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Supervisor’s e-mail: pudlak@matsrv.math.cas.cz
Abstract: A new quantum model of computation — a sequence of Quan-

tum Branching Programs — is proposed and its consistence is verified.
Its power, properties, special forms and relations to existing computa-
tional models are investigated. Both nonuniform and uniform variants
are considered. It is shown that QBP’s are equivalent to Quantum Turing
Machines and that they are at least as powerful as their deterministic and
probabilistic variant. Every QBP can be converted to its most regular form
(layered, oblivious, 2-bounded degree, with connected graph) at low cost.
Almost all these simulations preserve the space complexity and enlarge
the time complexity at most polynomially, moreover we prove that the
target sequence obtained by converting a uniform source sequence is also
uniform — we describe an explicit construction machine for each con-
version. It is demonstrated that width-2 oblivious QBP’s recognise NC1
languages in polynomial time.

Keywords: quantum branching programs
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Chapter 1

Preliminaries

1.1 Syllabus

We propose new1 quantum models of computation — Quantum Networks
and Quantum Branching Programs. We investigate their power, proper-
ties, special forms, and relations to existing computational models. The
document has the following structure:

Chapters 2 and 3 are introductory chapters. In Chapter 2, we remind
the computational model of deterministic Branching Programs and for-
mulate the definitions in our notation. We define the probabilistic and
reversible variants and uniform sequences of BP’s. In Chapter 3, we in-
troduce the notions of quantum computing. A very short recapitulation
of quantum matters (state space, evolution, measurement) is included,
though this document does not serve as an introduction course of quan-
tum computing. We also mention Quantum Circuits and define properly
Quantum Turing Machines and their nonuniform version.

Chapters 4–7 comprise the research topic. Chapter 4 proposes the de-
sired models — Quantum Networks and their acyclic variant Quantum
Branching Programs. We study various aspects of this concept and give
several examples. We define uniform sequences of QN’s, complexity mea-
sures, and a language acceptance. The chapter is concluded by definitions
of various special forms of QN’s.

Chapter 5 proves the equivalence of QN’s and QTM’s in both nonuni-
form and uniform case. Chapter 6 investigates special forms of QN’s —
the layered and oblivious layout, bounded degree quantum operations
and using connected graphs. It concludes that every QN and QBP can be
converted into the most regular form at little cost.

1during writing of this document, the models of QBP’s have already been published

1



2 CHAPTER 1. PRELIMINARIES

Chapter 7 investigates the relation between quantum, deterministic
and probabilistic BP’s, i.e. the simulation of the latter ones by QBP’s. The
major obstacle of the conversion is the reversibility of quantum compu-
tations. We show that for both BP’s and PBP’s, there are two methods
achieving reversibility — the first one is space preserving and time con-
suming, the second one uses an additional space, but the time overhead is
not so big. We also present time-space tradeoffs between them. We show
that the acceptance probabilities of a PBP are squared by the conversion.

Chapter 8 is not a part of the research. It just deals with a topic re-
lated to the space complexity of quantum computations. It shows that one
quantum bit is enough to recognise any NC1 language in polynomial time.

The electronic version of this document can be found on Internet at
URL http://www.ucw.cz/˜robert/qbp/, you can also contact the
author by e-mail robert@ucw.cz.

1.2 Contribution of the thesis

The presented model of Quantum Branching Programs was greatly in-
spired by Quantum Turing Machines described in [Wat98]. Though simi-
lar models have been described in [AGK01, AMP02, NHK00, SS01] during
writing of the document, the results presented here are original. This text
also contains slightly more detailed description than the referred articles.

In Section 4.1.2, we define an important concept — a so-called family
decomposition of a transition graph. Having defined it, a proof of the inner
consistency of the model is straightforward and moreover several simula-
tions follow directly from it.

We have deliberately designed the uniformness of sequences of Quan-
tum Networks in such a way, that the obtained model is equivalent with
Quantum Turing Machines. The simulation of a QN by a QTM is straight-
forward thanks to using families at intermediate stages of the simulation.
The reverse simulation is simpler, because the model of QN’s is less struc-
tured in principle.

We have designed special forms with respect to improving the phys-
ical feasibility of the computational model. The layered layout reduces
the quantum space complexity of the program. The oblivious layout de-
creases the number of quantum operations that need to be prepared. How-
ever, due to the generality of the model, the conversion procedures are not
very efficient for a general QN. Nevertheless several algorithms can be
efficiently expressed directly in the oblivious layout.

http://www.ucw.cz/~robert/qbp/
mailto:robert@ucw.cz


1.3. NOTATION 3

We have properly scrutinised the bounded degree layout and found
an optimal conversion procedure. On the other hand, all existing imple-
mentations of quantum computers operate on qbits nowadays, hence the
decomposition of an operator into 2-bounded degree quantum branches
is not directly useful for them.

All methods achieving reversibility discussed in Chapter 7 have al-
ready been published before. However we have adjusted them for QBP’s.
The time-space reversibility tradeoffs presented here are original results,
though the deterministic tradeoff has already been published in [Ben89].

1.3 Notation

Let us mention the notation used in this thesis. As usual, N, N0, Z, Zn,
R, R

�
0 , and C will denote natural numbers, natural numbers including 0,

integers, integer numbers � 0 � 1 � 2 � ����� � n � 1 	 , real numbers, non-negative
real numbers and complex numbers.

For any set S, both #S and 
 S 
 will denote the number of elements in S
and P � S � will denote the potency of S, i.e. the set of all subsets of S. For any
set S, Sn is the set of all sequences of S of length n, S 
 is the set of all finite
sequences of S. For any mapping f and set S, f � S � will denote � f � s ��
 s � S 	 .

Let f1 � f2 : N � R
�
0 be functions mapping natural numbers into nonneg-

ative real numbers. We say that� f1 � O � f2 � iff limsupn � ∞ f1 � n ��� f2 � n ��� ∞,� f1 � o � f2 � iff limn � ∞ f1 � n ��� f2 � n � � 0,� f1 � Ω � f2 � iff liminfn � ∞ f1 � n ��� f2 � n ��� 0,� f1 � Θ � f2 � iff f1 � O � f2 � & f1 � Ω � f2 � .
For any finite or countable set S, � 2 � S � will denote the Hilbert space

whose elements are mappings from S to C. Elements of such spaces will be
expressed using Dirac notation; for each s � S, 
 s � denotes the elementary
unit vector taking value 1 at s and 0 elsewhere, and ��
 s ��
 s � S 	 is the set
of base vectors of � 2 � S � . For 
 φ ����� 2 � S � , � φ 
 denotes the linear functional
mapping each 
ψ ��� � 2 � S � to the inner product � φ 
ψ � (conjugate-linear in
the first coordinate rather than the second). The norm of the vector is
defined in usual way as !"
 φ �#! �%$ � φ 
 φ � .

For a matrix M, MT denotes the transpose of the matrix, M 
 denotes
the complex conjugate of the matrix and M† � � MT � 
 denotes the adjoint
of the matrix. We say that a matrix M : � 2 � S1 �&�'� 2 � S2 � is a block matrix iff
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it is composed from smaller blocks, the blocks are another matrices. We
say that M is a block-diagonal matrix iff the blocks are centred around the
diagonal and all blocks that do not intersect the diagonal are null.

For any oriented graph G � � V � E � , d (G � v � and d
�
G � v � will denote the in-

put and output degree of vertex v (i.e. d (G � v � � # � w � V 
)� w � v ��� E 	*� . If it is
obvious which graph we are talking about, the subscript G may be omit-
ted. We say that a vertex v is a source (a sink, an internal vertex respectively)
iff d ( � v � � 0 (d

� � v � � 0, d
� � v �,+� 0 respectively). If � v � w �-� E, then we say

that v is a parent of w and w is a child of v. We say that a graph is acyclic iff
it does not contain an oriented cycle. We say that a graph is connected iff
there exists an undirected path from v to w for any two vertices v � w. The
component of a graph is the maximal set of vertices connected to each other.

We say that a mapping f : N � N is time constructible (space constructible
respect.) iff there exists a Turing Machine M with time complexity (space
complexity respect.) f .

If we do not use a parameter in a definition, a theorem, or a note, we
often do not waste a letter for it, but substitute an ‘ ’ character instead. For
example P � � , , , Q, E, q0, , � .



Chapter 2

Branching Programs

A Branching Program is a model of computation that represents a decision
process based on the values of input variables. It is represented by a graph
whose vertices correspond to the internal states of the Branching Program.
Every vertex is labelled by a number of the input variable queried in this
state, every outgoing edge is labelled by a letter from input alphabet.

The Branching Program model was developed with respect to obtain
the least structured computational model. Lower bounds proved for this
model obviously hold for the other models as well, since they are easily
reduced to this one.

Branching Programs need not have a regular program structure. The
program behaviour can vary from step to step and the internal memory
represented by current state needs not be accessed in bits. Therefore the
programs can be very optimised for a particular problem.

Despite the generality, lots of interesting lower bounds and tradeoffs
have been proved, see [Bea89, CS83, MNT90].

2.1 Deterministic Branching Programs

We concentrate ourselves on the decision Branching Programs that pro-
duce no output except for the label of the destination state. There exists
also a model in which the programs can produce an output during the
computation. It is implemented by a second labelling of the edges – every
edge contains a list of output bits produced when passing via this edge.

Branching Programs were discussed in [Sip97, Weg87, Weg00], but we
give our own definition to fit the notation to our purposes.

5



6 CHAPTER 2. BRANCHING PROGRAMS

Definition 2.1 A Branching Program (shortcut BP) is an ordered sequence
P � � n, Σ, Π, Q, E, q0, d, v � such that� n � N is the length of the input,� Σ is the input alphabet,� Π is the output alphabet,� Q is a set of graph vertices,� E . Q2 is a set of oriented edges,� q0 � Q is a starting vertex,� d : Q � Zn / Π is a function assigning input variables to internal

graph vertices and output result to graph sinks,� v : E � P � Σ � is a function assigning the letters of input alphabet to
the graph edges,

and the following requirements hold:

i. � Q � E � is an acyclic oriented graph,

ii. d � q ��� Π iff q is a sink of the graph,

iii. for every internal vertex and input alphabet letter there is exactly one
edge starting in the vertex and labelled by the letter, i.e.�10 q � Q � d � q ��+� Π �#�10 σ � Σ ���32 !e � E � e � � q � � & σ � v � e � �

Note 2.1 When not explicitly given, we assume the input and output al-
phabets are taken Σ � Π � � 0 � 1 	 and the input size n is chosen automati-
cally according to the labels of internal vertices.

The computation of a BP proceeds as follows. It starts in the start-
ing vertex. While the current vertex is not a sink, the decision based on
the value of appropriate input variable is made and the internal state is
changed to the destination of appropriate outgoing edge. When the com-
putation arrives to a sink, the label of the destination vertex is produced
at the output. The result of a BP P on input x will be called P � x � .

A very simple example of a BP computing the logical AND of three
input variables ensues in Figure 2.1. Henceforth, if not stated else, the
solid edges will be labelled by 0 and the dashed ones will be labelled by 1.

