove the tradeoff T 2S = Ω(N3) in the circuit
model. Our lower-bound technique does not work for branching programs. This
tradeoff is tight up to polylogarithmic factors.

Boolean matrix multiplication Secondly, we consider time-space tradeoffs
for the problems of Boolean matrix-vector product and Boolean matrix product.
In the first problem there are an N ×N matrix A and a vector b of dimension N ,
and the goal is to compute the vector c = Ab, where

ci =
N∨
j=1

(A[i, j] ∧ bj) .

In the setting of time-space tradeoffs, the matrix A is fixed and the input is
the vector b. In the problem of matrix multiplication two matrices have to be
multiplied with the same type of Boolean product, and both are inputs.

Time-space tradeoffs for Boolean matrix-vector multiplication have been an-
alyzed in an average-case scenario by Abrahamson [Abr90], whose results give a
worst-case lower bound of TS = Ω(N3/2) for classical algorithms. He conjectured
that a worst-case lower bound of TS = Ω(N2) holds. Using our classical DPT for
OR from Theorem 6.2.4 we are able to confirm this, that is there is a matrix A,
such that computing Ab requires TS = Ω(N2). We also show a lower bound of
T 2S = Ω(N3) for this problem in the quantum case using the quantum DPT for
OR from Theorem 6.3.8. Both bounds are tight (the second within a logarithmic
factor) if T is taken to be the number of queries to the inputs. We also get a
lower bound of T 2S = Ω(N5) for the problem of multiplying two matrices in the
quantum case. This bound is close to optimal for small S; it is open whether it
is close to optimal for large S.

Communication-space tradeoffs Research on classical communication-space
tradeoffs has been initiated by Lam et al. [LTT92] in a restricted setting, and by
Beame et al. [BTY94] in a general model of space-bounded communication com-
plexity. In the setting of communication-space tradeoffs, players Alice and Bob
are modeled as space-bounded circuits, and we are interested in the communica-
tion cost when given particular space bounds.

We consider communication-space tradeoffs for the above problems of Boolean
matrix multiplication. For the problem of computing the matrix-vector product
Alice receives the matrixA (now an input) and Bob the vector b. Beame et al. gave
tight lower bounds for example for the matrix-vector product and matrix product

8.1. Introduction 169

over GF(2), but stated the complexity of Boolean matrix-vector multiplication as
an open problem. Using our quantum DPT for Disjointness from Theorem 6.4.2
we are able to show that any quantum protocol for this problem satisfies C2S =
Ω(N3). This is tight within a polylogarithmic factor. We also get a lower bound
of C2S = Ω(N5) for computing the product of two matrices, which again is tight.

Note that no classical lower bounds for these problems were known previously,
and that finding better classical lower bounds than these remains open. The
possibility to show good quantum bounds comes from the deep relation between
quantum protocols and polynomials implicit in Razborov’s lower bound technique
[Raz03].

Evaluating solutions to systems of linear inequalities Furthermore, we
apply the quantum DPT for symmetric functions from Theorem 7.1.1 to the
following problem. Let A be a fixed N ×N matrix of non-negative integers. Our
inputs are column vectors x = (x1, . . . , xN) and b = (b1, . . . , bN) of non-negative
integers. We are interested in the system

Ax ≥ b

of N linear inequalities, and want to find out which of these inequalities hold (we
could also mix≥, =, and≤, but omit that for ease of notation). Note that if A and
x are Boolean and b = (t, . . . , t), this gives N overlapping t-threshold functions.
Note that the output is an N -bit vector. Again, we want to analyze the tradeoff
between the time T and space S needed to solve this problem. Lower bounds on
T will be in terms of query complexity. For simplicity we omit polylogarithmic
factors in the following discussion.

In the classical world, the optimal tradeoff is TS = N2, independent of the
values in b. The upper bounds are for deterministic algorithms, and the lower
bounds are for 2-sided error algorithms and they follow from our tradeoffs for
Boolean matrix multiplication. In the quantum world the situation is more com-
plex. Let us put an upper bound max{bi} ≤ t. We have the following two regimes
for 2-sided error quantum algorithms:

• Quantum regime. If S ≤ N
t
, then the optimal tradeoff is T 2S = tN3.

• Classical regime. If S > N
t
, then the optimal tradeoff is TS = N2.

In the quantum regime, quantum algorithms performs better than classical,
whereas in the classical regime, they both perform equally well. Our lower bounds
hold even for the constrained situation where b is fixed to the all-t vector, A and
x are Boolean, and A is sparse in having only O(N

S
) nonzero entries in each row.

Stronger lower bound for 1-sided error algorithms Since our quantum
DPT for 1-sided error threshold functions from Theorem 6.3.9 is stronger that

170 Chapter 8. Time-Space Tradeoffs

the 2-sided DPT from Theorem 7.1.1 by an extra factor of t in the exponent, we
obtain the following stronger lower bound for 1-sided error algorithms:

• If t ≤ S ≤ N
t2

, then the tradeoff for 1-sided error algorithms is T 2S ≥ t2N3.

• If S > N
t2

, then the optimal tradeoff for 1-sided error algorithms is TS = N2.

We do not know whether the lower bound in the first case is optimal (probably
it is not), but note that it is stronger than the optimal bounds that we have for
2-sided error algorithms. This is the first separation of 2-sided and 1-sided error
algorithms in the context of quantum time-space tradeoffs. Strictly speaking,
there is a quadratic gap for OR, but space log n suffices for the fastest 1-sided
and 2-sided error algorithms so there is no real tradeoff in that case.

8.1.1. Remark. The time-space tradeoffs for 2-sided error algorithms for Ax ≥ b
similarly hold for a system of N equalities, Ax = b. The upper bound clearly
carries over, while the lower holds for equalities as well, because our DPT from
Theorem 7.1.1 holds even under the promise that the input has weight t or t− 1.
In contrast, the stronger 1-sided error time-space tradeoff does not automatically
carry over to systems of equalities, because we do not know how to prove the
DPT from Theorem 6.3.9 under this promise.

8.2 Preliminaries

Circuit model For investigating time-space tradeoffs we use the circuit model.
A circuit accesses its input via an oracle like a query algorithm; see Section 1.2.2.
Time corresponds to the number of gates in the circuit. We will, however, usually
consider the number of queries to the input, which is obviously a lower bound on
time. A quantum circuit uses space S if it works with S qubits only. We require
that the outputs are made at predefined gates in the circuit, by writing their
value to some extra qubits that may not be used later on. Similar definitions are
made for classical circuits.

Communicating quantum circuits In the model of quantum communica-
tion complexity, two players Alice and Bob compute a function f on distributed
inputs x and y. The complexity measure of interest in this setting is the amount
of communication. The players follow some predefined protocol that consists of
local unitary operations, and the exchange of qubits. The communication cost
of a protocol is the maximal number of qubits exchanged for any input. In
the standard model of communication complexity, Alice and Bob are computa-
tionally unbounded entities, but we are also interested in what happens if they
have bounded memory, that is they work with a bounded number of qubits. To
this end we model Alice and Bob as communicating quantum circuits, following
Yao [Yao93].

8.3. Time-space tradeoff for sorting 171

A pair of communicating quantum circuits is actually a single quantum circuit
partitioned into two parts. The allowed operations are local unitary operations
and access to the inputs that are given by oracles. Alice’s part of the circuit
may use oracle gates to read single bits from her input, and Bob’s part of the
circuit may do so for his input. The communication C between the two parties is
simply the number of wires carrying qubits that cross between the two parts of
the circuit. A pair of communicating quantum circuits uses space S, if the whole
circuit works on S qubits.

In the problems we consider, the number of outputs is much larger than the
memory of the players. Therefore we use the following output convention. The
player who computes the value of an output sends this value to the other player
at a predetermined point in the protocol. In order to make the models as general
as possible, we furthermore allow the players to do local measurements, and to
throw qubits away as well as pick up some fresh qubits. The space requirement
only demands that at any given time no more than S qubits are in use in the
whole circuit.

A final comment regarding upper bounds: Buhrman et al. [BCW98] showed
how to run a query algorithm in a distributed fashion with small overhead in
the communication. In particular, if there is a T -query quantum algorithm com-
puting N -bit function f , then there is a pair of communicating quantum circuits
with O(T logN) communication that computes f(x ∧ y) with the same success
probability. We refer to the book of Kushilevitz and Nisan [KN97] for more on
communication complexity in general, and to the surveys [Kla00, Buh00, Wol02]
for more on its quantum variety.

8.3 Time-space tradeoff for sorting

We will now use our strong direct product theorem to get near-optimal time-space
tradeoffs for quantum circuits for sorting. In our model, the numbers a1, . . . , aN
that we want to sort can be accessed by means of queries, and the number of
queries lower-bounds the actual time taken by the circuit. The circuit has N
output gates and in the course of its computation outputs the N numbers in
sorted (say, descending) order, with success probability at least 2

3
.

8.3.1. Theorem. Every bounded-error quantum circuit for sorting N numbers
that uses T queries and space S satisfies T 2S = Ω(N3).

Proof. We slice the circuit along the time-axis into L = T/α
√
SN slices, each

containing T
L

= α
√
SN queries. Each such slice has a number of output gates.

Consider any slice. Suppose it contains output gates i, i + 1, . . . , i + k − 1, for
i ≤ N

2
, so it is supposed to output the ith up to i+ k − 1st largest elements of its

input. We want to show that k = O(S). If k ≤ S then we are done, so assume
k > S. We can use the slice as a k-threshold algorithm on N

2
bits, as follows. For

172 Chapter 8. Time-Space Tradeoffs

an N
2
-bit input x, construct a sorting input by taking i−1 copies of the number 2,

the N
2

bits in x, and N
2
− i+ 1 copies of the number 0, and append their position

behind the numbers.

Consider the behavior of the sorting circuit on this input. The first part of
the circuit has to output the i − 1 largest numbers, which all start with 2. We
condition on the event that the circuit succeeds in this. It then passes on an
S-qubit state (possibly mixed) as the starting state of the particular slice we are
considering. This slice then outputs the k largest numbers in x with probability
at least 2

3
. Now, consider an algorithm that runs just this slice, starting with

the completely mixed state on S-qubits, and that outputs 1 if it finds k numbers
starting with 1, and outputs 0 otherwise. If |x| < k this new algorithm always
outputs 0 (note that it can verify finding a 1 since its position is appended),
but if |x| = k then it outputs 1 with probability at least σ ≥ 2

3
· 2−S, because

the completely mixed state has overlap 2−S with the good S-qubit state that
would have been the starting state of the slice in the run of the sorting circuit.
On the other hand, the slice has only α

√
SN < α

√
kN queries, so by choosing

α sufficiently small, Theorem 6.3.6 implies σ ≤ 2−Ω(k). Combining our upper
and lower bounds on σ gives k = O(S). Thus we need L = Ω(N

S
) slices, so

T = Lα
√
SN = Ω(N3/2/

√
S). 2

As mentioned, our tradeoff is achievable up to polylogarithmic factors [Kla03].
Interestingly, the near-optimal algorithm uses only a polylogarithmic number of
qubits and otherwise just classical memory. For simplicity we have shown the
lower bound for the case when the outputs have to be made in their natural
ordering only, but we can show the same lower bound for any ordering of the
outputs that does not depend on the input using a slightly different proof.

8.4 Time-space tradeoffs for matrix products

In this section we use our direct product theorems for OR to get near-optimal
time-space tradeoffs for Boolean matrix multiplication.

8.4.1 Construction of a hard matrix

Using the probabilistic method, we construct a hard matrix A, and use it in the
proof of the lower bound.

8.4.1. Fact. For every k = o(N/ logN), there exists an N ×N Boolean matrix
A, such that all rows of A have weight N

2k
, and every set of k rows of A contains

a set R of k
2

rows with the following property: each row in R contains at least
n = N

6k
ones that occur in no other row of R.

8.4. Time-space tradeoffs for matrix products 173

Proof. We pick A randomly by setting N
2k

random positions in each row to 1.
We want to show that with positive probability for all sets of k rows A|i1 , . . . , A|ik
many of the rows A|ij contain at least N

6k
ones that are not ones in any of the

k − 1 other rows.
This probability can be bounded as follows. We will treat the rows as sub-

sets of {1, . . . , N}. A row A|j is called bad with respect to k − 1 other rows
A|i1 , . . . , A|ik−1

, if
∣∣A|j −⋃`A|i`

∣∣ ≤ N
6k

. For fixed i1, . . . , ik−1, the probability that

some A|j is bad with respect to the k − 1 other rows is at most e−Ω(N/k) by the
Chernoff bound and the fact that k rows can together contain at most N

2
elements.

Since k = o(N/ logN) we may assume this probability is at most N−10.
Now fix any set I = {i1, . . . , ik}. The probability that for j ∈ I it holds that

A|j is bad with respect to the other rows is at most N−10, and this also holds,
if we condition on the event that some other rows are bad, since this condition
makes it only less probable that another row is also bad. So for any fixed J ⊂ I
of size k

2
the probability that all rows in J are bad is at most N−5k, and the

probability that there exists such J is at most(
k

k/2

)
N−5k .

Furthermore the probability that there is a set I of k rows for which k
2

are
bad is at most (

N

k

)(
k

k/2

)
N−5k < 1 .

So there is an A as required and we may fix one. 2

8.4.2 Boolean matrix products

First we show a lower bound on the time-space tradeoff for Boolean matrix-vector
multiplication on classical machines.

8.4.2. Theorem. There is an N × N matrix A such that every bounded-error
classical circuit for computing the Boolean matrix-vector product Ab that uses T
queries and space S = o(N/ logN) satisfies TS = Ω(N2).

The bound is tight if T measures queries to the input.

Proof. Fix k = O(S) large enough. Take a hard matrix A from Fact 8.4.1.
Now suppose we are given a circuit with space S that computes the Boolean

product between the rows of A and b in some order. We again proceed by slicing
the circuit into L = T

αN
slices, each containing T

L
= αN queries. Each such slice

has a number of output gates. Consider any slice. Suppose it contains output
gates i1 < . . . < ik ≤ N

2
, so it is supposed to output

∨N
`=1 (A[ij, `] ∧ b`) for all ij

with 1 ≤ j ≤ k.

174 Chapter 8. Time-Space Tradeoffs

Such a slice starts on a classical value of the memory of the circuit, which is
in general a probability distribution on S bits (if the circuit is randomized). We
replace this probability distribution by the uniform distribution on the possible
values of S bits. If the original circuit succeeds in computing the function correctly
with probability at least 1

2
, then so does the circuit slice with its outputs, and

replacing the initial value of the memory by a uniformly random one decreases
the success probability to no less than 1

2
· 2−S.

If we now show that any classical circuit with αN queries that produces the
outputs i1, . . . , ik can succeed only with exponentially small probability in k, we
get that k = O(S), and hence T

αN
· O(S) ≥ N , which gives the claimed lower

bound for the time-space tradeoff.
Each set of k outputs corresponds to k rows of A, which contain N

2k
ones each.

Thanks to the construction of A there are k
2

rows among these, such that N
6k

of
the ones in each such row are in position where none of the other contains a
one. So we get k

2
sets of N

6k
positions that are unique to each of the k

2
rows. The

inputs for b will be restricted to contain ones only at these positions, and so the
algorithm naturally has to solve k

2
independent OR problems on n = N

6k
bits each.

By Theorem 6.2.4, this is only possible with αN queries if the success probability
is exponentially small in k. 2

An absolutely analogous construction can be done in the quantum case. Using
circuit slices of length α

√
NS and Theorem 6.3.8 we can prove the following:

8.4.3. Theorem. There is an N × N matrix A such that every bounded-error
quantum circuit for computing the Boolean matrix-vector product Ab that uses T
queries and space S = o(N/ logN) satisfies T 2S = Ω(N3).

Note that this is tight within a logarithmic factor (that is needed to improve
the success probability of Grover search).

8.4.4. Theorem. Every bounded-error classical circuit for computing the N×N
Boolean matrix product AB that uses T queries and space S satisfies TS = Ω(N3).

While this is near-optimal for small S, it is probably not tight for large S, a
likely tight tradeoff being T 2S = Ω(N6). It is also no improvement compared to
Abrahamson’s average-case bounds [Abr90].

Proof. Suppose that S = o(N), otherwise the bound is trivial, since time N2

is always needed. We can proceed similar to the proof of Theorem 8.4.2. We
slice the circuit so that each slice has only αN queries. Suppose a slice makes
k outputs. We are going to restrict the inputs to get a direct product problem
with k instances of size N

k
each, hence a slice with αN queries has exponentially

small success probability in k and can thus produce only O(S) outputs. Since
the overall number of outputs is N2 we get the tradeoff TS = Ω(N3).

8.5. Communication-space tradeoffs 175

Suppose a circuit slice makes k outputs, where an output labeled (i, j) needs
to produce the vector product of the ith row A|i of A and the jth column B|j of
B. We may partition the set {1, . . . , N} into k mutually disjoint subsets U(i, j)
of size N

k
, each associated to an output (i, j).

Assume that there are ` outputs (i, j1), . . . , (i, j`) involving A|i. Each such
output is associated to a subset U(i, jt), and we set A|i to zero on all positions
that are not in any of these subsets, and to one on all positions that are in one
of these. When there are ` outputs (i1, j), . . . , (i`, j) involving B|j, we set B|j to
zero on all positions that are not in any of the corresponding subsets, and allow
the inputs to be arbitrary on the other positions.

If the circuit computes on these restricted inputs, it actually has to compute
k instances of OR of size n = N

k
in B, for it is true that A|i and B|j contain a

single block of size N
k

in which A|i contains only ones, and B|j free input bits, if
and only if (i, j) is one of the k outputs. Hence the strong direct product theorem
is applicable. 2

The application to the quantum case is analogous.

8.4.5. Theorem. Every bounded-error quantum circuit for computing the N×N
Boolean matrix product AB that uses T queries and space S satisfies T 2S =
Ω(N5).

If S = O(logN), then N2 applications of Grover search can compute AB
with T = O(N2.5 logN). Hence our tradeoff is near-optimal for small S. We do
not know whether it is optimal for large S.

8.5 Communication-space tradeoffs

In this section we use the strong direct product theorem for quantum commu-
nication from Theorem 6.4.2 to prove communication-space tradeoffs. We later
show that these are close to optimal.

8.5.1. Theorem. Every bounded-error quantum protocol for computing the N-
dimensional Boolean matrix-vector product in which Alice and Bob have bounded
space S satisfies C2S = Ω(N3).

Proof. In a protocol, Alice receives a matrix A, and Bob a vector b as inputs.
Given a circuit that multiplies these with communication C and space S, we
again proceed to slice it. This time, however, a slice contains a limited amount
of communication. Recall that in communicating quantum circuits the communi-
cation corresponds to wires carrying qubits that cross between Alice’s and Bob’s
circuits. Hence we may cut the circuit after α

√
NS qubits have been commu-

nicated and so on. Overall there are C/α
√
NS circuit slices. Each starts with

176 Chapter 8. Time-Space Tradeoffs

an initial state that may be replaced by the completely mixed state at the cost
of decreasing the success probability to 1

2
· 2−S. We want to employ the direct

product theorem for quantum communication complexity to show that a proto-
col with the given communication has success probability at most exponentially
small in the number of outputs it produces, and so a slice can produce at most
O(S) outputs. Combining these bounds with the fact that N outputs have to be
produced gives the tradeoff.

To use the direct product theorem we restrict the inputs in the following way.
Suppose a protocol makes k outputs. We partition the vector b into k blocks of
size N

k
, and each block is assigned to one of the k rows of A for which an output is

made. This row is made to contain zeroes outside of the positions belonging to its
block, and hence we arrive at a problem where Disjointness has to be computed
on k instances of size N

k
. With communication α

√
kN , the success probability

must be exponentially small in k due to Theorem 6.4.2. Hence k = O(S) is an
upper bound on the number of outputs produced. 2

8.5.2. Theorem. Every bounded-error quantum protocol for computing the N-
dimensional Boolean matrix product in which Alice and Bob have bounded space
S satisfies C2S = Ω(N5).

Proof. The proof uses the same slicing approach as in the other tradeoff results.
Note that we can assume that S = o(N), since otherwise the bound is trivial.
Each slice contains communication α

√
NS, and as before a direct product result

showing that k outputs can be computed only with success probability expo-
nentially small in k leads to the conclusion that a slice can only compute O(S)
outputs. Therefore (C/α

√
NS) ·O(S) ≥ N2, and we are done.

Consider a protocol with α
√
NS qubits of communication. We partition the

universe {1, . . . , N} of the Disjointness problems to be computed into k mutually
disjoint subsets U(i, j) of size N

k
, each associated to an output (i, j), which in

turn corresponds to a row/column pair A|i, B|j in the input matrices A and
B. Assume that there are ` outputs (i, j1), . . . , (i, j`) involving A|i. Each output
is associated to a subset of the universe U(i, jt), and we set A|i to zero on all
positions that are not in one of these subsets. Then we proceed analogously with
the columns of B.

If the protocol computes on these restricted inputs, it has to solve k instances
of Disjointness of size n = N

k
each, since A|i and B|j contain a single block of

size N
k

in which both are not set to 0 if and only if (i, j) is one of the k outputs.
Hence Theorem 6.4.2 is applicable. 2

We now want to show that these tradeoffs are not too far from optimal.

8.5.3. Theorem. There is a bounded-error quantum protocol for computing the
Boolean product between an N×N matrix and an N-dimensional vector that uses

8.5. Communication-space tradeoffs 177

space S and communication C = O((N3/2 log2N)/
√
S). There is a bounded-error

quantum protocol for computing the Boolean product between two N×N matrices
that uses space S and communication C = O((N5/2 log2N)/

√
S).

Proof. We begin by showing a protocol for the following scenario: Alice gets S
vectors x1, . . . , xS of N bits each, Bob gets an N -bit vector y, and they want to
compute the S Boolean inner products between these vectors. The protocol uses
space O(S).