In the following text we will discuss languages recognised by BP’s. A
language L is a set of strings L . Σ 
 .
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x1

x2 x2

0

0 4 1 0

1

1

0 1

0 1

x3 x3

0 4 1
Figure 2.1: Example of a BP computing x1 & x2 & x3.

Definition 2.2 We say that a BP P for input size n recognises (or accepts) the
language L . Σn, if �50 x � Σn � x � L 687 P � x � � 1 �

The complexity of BP’s is measured in terms of the length of the longest
computational path and the program size.

Definition 2.3 Let P be a Branching Program. We define that the size of P
is the number s of its vertices, the space complexity of P is 9 log2 s : and the
time complexity1 of P is the length of the longest computational path, i.e.
the longest oriented path in its graph going from the starting vertex.

2.2 Nonuniform and uniform sequences of BP’s

A Branching Program is capable to solve a problem of a fixed input size n.
To overcome this boundary we need to introduce sequences of BP’s.

Definition 2.4 A sequence of Branching Programs P is an infinite sequence
P � � Pi 	 ∞i ; 1 of BP’s where for every input size a special program is pro-
vided.

Definition 2.5 We say that a sequence of BP’s P � � Pi 	 ∞i ; 1 recognises the
language L . Σ 
 , if �50 x � Σ 
 � x � L 687 P< x <)� x � � 1 �

1we shall talk mostly about the maximal time in this thesis, for defining the expected
time a probabilistic distribution on the inputs must be chosen
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Definition 2.6 Let t � s � N � N be a time constructible (space constructible
respect.) function. We say that a sequence of BP’s P � � Pi 	 ∞i ; 1 has the time
complexity t (space complexity s respect.) iff, for every input size n, Pn has
the time complexity t � n � (space complexity s � n � ).

If we do not place other restrictions on the sequence, the model is in-
credibly powerful, because it contains all languages including the non-
recursive ones. For every input size n and language Ln . Σn there exists a
particular BP recognising that language, hence there also exists a sequence
of those BP’s recognising any fixed language L �>= k ? N Lk.

This phenomenon can be circumvented by a notion of uniform se-
quences. The problem sketched in the previous paragraph is caused by
the fact, that such sequence of BP’s just exists and we have no clue how to
find it. We can rid of those sequences by requiring the uniformness condi-
tion. This condition says that the BP’s must be constructed by an effective
algorithm.

Every BP can be readily encoded by a binary sequence of 0’s and 1’s.
We can imagine that the vertices are identified by distinct identifiers and
listed one after one in the ascending order including their labels. Then
a sorted list of edges ensues, every edge lists its source and destination
vertex and their labels. It is straightforward that every BP is (not necessar-
ily uniquely) encoded by some sequence. The sequence length in records
is asymptotically equal to the size of the BP up to a multiplication con-
stant, since the output degree of the vertices is bounded and thus there are
asymptotically no more edges than vertices.

Let us fix a particular encoding of BP’s.

Definition 2.7 A sequence of BP’s P � � Pi 	 ∞i ; 1 is called uniform if there ex-
ists a Turing Machine M that for given k � b � N yields the b-th bit of the
encoding of Pk. Such machine M is called a construction machine of P. If
there is no such machine, we call the sequence nonuniform.

The Turing Machine model of computation is not described here, since
it is widely known. It is defined, for example, in [Gru97, Pap94, Sip97]. A
Quantum Turing Machine model is described in Section 3.3.

It turns out that the Turing Machine and Branching Program models
of computation are equally strong both in the nonuniform and uniform
case. Moreover if the complexity of the construction machine is bounded,
these models also turn out to be equivalent in the sense of time and space
complexity.

The simulation of a Turing Machine by a Branching Program is quite
straightforward:
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Claim 2.1 Every Turing Machine M with advice that stops in finite time
for every input can be simulated by a sequence of Branching Programs P
in the same time and space. If the machine M uses no advice, then the
resulting sequence P is uniform.

Proof. The proof will be just outlined: for every input size n the vertices
of Pn will correspond to the configurations of M and the edges of Pn will
accord to the transition function of M. The time and space complexities
will obviously be preserved. If M uses no advice, its activity is regular and
completely described by its (finite) transition function. Hence the struc-
ture of Pn is also regular and the sequence P can be generated by a Turing
Machine M @ depending only on M. A

Notice that for every language Ln . Σn there exists a BP Pn recognis-
ing Ln with size at most exponential in n. It needs not be longer, since
if Pn forms a balanced tree having 
Σ 
 n leaves, it can be adjusted to every
language Ln by just tuning the output result in every leave. However for
some languages substantially smaller programs can be constructed.

Hence if we allow the length of the advice of Turing Machines to be ex-
ponential in the problem size then the opposite simulation is also possible.
Let us consider that asking for advice by Turing Machine is implemented
by executing a special instruction after the inquiry is written on a special
tape. This topic is discussed in detail in Section 3.3.5.

Claim 2.2 Every sequence of Branching Programs P can be simulated by
a Turing machine with advice M in the same space and polynomially (in
input size) longer time. The advice length is asymptotically equal to the
size of the corresponding BP, i.e. it is not longer than exponential in input
size.

Proof. Sketch of the proof: The advice of M will contain a complete de-
scription of Pn in some fixed encoding, thus the advice depends only on
the input size as needed.

M has a work tape describing the current state s of Pn and another work
tape containing the intermediate results. Every step begins by asking the
advice for the description of behaviour of Pn in the state s. There is a little
impediment in doing this, because we do not known exactly, where in the
advice the description of s is stored. Since the lists of vertices and edges
are sorted, we can find the index by binary search, that can be done in
polynomial time.

When M knows the variable Pn decides on, it shifts the input tape, reads
the symbol and chooses a proper destination state which is then copied
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to the first work tape. The loop is executed until the advice claims the
computation has finished.

The maximal length of second work tape is linear in the length of first
work tape, thus M works in the same space. The computation of every
step of Pn by M takes time at most polynomial in n (polynomial time for
the binary search in the advice, linear time for shifting across the whole
input tape), hence the time overhead is only polynomial in n. A
Claim 2.3 Every uniform sequence of Branching Programs P constructed
by a Turing Machine M @ can be simulated by a Turing Machine M. The
space complexity of M is the sum of the space complexities of P and M @ .
The time complexity of M is the product of the time complexities of P and
M @ and a polynomial in n.

Proof. Sketch of the proof: The simulation proceeds in a similar way to
the one in the proof of the previous claim. Instead of asking for advice the
construction Turing Machine M @ is launched to produce the desired bits of
the description. This causes the claim on the additional time and space. A
2.3 Probabilistic Branching Programs

It is well known that computational models become much more power-
ful when the randomness is taken into account. Many probabilistic al-
gorithms that beat their deterministic counterparts are known nowadays.
These algorithms typically base their decisions on random numbers and
their results are erroneous with some small probability.

Like in the previous section, we shall define a probabilistic version of a
BP, describe its computation and define the language acceptance of PBP’s.

Definition 2.8 A Probabilistic Branching Program (shortcut PBP) is an or-
dered sequence P � � n, Σ, Π, Q, E, q0, d, p � such that� n � Σ � Π � Q � E � q0 � d have the same meaning as they had in Definition 2.1

of a BP on page 5,� p : E � Σ � R
�
0 is a transition function assigning probability to the

transition through an edge given a letter from the input alphabet,

and the following requirements hold:

i. � Q � E � is an acyclic oriented graph,
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ii. d � q ��� Π iff q is a sink of the graph,

iii. the transition probabilities of distinct outgoing edges with a fixed
label sum to 1, i.e. let Eq � � e � E 
 e � � q � �B	 , then�10 q � Q � d � q ��+� Π ���10 σ � Σ � ∑

e ? Eq

p � e � σ � � 1 �
The computation of a PBP proceeds similarly to the computation of a

BP. The only change is that after we extract the value of the appropriate
input variable, the new internal state is chosen randomly according to the
transition probabilities.

For a given PBP P, an input word x � Σn and an output result π � Π, we
define pP

π � x � as the probability of obtaining result π when the PBP P is run
on the word x. The superscript P may be omitted when it is clear which P
is meant from the context. The same notation is used also for sequences of
PBP’s.

Note 2.2 The space and time complexities are defined in a similar way as
the complexities of a BP in Definition 2.3. The space complexity defined
for a BP is suitable also for a PBP, but the time complexity needs a little
adjustment. If we want to be more accurate, we should define not only
the maximal time complexity, but rather the expected time complexity, since
the computation and its length can depend on random choices. If pπ C k � x �
is the probability that the computation of a PBP P on input x stops in time
k yielding result π, then pπ � x � � ∑k ? N0 pπ C k � x � and we denote the expected
time complexity of P on x by

exp � timeP � x � � ∑
k ? N0

∑
π ? Π k D pπ C k � x � �

Further, the time complexity of P can be taken as the maximum of time
complexities over all inputs x � Σn or, after a probabilistic distribution on
the inputs is chosen, the expected value can be computed.

The language acceptance can be defined in many ways using distinct
criteria, each of them is suitable for other tasks and leads to other com-
plexity classes.

Definition 2.9 Let P be a sequence of PBP’s, L . Σ 
 be a language, m be a
mode2 listed in Table 2.1. We say that P accepts L in mode m iff for every

2the mode names are carefully chosen to accord the common complexity class names,
e.g. NP, BPP, co-RP, . . .
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m x � L x +� L comment
Eq � 1 � 0 never makes mistake
R E 1 � 2 � 0 bounded one-side error
co-R � 1 F 1 � 2 bounded one-side error
N � 0 � 0 unbounded one-side error
co-N � 1 � 1 unbounded one-side error
B E 3 � 4 F 1 � 4 bounded error
Pr � 1 � 2 F 1 � 2 unbounded error

Table 2.1: Acceptance modes of PBP’s

x � Σ 
 the probability pP
1 � x � of obtaining result 1 fulfils the appropriate

condition listed in the table (there are 2 constraints there depending on
whether or not x � L).

Note 2.3 The bounds 1 � 2, 3 � 4, 1 � 4 in modes R and B are not magical, set-
ting 2δ, 1 � 2 � δ, 1 � 2 � δ would serve as well for any fixed δ �G� 0 � 1 � 2 � . The
error probability can be decreased below any fixed bound by repeating
the computation and choosing the logical OR of results (in the mode R)
or the majority (in the mode B). The proof is straightforward in the first
case, since if consecutive computations are independent, the probabilities
of yielding erroneous results multiply. In the second case, the proof in-
volves a simple application of the Chebychev’s inequality for probability
distributions. Even if we allow δn to be polynomially small in the problem
size n, i.e. δn � Ω � 1 � p � n ��� , the probabilities can still be improved by this
method.

On the contrary, if the error probability in modes N and Pr is expo-
nentially close to 1, i.e. δn � O � e ( n � , it is quite infeasible to yield a correct
solution by the algorithm.

Note 2.4 The modes R and co-R (N and co-N respect.) are counterparts,
because if a language L is recognised in mode m, then its complement co-
L � Σ 
H� L is recognised in mode co-m.

The co-modes of the modes Eq, B and Pr are not present in the table,
because they are equal to the original modes.

Note 2.5 If we do not restrict the vertex output degree, it could happen
that the state of a computation spreads too fast into distinct vertices, e.g.
a random choice from k � Ω � n � adjacent vertices can be done in unit time
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by setting the probability 1 � k to each of the k outgoing edges. This causes
problems when simulating a PBP by a probabilistic TM, because a TM has
only a fixed number of internal states for all input sizes. The power of
PBP’s is not decreased if the number of distinct random choice types is
finite, since a complex random choice can always be simulated by a chain
of simple random choices within accuracy exponential in the length of the
chain.

Definition 2.10 For a vertex q � Q and an input letter σ � Σ the random
choice type of vertex q and letter σ is the sorted sequence3 of probabilities
of the edges labelled by σ outgoing from q:

type � q � σ � � � p � e � σ ��
 e � � q � �I� E & p � e � σ ��+� 0 	 �
We say, that a sequence of PBP’s has a finite number of random choice types,
if the set of random choice types for all input sizes is finite, i.e.JJJJJLK

σ ? Σ Kn ? N Kq ? Qn

� type � q � σ �B	 JJJJJ � ∞ �
Note 2.6 It turns out that it suffices if there is just one random choice type
allowed, e.g. a fair coin flip � 1

2 � 12 	 . However it is more convenient to in-
troduce a special random choice type in some cases (e.g. � 1

3 � 13 � 13 	 , instead
of simulating it inaccurately every time.

2.4 Complexity classes

Having described the criteria of languages acceptances by PBP’s and the
complexity measures of PBP’s, we shall now divide languages into com-
plexity classes. Every class will contain languages acceptable by PBP’s
using somehow bounded resources.

Definition 2.11 We define that m � TIME � t � n ��� (m � SPACE � s � n ��� respect.)
is the class of languages recognised by uniform sequences of PBP’s with
time complexity t � n � (space complexity s � n � respect.) in mode m. The uni-
form sequences must be constructed by a Turing Machine M @ running in

3an item may occur more times in the sorted sequence
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polynomial time and polylogarithmic space (in input size).4

m � TIME � t � n ��� � � L . Σ 
 
M�32 uniform sequence of PBP’s PL �
PL has time complexity O � t � n ��� &
PL accepts L in mode m 	N�

m � SPACE � s � n ��� � � L . Σ 
 
M�32 uniform sequence of PBP’s PL �
PL has space complexity O � s � n ��� &
PL accepts L in mode m 	 �

Note 2.7 We have already shown in Claims 2.1–2.3 that uniform BP’s and
TM’s simulate each other with low time and space overhead. The same
can be stated for their probabilistic counterparts. One direction is straight-
forward, but the simulation of a PBP by a PTM has little impediments. The
proof is simple when the number of random choice types is finite, then the
same simulation method can be used by reserving a special decision state
for every random choice type. If the set is not finite, then we must imple-
ment the simulation of a complex random choice by a chain of simple ones
in addition. It complicates the program but it does not change anything
else. Hence the complexity classes just defined correspond approximately
(up to the overhead of the simulation) to the commonly used ones. In
particular, if we define

m � POLYTIME � =
k ? N0

m � TIME O nk P �
m � POLYLOGSPACE � =

k ? N0

m � SPACE O logk n P �
we see that thanks to the constraints on the construction TM M @ of the uni-
form sequence of PBP’s these complexity classes are equal to the common
ones.

The common complexity classes are well described in every textbook
of computational complexity, e.g. in [Gru97, Pap94, Sip97].

Note 2.8 The languages accepted in mode Eq have been defined in terms
of PBP’s. We shall show that nothing changes if we replace the PBP by a
BP in this case. The proof is very simple: the PBP P never makes mistake,
hence each its computational path with nonzero probability gives correct
answer at the sink. Therefore it does not matter which particular path is
chosen. If we modify the transition probabilities of P in the way that the
leftmost path (for any definition of leftmost) is chosen in every vertex, we
get an equivalent deterministic BP P @ .

4i.e. M QSR SC — Steve’s class
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2.5 Reversible computation

In this thesis, we shall investigate a quantum version of branching pro-
grams. One of the intrinsics of the quantum world is that every process is
reversible. To fit a program into quantum computer, not only its interface
but also every its computational step must be locally reversible.

It is not immediately apparent that this limitation does not matter so
much, i.e. that every classical program can be converted into its reversible
variant at little cost. We shall show in Chapter 7 that there are indeed
more methods doing that, each of them having its own advantages and
drawbacks.

Let us define how a reversible BP looks like and examine a few exam-
ples.

Definition 2.12 A Reversible Branching Program (shortcut RBP) is an or-
dered sequence P � � n, Σ, Π, Q, E, q0, d, v � such that n � Σ � Π � Q � E � q0 � d � v
have the same meaning as in Definition 2.1 of a BP on page 5 and the fol-
lowing requirements hold:

i. � Q � E � is an acyclic oriented graph,

ii. d � q ��� Π iff q is a sink of the graph,

iii. the parental condition must be fulfilled — for every vertex q there is
exactly one common input variable assigned to all parents of q:�32 dp � dp : Q � Zn ���10 qp � q � Q � � qp � q ��� E 7 d � qp � � dp � q �L�

iv. in both ingoing and outgoing direction, every vertex has either no
adjacent edges or exactly one adjacent edge for every letter from in-
put alphabet�50 q � Q � d (G � q ��� 0 �#�10 σ � Σ ���T2 !e � E � e � � � q � & σ � v � e �L��50 q � Q � d �G � q ��� 0 �#�10 σ � Σ ���T2 !e � E � e � � q � � & σ � v � e � �

Note 2.9 The parental condition may look somehow odd at a first glance.
However it is essential if we want the reverse direction of computation to
be unique, like the forward step is. We decide on exactly one input vari-
able in the forward step, hence the same we expect in the opposite direc-
tion. There is a simple counterexample shown in Figure 2.2 of a reversible-
like BP that fulfils all other requirements but is not reversible at all — when
x1 � 0 & x2 � 1, the reverse step is not unique.
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x1 x2

0 1

Figure 2.2: The lack of the parental condition in a BP

x1

x2 x2

0 1

xn xn

x1

0 1

x2

2

xn

x1

. . . . . .
x3 x3 x3

Figure 2.3: Two trivial examples of RBP’s computing the sum x1
� x2

� ����� �
xn modulo 2 and 3

Two trivial examples of well formed RBP’s are shown in Figure 2.3.
They compute the parity (sum of the bits modulo 2) and the sum of the
bits modulo 3. They both have a very regular structure, in Chapter 4 we
would say that they are layered and oblivious. Recall that the solid lines
are labelled by 0 and the dashed lines are labelled by 1.

A program in Figure 2.4 computing the logical conjunction of two vari-
ables x1 & x2 serves as a nontrivial example of a RBP. The starting vertex is
the left upper one. It has not so regular structure, in fact it is a pruned ver-
sion of a RBP generated from a (non-reversible) BP computing the same
function by the back-tracking method achieving reversibility. This and
some other methods will be developed in Chapter 7. Notice that the num-
ber of sources equals the number of sinks and that there is no consistent5

path going from the starting vertex to the sink Error.

5a path is called consistent if there exists an assignment of input variables, for which
it is a computational path
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x1 x1

x1

x2 x2 x2

0 1

Error

Figure 2.4: A nontrivial example of a RBP computing x1 & x2

Note 2.10 As seen in Figure 2.4, the requirement we indeed require is the
local reversibility — the computation must be reversible at every instant
for every setting of input variables. Even if the programmer knows for
sure that if the program state has arrived to a particular vertex, then the
input variables must have fulfilled a particular equation, he must design
the program to be reversible at every instant for every setting of input
variables.

Note 2.11 It is apparent that unless the graph of a RBP is just a single path,
it must have more sources than one. They will never be reached during
the computation, but they are important for fulfilling the reversibility re-
quirements.
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Chapter 3

Quantum Computation

We shall not supply an introduction course of Quantum Computation
here. Many splendid books have been published about it, e.g. [NC00,
Pre97]. However for the purposes of the completeness of this document,
we shall remind the basic principles and the notation in this chapter.

3.1 Intrinsics of Quantum Computation

A classical computer is situated in a unique and observable state at every
instant of the computation. It is possible to dump its memory into a stor-
age medium, examine or modify it and restart the computation from the
interrupted state any times we want. The computation is also determinis-
tic and unless an error occurs, it always yields the same result.

A quantum computer behaves completely else, which we shall remind
in this section.

3.1.1 State space

A quantum computer can be situated in a superposition of classical states.
Its state is completely described by a state vector 
ϕ �U�V� 2 � S � of complex am-
plitudes,1 where S is the set of classical states, e.g. for an n-qbit computer
S � � 0 � 1 	 n thus 
ϕ ��� C2n

. The quantum analogue of a bit is called a qbit.
The set of classical states of an n-qbit quantum computer is called a com-

putational basis and the states are labelled by 
 i �B� i ��� 0 � 1 � ����� � 2n � 1 	 . We say
that the linear combination ∑i αi 
ϕi � is the superposition of states 
ϕi � with
the amplitude αi of the state 
ϕi � .

1we shall ignore the notion of mixed states in this thesis, i.e. all states considered will
be the pure states

19
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x
y
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0 X
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1 X
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ψ X

Figure 3.1: Bloch sphere representation of a qbit

Note 3.1 A state vector must fulfil the normalisation condition, which is
a quantum analogue of the requirement that the probabilities of distinct
events sum to 1. It says that 
ϕ � is a unit vector, i.e. � ϕ 
ϕ � � 1. It should
also be reminded, that the global phase is unobservable for computational
purposes, hence we do not distinguish between 
ϕ � and α 
ϕ �L�Y
α 
 � 1.

Example 3.1 An one qbit computer has two classical states 
 0 � and 
 1 � and
it can also be situated in the superposition of these states, e.g.

< 0 Z � < 1 Z[
2

,
< 0 Z ( < 1 Z[

2

or say
< 0 Z ( 2i < 1 Z[

5
.

Note 3.2 There is a visual way of representing a qbit. A qbit may be sit-
uated in a general superposition state 
ψ � � α 
 0 � � β 
 1 � . Since !\
ψ �"! � 1,
α 
 2 � 
β 
 2 � 1 and we can rewrite the equation as
ψ � � eiγ ] cos

θ
2

 0 � � eiϕ sin

θ
2

 1 ��^_�

where θ � ϕ � γ are real numbers. We shall ignore the unobservable global
phase eiγ, hence the qbit state is completely described by two real variables.
The numbers θ � ϕ define a point on the unit three-dimensional sphere, of-
ten called Bloch sphere, see Figure 3.1. It provides a useful visualisation of
most one qbit quantum operations. Unfortunately there is no direct gen-
eralisation to multiple qbits.

Note 3.3 It turns out that the phase of an individual quantum state in a
superposition state is a quantity of the same importance as the identity of
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the state itself. This phenomenon is distinct from the fact, that the global
phase is unobservable. We can not distinguish between 
 0 � � 
 1 � and �`
 0 �a�
 1 � while distinguishing between 
 0 � � 
 1 � and 
 0 �b�c
 1 � is trivial thanks to
the Hadamard operation defined in the next subsection.

Note 3.4 Notice that the state space of a joint system is a tensor product
of the state spaces of the individual systems. The composite state 
ϕ ��
 χ � is
also denoted by 
ϕχ � .