In the following, we interpret Boolean vectors as sets. The main idea is that
Alice can compute the union z of the xi, and then Alice and Bob can find an
element in the intersection of z and y using the protocol for the Disjointness
problem described in [BCW98]. Alice then marks all xi that contain this element
and removes them from z.

A problem with this approach is that Alice cannot store z explicitly, since it
might contain much more than S elements. Alice may, however, store the indices
of those sets xi for which an element in the intersection of xi and y has already
been found, in an array of length S. This array and the input given as an oracle
work as an implicit representation of z.

Now suppose at some point during the protocol the intersection of z and y
has size k. Then Alice and Bob can find one element in this intersection within
O(
√
N/k) rounds of communication in whichO(logN) qubits are exchanged each.

Furthermore in O(
√
Nk) rounds all elements in the intersection can be found. So

if k ≤ S, then all elements are found within communication O(
√
NS logN) and

the problem can be solved completely. On the other hand, if k ≥ S, finding one
element costs O(

√
N/S logN), but finding such an element removes at least one

xi from z, and hence this has to be done at most S times, giving the same overall
communication bound.

It is not hard to see that this process can be implemented with space O(S).
The protocol from [BCW98] is a distributed Grover search that itself uses
only space O(logN). Bob can work as in this protocol. For each search, Alice
has to start with a superposition over all indices in z. This superposition can be
computed from her oracle and her array. In each step she has to apply the Grover
iteration. This can also be implemented from these two resources.

To get a protocol for matrix-vector product, the above procedure is repeated
N
S

times, hence the communication is O(N
S

√
NS log2N), where one logarithmic

factor stems from improving success probability to 1
poly(N)

.

For the product of two matrices, the matrix-vector protocol may be repeated
N times. 2

These near-optimal protocols use only O(logN) qubits, and otherwise just
classical memory.

178 Chapter 8. Time-Space Tradeoffs

8.6 Time-space tradeoff for linear inequalities

Let A be a fixed N × N matrix of non-negative integers and let x, b be two
input vectors of N non-negative integers smaller or equal to t. A matrix-vector
product with upper bound, denoted by y = (Ax)≤b, is a vector y such that yi =
min((Ax)[i], bi). An evaluation of a system of linear inequalities Ax ≥ b is the
N -bit vector of the truth values of the individual inequalities. Here we present
a quantum algorithm for matrix-vector product with upper bound that satisfies
time-space tradeoff T 2S = O(tN3(logN)5). We then use our direct product
theorems to show this is close to optimal.

8.6.1 Classical algorithm

It is easy to prove that matrix-vector products with upper bound t can be com-
puted by a classical algorithm with TS = O(N2 log t). Let S ′ = S

log t
and divide

the matrix A into (N
S′

)2 blocks of size S ′×S ′ each. The output vector is evaluated
row-wise as follows:

1. Clear S ′ counters, one for each row, and read the upper bounds bi.

2. For each block, read S ′ input variables, multiply them by the corresponding
sub-matrix of A, and update the counters, but do not let them grow larger
than bi.

3. Output the counters.

The space used is O(S ′ log t) = O(S) and the total query complexity is T =
O(N

S′
· N
S′
· S ′) = O(N2(log t)/S).

8.6.2 Quantum algorithm

The quantum algorithm Bounded Matrix Product works in a similar way
and it is outlined in Figure 8.1. We compute the matrix product in groups of
S ′ = S

logN
rows, read input variables, and update the counters accordingly. The

advantage over the classical algorithm is that we use faster Grover search and
Quantum Counting for finding nonzero entries.

The uth row is called open if its counter has not yet reached bu. The subrou-
tine Small Matrix Product maintains a set of open rows U ⊆ {1, . . . , S ′}
and counters 0 ≤ yu ≤ bu for all u ∈ U . We process the input x in blocks,
each containing between S ′−O(

√
S ′) and 2S ′ +O(

√
S ′) nonzero numbers at the

positions j where A[u, j] 6= 0 for some u ∈ U . The length ` of such a block is first
found by Quantum Counting and the nonzero input numbers are then found
by Grover search. For each such number, we update all counters yu and close
all rows that have exceeded their threshold bu.

8.6. Time-space tradeoff for linear inequalities 179

Bounded Matrix Product (fixed matrix AN×N , threshold t, input
vectors x and b of dimension N) returns output vector y = (Ax)≤b.

For i = 1, 2, . . . , N
S′

, where S ′ = S
logN

:

1. Run Small Matrix Product on the ith block of S ′ rows of A.

2. Output the S ′ obtained results for those rows.

Small Matrix Product (fixed matrix AS′×N , input vectors xN×1 and
bS′×1) returns yS′×1 = (Ax)≤b.

3. Initialize y := (0, 0, . . . , 0), p := 1, U := {1, . . . , S ′}, and read b.
Let a1×N denote an on-line computed N -bit row-vector with aj = 1
if A[u, j] = 1 for some u ∈ U , and aj = 0 otherwise.

4. While p ≤ N and U 6= ∅, do the following:

(a) Let c̃p,k denote an estimate of cp,k =
∑p+k−1

j=p ajxj; we es-
timate it by computing the median of O(logN) calls to
Quantum Counting ((apxp) . . . (ap+k−1xp+k−1),

√
k).

• Initialize k = S ′.

• While p+ k − 1 < N and c̃p,k < S ′, double k.

• Find by binary search the maximal ` ∈ [k
2
, k] such that

p+ `− 1 ≤ N and c̃p,` ≤ 2S ′.

(b) Use Grover search to find the set J of all positions j ∈
[p, p+ `− 1] such that ajxj > 0.

(c) For all j ∈ J , read xj, and then do the following for all u ∈ U :

• Increase yu by A[u, j]xj.

• If yu ≥ bu, then set yu := bu and remove u from U .

(d) Increase p by `.

5. Return y.

Figure 8.1: Quantum algorithm Bounded Matrix Product

180 Chapter 8. Time-Space Tradeoffs

8.6.1. Theorem. Bounded Matrix Product has bounded error, space com-
plexity O(S), and query complexity T = O(N3/2

√
t · (logN)5/2/

√
S).

Proof. The proof is a generalization of Theorem 8.5.3. The space complexity
of Small Matrix Product is O(S ′ logN) = O(S), because it stores a subset
U ⊆ {1, . . . , S ′}, integer vectors y, b of dimension S ′ with numbers at most t ≤ N ,
the set J of size O(S ′) with numbers at most N , and a few counters. Let us
estimate its query complexity.

Consider the ith block found by Small Matrix Product; let pi be its left
column, let `i be its length, and let Ui be the set of open rows at the beginning
of processing of this block. The scalar product cpi,`i is estimated by Quantum
Counting with

√
`i queries. Finding a proper `i requires O(log `i) iterations.

Let ri be the number of rows closed during processing of this block and let si be
the total number added to the counters for other (still open) rows in this block.
The numbers `i, ri, si are random variables. If we instantiate them at the end of
the quantum subroutine, the following inequalities hold:∑

i

`i ≤ N,
∑
i

ri ≤ S ′, and
∑
i

si ≤ tS ′ .

The iterated Grover search finds ones for two purposes: closing rows and
increasing counters. Since each bi ≤ t, the total cost in the ith block is at most∑rit

j=1O(
√
`i/j) +

∑si

j=1O(
√
`i/j) = O(

√
`irit +

√
`isi) by Corollary 1.3.5. By

the Cauchy-Schwarz inequality, the total number of queries that Small Matrix
Product spends in Grover search is at most

#blocks∑
i=1

(
√
`irit+

√
`isi) ≤

√∑
i

`i

√
t
∑
i

ri +

√∑
i

`i

√∑
i

si

≤
√
N
√
tS ′ +

√
N
√
tS ′ = O(

√
NS ′t) .

The error probability of Grover search can be made polynomially small in
a logarithmic overhead. It remains to analyze the outcome and error probability of
Quantum Counting. Let ci = cpi,`i ∈ [S ′, 2S ′]. By Corollary 1.5.5, Quantum
Counting with

√
`i queries gives an estimate c̃ such that

|c̃− ci| = O
(√

min(ci, `i − ci) + 1
)

= O(
√
ci + 1) = O(

√
S ′)

with probability at least 8
π2 ≈ 0.8. We do it O(logN) times and take the median,

hence we obtain an estimate c̃ of ci with accuracy O(
√
S ′) with polynomially

small error probability. The result of Quantum Counting is compared with
the given threshold, that is with S ′ or 2S ′. Binary search for ` ∈ [k

2
, k] costs

another factor of log k ≤ logN . By the Cauchy-Schwarz inequality, the total

8.6. Time-space tradeoff for linear inequalities 181

number of queries spent in the Quantum Counting is at most (logN)2 times∑
i

√
`i ≤

√∑
i

`i

√∑
i

1 ≤
√
N
√

#blocks ≤
√
N
√
S ′ + t ≤

√
NS ′t ,

because in every block the algorithm closes a row or adds Θ(S ′) in total to the
counters. The number of closed rows is at most S ′ and the number S ′ can be
added at most t times.

The total query complexity of Small Matrix Product is thus O(
√
NS ′t ·

(logN)2) and the total query complexity of Bounded Matrix Product is N
S′

-
times bigger. The overall error probability is at most the sum of the individual
polynomially small error probabilities of the different subroutines, hence it can
be kept below 1

3
. 2

8.6.3 Matching quantum lower bound

Here we use our direct product theorems to lower-bound the quantity T 2S for T -
query, S-space quantum algorithms for systems of linear inequalities. The lower
bound even holds if we fix b to the all-t vector ~t and let A and x be Boolean.

8.6.2. Theorem. Let S ≤ min(O(N
t
), o(N

logN
)). There exists an N ×N Boolean

matrix A such that every 2-sided error quantum algorithm for evaluating a system
Ax ≥ ~t of N inequalities that uses T queries and space S satisfies T 2S = Ω(tN3).

Proof. The proof is a generalization of Theorem 8.4.3.
Using Fact 8.4.1, fix a hard matrix A for k = cS, for some constant c to be

chosen later. Consider a quantum circuit with T queries and space S that solves
the problem with success probability at least 2

3
. We slice the quantum circuit into

disjoint consecutive slices, each containing Q = α
√
tNS queries, where α is the

constant from our direct product theorem (Theorem 7.1.1). The total number of
slices is L = T

Q
. Together, these disjoint slices contain all N output gates. Our

aim below is to show that with sufficiently small constant α and sufficiently large
constant c, no slice can produce more than k outputs. This will imply that the
number of slices is L ≥ N

k
, hence

T = LQ ≥ αN3/2
√
t

c
√
S

.

Now consider any slice. It starts with an S-qubit state that is delivered by
the previous slice and depends on the input, then it makes Q queries and outputs
some ` results that are jointly correct with probability at least 2

3
. Suppose, by

way of contradiction, that ` ≥ k. Then there exists a set of k rows of A such
that our slice produces the k corresponding results (t-threshold functions) with

182 Chapter 8. Time-Space Tradeoffs

probability at least 2
3
. By the above Fact 8.4.1, some set R of k

2
of those rows

has the following property: each row from R contains a set of n = N
6k

= Θ(N
S
)

ones that do not occur in any of the k
2
− 1 other rows of R. By setting all other

N− kn
2

bits of x to 0, we naturally get that our slice, with the appropriate S-qubit
starting state, solves k

2
independent t-threshold functions Thrt,n on n bits each.