Nevertheless it is not true that every composite state is a tensor product
of the individual states. This phenomenon is called entanglement and such
individual states are called entangled. There is an extremely important
example called EPR-pair which serves as a useful tool for many applica-
tions (super-dense coding, quantum state teleportation and many others;
see [NC00]). One of the four EPR-pairs can be written as
 χ � � 
 00 � � 
 11 �d

2
�

the other three differ by the sign or by flipping the first qbit.

3.1.2 Evolution

A computational step of a quantum computer is described by an evolu-
tion operator. Quantum physics requires that this operator must be unitary,
i.e. reversible and norm-preserving. If a quantum computer is situated
in the state 
ϕ � , then it switches to the state U 
ϕ � after the operator U is
performed.2 Recall that the product of unitary operators is also a unitary
operator.

Example 3.2 Every permutation operator is unitary, hence any classical
reversible operation is also permitted in the quantum world. The simplest
operators on a qbit are perhaps the identity I and the bit flip operator X . The
operators have the following representations in the computational basis
 0 �L�Y
 1 � :

I � ] 1 0
0 1 ^e� X � ] 0 1

1 0 ^ �
The proper quantum examples of evolution operators are the phase flip
operator Z and the combined flip operator Y . The operators I � X � Y � Z form

2the quantum evolution is indeed a continuous process described by a Hamiltonian,
but this fact is not important for our purposes
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a basis over the space of one qbit operators, they are called Pauli operators
and they will be mentioned a few times in the document.

Y � ] 0 � i
i 0 ^ � Z � ] 1 0

0 � 1 ^ �
The last but not the least important operator is the Hadamard operator H.

H � 1d
2
] 1 1

1 � 1
^ �

The Hadamard operator has a very interesting property. If we apply it to
the basis state 
 0 � , we obtain �B
 0 � � 
 1 ����� d 2, which is a uniform superposition
of either states. If we apply it once more, we obtain the basis state 
 0 �
again.

Note 3.5 It is very illuminating to imagine how do the one qbit operators
act on the Bloch sphere. The identity I leaves the state unchanged. The
Pauli operators X � Y � Z reflect the state through the x � y � z axes respectively.
The Hadamard operation H performs a rotation of the sphere about the y
axis by 90 f followed by a reflection through the x � y plane.

Another interesting examples are the rotation operators. A simple alge-
bra shows, that the operator

Rx � θ � � e ( iθX g 2 � cos
θ
2

I � isin
θ
2

X

rotates the Bloch sphere about the x axis by angle θ. Similar operators
Ry � θ � , Rz � θ � can be defined also for other axes.

Example 3.3 The controlled NOT operator (shortcut CNOT) acts on two
qbits. It has the following representation in the computational basis 
 00 � ,
 01 � , 
 10 � , 
 11 � :

CNOT �ihjjk 1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

lYmmn �
If the first qbit is nonzero it does nothing, otherwise it flips the second qbit.

Note 3.6 Quantum physics allows us to apply any unitary operation in
unit time, at least in principle.3 As a matter of fact, only a small set of

3e.g. the operator SAT that solves the satisfiability problem and flips the output bit if
the input problem has a solution is a unitary operator
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operations is physically feasible. It can be shown (see [NC00]) that there
exists a small (discrete) set of operations that forms a universal set, i.e. ev-
ery quantum operation operating on two qbits can be simulated by a finite
sequence of the universal operators with the precision exponential in the
length of the sequence. Moreover every quantum operation on n qbits
can be decomposed into a finite sequence of two qbit operations. This se-
quence is unfortunately exponentially long for most operators — it can be
proved by a simple counting argument.

The goal of the quantum computational complexity is finding which
operators can be implemented more efficiently and describing such im-
plementations. This is what the quantum algorithm design is about.

3.1.3 Measurement

From a computer scientists point of view quantum physics provides a
powerful tool for a fast multiplication of exponentially large matrices of
complex numbers. Though the matrices need to be unitary and easily de-
composed, it seems to lead to an exponential speedup over classical com-
puters. However we encounter a substantial problem at the moment —
the amplitudes of a quantum state are hidden and protected from direct
observations.

The only way how to obtain information from a quantum computer is
observing it. The observation is described by an observable. Every observa-
tion inevitably disturbs the quantum state and projects the state vector into
some vector subspace. The more information we get by the measurement,
the more we disturb the state.

Definition 3.1 An observable is a collection � Mm 	 m of measurement opera-
tors. The index m refers to the measurement outcomes that may occur in
the experiment. If a quantum computer is situated in the state 
ϕ � imme-
diately before the experiment, then the probability that result m occurs is
p � m � � ! Mm 
ϕ ��! 2 and the state of the system after the measurement is

1! Mm 
ϕ �#! Mm 
ϕ � �
The measurement operators must satisfy the completeness condition

∑
m

M†
mMm � I �

Note 3.7 The definition of the observable just stated is very general and
allows us to perform so-called POVM measurements (see [NC00]). For our
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purposes, it suffices that the measurement operators are orthogonal pro-
jection operators, i.e. it holds that MiM j � δi C jMi in addition to the com-
pleteness condition. This kind of measurement is called a projective mea-
surement. It turns out that if we can perform an additional unitary oper-
ation before the measurement, this restricted model is equivalent to the
general one.

Example 3.4 Perhaps the simplest projective measurement is the measure-
ment in the computational basis. There are two interesting observables of the
one qbit system of this type:

Oproj � ��
 0 �o� 0 
p�L
 1 �o� 1 
q	N�
OId � ��
 0 �o� 0 
 � 
 1 �o� 1 
r	 � � I 	 �

Let us apply the Oproj measurement to a qbit. If the qbit is in the superpo-
sition state α 
 0 � � β 
 1 � where 
α 
 2 � 
 β 
 2 � 1, a simple calculation yields that
the probability of observing 0 is 
α 
 2 and the target quantum state after the
measurement is 
 0 � . Further, the probability of observing 1 is 
β 
 2 and the
target quantum state after the measurement is 
 1 � . On the contrary, the
measurement OId leaves the quantum state untouched and it reveals no
information at all.

Composing projective measurement observables of composite systems
is straightforward. They can be composed by a tensor multiplication of
the individual measurement operators, e.g. if we want to observe only the
first qbit of two qbits, we use the observable Obit1, if we want to observe
both qbits, we use the observable Oboth:

Obit1 � ��
 00 �o� 00 
 � 
 10 �o� 10 
q�Y
 01 �Y� 01 
 � 
 11 �Y� 11 
r	N�
Oboth � ��
 00 �o� 00 
p�Y
 01 �o� 01 
q�Y
 10 �o� 10 
q�L
 11 �o� 11 
q	 �

Oboth collapses the two qbit system into a particular basis state. The be-
haviour of Obit1 is more interesting. It collapses the system into a super-
position of states consistent with the measurement outcome, leaving their
amplitudes untouched except for rescaling. For example, if the system
was in the superposition state ∑3

i ; 0 αi 
 i � immediately before the measure-
ment and the outcome 1 was measured, then the system will collapse to
the state 1<α1 < 2 � <α3 < 2 � α1 
 01 � � α3 
 11 ��� .
Example 3.5 An important example of an observable in other than com-
putational basis is

OHad � � 1
2 �B
 0 � � 
 1 ���o��� 0 
 � � 1 
s�L� 12 �B
 0 �t�u
 1 ���o��� 0 
v�w� 1 
s�B	 ��yx 1
2
] 1 1

1 1 ^ � 12 ] 1 � 1� 1 1 ^`z �
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It is nothing else than a projective measurement in the basis �{
 0 � � 
 1 ����� d 2,�B
 0 �|�}
 1 ����� d 2. We denote it by OHad, because the conversion operator be-
tween the computational basis and this one is the Hadamard operator.

We see that measurements reveal very poor information about the orig-
inal quantum state — the quantum states form a continuum and the mea-
surement outcome is a discrete value. Unfortunately the state is disturbed
by the measurement, hence the measurement can not be repeated to reveal
more information. The (difficult) task of the quantum complexity theory is
developing quantum algorithms that yield the desired information merely
from the measurement outcomes.

Note 3.8 One of the essential problems in quantum computing is the prob-
lem of distinguishing quantum states. Having a promise that the system
is situated in one of the fixed quantum states, our task is determining the
quantum state. It turns out that doing this with probability 1 is impossible
unless the fixed states are orthogonal. It follows from the completeness
condition of the observables. This is also the reason why it is impossible
to encode reliably more than 1 classical bit into a qbit — the dimension
of the qbit vector space is 2, hence there are only two orthogonal vectors
there.

3.2 Quantum Circuits

Perhaps the most natural model of quantum computation is a Quantum
Circuit model. It is very well described in [NC00]. We shall mention it
very briefly only in this section and concentrate ourselves on building an
alternative model of a Quantum Branching Program.

The state of a quantum computer is described by n qbits initialised to
 0 ��~ n. The evolution is described by a program comprising of a sequence
of quantum gates applied to tuples of qbits. There are miscellaneous quan-
tum gates available in various circuit classes QNC . QAC . QACC:4� one qbit gates (all of them are available in QNC):

– the Pauli X � Y � Z gates,

– the Hadamard gate,

– a general one qbit gate,

4for an incentive discussion of these circuit classes, read [GHMP02, Moo99]
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– the controlled NOT gate,

– the swap gate,

– the phase shift gate,� three qbit gates (all of them are available in QNC):

– the Toffoli gate — the NOT operation controlled by a logical
conjunction of two qbits,� n-qbit gates:

– the n-qbit Toffoli gate — it performs the AND operation of n � 1
input qbits in unit time (available in QAC),

– the fanout gate — one qbit controls a bunch of NOT operations
on n � 1 other qbits (available in QACC),

– the parity gate — a parity of a bunch of control qbits controls
the NOT operation on a target qbit (it is equivalent to the fanout
gate, thus it is also available in QACC),

– the Mod � c � gate — a target qbit is flipped if the number of con-
trol qbits set to 1 modulo c is nonzero (for c � 2 it is a parity
gate, it is also available in QACC).

The quantum system is measured in the computational basis at the end
of the computation.

We state an interesting relation between the fanout gate and the parity
gate as an example in Figure 3.2. The left gate is a fanout gate with the
topmost control qbit, the right gate is a parity gate with the topmost target
qbit. The right gate is preceded and followed by one qbit Hadamard gates.

3.3 Quantum Turing Machines

Assuming the reader is conversant with classical Turing Machines (they
are defined in almost every textbook of computational complexity, for
example [Gru97, Pap94, Sip97]), we shall discuss directly their quantum
variant. A Quantum Turing Machine model was proposed by J. Watrous
in [Wat98]. Let us review his definition and all related concepts.
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equals H H

H H

H H

H H

2H H

Figure 3.2: Relation between the fanout and parity gates

3.3.1 Definition

Definition 3.2 A Quantum Turing Machine (shortcut QTM) is an ordered
sequence M � � Σ, Π, Q, q0, µ � such that� Σ is the input alphabet containing the blank # � Σ,� Π is the output alphabet not containing the empty word ε +� Π,� Q is a set of internal states,� q0 � Q is a starting state,� µ : Q � Σ � Σ � Q ���N� 1 � 0 � 1 	#� Σ ���N� 1 � 0 � 1 	#��� Π / � ε 	*�|� C is a transi-

tion function. The following restrictions are placed on allowable tran-
sition functions:

– there exist mappings Di � Dw : Q ���N� 1 � 0 � 1 	 and Z : Q � Π / � ε 	
– and unitary mappings Vσ : � 2 � Q � Σ �#��� 2 � Q � Σ � for all σ � Σ

such that

µ � q � σi � σw � q @ � di � σ @w � dw � π � � ���� ���
� q @1� σ @w 
Vσi 
 q � σw � di � Di � q @��L�

dw � Dw � q @ �L�
π � Z � q @ �B�

0 otherwise.

The definition is very technical and needs a further explanation. A
QTM suited to the study of space-bounded classes has three tapes: a read-
only input tape with a two-way tape head, a read-write work tape with a
two-way tape head, and a write-only output tape with an one-way tape
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x0 x1 xn � 1...# #

w0 w1 wk � 1...# #

# o0 #

Q

R/O

R/W

W/O

Figure 3.3: Design of a Quantum Turing Machine

head. We assume the tapes are two-way infinite and indexed by Z. See
Figure 3.3 for an illustration. The configuration of a QTM comprises:

i. the internal state of the machine,

ii. the position of the input tape head,

iii. the contents of the work tape and the position of the work tape head,

iv. and the contents output tape and the position of the output tape
head.

The set of the configurations of a QTM M is denoted by C � M � or just C if
the identity of M is clear from the context. The initial configuration denoted
by c0 � C is that one in which the internal state is q0, all tape heads are
positioned over the squares indexed by zero, and all tape squares on the
work and output tapes contain blanks #. We assume the input x is written
in squares 0 � 1 � ����� �Y
 x 
�� 1 on the input tape and all remaining squares on
the input tape contain blanks #.

As usual in the quantum world, at every instant the state of a QTM can
be described by a superposition of configurations 
ψ �I�8� 2 � C � M ��� .

Each number µ � q � σi � σw � q @ � di � σ @w � dw � π � may be interpreted as the am-
plitude with which M, currently in state q, reading symbols σi � σw on its
input and work tapes, will change its internal state to q @ , move its input
tape head in direction di, write σ @w to its work tape, move its work tape
head in direction dw and, if π +� ε, write π on its output tape and move its
output tape head to the right (the output tape is untouched when π � ε).
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3.3.2 Transition function

The conditions placed on the transition function µ look very involved at a
first glance. The existence of the mappings Di � Dw � Z ensures that the moves
of all machine heads are fully determined by the target state q @ , because all
contradicting transitions have zero amplitudes. This requirement arises
for the sake of the reversibility of the TM, it is not a quantum property yet.
Indeed it is a variant of the parental condition from Definition 2.12 of a
reversible BP on page 15. If the converse is true, the machine would not
know which squares shall it use for the decision of how to perform a re-
verse step. Further, it would also be possible to construct a non-reversible
counterexample similar to the one in Figure 2.2 on page 16.

Let the machine be situated in a classical state (the behaviour in the
superposition states is fully determined by the behaviour in the classical
states thanks to the linearity). The machine knows both in the forward
and reverse direction of computation which input square shall it decide
on. Further, the square is placed on a read-only tape hence it is not in a
superposition. After the input letter σi is read, a proper unitary mapping
Vσi is chosen. According to the definition, the partial configuration vector
 q � σw � is transformed to 
 q @1� σ @w � � Vσi 
 q � σw � and the tape head movements
are determined by the target state q @ . Hence the QTM is well-formed —
see the next subsection.

Note 3.9 The power of QTM’s depends greatly upon the values the tran-
sition amplitudes may take. It can be shown that if the general transcen-
dent numbers are allowed, then the non-recursive sets can be recognised.
Hence we shall limit them to be algebraic numbers. The choice of rational
numbers also suffices for the bounded error case, but it complicates the
analysis, since the numbers like

d
2 � 2 are very commonly used.

3.3.3 Quantum behaviour and language acceptance

Time evolution operator U M
x of a QTM M for a given input x � Σ 
 can be

written as
Ux � ∑

c C c �p? C � M � α � c � c @ ��
 c @ �o� c 
p�
where α � c � c @�� is the amplitude associated with the transition from c to
c @ . The time evolution operator needs to be unitary. It can be shown that
every QTM M obeying the restrictions on transition functions discussed
above is well formed, i.e. U M

x is unitary for every x. We shall not prove it
here, but a similar claim for Quantum Networks is proved in Chapter 4.
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A QTM is observed after every computational step. The observable cor-
responds to simply observing the output tape. For every w � Π 
 , let Pw
be the projection from � 2 � C � onto the space spanned by classical states for
which the output tape contents and the output tape head position are de-
scribed by w. Now � Pw 
w � Π 
 	 is a formal observable of a QTM. Since the
QTM is observed after every computational step, the nonempty output
word is indeed one letter long.

The computation of a QTM M on input x proceeds as follows. It starts in
the configuration c0. At every computational step, M is evolved according
to Ux and observed as described above. The computation continues until
a nonempty word π � Π at the output tape has been observed. The result
of the computation is the measured π.

For a given QTM M, an input x � Σ 
 , and k � N, let pM
π C k � x � denote the

probability that each observation at the time k @ � k yields ε and the ob-
servation at time k yields π. It is straightforward to prove by induction
that

pπ C k � x � � ! Pπ � UxPε � k 
 co ��! 2 �
Let pπ � x � � ∑k ? N0 pπ C k � x � be the probability that the computation on input
x results π. The language acceptance of QTM’s in distinct modes is defined
in the same way as the language acceptance of PBP’s in Definition 2.9 on
page 11.

3.3.4 Complexity measures and complexity classes

Let us define the complexity measures of a QTM. The following informa-
tion needs to be encoded in the configuration: the internal state, the posi-
tion of the input and work heads, the contents of the work tape and the
first symbol (if any) written to the output tape. The position is encoded
in binary form, thus the length of the encoding is logarithmic in the input
size and linear in the distance of the furthest non-blank square on the work
tape. We say that the space required for a superposition is the maximum
space required for any configuration with a nonzero amplitude. We say
that a QTM M on input x runs in space s, if each superposition obtained
during the execution of M on input x requires space at most s, i.e.�50 k E 0 �Y�10 c � C ���N� c 
)� UxPε � k 
 c0 ��+� 0 � 7 c requires space at most s � �
We say that M on input x runs in maximal time t if

∑
k � t

∑
π ? Π pπ C k � x � � 1 �
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i.e. M on input x halts with certainty after no more than t steps of compu-
tation. If there exists a finite t � x � for every input x such that M on input x
runs in maximal time t � x � , we say that M halts absolutely. We can also de-
fine the expected time of the computation of M on input x in the same way
as it was defined for a PBP:

exp � timeM � x � � ∑
k ? N0

∑
π ? Π k D pπ C k � x � �

Let s � t : N � N be a space constructible (time constructible respect.)
function. We say that a QTM M has the space complexity s (time complexity
t respect.), if for every input x � Σ 
 , M on input x runs in space s �B
 x 
s� (time
t �{
 x 
�� respect.).

We also define the quantum complexity classes similarly to the classical
ones in Definition 2.11 on page 13.

Definition 3.3 The class m � Q � TIME � t � n ��� (m � Q � SPACE � s � n ��� respect.)
is defined as the class of languages recognised by QTM’s with time com-
plexity f � n � (space complexity f � n � respect.) in mode m.

m � Q � TIME � t � n ��� � � L . Σ 
 
N�32 QTM ML �
ML has time complexity O � t � n ��� &
ML accepts L in mode m 	N�

m � Q � SPACE � s � n ��� � � L . Σ 
 
N�32 QTM ML �
ML has space complexity O � s � n ��� &
ML accepts L in mode m 	 �

Note 3.10 There is an interesting gap between the classical and the quan-
tum deterministic classes Eq � TIME � f � n ��� and Eq � Q � TIME � f � n ��� . Al-
though quantum computers use something like random numbers during
the measurements, not all quantum algorithms are erroneous. It can be
shown that there are problems, for which there exists an exact quantum
algorithm with no classical counterpart, e.g. the Deutsch-Jozsa black-box
function algorithm. It is solvable in constant number (one) of queries on a
quantum computer but every deterministic algorithm solving it exactly
needs to ask an exponential number of queries and every randomised
algorithm needs a linear number of queries to achieve an exponentially
small error. The classical lower bound is easily proved by the Yao’s prin-
ciple (see [Yao83]). The quantum algorithm is described in [NC00].

However we shall not discuss the famous quantum algorithms here,
like the Groover’s and Shor’s ones. They are also very well described
in [NC00].



32 CHAPTER 3. QUANTUM COMPUTATION

3.3.5 Nonuniform version

The Turing Machine model is a uniform model in principle. Since we want
to prove the equivalence between QTM’s and QBP’s in both cases, a con-
cept of non-uniformness must be added.

We say that a QTM is a Quantum Turing Machine with advice, if the ma-
chine can ask for bits of the advice during the computation. The advice
does not depend directly on the input x � Σ 
 , but it depends on its length
 x 
 .
Note 3.11 The power of the augmented model seriously depends on the
length of the advice. For example, if the advice is permitted to be exponen-
tially long, it can contain the information about every word x � Σn, whether
or not it is present in the language. If the length is smaller, the power is
substantially decreased — a good choice of the length limit of the advice
could be a polynomial in n, a power of the logarithm of n or a constant.
However even the classical TM’s with constant length of advice recognise
the non-recursive languages in unary encoding (there is only one correct
input word for every input size in the unary encoding, hence if the advice
contains the solution of the problem, then the TM has just to read it and
return it as the result).

We shall define new quantum complexity classes distinguished by the
length of the advice. For example m � Q � TIME � f � n ���M� g � n � is the class of
languages accepted by QTM’s with time complexity f � n � and with advice
of length not longer than g � n � in mode m.

Let us extend the definition of a QTM by adding the advice. We in-
troduce a new read-write tape for writing the inquiries. The inquiry tape
behaves exactly like another working tape. The transition function µ is
properly extended and the restrictions are modified: a new mapping Dq
is added, because the tape head movement on this tape must be fully de-
termined by the target state q @ , and the individual unitary mappings are
extended to Vσ : � 2 � Q � Σ � Σ ����� 2 � Q � Σ � Σ � for every σ � Σ.

Having two working tapes instead one does not extend the machine
power yet. We still have to provide a special instruction performing the
inquiry. We reserve three internal states qhi � qh0 � qh1 and define the follow-
ing behaviour: If the machine enters the internal state qhi in a computa-
tional basis configuration, it decides on the contents of the inquiry tape
and changes its internal state to either qh0 or qh1 depending on the result
of the inquiry. The contents of the tapes and the positions of the tape heads
are unchanged. The inquiries have the following format: a binary number
denoting the index is read from the inquiry tape and the corresponding bit
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of the advice is returned. Further, the computation continues by executing
normal program instructions.

The behaviour in superposition configurations is determined by the be-
haviour in the computational basis configurations thanks to the linearity.