(Note that we need t ≤ n
2

= O(N
S
); this follows from our assumption S = O(N

t
)

with appropriately small constant in the O(·).) Now we replace the initial S-qubit
state by the completely mixed state, which has overlap 2−S with every S-qubit
state. This turns the slice into a stand-alone algorithm solving Thr

(k/2)
t,n with

success probability

σ ≥ 2

3
· 2−S .

But this algorithm uses only Q = α
√
tNS = O(αk

√
tn) queries, so our direct

product theorem (Theorem 7.1.1) with sufficiently small constant α implies

σ ≤ 2−Ω(k/2) = 2−Ω(cS/2) .

Choosing c a sufficiently large constant (independent of this specific slice),
our upper and lower bounds on σ contradict. Hence the slice must produce fewer
than k outputs. 2

It is easy to see that the case S ≥ N
t

(equivalently, t ≥ N
S
) is at least as hard as

the S = N
t

case, for which we have the lower bound T 2S = Ω(tN3) = Ω(N4/S),
hence TS = Ω(N2). But that lower bound matches the classical deterministic
upper bound up to a logarithmic factor and hence is essentially tight also for
quantum. We thus have two different regimes for space: for small space, a quan-
tum computer is faster than a classical one in evaluating solutions to systems of
linear inequalities, while for large space it is not.

A similar slicing proof using Theorem 6.3.9 (with each slice of Q = α
√
NS

queries producing at most S
t

outputs) gives the following lower bound on time-
space tradeoffs for 1-sided error algorithms.

8.6.3. Theorem. Let t ≤ S ≤ min(O(N
t2

), o(N
logN

)). There exists an N × N
Boolean matrix A such that every 1-sided error quantum algorithm for evaluating
a system Ax ≥ ~t of N inequalities that uses T queries and space S satisfies
T 2S = Ω(t2N3).

Note that our lower bound Ω(t2N3) for 1-sided error algorithms is higher by
a factor of t than the best upper bound for 2-sided error algorithms. This lower
bound is probably not optimal. If S > N

t2
, then the essentially optimal classical

tradeoff TS = Ω(N2) takes over.

8.7. Summary 183

8.7 Summary

Using the strong direct product theorems from the previous two chapters, we
have derived a series of near-optimal classical and quantum time-space tradeoffs,
and quantum communication-space tradeoffs for sorting, Boolean matrix multi-
plication, and evaluating solutions to systems of linear inequalities. In the latter
problem, we have exhibited a phase-transition between classical and quantum
regimes, and separated 1-sided and 2-sided error quantum algorithms.

Let us mention some open problems. The first is to determine tight time-space
tradeoffs for Boolean matrix product on both classical and quantum computers.
Second, regarding communication-space tradeoffs for Boolean matrix-vector and
matrix product, we did not prove any classical bounds that were better than our
quantum bounds. Klauck [Kla04] proved classical tradeoffs CS2 = Ω(N3) and
CS2 = Ω(N2) for Boolean matrix product and matrix-vector product, respec-
tively, by means of a weak direct product theorem for Disjointness. A classical
strong direct product theorem for Disjointness (with communication bound αkn
instead of our current αk

√
n) would imply optimal tradeoffs, but we do not know

how to prove this at the moment. Finally, it would be interesting to get any lower
bounds on time-space or communication-space tradeoffs for decision problems in
the quantum case, for example for element distinctness (see Section 1.4.1) or ma-
trix verification (see Chapter 4). We currently cannot show quantum time-space
tradeoffs for any decision problem.

Bibliography

[AA03] S. Aaronson and A. Ambainis. Quantum search of spatial regions.
In Proc. of 44th IEEE FOCS, pages 200–209, 2003. 6.1, 6.4.2

[Aar02] S. Aaronson. Quantum lower bound for the collision problem. In
Proc. of 34th ACM STOC, pages 635–642, 2002. 2.7

[Aar04a] S. Aaronson. Limitations of quantum advice and one-way communi-
cation. In Proc. of 19th IEEE Complexity, pages 320–332, 2004. 6.1,
6.1

[Aar04b] S. Aaronson. Lower bounds for local search by quantum arguments.
In Proc. of 36th ACM STOC, pages 465–474, 2004. 2.4

[ABH+02] A. Ambainis, H. Buhrman, P. Høyer, M. Karpinski, and P. Kurur.
Quantum matrix verification. Unpublished Manuscript, 2002. (doc-
ument), 4.1, 4.2, 4.1

[Abr90] K. Abrahamson. A time-space tradeoff for Boolean matrix multi-
plication. In Proc. of 31st IEEE FOCS, pages 412–419, 1990. 8.1,
8.4.2

[ADH97] L. M. Adleman, J. DeMarrais, and M. A. Huang. Quantum com-
putability. SIAM Journal on Computing, 26(5):1524–1540, 1997.
1.2.1

[Amb02] A. Ambainis. Quantum lower bounds by quantum arguments. Jour-
nal of Computer and System Sciences, 64(4):750–767, 2002. Earlier
version in STOC’00. 2.2, 2.3, 2.4, 2.4, 2.4.2, 2.4, 5.1, 5.1, 1, 5.3.6,
7.1

[Amb03] A. Ambainis. Polynomial degree vs. quantum query complexity. In
Proc. of 44th IEEE FOCS, pages 230–239, 2003. 2.4, 2.4.4, 2.4, 2.5,

185

186 Bibliography

2.5.5, 2.7, 2.8, 5.1, 5.1, 5.1, 5.1, 5.1.3, 5.1.5, 5.3.1, 1, 5.3, 5.3.1, 5.5.2,
7.1

[Amb04] A. Ambainis. Quantum walk algorithm for element distinctness. In
Proc. of 45th IEEE FOCS, pages 22–31, 2004. (document), 1.4.1,
1.8, 1.4.2, 1.4.1, 1.4.3, 4.1, 4.2, 4.4.3, 7.1

[Amb05a] A. Ambainis. A new quantum lower bound method, with an appli-
cation to strong direct product theorem for quantum search. quant-
ph/0508200, 2005. 7.1

[Amb05b] A. Ambainis. Polynomial degree and lower bounds in quantum com-
plexity: Collision and element distinctness with small range. Theory
of Computing, 1:37–46, 2005. 2.7, 2.7

[AMO93] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows.
Prentice-Hall, 1993. 3.2

[AS04] S. Aaronson and Y. Shi. Quantum lower bounds for the collision and
the element distinctness problem. Journal of the ACM, 51(4):595–
605, 2004. 2.7, 2.7, 5.4, 7.1

[AŠ06] A. Ambainis and R. Špalek. Quantum algorithms for matching and
network flows. In Proc. of 23rd STACS, pages 172–183, 2006. LNCS
3884. 3

[AŠW06] A. Ambainis, R. Špalek, and R. de Wolf. A new quantum lower
bound method, with applications to direct product theorems and
time-space tradeoffs. In Proc. of 38th ACM STOC, pages 618–633,
2006. 6, 7, 8

[Bay72] R. Bayer. Symmetric binary B-trees: Data structure and mainte-
nance algorithms. Acta Informatica, 1:290–306, 1972. 1.4.1

[BBBV97] H. Bennett, E. Bernstein, G. Brassard, and U. Vazirani. Strengths
and weaknesses of quantum computing. SIAM Journal on Comput-
ing, 26(5):1510–1523, 1997. 2.2, 5.1, 5.1

[BBC+95] A. Barenco, C. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus,
P. Shor, T. Sleator, J. A. Smolin, and H. Weinfurter. Elementary
gates for quantum computation. Physical Review A, 52:3457–3467,
1995. 1.2.1

[BBC+01] R. Beals, H. Buhrman, R. Cleve, M. Mosca, and R. de Wolf. Quan-
tum lower bounds by polynomials. Journal of the ACM, 48(4):778–
797, 2001. Earlier version in FOCS’98. 1.2.2, 1.3.5, 1.5.2, 2.4, 2.6,

Bibliography 187

2.6, 2.6.2, 2.6.3, 2.7, 2.7.1, 4.8, 6.1, 6.1, 6.2.6, 6.2.4, 6.3, 6.3.10, 6.3.3,
7.1, 7.2

[BBHT98] M. Boyer, G. Brassard, P. Høyer, and A. Tapp. Tight bounds on
quantum searching. Fortschritte der Physik, 46(4–5):493–505, 1998.
Earlier version in Physcomp’96. (document), 1.3, 1.3.2, 1.6, 1.3.3,
6.3.2

[BCW98] H. Buhrman, R. Cleve, and A. Wigderson. Quantum vs. classical
communication and computation. In Proc. of 30th ACM STOC,
pages 63–68, 1998. 2.4, 6.1, 6.4.2, 8.2, 8.5

[BCWW01] H. Buhrman, R. Cleve, J. Watrous, and R. de Wolf. Quantum fin-
gerprinting. Physical Review Letters, 87(16):167902, 2001. 1.4.7

[BCWZ99] H. Buhrman, R. Cleve, R. de Wolf, and Ch. Zalka. Bounds for small-
error and zero-error quantum algorithms. In Proc. of 40th IEEE
FOCS, pages 358–368, 1999. 2.7, 6.3.1, 7.1

[BDF+04] A. Berzina, A. Dubrovsky, R. Freivalds, L. Lace, and O. Scegulnaja.
Quantum query complexity for some graph problems. In Proc. of
30th SOFSEM, pages 140–150, 2004. 3.1

[BDH+01] H. Buhrman, Ch. Dürr, M. Heiligman, P. Høyer, F. Magniez, M. San-
tha, and R. de Wolf. Quantum algorithms for element distinctness.
In Proc. of 16th IEEE Complexity, pages 131–137, 2001. (document),
1.3.8, 1.7

[Bea91] P. Beame. A general sequential time-space tradeoff for finding unique
elements. SIAM Journal on Computing, 20(2):270–277, 1991. Earlier
version in STOC’89. 8.1

[Bei93] R. Beigel. The polynomial method in circuit complexity. In Proc. of
8th IEEE Structure in Complexity Theory Conf., pages 82–95, 1993.
2.6

[Bel64] J. S. Bell. On the Einstein-Podolsky-Rosen paradox. Physics, 1:195–
200, 1964. 1.1.1

[Ben89] C. H. Bennett. Time/space tradeoffs for reversible computation.
SIAM Journal of Computing, 4(18):766–776, 1989. 1.2.1

[BFS86] L. Babai, P. Frankl, and J. Simon. Complexity classes in communica-
tion complexity theory. In Proc. of 27th IEEE FOCS, pages 337–347,
1986. 6.1