Note 3.12 In simulations discussed in following chapters, the advice will
typically contain the encoded description of the simulated nonuniform
QBP.

3.3.6 Special forms of QTM’s

Definition 3.4 We say that a QTM is oblivious, if the movements of all its
tape heads are fully determined by the problem size, i.e. they depend nei-
ther on the particular input written on the input tape nor on the particular
computation path traced.

Note 3.13 The length of the computation of an oblivious QTM is also fully
determined by the problem size, since the computation finishes when the
output tape head moves first to the right, which happens at the same time
in all instances.

Note 3.14 It is well known that every TM can be simulated by an oblivious
TM with constant space overhead and quadratic time overhead. We do not
show it here. The same method can be used also in the quantum case.

Definition 3.5 We say that a QTM is indeed a Reversible Turing Machine
(shortcut RTM) iff all amplitudes of the transition functions Vσ are either 0
or 1.

Note 3.15 Since the transition operator must be unitary and all amplitudes
are either 0 or 1, it follows that it is a permutation matrix. Hence the RTM
is indeed a TM with an additional constraint being reversible.
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Chapter 4

Quantum Networks

Having looked at classical Branching Programs and Quantum Turing ma-
chines, we shall now propose a model of a Quantum Branching Program.
However for the reasons that turn out in Chapter 7 about achieving re-
versibility, we first propose a generalised model called a Quantum Net-
work and define the Quantum Branching Program as its acyclic variant.

During writing of this document, the model has already been pub-
lished, see [AGK01, NHK00, SS01].

4.1 Raw Quantum Networks

4.1.1 Definition

Definition 4.1 A Quantum Network (shortcut QN) is an ordered sequence
P � � n, Σ, Π, Q, E, q0, d, µ � such that� n � N is the length of the input,� Σ is the input alphabet,� Π is the output alphabet,� Q is a set of graph vertices,� E . Q2 is a set of oriented edges,� q0 � Q is a starting vertex,� d : Q � Zn / Π is a function assigning input variables to internal

graph vertices and output results to graph sinks,

35



36 CHAPTER 4. QUANTUM NETWORKS� µ : E � Σ � C is a transition function assigning a complex amplitude
to the transition through an edge given a letter from the input alpha-
bet.

Let us establish the following notation:� Qinp denotes the set of input vertices (the sources of � Q � E � ),� Qout denotes the set of output vertices (the sinks of � Q � E � ),� Qπ � � q � Qout 
 d � q � � π 	 for π � Π denotes the set of output vertices
assigned to a given result,� Qx � Q � Qx is the complement of a given vertex set,� Qpar � Qout and Qchild � Qinp.

Let us extend the transition function µ to transitions between any two ver-
tices given any input letter: we define the operator µσ : � 2 � Qpar �b��� 2 � Qchild �
such that � q @ 
 µσ 
 q � � x µ ��� q � q @)�L� σ � ; � q � q @)�I� E �

0; otherwise ���6�7 µσ � ∑� q C q ����? E µ ��� q � q @ �L� σ ��
 q @ �o� q 
��
Then the following requirements must hold:

i. � Q � E � is an oriented graph,

ii. d � q �&� Π iff q is a sink of the graph, i.e. d � Qout �U. Π and d � Qpar ��. Zn,

iii. the parental condition must be fulfilled — for every vertex q there is
exactly one input variable assigned to all parents of q:�T2 dp � dp : Q � Zn ���10 qp � q � Q � � qp � q ��� E 7 d � qp � � dp � q �L�

iv. the operator µσ must be unitary (i.e. norm preserving and invertible)
for every σ � Σ.

The first two requirements tell us what a QN looks like. The last two
requirements are needed to guarantee that the QN is well-formed, the sig-
nificance of both of them is demonstrated later. (The parental condition
has already been discussed in Note 2.9 about reversible BP’s on page 15.
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The necessity of the parental condition is also supported by Note 4.4 on
page 43. The unitarity condition is necessary for physical feasibility of the
quantum model, a similar condition has already been seen in Definition 3.2
of a QTM on page 27.)

Note 4.1 When not explicitly given, we assume the input alphabet is taken
as Σ � � 0 � 1 	 , the output alphabet is taken as Π � � acc � rej 	 and the input
size n is chosen automatically according to the labels of internal vertices.

Note 4.2 We assume that the values of the transition function µ are alge-
braic numbers. As stated in Note 3.9 on page 29, the target model would
be incredibly powerful otherwise.

The definition of a QN is powerful in the sense that it allows a gen-
eral graph with many cycles and components. Let us consider what hap-
pens if we restrict the graph layout. Requiring the graph connectivity does
not change the power of the QN model, since the computation never gets
into another component anyway, but the description of a QN can become
more complicated in some cases. However it is obvious that if we require
the graph acyclicity, infinite computations are not possible. The infinite
loops are not interesting in deterministic models, but they are very useful
in probabilistic models. The restricted computation model of a QN with
acyclic graph will be called a Quantum Branching Program.

Definition 4.2 We say that P � � n, Σ, Π, Q, E, q0, d, µ � is a Quantum Branch-
ing Program (shortcut QBP), if it is a Quantum Network, and the following
requirements hold:

i. � Q � E � is a connected acyclic oriented graph,

ii. q0 � Qinp.

Let us describe the computation of a QN, i.e. let us state what is in-
cluded into its configuration, how to perform a computation step and how
to measure the result: Everything that the QN remembers is comprised in
its state. In every step the QN performs the transition corresponding to the
value of the input variable assigned to current vertex. Before a transition
is performed, the QN is observed whether it is situated in an output ver-
tex. If this happens, the computation stops and the corresponding result
is returned.

Definition 4.3 We say that a QN P is in configuration c, if it is currently in
the state c � Q.
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As usual in the quantum world, at every instant the state of a QN may
be described by a superposition of configurations 
ψ �I�8� 2 � Q � .

For a QN P � � n, Σ, , Q, E, , d, µ � , given input x � Σn and a pair of con-
figurations c � c @�� Q, the amplitude associated with performing the transi-
tion c � c @ , denoted by αx � c � c @�� , is defined as αx � c � c @�� � � c @�
 µxd � c � 
 c � .
Definition 4.4 Time evolution operator of a QN P � � n, Σ, , Q, E, , d, µ � ,
denoted by UP

x : � 2 � Q ����� 2 � Q � , is defined as

Ux � ∑
c C c � ? Q αx � c � c @ ��
 c @ �o� c 
p�

hence if the program P on input x is situated in superposition 
ϕ � , then after
unobserved evolving for one step its new superposition will be Ux 
ϕ � .
Definition 4.5 Observable of a QN P is defined as� Pπ 
π � Π / � work 	 	N�
where Pπ � ∑c ? Qπ 
 c �o� c 
 is a projection from Q onto the space spanned by
the given vertex set. The sets Qπ for π � Π have already been defined and
Qwork � Qpar � Qout.

Definition 4.6 The computation of a QN P on input x proceeds as follows:

1. The QN P is situated to the classical state 
 q0 � .
2. The following loop is executed until an output result is observed.

Each step of the computation consists of two phases:

2.1. the state of program is observed as described above,

2.2. the program evolves according to Ux.

3. The observed result is returned.

4.1.2 Consistency of the model

We say that a QN P is well-formed, if for every input x its time evolution op-
erator Ux restricted to � 2 � Qpar �&�¡� 2 � Qchild � is unitary and if the observable
of P is well defined.

Theorem 4.1 Every QN (satisfying the requirements in Definition 4.1) is
well-formed.
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The outline of the proof: We shall show, that the matrix of every re-
stricted time evolution operator Ux is a two dimensional permutation1 of
a block-diagonal matrix. A block-diagonal matrix is unitary iff each block
incident with the main diagonal is unitary. The diagonal blocks are in-
dependent, thus every such block can be replaced by any other unitary
block without breaking the unitarity of the whole operator. The parental
condition implies that the program decides on exactly one input variable
in every such block. Thus the evolution operator for any input can be
combined from the blocks of the unitary operators µσ and hence it is also
unitary.

For a QN P � � , Σ, , , E, , , µ � and an edge e � E, we say that the
edge e has colour σ � Σ, if µ � e � σ ��+� 0. An edge can have more colours. The
set of edges having colour σ, denoted by Eσ, is defined straightforwardly as
Eσ � � e � E 
 µ � e � σ �¢+� 0 	 , the corresponding graph � Q � Eσ � will also be called
monochromatic.

For an oriented graph � V � E � and an ordered pair � P� C � of sets P� C .
V , we say that � P� C � is the family of parents P and children C if for every
parent vertex p � P all its graph children are also in C and vice versa, i.e.�10I� p � c ��� E �-� p � P £ c � C � . We say that a family � P� C � is indivisible, if it is
minimal in inclusion, i.e. every pair � P @�� C @�� of proper subsets P @ . P, C @ . C
is not a family. For an ordered pair � P @1� C @�� , the family induced by � P @1� C @�� is
the minimal family � P� C � such that P @b. P and C @|. C. The set of edges
belonging to a family is called an edge family.

Lemma 4.2 Let P � � , Σ, , Q, E, , d, µ � be a QN with the parental and
unitarity conditions omitted. Let � P� C � be an indivisible family from graph� Q � E � for P . Qpar and C . Qchild. Then the following holds:

i. any two vertices v1 � v2 � P / C are connected by a path where the par-
ents and the children are alternated,

ii. if, in addition, the parental condition holds, then all parents p � P are
assigned to the same input variable,

iii. if, in addition, the unitarity condition holds, then #P � #C.

Proof.

i. Let v1 be a parent. The family � P� C � induced by �¤� v1 	N� /0 � can be ob-
tained by adding all children of v1 into C, followed by adding all par-
ents of every children c � C into P, . . . until the sets P� C are closed.

1i.e. both the rows and the columns are independently permuted
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v2 must lie in P / C else � P� C � is not indivisible. Hence there exists
a path v1 � c1 � p2 � c2 � ����� � v2. The proof for the case when v1 is a
child is analogous.

ii. The parental condition implies that all parents of a child are assigned
to the same input variable. Every pair of parents is connected by
an alternating path and every two adjacent parents in the path are
covered by the parental condition, hence all parents are assigned to
the same input variable.

iii. The family � P� C � is closed (there is no edge going out of the family
of any colour), P . Qpar and C . Qchild, hence the sub-matrix of every
unitary operator µσ from Definition 4.1 of a QN induced by C � P
is surrounded by zeroes2 and consequently µσ restricted to � 2 � P ���� 2 � C � must stay unitary. Unitary operators necessarily operate on
sets of equal size (else they could not be reversible). Thus #P � #C. A

Lemma 4.2 also holds for the monochromatic graph � Q � Eσ � for every
σ � Σ. In the third step of the proof, it does not matter which unitary
operator µσ is used.

Lemma 4.3 Let P � � , Σ, , Q, E, , d, µ � be a QN and p � Qpar (c � Qchild
respect.). Then for every colour σ � Σ there is an edge going from p (going
to c respect.) of colour σ.