188 Bibliography

[BH97] G. Brassard and P. Høyer. An exact quantum polynomial-time algo-
rithm for Simon’s problem. In Proc. of 5th Israeli Symp. on Theory
of Computing and Systems, pages 12–23, 1997. 2.7

[BHMT02] G. Brassard, P. Høyer, M. Mosca, and A. Tapp. Quantum ampli-
tude amplification and estimation. In Quantum Computation and
Quantum Information: A Millennium Volume, volume 305 of AMS
Contemporary Mathematics Series, pages 53–74. 2002. (document),
1.3, 1.3.4, 1.3.6, 1.10, 1.5.2, 1.5.3, 1.5.4, 1.5.6, 2.4, 2.7

[BHT97] G. Brassard, P. Høyer, and A. Tapp. Quantum algorithm for the
collision problem. SIGACT News, 28:14–19, 1997. 2.7

[BJKS02a] Z. Bar-Yossef, T. S. Jayram, R. Kumar, and D. Sivakumar. An
information statistics approach to data stream and communication
complexity. In Proc. of 43rd IEEE FOCS, pages 209–218, 2002. 6.1

[BJKS02b] Z. Bar-Yossef, T. S. Jayram, R. Kumar, and D. Sivakumar. Infor-
mation theory methods in communication complexity. In Proc. of
17th IEEE Complexity, pages 93–102, 2002. 6.1

[BNRW05] H. Buhrman, I. Newman, H. Röhrig, and R. de Wolf. Robust quan-
tum algorithms and polynomials. In Proc. of 22nd STACS, pages
593–604, 2005. LNCS 3404. 2.7, 2.7.2, 2.7, 6.1

[Boh13] N. Bohr. On the constitution of atoms and molecules. Philosophical
Magazine, 26:1–25, 476–502, 857–875, 1913. 1

[BPSW05] P. Beame, T. Pitassi, N. Segerlind, and A. Wigderson. A strong
direct product lemma for corruption and the multiparty NOF com-
munication complexity of disjointness. In Proc. of 20th IEEE Com-
plexity, pages 52–66, 2005. 6.1, 6.1, 6.4.2

[Bro24] L. de Broglie. Researches on the quantum theory. PhD thesis, Paris,
1924. 1

[BS04] H. Barnum and M. Saks. A lower bound on the quantum query
complexity of read-once functions. Journal of Computer and Systems
Sciences, 69(2):244–258, 2004. 2.2, 2.3, 2.4, 2.5, 5.1, 5.1, 5.1.5, 5.1,
5.4

[BŠ06] H. Buhrman and R. Špalek. Quantum verification of matrix prod-
ucts. In Proc. of 17th ACM-SIAM SODA, pages 880–889, 2006. 4

[BSS03] H. Barnum, M. Saks, and M. Szegedy. Quantum decision trees and
semidefinite programming. In Proc. of 18th IEEE Complexity, pages
179–193, 2003. 2.2, 2.3, 2.3, 2.3.1, 2.9, 5.1, 5.1, 5.1, 5.3, 5.3.1, 5.3.1

Bibliography 189

[BTY94] P. Beame, M. Tompa, and P. Yan. Communication-space tradeoffs
for unrestricted protocols. SIAM Journal on Computing, 23(3):652–
661, 1994. Earlier version in FOCS’90. 8.1

[Buh00] H. Buhrman. Quantum computing and communication complexity.
EATCS Bulletin, 70:131–141, 2000. 8.2

[BV97] E. Bernstein and U. Vazirani. Quantum complexity theory. SIAM
Journal on Computing, 26(5):1411–1473, 1997. Earlier version in
STOC’93. 2.2.2, 7.4.1

[BW92] C. H. Bennett and S. J. Wiesner. Communication via one- and
two-particle operators on Einstein-Podolsky-Rosen states. Physical
Review Letters, 69(20):2881–2884, 1992. 1.2.2

[BW98] H. Buhrman and R. de Wolf. Lower bounds for quantum search and
derandomization. quant-ph/9811046, 18 Nov 1998. 2.1

[BW02] H. Buhrman and R. de Wolf. Complexity measures and decision tree
complexity: A survey. Theoretical Computer Science, 288(1):21–43,
2002. 2.1, 2.7

[CDNT98] R. Cleve, W. van Dam, M. Nielsen, and A. Tapp. Quantum en-
tanglement and the communication complexity of the inner product
function. In Proc. of 1st NASA QCQC conference, pages 61–74.
Springer, 1998. LNCS 1509. 1.2.2, 6.1

[Cop94] D. Coppersmith. An approximate Fourier transform useful in quan-
tum factoring. IBM technical report RC19642, quant-ph/0201067,
1994. 1.5

[Cop97] D. Coppersmith. Rectangular matrix multiplication revisited. Jour-
nal of Complexity, 13:42–49, 1997. 4.6

[CR92] D. Coppersmith and T. J. Rivlin. The growth of polynomials
bounded at equally spaced points. SIAM Journal on Mathemati-
cal Analysis, 23(4):970–983, 1992. 6.1, 6.3.1, 6.3.1

[CSWY01] A. Chakrabarti, Y. Shi, A. Wirth, and A. Yao. Informational com-
plexity and the direct sum problem for simultaneous message com-
plexity. In Proc. of 42nd IEEE FOCS, pages 270–278, 2001. 6.1

[CW90] D. Coppersmith and S. Winograd. Matrix multiplication via arith-
metic progressions. Journal of symbolic computation, 9:251–280,
1990. Earlier version in STOC’87. 4.1, 4.6

190 Bibliography

[CW00] R. Cleve and J. Watrous. Fast parallel circuits for the quantum
Fourier transform. In Proc. of 41st IEEE FOCS, pages 526–536,
2000. 1.5

[Deu85] D. Deutsch. Quantum theory, the Church-Turing principle, and the
universal quantum Turing machine. Proceedings of the Royal Society,
London, A400:97–117, 1985. 1

[DHHM04] C. Dürr, M. Heiligman, P. Høyer, and M. Mhalla. Quatum query
complexity of some graph problems. In Proc. of 31st ICALP, pages
481–493, 2004. LNCS 3142. 2.4, 3.1

[Din70] E. A. Dinic. Algorithm for solution of a problem of maximum flow
in networks with power estimation. Soviet Mathematics Doklady,
11:1277–1280, 1970. 3.1, 3.6

[DJ92] D. Deutsch and R. Jozsa. Rapid solution of problems by quantum
computation. Proceedings of the Royal Society, London, A439:553–
558, 1992. 1.2.2

[Edm65] J. Edmonds. Paths, trees, and flowers. Canadian Journal of Mathe-
matics, 17:449–467, 1965. (document), 3.1, 3.5, 3.4

[EHK04] M. Ettinger, P. Høyer, and E. Knill. The quantum query complexity
of the hidden subgroup problem is polynomial. Information Process-
ing Letters, 91(1):43–48, 2004. 1.2.2

[Ein05] A. Einstein. On a heuristic viewpoint concerning the production and
transformation of light. Annalen der Physik, 17:132–148, 1905. 1

[EK72] J. Edmonds and R. M. Karp. Theoretical improvement in algo-
rithmic efficiency for network flow problems. Journal of the ACM,
19(2):248–264, 1972. 3.1, 3.6

[EPR35] A. Einstein, B. Podolsky, and N. Rosen. Can quantum-mechanical
description of physical reality be considered complete? Physical
Review, 47:777–780, 1935. 1.1.1, 1.1.3

[ET75] S. Even and R. E. Tarjan. Network flow and testing graph connec-
tivity. SIAM Journal on Computing, 4:507–518, 1975. 3.1, 3.1, 3.6,
3.6.1

[Fey82] R. Feynman. Simulating physics with computers. Internation Jour-
nal of Theoretical Physics, 21(6/7):467–488, 1982. 1

[Fey85] R. Feynman. Quantum mechanical computers. Optics News, 11:11–
20, 1985. 1

Bibliography 191

[FF56] L. R. Ford and D. R. Fulkerson. Maximal flow through a network.
Canadian Journal of Mathematics, 8:399–404, 1956. 3.1

[FGGS98] E. Farhi, J. Goldstone, S. Gutmann, and M. Sipser. A limit on
the speed of quantum computation in determining parity. Physical
Review Letters, 81:5442–5444, 1998. 2.7.1

[FGGS99] E. Farhi, J. Goldstone, S. Gutmann, and M. Sipser. Invariant quan-
tum algorithms for insertion into an ordered list. quant-ph/9901059,
1999. 2.1

[FR99] L. Fortnow and J. D. Rogers. Complexity limitations on quantum
computation. Journal of Computer and Systems Sciences, 59(2):240–
252, 1999. 2.6

[Fre79] R. Freivalds. Fast probabilistic algorithms. In Proc. of 8th Symp.
on Math. Foundations of Computer Science, pages 57–69. Springer
Verlag, 1979. LNCS 74. 4.1, 4.2

[Gab76] H. N. Gabow. An efficient implementation of Edmonds’ algorithm for
maximum matching on graphs. Journal of the ACM, 23(2):221–234,
1976. (document), 3.1, 3.5, 3.4

[GKP98] R. L. Graham, D. E. Knuth, and O. Patashnik. Concrete mathemat-
ics. Addison-Wesley, 1998. 7.6

[GN79] Z. Galil and A. Naamad. Network flow and generalized path com-
pression. In Proc. of 11th ACM STOC, pages 13–26, 1979. 3.1

[GNW95] O. Goldreich, N. Nisan, and A. Wigderson. On Yao’s XOR
lemma. Technical report, ECCC TR–95–050, 1995. Available at
http://www.eccc.uni-trier.de/eccc/. 6.1

[GR98] A. V. Goldberg and S. Rao. Beyond the flow decomposition barrier.
Journal of the ACM, 45(5):783–797, 1998. 3.1, 3.6

[GR99] A. V. Goldberg and S. Rao. Flows in undirected unit capacity net-
works. SIAM Journal on Discrete Mathematics, 12(1):1–5, 1999. 3.1

[Gro96] L. K. Grover. A fast quantum mechanical algorithm for database
search. In Proc. of 28th ACM STOC, pages 212–219, 1996. (docu-
ment), 1, 1.2.2, 1.3, 1.3.2, 1.4, 2.2, 2.7, 5.6, 5.6

[Gro02] L. Grover. Tradeoffs in the quantum search algorithm. quant-
ph/0201152, 2002. 1.3.1

192 Bibliography

[Hei27] W. Heisenberg. Über den anschaulichen Inhalt der quantentheoretis-
chen Kinematik und Mechanik. Zeitschrift für Physik, 43:172–198,
1927. English version: J. A. Wheeler and H. Zurek, Quantum Theory
and Measurement, Princeton Univ. Press, pages 62–84, 1983. 1

[HH99] L. Hales and S. Hallgren. Quantum Fourier sampling simplified. In
Proc. of 31st ACM STOC, pages 330–338, 1999. 1.5

[HK73] J. E. Hopcroft and R. M. Karp. An n5/2 algorithm for maxi-
mum matchings in bipartite graphs. SIAM Journal on Computing,
2(4):225–231, 1973. (document), 3.1, 3.4, 3.4, 3.4.1, 3.2