Proof. Let us take a family � P� C � from graph � Q � Eσ � induced by �¥� p 	N� /0 � .
Then #C � #P E 1, thus there is an edge of colour σ going from p. The proof
for c is analogous. A

This implies that there are no partial output vertices in a QN. Every
vertex is either a sink and has no outgoing edges or there is an outgoing
edge for every colour. The same holds for ingoing edges.

Lemma 4.4 For any graph � Q � E � the set of edges E can be decomposed
into a disjoint union of indivisible edge families.

Proof. A family can also be induced by an edge, we define that the edge� p � c � induces the same family as the vertex sets �¤� p 	N��� c 	*� do. Let us take a
relation on the edges in which e1 is related with e2 iff the families induced

2i.e. all other items in the rows spanned by C and all other items in the columns
spanned by P are zero
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Figure 4.1: Structure of a raw QN

by e1 and e2 are equal. The relation is an equivalence, hence there exists a
desired decomposition. A

Having the edge decomposition, we can take the parents and the chil-
dren of the equivalence classes separately. Consequently, for any QN,
the states Qpar and Qchild can be independently reordered according to the
equivalence classes in such a way, that for every input x, the time evolu-
tion operator Ux is a block-diagonal matrix and the parents of every block
are assigned to a unique input variable. All this is illustrated in Figure 4.1.

µ0 2 � 1 2 � 2 3 � 1 3 � 2 3 � 3 1 � 1
1 � 1 [

2
2

[
2

2
1 � 2 [

2
2 � [ 2

2
2 � 1 1 0 0
2 � 2 0 1 0
2 � 3 0 0 1
3 � 1 1

µ1 2 � 1 2 � 2 3 � 1 3 � 2 3 � 3 1 � 1
1 � 1 0 1
1 � 2 1 0
2 � 1 0 1 0
2 � 2 0 0 1
2 � 3 1 0 0
3 � 1 1

Table 4.1: Transition functions µ0, µ1 of the QN in Figure 4.2
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Figure 4.2: Example of a QN

Note 4.3 This decomposition tells nothing about the set of input vertices,
because the Lemma 4.2 holds only for indivisible families. The input ver-
tices do not form a special family in general, but they can be mixed with
internal vertices in many ways as seen in Figure 4.2. However we con-
clude that:

Lemma 4.5 The number of input vertices equals the number of output
vertices in every QN.

Proof. The unitarity of µσ implies that #Qpar � #Qchild. We know that Qpar �
Qout � Q � Qinp and Qchild � Qinp � Q � Qinp, hence #Qout � #Qinp. A
Proof of Theorem 4.1 The proof of unitarity is simple now: Each re-
stricted time evolution operator Ux is a two dimensional permutation of a
block-diagonal matrix. The block-diagonal matrix is unitary iff every its
block is unitary. We know that every transition operator µσ is unitary and
it has the same block structure (except for that the families may not be in-
divisible, which does not matter). We can replace any diagonal block by
another unitary block, and since the parents in every block are assigned to
a unique input variable, we may compose the blocks of µσ into Ux — every
block comprising of parents assigned to an input variable xi will be re-
placed by the corresponding block from µxi . The resulting matrix becomes
exactly Ux.

Yet one more claim must be verified: the correctness of the observable
of the QN. We know that � Qx 
 x � Π / � work 	 	 is a decomposition of Q.
Hence it is apparent that the projection Px defined as Px � ∑c ? Qx 
 c �o� c 
 ful-
fils the conditions P†

x Px � P2
x � Px, ∑x Px � I and PxPy � δx C yPx and thus the

observable is a projective measurement. A
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x1 x1 x2 x2 Hadamard 0 1

Figure 4.3: A well-formed QBP not fulfilling the parental condition

Note 4.4 The parental condition is needed for the proof. If it is omitted, it
would be possible to compose the operators µσ into Ux without preserving
the unitarity. Recall the counterexample in Figure 2.2 on page 16. On the
other hand we must admit that though the parental condition is sufficient
it is indeed not necessary. In Figure 4.3, there is a simple counterexample
of a layered QBP that does not fulfil the parental condition but it is uni-
tary for all choices of input variables x1 � x2. It can be proved by simply
considering all possibilities, since there are only four of them.

Note 4.5 The transition functions and also the restricted time evolution
operator have an interesting property: they all can be naturally extended
from � 2 � Qpar �|�¦� 2 � Qchild � to � 2 � Q �§�¨� 2 � Q � preserving the unitarity. As you
can see in Figure 4.1, the right upper block can be replaced by any unitary
matrix, e.g. by a permutation matrix. This would violate the condition of
graph acyclicity (for a QBP) and cause the disappearance of Qinp and Qout,
but it is noticeable anyway.

When constructing a QN we have to verify all requirements from Def-
inition 4.1. The only nontrivial requirement is the unitarity of every tran-
sition operator µσ. It is easy to prove a local condition of unitarity now:

Theorem 4.6 The transition operator µσ : � 2 � Qpar �©��� 2 � Qchild � is unitary iff
the following conditions hold for every family � P� C � induced by �¤� p 	N� /0 �
or � /0 ��� c 	*� , for p � Qpar , c � Qchild:

i. #P � #C E 1,

ii. µσ restricted to � 2 � P ���¡� 2 � C � is unitary.

Proof. Straightforward. A
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Figure 4.4: The interference pattern of a QBP

4.1.3 Uniform sequences of QN’s

First of all, we shall define the sequence of QN’s in the same way as in
Definition 2.4 of the sequence of BP’s on page 7.

Definition 4.7 A sequence of Quantum Networks P is an infinite sequence
P � � Pi 	 ∞i ; 1 of QN’s where for every input size a special network is pro-
vided.

A sequence of QN’s alone is a nonuniform model in principle. The
concept of uniformness is greatly inspired by Definition 2.7 of the uniform
sequence of BP’s on page 8, however some notions must be substantially
changed to obtain a model equivalent to the QTM model, which is the rep-
resentative of uniform computational models. Let us look at a QTM. Since
a QTM has a finite number of internal states, it has also a finite number
of transition types. We shall require the same from the sequence of QN’s
being simulated.

While in the classical probabilistic case it was possible to circumvent
this impediment (and not require this requirement) by simply simulating
the complex random choice types by the chain of the simple ones (see
Note 2.7 on page 14), the same method completely fails in the quantum
case for a reason inherent to quantum computation — the quantum inter-
ference. If we can not ensure that every computational path takes the same
time in the simulation, the new interference pattern seriously changes the
program behaviour (see Figure 4.4). In fact we can not ensure that, be-
cause when there are infinitely many distinct transition types, they can not
be simulated by a fixed set of transitions in fixed finite number of steps by
any algorithm (proved by a simple counting argument).
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Example 4.1 Let us scrutinise Figure 4.4. For simplicity we have chosen
the input alphabet Σ � � 0 	 . Both QBP’s consist of two Hadamard opera-
tions, but the computation is delayed for one computational step at one
state in the right QBP. The Hadamard operation is self-inverse.

The initial state of both programs is 
 I0 � . The left QBP stops after two
time-steps and reaches O0 with probability 1. The right QBP stops after
two or three time-steps with probability 1 � 2 and it always reaches both
sinks with probability 1 � 2.

Definition 4.8 For a QN N � � , Σ, , Q, E, , , µ � , an indivisible family� P� C � and an input letter σ � Σ the transition type of family � P� C � and letter σ
is the (unitary) matrix type ��� P� C �L� σ � :C � P � C taken as the representation
of the restricted operator µσ in the computational basis:3�10 p � P� c � C � type ��� P� C �L� σ � c C p � � c 
 µσ 
 p � �
Let closureG � P @ � C @ � denote the family induced by � P @ � C @ � in graph G. We
say that a sequence of QN’s N � � N � n � 	 ∞n ; 1 has finite number of transition
types, if the set of transition types in monochromatic graphs for all input
sizes is finite, i.e.JJJJJJJJ Kσ ? Σ Kn ? N K

q ? Q � n �par

���� ��� type hjjk closure� Q � n � C E � n �σ � �¤� q 	N� /0 �¬� σ
lYmmn>­ ��®��¯

JJJJJJJJ � ∞ �
Definition 4.9 Let P be a QN with some fixed numbering of its transition
types. The encoding of QN P � � n, Σ, Π, Q, E, q0, d, µ � is defined in the
following way:� the vertices are uniquely identified by natural numbers,4 qmax be the

maximal allocated vertex number,� for every vertex q � Q a pair � d � q �L� dp � q ��� of indexes of input variables
the computation decides on is formed (the first item in the pair serves
for the forward direction of computation, the second one serves for
the backward direction of computation), if q � Qout, then the identi-
fier of the output result produced is stored instead,

3Notice that for every family size f « #P the same operator can be in general repre-
sented by f !2 distinct matrices corresponding to the distinct permutation of parents and
children. However it does not matter since f !2 is a finite number.

4not necessarily in consecutive way
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composed into distinct indivisible families, identified also by natural
numbers, Fmax

σ be the maximal allocated family number,� every family carries an index of its transition type (which indeed
comprises also the family size),� for every input letter σ two sorted translation tables are formed,
they translate the vertex number to the pair [family identifier, in-
dex of the vertex in the list of family parents/sons] in corresponding
monochromatic graph, the reverse translation tables are also present,� the description of a QN consists of:

– a header (comprising of the input size n, input alphabet size
#Σ, max. vertex identifier qmax, identifier of the starting vertex
q0, #Σ numbers of max. family identifiers in the monochromatic
graphs Fmax

σ ),

– an array of vertex decision variables (since the vertices need not
be indexed in consecutive way, the holes between the records
can contain any garbage),

– #Σ arrays of family transition types,

– and 4 D #Σ translation tables also stored as arrays.

The description of the transition types is not included in the encoding of
P, it is regarded as a fixed entity here.

We know that the number of families is less than the number of ver-
tices. Notice that under an assumption that there are not too much holes
between the records the length of encoding of a QN in records is asymp-
totically equal to the number of vertices of the QN up to a multiplication
constant. This will be useful for computing the length of the advice of a
QTM.

Definition 4.10 A sequence of QN’s P � � Pn 	 ∞n ; 1 is called uniform if the
following requirements hold:� P has a finite number of transition types, we can index these with

natural numbers,� there exists a RTM M that for given n � b � N yields the b-th bit of
the encoding of Pn in that fixed numbering of transition types. Both
inputs n � b are expected to be written in binary form using 9 log2 n :
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bits on the input tape. The output of M is returned in its internal state
and the work tapes must be cleaned at the end of the computation.
The length of computation of M must be independent on b, i.e. for
given n the length of computation is constant among all b’s.

Such machine M is called a construction machine of P. If there is no such
machine, we call the sequence nonuniform.

Note 4.6 The constraints on the construction machine C are chosen prop-
erly to simplify the forthcoming quantum simulations. The reversibility
is required since everything must be reversible in quantum world. The
constant length of computation is required for preserving the interference
pattern. Cleaning the work tapes is required for the ability of repeating
calls.

Note 4.7 It is important to understand, why we have chosen, that the de-
composition to families operates on individual monochromatic graphs in-
stead of letting it operate directly on the global graph. The latter encod-
ing would also make sense, but the power of the model would be more
bounded. A simple example of a RBP in Figure 2.3 on page 16 shows
that families of size q arise in the global graph when implementing the
operation increment modulo q, while the families in the corresponding
monochromatic graphs consist of a simple edge only. Hence a sequence
of QN’s computing the sum ∑n

i ; 1 xi for input size n (and computing, for
example, whether it is greater than say n � 2) in this simplest way would
not be uniform in that model.