[HLŠ05] P. Høyer, T. Lee, and R. Špalek. Tight adversary bounds for com-
posite functions. quant-ph/0509067, 2005. 5

[HMW03] P. Høyer, M. Mosca, and R. de Wolf. Quantum search on bounded-
error inputs. In Proc. of 30th ICALP, pages 291–299, 2003. LNCS
2719. 2.4, 2.7, 4.7, 5.4, 7.1

[HNS02] P. Høyer, J. Neerbek, and Y. Shi. Quantum complexities of or-
dered searching, sorting, and element distinctness. Algorithmica,
34(4):429–448, 2002. Special issue on Quantum Computation and
Cryptography. 2.1, 2.2, 2.3, 2.3.2, 5.1, 5.1, 5.3.6

[Hol73] A. S. Holevo. Bounds for the quantity of information transmitted
by a quantum communication channel. Problems in Information
Transmission, 9:177–183, 1973. 1.2.2

[HŠ05] P. Høyer and R. Špalek. Lower bounds on quantum query complexity.
EATCS Bulletin, 87:78–103, October, 2005. 2, 5, 5.1

[HW02] P. Høyer and R. de Wolf. Improved quantum communication com-
plexity bounds for disjointness and equality. In Proc. of 19th STACS,
pages 299–310. Springer, 2002. LNCS 2285. 6.1

[Ind05] P. Indyk. Output-sensitive algorithm for matrix multiplication.
Manuscript, 2005. 4.1, 4.6

[JLB05] M. B. Jacokes, A. J. Landahl, and E. Brookes. An improved quantum
algorithm for searching an ordered list. Manuscript, 2005. 2.1

[Kar74] A. V. Karzanov. Determining the maximal flow in a network by the
method of preflows. Soviet Mathematics Doklady, 15:434–437, 1974.
3.1

Bibliography 193

[KL98] D. R. Karger and M. S. Levine. Finding maximum flows in undi-
rected graphs seems easier than bipartite matching. In Proc. of 30th
ACM STOC, pages 69–78, 1998. 3.1

[Kla00] H. Klauck. Quantum communication complexity. In Proc. of Work-
shop on Boolean Functions and Applications at 27th ICALP, pages
241–252, 2000. 8.2

[Kla03] H. Klauck. Quantum time-space tradeoffs for sorting. In Proc. of
35th ACM STOC, pages 69–76, 2003. 8.1, 8.3

[Kla04] H. Klauck. Quantum and classical communication-space tradeoffs
from rectangle bounds. In Proc. of 24th FSTTCS, pages 384–395,
2004. 8.7

[KN97] E. Kushilevitz and N. Nisan. Communication Complexity. Cam-
bridge University Press, 1997. 8.2

[KNP05] P. Koiran, V. Nesme, and N. Portier. A quantum lower bound for
the query complexity of Simon’s problem. In Proc. of 32nd ICALP,
pages 1287–1298, 2005. LNCS 3580. 2.7

[Knu03] D. E. Knuth. Combinatorial matrices. In Selected Papers on Discrete
Mathematics, volume 106 of CSLI Lecture Notes. Stanford Univer-
sity, 2003. 1.4.8, 6.4.1

[Kre95] I. Kremer. Quantum communication. Master’s thesis, Hebrew Uni-
versity, Computer Science Department, 1995. 6.4.1

[KS92] B. Kalyanasundaram and G. Schnitger. The probabilistic commu-
nication complexity of set intersection. SIAM Journal on Discrete
Mathematics, 5(4):545–557, 1992. Earlier version in Structures’87.
6.1

[KŠW04] H. Klauck, R. Špalek, and R. de Wolf. Quantum and classical strong
direct product theorems and optimal time-space tradeoffs. In Proc.
of 45th IEEE FOCS, pages 12–21, 2004. 6, 8

[Kut05] S. Kutin. Quantum lower bound for the collision problem with small
range. Theory of Computing, 1:29–36, 2005. 2.7

[LLS06] S. Laplante, T. Lee, and M. Szegedy. The quantum adversary
method and classical formula size lower bounds. Computational
Complexity, 15:163–196, 2006. Earlier version in Complexity’05. 2.5,
2.5, 2.5.5, 2.7, 5.1, 5.1, 5.1.3, 5.1.5, 5.5.3, 5.5.8

194 Bibliography

[LM04] S. Laplante and F. Magniez. Lower bounds for randomized and
quantum query complexity using Kolmogorov arguments. In Proc.
of 19th IEEE Complexity, pages 294–304, 2004. 2.5.3, 5.1, 5.1, 5.1,
5.1.1, 5.1, 5.1, 5.2, 1, 5.3.1, 5.3.1, 2, 5.3, 5.3.3, 5.3.10, 5.3.3, 5.4

[Lov00] L. Lovász. Semidefinite programs and combinatorial optimiza-
tion. http://research.microsoft.com/users/lovasz/semidef.

ps, 2000. 5.2, 5.3.2, 5.3.2

[LŠ05] S. Laplante and R. Špalek. Adversary type circuit depth lower
bounds. Unpublished manuscript, 2005. 5.1

[LTT92] T.W. Lam, P. Tiwari, and M. Tompa. Trade-offs between com-
munication and space. Journal of Computer and Systems Sciences,
45(3):296–315, 1992. Earlier version in STOC’89. 8.1

[LV97] M. Li and P. M. B. Vitányi. An Introduction to Kolmogorov Com-
plexity and its Applications. Springer, Berlin, second edition, 1997.
5.2, 5.2, 5.3.3

[Mat90] R. Mathias. The spectral norm of a nonnegative matrix. Linear
Algebra and its Applications, 139:269–284, 1990. 2.4.1, 5.3.2

[MKM78] V. M. Malhotra, P. Kumar, and S. N. Maheshwari. An O(V 3) al-
gorithm for finding the maximum flows in networks. Information
Processing Letters, 7(6):277–278, 1978. 3.1

[MN05] F. Magniez and A. Nayak. Quantum complexity of testing group
commutativity. In Proc. of 32nd ICALP, pages 1312–1324, 2005.
LNCS 3580. 4.4.3

[MS04] M. Mucha and P. Sankowski. Maximum matchings via Gaussian
elimination. In Proc. of 45th IEEE FOCS, pages 248–255, 2004. 3.1

[MSS05] F. Magniez, M. Santha, and M. Szegedy. Quantum algorithms for
the triangle problem. In Proc. of 16th ACM-SIAM SODA, pages
1109–1117, 2005. 1.4.2, 2.8, 4.4.3, 5.4, 7.1

[MV80] S. Micali and V. V. Vazirani. An O(
√
|V | · |E|) algorithm for finding

maximum matching in general graphs. In Proc. of 21st IEEE FOCS,
pages 17–27, 1980. 3.1, 3.1, 3.5

[NC00] M. A. Nielsen and I. L. Chuang. Quantum Computation and Quan-
tum Information. Cambridge University Press, 2000. 1

[Nis91] N. Nisan. CREW PRAMs and decision trees. SIAM Journal on
Computing, 20(6):999–1007, 1991. Earlier version in STOC’89. 6.2.6

http://research.microsoft.com/users/lovasz/semidef.ps
http://research.microsoft.com/users/lovasz/semidef.ps

Bibliography 195

[NRS94] N. Nisan, S. Rudich, and M. Saks. Products and help bits in decision
trees. In Proc. of 35th IEEE FOCS, pages 318–329, 1994. 6.1

[NS94] N. Nisan and M. Szegedy. On the degree of Boolean functions as real
polynomials. Computational Complexity, 4(4):301–313, 1994. Earlier
version in STOC’92. 2.6, 2.7, 6.1, 6.2.4

[NW99] A. Nayak and F. Wu. The quantum query complexity of approximat-
ing the median and related statistics. In Proc. of 31st ACM STOC,
pages 384–393, 1999. 2.4

[Pat92] R. Paturi. On the degree of polynomials that approximate symmetric
Boolean functions. In Proc. of 24th ACM STOC, pages 468–474,
1992. 2.7, 6.3.1, 6.3.1, 6.3.3, 7.2

[Pla01] M. Planck. On the law of distribution of energy in the normal spec-
trum. Annalen der Physik, 4:553, 1901. 1

[PRW97] I. Parnafes, R. Raz, and A. Wigderson. Direct product results and
the GCD problem, in old and new communication models. In Proc.
of 29th ACM STOC, pages 363–372, 1997. 6.1

[Raz87] A. A. Razborov. Lower bounds for the size of circuits of bounded
depth with basis {&,⊕}. Math. Notes Acad. Sci. USSR, 41(4):333–
338, 1987. 1.2.1

[Raz92] A. Razborov. On the distributional complexity of disjointness. The-
oretical Computer Science, 106(2):385–390, 1992. 6.1

[Raz03] A. Razborov. Quantum communication complexity of symmetric
predicates. Izvestiya of the Russian Academy of Science, mathemat-
ics, 67(1):159–176, 2003. English version in quant-ph/0204025. 6.1,
6.1, 6.4, 6.4.1, 8.1

[Reg97] K. Regan. Polynomials and combinatorial definitions of languages. In
Complexity Theory Retrospective II, pages 261–293. Springer-Verlag,
1997. 2.6

[Riv90] T. J. Rivlin. Chebyshev Polynomials: From Approximation Theory
to Algebra and Number Theory. Wiley-Interscience, second edition,
1990. 6.3.1

[San95] M. Santha. On the Monte Carlo decision tree complexity of read-
once formulae. Random Structures and Algorithms, 6(1):75–87, 1995.
2.8

196 Bibliography

[Sha01] R. Shaltiel. Towards proving strong direct product theorems. In
Proc. of 16th IEEE Complexity, pages 107–119, 2001. 6.1, 6.2.1,
6.2.2, 6.5

[Shi02] Y. Shi. Quantum lower bounds for the collision and the element
distinctness problems. In Proc. of 43rd IEEE FOCS, pages 513–519,
2002. 2.7

[Sho97] P. Shor. Polynomial-time algorithms for prime factorization and dis-
crete logarithms on a quantum computer. SIAM Journal on Com-
puting, 26(5):1484–1509, 1997. Earlier version in FOCS’94. 1, 1.5,
5.6, 5.6

[Sim97] D. R. Simon. On the power of quantum computation. SIAM Journal
on Computing, 26(5):1474–1483, 1997. 2.7

[Smo87] R. Smolensky. Algebraic methods in the theory of lower bounds
for Boolean circuit complexity. In Proc. of 19th ACM STOC, pages
77–82, 1987. 1.2.1

[Sni85] M. Snir. Lower bounds on probabilistic decision trees. Theoretical
Computer Science, 38:69–82, 1985. 2.8

[SS04] M. Santha and M. Szegedy. Quantum and classical query complexi-
ties of local search are polynomially related. In Proc. of 36th ACM
STOC, pages 494–501, 2004. 2.4

[ŠS06] R. Špalek and M. Szegedy. All quantum adversary methods are
equivalent. Theory of Computing, 2(1):1–18, 2006. Earlier version in
ICALP’05. 2.5.3, 5, 5.1.1, 5.1.5

[Str69] V. Strassen. Gaussian elimination is not optimal. Numerische Math-
ematik, 13:354–356, 1969. 4.1

[SW86] M. Saks and A. Wigderson. Probabilistic Boolean decision trees and
the complexity of evaluating games trees. In Proc. of 27th IEEE
FOCS, pages 29–38, 1986. 2.8

[Sze03] M. Szegedy. On the quantum query complexity of detecting triangles
in graphs. quant-ph/0310107, 2003. 5.1, 5.4

[Sze04] M. Szegedy. Quantum speed-up of Markov chain based algorithms.
In Proc. of 45th IEEE FOCS, pages 32–41, 2004. (document), 1.4.2,
1.9, 1.4.6, 1.4.2, 1.4.2, 4.1, 4.4.3, 4.6.2

Bibliography 197

[VV86] L. G. Valiant and V. V. Vazirani. NP is as easy as detecting unique
solutions. Theoretical Computer Science, 47(1):85–93, 1986. 1.4.1,
4.4.3

[Wol02] R. de Wolf. Quantum communication and complexity. Theoretical
Computer Science, 287(1):337–353, 2002. 2.9, 8.2

[Yao77] A. C-C. Yao. Probabilistic computations: Toward a unified measure
of complexity. In Proc. of 18th IEEE FOCS, pages 222–227, 1977.
6.2, 1

[Yao82] A. C-C. Yao. Theory and applications of trapdoor functions. In
Proc. of 23rd IEEE FOCS, pages 80–91, 1982. 6.1

[Yao93] A. C-C. Yao. Quantum circuit complexity. In Proc. of 34th IEEE
FOCS, pages 352–360, 1993. 6.4.1, 8.2

[YZ04] R. Yuster and U. Zwick. Fast sparse matrix multiplication. In Proc.
of 12th RSA, pages 604–615, 2004. 4.6

[Zal99] Ch. Zalka. Grover’s quantum searching algorithm is optimal. Phys-
ical Review A, 60:2746–2751, 1999. 2.5

[Zha05] S. Zhang. On the power of Ambainis’s lower bounds. Theoreti-
cal Computer Science, 339(2–3):241–256, 2005. Earlier version in
ICALP’04. 2.4, 2.4.4, 2.5.3, 3.1, 5.1, 5.1, 5.1, 5.1, 5.3.1, 5.3.1, 5.4

[Zha06] S. Zhang. New upper and lower bounds for randomized and quantum
local search. In Proc. of 38th ACM STOC, pages 634–643, 2006. 2.4

List of symbols

An×m matrix of dimensions n×m
A|R, A|S, A|SR sub-matrix indexed by rows R (resp. columns C, resp. both),

Definition 4.3.1
A ≥ 0 A has non-negative entries
A � 0 A is positive semidefinite, Definition 5.2.3
AB standard matrix product
A ·B scalar product of two matrices as vectors
A ◦B entry-wise product of two matrices
Adv(f) adversary bound for f , Definition 2.5.1
Advα(f) adversary bound for f with costs α, Definition 5.1.4
bs(f) block sensitivity of f , Definition 2.5.4
Cz(f),C(f) z-certificate complexity of f (resp. total), Definition 2.5.2
cx(M), c(M) `2-norm of the xth column (maximal column), Section 5.3.1

deg(f), d̃eg(f) degree and approximate degree of f , Definition 2.6.1
Di zero-one matrix that is 1 iff xi 6= yi
δG, δ(G) spectral gap of graph G, Definition 1.4.4
Disjn disjointness communication problem on n bits, above Proposition 6.1.7
ei n-bit string with exactly one 1 at position i
F zero-one matrix that is 1 iff f(x) 6= f(y)
f ◦ g composition of functions f and g

f (k) k independent instances of f
Γ,Γf ,Γf adversary matrix (for function f), equation (2.1)
Γi adversary matrix on entries that differ in the ith bit, equation (2.2)
H Hilbert space
H Hadamard operator, equation (1.4)
I identity
J(n, k) Johnson graph on n vertices, Definition 1.4.1
K(x|y) prefix-free Kolmogorov complexity of x given y, Definition 5.2.2
λ(M) spectral norm of M , that is the largest eigenvalue of M , Lemma 2.4.1

199

200 List of symbols

[n] {1, 2, . . . , n}
N natural numbers
O(f(x)) at most constant ·f(x)
Ω(f(x)) at least constant ·f(x)
Ox,O

′
x oracle operators on input x, equations (1.8) and (1.7)

ORn OR function on n bits
ΠS projector into subspace S
QE(f) exact quantum query complexity of f
Qε(f), Q2(f) ε-error quantum query complexity of f (resp. 1

3
-error), Definition 1.2.1

R real numbers
R2(f) bounded-error classical query complexity of f , above Proposition 6.1.3
rx(M), r(M) `2-norm of the xth row (maximal row), Section 5.3.1

S set complement of S
Θ(f(x)) roughly constant ·f(x)
Thrt,Thrt,n t-threshold function (on n bits), Corollary 2.4.3
TrA trace of A
Ui unitary operator
|x| Hamming weight of x, that is the number of ones
[x, y] closed real interval of numbers between x and y
X,Y,Z Pauli operators, equation (1.3)

Samenvatting

Computers zijn fysieke objecten en dus onderhevig aan de wetten van de natuur.
Hoewel de meeste computers tegenwoordig zijn opgebouwd uit halfgeleiders die
onderhevig zijn aan quantummechanische effecten, zijn hun berekeningen volledig
klassiek—op elk moment is de computer in een specifieke klassieke toestand en
de stappen van de berekening zijn volledig deterministisch. Quantum computers
daarentegen zijn computers die juist quantumeffecten proberen te gebruiken voor
hun berekeningen. In tegenstelling tot klassieke computers kan een quantum com-
puter op elk moment in een superpositie van verschillende klassieke toestanden
tegelijk zijn, en verschillende berekeningen in parallel uitvoeren.

In 1994 vond Peter Shor [Sho97] een efficiënt quantum algoritme voor het
factoriseren van grote getallen, een probleem waarvoor geen efficiënt klassiek
algoritme bekend is. In 1996 vond Lov Grover [Gro96] een ander belangrijk
quantum algoritme, dat een ongeordende database kwadratisch sneller kan door-
zoeken dan het best mogelijke klassieke algoritme. Daarna is het vakgebied van
de quantum computing sterk gegroeid. Andere belangrijke ontdekkingen zijn ook
gedaan in aanverwante gebieden zoals quantum cryptografie, informatietheorie,
error-correcting codes, en communicatie complexiteit.

In dit proefschrift onderzoeken we de kracht van quantum computers. We
presenteren enkele nieuwe quantum algoritmes, verbeteren technieken om onder-
grenzen te bewijzen, en bewijzen de eerste time-space tradeoffs voor quantum
computers.

Deel I: Algoritmes

Het quantum zoekalgoritme van Grover is breed toepasbaar en kan als subroutine
worden gebruikt in vele klassieke algoritmes. Wij passen het toe op de volgende
graafproblemen: het vinden van een maximale matching en het vinden van een
maximale stroom (flow) in een integer netwerk. In beide gevallen is ons quantum
algoritme polynomiaal sneller dan het beste bekende klassieke algoritme.

201

202 Samenvatting

We houden ons ook bezig met de vraag of het product van twee gegeven n×n
matrices gelijk is aan een derde gegeven matrix. Dit is een makkelijker probleem
dan het berekenen van het product van de twee matrices zelf, aangezien er een
klassiek algoritme bestaat voor het verificatie probleem in tijd O(n2), terwijl het
beste bekende algoritme voor het vermenigvuldigen van twee matrices O(n2.376)
tijd gebruikt. Ons quantum algoritme voor de verificatie loopt in tijd O(n5/3) en
is dus polynomiaal sneller dan het beste klassieke algoritme.

Deel II: Ondergrenzen

Een ondergrens is een bewijs dat een bepaald probleem niet sneller kan worden op-
gelost dan een bepaalde waarde. Er zijn twee globale technieken om ondergrenzen
te bewijzen voor quantum computers. De adversary methode is gebaseerd op de
complexiteit van het onderscheiden van inputs die verschillende outputs moeten
geven. Deze methode is redelijk eenvoudig te gebruiken en geeft vaak optimale
ondergrenzen, bijvoorbeeld voor Grovers zoekprobleem. De polynomiale methode
drukt de kans dat een quantum algoritme een bepaalde output geeft uit als een
polynoom van lage graad; ondergrenzen op de graad van bepaalde approxime-
rende polynomen impliceren dan ondergrenzen voor quantum algoritmes. Deze
methode is over het algemeen moeilijker toepasbaar dan de eerste, maar geeft
voor sommige problemen sterkere ondergrenzen.

Vele varianten van de adversary methode waren bekend. Wij ruimen dit woud
aan varianten op, en bewijzen dat er in feite één adversary methode is, en dat alle
bestaande varianten daarvan slechts verschillende equivalente formuleringen zijn.
We bewijzen ook een beperking op de ondergrens die met de adversary methode
bewezen kan worden voor een functie, in termen van de certificaat-complexiteit
van die functie. Dit laat zien dat de meeste van de bekende quantum ondergrenzen
die niet optimaal zijn, niet verder verbeterd kunnen worden met de adversary
methode. We geven ook precieze formules voor de adversary ondergrens voor
functies die de compositie zijn van andere functies.

We bewijzen optimale direct product stellingen voor verschillende functies.
Een DPS zegt dat de complexiteit van het berekenen van k onafhankelijke in-
stanties van een probleem k maal zo hoog is als de complexiteit van één instantie,
zelfs als de succeskans van het algoritme voor de k instanties slechts exponentieel
klein hoeft te zijn. Stellingen van dit type klinken meestal wel plausibel, maar
zijn vaak moeilijk te bewijzen.

Naast het beantwoorden van een fundamentele vraag over complexiteit, heb-
ben DPS ook toepassingen voor time-space tradeoffs. Een time-space tradeoff
geeft de relatie die er bestaat tussen de tijd en de geheugenruimte die nodig zijn
om een probleem op te lossen. We gebruiken de polynomiale methode om om
een DPS te bewijzen voor de OR functie, en passen dit toe om een optimale
time-space tradeoff te bewijzen voor het probleem van het sorteren van n getal-

Samenvatting 203

len (T 2S = Θ(n3) voor quantum computers, versus TS = Θ(n2) voor klassieke
computers) en voor het probleem van het vermenigvuldigen van twee Booleaanse
matrices. We bewijzen ook enkele communicatie-geheugenruimte tradeoffs. Dit
zijn de eerste tradeoffs die ontdekt zijn voor quantum computers. Verder ontwik-
kelen we een nieuwe generalisering van de adversary methode in termen van de
analyse van de deelruimtes van density matrices, en gebruiken dit om een nieu-
we DPS te bewijzen voor alle symmetrische functies (dit zijn functies die alleen
afhangen van het aantal enen in de input). Deze DPS impliceert een optimale
time-space tradeoff voor het evalueren van een gegeven oplossing voor een stelsel
van lineaire vergelijkingen, die polynomiaal beter is dan de klassieke tradeoff in
het geval er weinig geheugenruimte is.

Abstract

Computers are physical objects and thus obey the laws of physics. Although
most computers nowadays are built of semiconductors governed by quantum ef-
fects, their computation is purely classical—at every instant the computer is in
a classical state and the computational steps are fully deterministic. Quantum
computers, on the other hand, are computers that exploit quantum effects to do
computation. Unlike classical computers, they can be at any moment in a super-
position of many classical states and perform several computations is parallel.

In 1994, Peter Shor [Sho97] discovered a ground-breaking polynomial time
quantum algorithm for factoring integers, a task for which no efficient classical
algorithm is known. In 1996, Lov Grover [Gro96] discovered another important
quantum algorithm that searches an unordered database quadratically faster than
the best classical algorithm. Since then, the field of quantum computing has
significantly matured. Other important discoveries have also been made in related
fields, such as quantum cryptography, information theory, error-correction codes,
and communication complexity.

In this thesis, we investigate the power of quantum computers. We present
a few new quantum algorithms, improve some quantum lower-bound techniques,
and prove the first known quantum time-space tradeoffs.

Part I: Algorithms

The quantum search algorithm by Grover is very versatile and can be used as
a subroutine in many classical algorithms. We apply it on the following graph
problems: finding a maximal matching and finding a maximal flow in an integer
network. In both cases we obtain a quantum algorithm that is polynomially faster
than the best known classical algorithm.

We address the question of verifying whether a product of two n×n matrices
is equal to a third one. This is easier than computing the actual matrix product,
as there is a classical algorithm that runs in time O(n2), whereas the best known

205

206 Abstract

matrix multiplication algorithm runs in time O(n2.376). Our quantum algorithm
for matrix verification is polynomially faster and it runs in time O(n5/3).

Part II: Lower Bounds

A lower bound is a proof that some task cannot be computed faster than some
value. There are two basic techniques for proving quantum lower bounds. The
adversary method is based on the complexity of distinguishing inputs that lead
to different outcomes. It is easy to use and often gives tight bounds, for example
for the unordered search problem. The polynomial method expresses the accep-
tance probability of a quantum algorithm as a low-degree polynomial, and then
bounds on the degree of approximate polynomials imply lower bounds on quan-
tum computation. It is generally harder to apply, but gives stronger bounds for
some problems.

Many variants of the adversary method were known. We clean up the forest
and prove that there is just one method and that all known variants are just
different formulations. We prove a limitation on the adversary bound in terms
of the certificate complexity of the function, which implies that most of the best
known lower bounds that are not known to be tight cannot be further improved by
this method. We give tight formulas for adversary bounds of composite functions.

We prove tight direct product theorems for several functions. A DPT states
that the complexity of computing k independent instances of a problem is k times
bigger than the complexity of computing one instance, even if we are willing
to only succeed with exponentially small probability. A statement of this type
sounds plausible, however it is very hard to prove in general.

Besides answering a fundamental question about computation, DPT’s have
applications to time-space tradeoffs. A time-space tradeoff is a relation between
the running time and space complexity of an algorithm. We use the polynomial
method to obtain a DPT for the OR function, and apply it to get tight quantum
time-space tradeoffs for sorting (in particular T 2S = Θ(n3), whereas TS = Θ(n2)
classically) and Boolean matrix multiplication, and also several communication-
space tradeoffs. These are the first such tradeoffs known for quantum compu-
tation. We develop a new generalization of the adversary method in terms of
analysis of subspaces of density matrices, and use it to get a DPT for all symmet-
ric functions (functions that only depend on the number of ones in the input).
This DPT implies a time-space tradeoff for the evaluation of solutions of systems
of linear inequalities, which is tight and polynomially better than classical when
the space is small.

Titles in the ILLC Dissertation Series:

ILLC DS-2001-01: Maria Aloni
Quantification under Conceptual Covers

ILLC DS-2001-02: Alexander van den Bosch
Rationality in Discovery – a study of Logic, Cognition, Computation and Neu-
ropharmacology

ILLC DS-2001-03: Erik de Haas
Logics For OO Information Systems: a Semantic Study of Object Orientation
from a Categorial Substructural Perspective

ILLC DS-2001-04: Rosalie Iemhoff
Provability Logic and Admissible Rules

ILLC DS-2001-05: Eva Hoogland
Definability and Interpolation: Model-theoretic investigations

ILLC DS-2001-06: Ronald de Wolf
Quantum Computing and Communication Complexity

ILLC DS-2001-07: Katsumi Sasaki
Logics and Provability

ILLC DS-2001-08: Allard Tamminga
Belief Dynamics. (Epistemo)logical Investigations

ILLC DS-2001-09: Gwen Kerdiles
Saying It with Pictures: a Logical Landscape of Conceptual Graphs

ILLC DS-2001-10: Marc Pauly
Logic for Social Software

ILLC DS-2002-01: Nikos Massios
Decision-Theoretic Robotic Surveillance

ILLC DS-2002-02: Marco Aiello
Spatial Reasoning: Theory and Practice

ILLC DS-2002-03: Yuri Engelhardt
The Language of Graphics

ILLC DS-2002-04: Willem Klaas van Dam
On Quantum Computation Theory

ILLC DS-2002-05: Rosella Gennari
Mapping Inferences: Constraint Propagation and Diamond Satisfaction

ILLC DS-2002-06: Ivar Vermeulen
A Logical Approach to Competition in Industries

ILLC DS-2003-01: Barteld Kooi
Knowledge, chance, and change

ILLC DS-2003-02: Elisabeth Catherine Brouwer
Imagining Metaphors: Cognitive Representation in Interpretation and Under-
standing

ILLC DS-2003-03: Juan Heguiabehere
Building Logic Toolboxes

ILLC DS-2003-04: Christof Monz
From Document Retrieval to Question Answering

ILLC DS-2004-01: Hein Philipp Röhrig
Quantum Query Complexity and Distributed Computing

ILLC DS-2004-02: Sebastian Brand
Rule-based Constraint Propagation: Theory and Applications

ILLC DS-2004-03: Boudewijn de Bruin
Explaining Games. On the Logic of Game Theoretic Explanations

ILLC DS-2005-01: Balder David ten Cate
Model theory for extended modal languages

ILLC DS-2005-02: Willem-Jan van Hoeve
Operations Research Techniques in Constraint Programming

ILLC DS-2005-03: Rosja Mastop
What can you do? Imperative mood in Semantic Theory

ILLC DS-2005-04: Anna Pilatova
A User’s Guide to Proper names: Their Pragmatics and Semanics

ILLC DS-2005-05: Sieuwert van Otterloo
A Strategic Analysis of Multi-agent Protocols

ILLC DS-2006-01: Troy Lee
Kolmogorov complexity and formula size lower bounds

ILLC DS-2006-02: Nick Bezhanishvili
Lattices of intermediate and cylindric modal logics

ILLC DS-2006-03: Clemens Kupke
Finitary coalgebraic logics

ILLC DS-2006-04: Robert Špalek
Quantum Algorithms, Lower Bounds, and Time-Space Tradeoffs

	Acknowledgments
	1 Quantum Computation
	1.1 Postulates of quantum mechanics
	1.1.1 State space
	1.1.2 Evolution
	1.1.3 Measurement
	1.1.4 Density operator formalism

	1.2 Models of computation
	1.2.1 Quantum circuits
	1.2.2 Quantum query complexity

	1.3 Quantum search
	1.3.1 Searching ones in a bit string
	1.3.2 Searching an unstructured database
	1.3.3 Amplitude amplification

	1.4 Quantum random walks
	1.4.1 Element distinctness
	1.4.2 Walking on general graphs

	1.5 Quantum counting
	1.5.1 General counting algorithm
	1.5.2 Estimating the Hamming weight of a string

	1.6 Summary

	2 Quantum Lower Bounds
	2.1 Introduction
	2.2 Distinguishing hard inputs
	2.3 Adversary lower bounds
	2.4 Applying the spectral method
	2.5 Limitations of the spectral method
	2.6 Polynomial lower bounds
	2.7 Applying the polynomial method
	2.8 Challenges
	2.9 Summary

	I Algorithms
	3 Matching and Network Flows
	3.1 Introduction
	3.2 Preliminaries
	3.3 Finding a layered subgraph
	3.4 Bipartite matching
	3.5 Non-bipartite matching
	3.6 Integer network flows
	3.7 Summary

	4 Matrix Verification
	4.1 Introduction
	4.2 Previous algorithm for matrix verification
	4.3 Algorithm for matrix verification
	4.4 Analysis of the algorithm
	4.4.1 Multiplication by random vectors
	4.4.2 Analysis of Matrix Verification
	4.4.3 Comparison with other quantum walk algorithms

	4.5 Fraction of marked pairs
	4.5.1 Special cases
	4.5.2 Proof of the main lemma
	4.5.3 The bound is tight

	4.6 Algorithm for matrix multiplication
	4.7 Boolean matrix verification
	4.8 Summary

	II Lower Bounds
	5 Adversary Lower Bounds
	5.1 Introduction
	5.2 Preliminaries
	5.3 Equivalence of adversary bounds
	5.3.1 Equivalence of spectral and weighted adversary
	5.3.2 Equivalence of primal and dual adversary bounds
	5.3.3 Equivalence of minimax and Kolmogorov adversary

	5.4 Limitation of adversary bounds
	5.5 Composition of adversary bounds
	5.5.1 Adversary bound with costs
	5.5.2 Spectral norm of a composite spectral matrix
	5.5.3 Composition properties

	5.6 Summary

	6 Direct Product Theorems
	6.1 Introduction
	6.2 Classical DPT for OR
	6.2.1 Non-adaptive algorithms
	6.2.2 Adaptive algorithms
	6.2.3 A bound for the parity of the outcomes
	6.2.4 A bound for all functions

	6.3 Quantum DPT for OR
	6.3.1 Bounds on polynomials
	6.3.2 Consequences for quantum algorithms
	6.3.3 A bound for all functions

	6.4 Quantum DPT for Disjointness
	6.4.1 Razborov's technique
	6.4.2 Consequences for quantum protocols

	6.5 Summary

	7 A New Adversary Method
	7.1 Introduction
	7.2 Quantum DPT for symmetric functions
	7.3 Measurement in bad subspaces
	7.4 Total success probability
	7.5 Subspaces when asking one query
	7.6 Norms of projected basis states
	7.7 Change of the potential function
	7.8 Summary

	8 Time-Space Tradeoffs
	8.1 Introduction
	8.2 Preliminaries
	8.3 Time-space tradeoff for sorting
	8.4 Time-space tradeoffs for matrix products
	8.4.1 Construction of a hard matrix
	8.4.2 Boolean matrix products

	8.5 Communication-space tradeoffs
	8.6 Time-space tradeoff for linear inequalities
	8.6.1 Classical algorithm
	8.6.2 Quantum algorithm
	8.6.3 Matching quantum lower bound

	8.7 Summary

	Bibliography
	List of symbols
	Samenvatting
	Abstract