Note 4.8 We have based the notion of uniformness on the framework of
equivalence with the QTM model. It is also possible to base the uniform-
ness on pure computability, i.e. the ability of constructing effectively the
description of the QN including transition probabilities. A model uniform
in this sense is not simulated by a QTM in general. In some special cases
it can happen that the approximation of a general unitary operation by
a chain of fixed operations does not disturb the interference pattern, e.g.
when the operations of equal complexity are placed in one layer like in
quantum circuits, however if this in not the case then the simulation is not
possible.

Example 4.2 A so-called Quantum Fourier Transform on n qbits defined as

Fn �¡° 1d
2n

2n ( 1

∑
i ; 0

 i � 2n ( 1

∑
j ; 0

ξi j � j 
 ±²� where ξ � ei2π g 2n
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can be efficiently implemented by a depth n2 quantum circuit comprising
just of controlled rotations Rz � 2π � 2k � . Such circuit can be represented by a
QN of a regular layout. Though this sequence of QN’s is not uniform, it
can be simulated within arbitrary accuracy by a QTM.

4.1.4 Language acceptance and complexity measures

The computation of a QN consists of many measurements, so it is a prob-
abilistic process. Let pP

π C k � x � denote the probability that if a QN P is run on
input x as described above, it halts exactly after k steps and the result is π.
This condition is equal to yielding “work” at every observation step k @ � k
and yielding π at observation step k. A straightforward proof by induction
shows that

pP
π C k � x � � ! Pπ � UxPwork � k 
 q0 ��! 2 �

Definition 4.11 For a given QN P � � n, Σ, Π, Q, E, q0, d, µ � , an input x � Σn

and a result π � Π, the probability that P yields π on input x, denoted by pP
π � x � ,

is defined as

pP
π � x � � ∞

∑
k ; 0

pP
π C k � x � �

The superscript P may be omitted when it is clear which P is meant from
the context. The same notation is used also for the sequences of QN’s.

Definition 4.12 Let P1 � P2 � � n, Σ, Π, , , , , � be the QN’s with the same
interface (the input alphabet, the length of input word and the output al-
phabet). We say that P1 is equivalent to P2 if the probability of yielding π � Π
is the same for every input x � Σn, i.e.�10 x � Σn ���10 π � Π � pP1

π � x � � pP2
π � x � �

The same concept is also used for the sequences of QN’s.

The language acceptance of a sequence of QN’s in distinct modes is de-
fined in the same way as for the PBP’s in Definition 2.9 on page 11.

Definition 4.13 Let P be a sequence of QN’s, L . Σ 
 be a language, m be a
mode listed in Table 2.1 on page 12. We say that P accepts L in mode m iff for
every x � Σ 
 the probability pP

1 � x � of yielding result 1 fulfils the appropriate
condition listed in the table.

Note 4.9 Using the concept of language acceptance of a sequence of QN’s,
we could also have defined the that two QN’s P1 � P2 are equivalent if they
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induce the same language in a given mode m. The condition stated in Def-
inition 4.12 is stronger in general since every two QN’s with equal proba-
bilities of corresponding outputs necessarily induce the same language in
every mode.

Let us define the complexity measures for a QN, i.e. the time com-
plexity and the space complexity. They both are defined for a fixed QN at
first, then the definition is generalised to sequences of QN’s. We use the
same approach as the Note 2.2 about the complexity measures of a PBP on
page 11.

Definition 4.14 Let Pn be a QN. We define the size of Pn as the number of
its vertices s � #Q and the space complexity of Pn as 9 log2 s : . Let s : N � N be
a space constructible function. We say that a sequence of QN’s P � � Pn 	 ∞n ; 1
has the space complexity s, if for every input size n the QN Pn has the space
complexity s � n � , and we denote it by Space � P � � s.

Definition 4.15 Let Pn be a QN. We say that Pn on input x � Σn runs in
maximal time t if

∑
k � t

∑
π ? Π pπ C k � x � � 1 �

i.e. Pn on input x halts with certainty after no more than t steps of com-
putation. We can also define the expected time of the computation of Pn on
input x in the same way as for a PBP as

exp � timePn � x � � ∑
k ? N0

∑
π ? Π k D pπ C k � x �

and say that Pn runs in expected time t if exp � time � x �IF t.
Let t : N � N be a time constructible function. We say that a sequence of

QN’s P � � Pn 	 ∞n ; 1 has the maximal time complexity t (expected time complexity
respect.), if for every input x � Σ 
 , P< x < on input x runs in maximal time
t �{
 x 
�� (expected time t �B
 x 
�� respect.), and we denote it by MaxTime � P ��F t
(ExpTime � P �UF t respect.). If for every input x there exists a finite T � x � such
that P< x < runs on input x in maximal time T � x � , then we say that P halts
absolutely.

Definition 4.16 Let P1 � P2 be two equivalent sequences of QN’s with space
complexities s1 � s2 and time complexities (take either maximal or expected)
t1 � t2.5 The space overhead and the time overhead of P2 over P1 are the map-
pings os � ot : N � N / � ∞ 	 such that os � n � � s2 � n ��� s1 � n � , ot � n � � t2 � n ��� t1 � n � .

5meaning the minimal function such that the sequence of QN’s still has such time
complexity (because the time complexity is defined as an upper bound)
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Having defined both the language acceptance criteria and the complex-
ity measures of a sequence of QN’s, we could establish a new hierarchy of
complexity classes according to this computational model. However we
will not do that. We shall rather show that the QTM’s and the QN’s simu-
late each other under some restrictions at low cost, hence the classes would
be equivalent up to the simulation cost.

If we indeed wished to define them we would do it exactly in the same
way as in Definition 2.11 of classical complexity classes on page 13.

4.2 Special forms of QN’s

The definition of a QN seems to be too general for some purposes. Let
us examine a few models with simpler and more regular inner structure.
We shall demonstrate in later chapters that these models are indeed as
powerful as the raw model, i.e. every raw QN can be converted into an
equivalent regular model with small time and space overhead.

4.2.1 Layered QN’s

The first aspect of the graph of a QN we look at is its layout. The com-
putational state of a raw QN can spread unpredictably over large part of
the graph in short time. If the vertices are ordered into distinct layers, the
computation would be more regular.

Definition 4.17 We say that a QN P � � , , , Q, E, q0, , � is layered if there
exists a decomposition of vertices Q into layers Q0, Q1, Q2,. . . , Qk such that

i. Qinp . Q0,

ii. Qout . Qk,

iii. �50I� q � q @)�I� E � � q � Qk & q @¬� Q0 �´³µ�T2 i � N0 �#� q � Qi & q @a� Qi � 1 � .
We say that a QBP P is layered, if P taken as a QN is layered and if there are
no edges going from the last layer into the first one, i.e. the third condition
is replaced by �50I� q � q @ ��� E � �32 i � N0 ��� q � Qi & q @ � Qi � 1 � �
Note 4.10 This layout of a QN is ideal for reducing the number of qbits
needed to store and for avoiding the measurement during the computa-
tion, since we know at every instant in which layer all states with non-zero



4.2. SPECIAL FORMS OF QN’S 51

amplitudes are. Thus the information about the current layer needs not be
stored as an (expensive) qbit, but it suffices to remember it in a classical
external program counter. Reducing the quantum space complexity helps
a lot with constructing a physically feasible computer. The measurement
has to be be done only in every � k � 1 � -th step.

If the layer number is not represented within the quantum state, the
state space of the QN is spanned by the vertices from a fixed layer, not by
all graph vertices. It means that the the computational state is not trans-
lated into the next layer but it stays within that fixed layer in every com-
putational step. Moreover we have to provide an extra unitary transfor-
mation U � l �x for every layer l. It does not matter, since applying distinct
simpler operations in every step is more natural than applying the same
complex operation Ux again and again during all the computation, e.g. this
approach is nearer to the notion of quantum circuits which also operate in
layers. It can also happen that the real number of distinct operators U � l �x
that need to be prepared is indeed decreased, because a layer operator
operates on fewer vertices with possibly fewer number of input variables
they decide on.

Example 4.3 A fictive layered QN is shown in Figure 4.5. For simplicity
the final layer operators U � l �x are displayed instead of all µσ’s and the am-
plitudes are not highlighted. The quantum space complexity is log2 8 � 3
qbits, the layer counter can be stored classically in log2 4 � 2 bits, the mea-
surement has to be done in the beginning of every 4-th computational step.
The translation from the last layer into the first one is done by a unitary op-
erator of a smaller rank, since the input and output vertices are excluded.

Note 4.11 The concept of the layered layout does not restrict QN’s very
much. There is a trivial conversion procedure transforming a QN to a
layered one, see Section 6.1. However transforming a QBP is a bit more
tricky thanks to the acyclicity of the graph.

4.2.2 Oblivious QN’s

Next step after converting a QN to a layered layout is reducing the number
of variables the computation decides on in every layer.

Definition 4.18 We say that a layered QN P � � , , , Q, E, , d, � is oblivi-
ous if there is exactly one input variable assigned to every layer except for
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U ¶ 0 ·x

U ¶ 1 ·x

U ¶ 2 ·x

U ¶ 3 ·x

Figure 4.5: Example of a layered QN

the last one. The last layer could have no variable assigned to it if it has no
outgoing edges: ���10 i � k � #d � Qi � � 1 � & # � d � Qk �t� Π ��F 1 �
Note 4.12 This restriction enables reducing the number of distinct unitary
transformations that need to be prepared. If the layered QN is oblivious,
every operator U � l �x is indeed equal to one of the µ � l �σ , since the decision
variable is equal in all parent vertices in every layer.

4.2.3 Bounded degree QN’s

Implementing quantum operations on a large scale becomes physically
infeasible. Indeed only small set of discrete operations can be performed.
The simplest arrangement we can do is bounding the degree of the graph
vertices.

Definition 4.19 We say that a QN P � � , Σ, , Q, E, , , µ � has degree bounded
by b if for every input letter σ � Σ both the input and output degree of every
vertex in the monochromatic graph � Q � Eσ � are less or equal to b:�10 σ � Σ �#�10 q � Q � d (� Q C Eσ � � q ��F b & d

�� Q C Eσ � � q �IF b �
Note 4.13 This restriction is indeed quite weak, since families of arbitrary
size can be arranged from vertices of bounded degree. Moreover even if
we bound also the family size, the number of distinct transition types can
still be infinite. A much stronger requirement is, for example, the condi-
tion of uniformness. However we leave the definition here, since it is a
transparent criterion for checking QN’s.



Chapter 5

Equivalence of QN’s and QTM’s

We have defined the computational model of sequences of Quantum Net-
works. We shall show that, under some circumstances, it is equivalent to
the model of Quantum Turing Machines in both nonuniform and uniform
case. Moreover both simulations can be done at low cost — polynomial
time and polylogarithmic space.

Sequences of Quantum Branching Programs are indeed equivalent to
Quantum Turing Machines that never enter a loop.

5.1 Converting a QTM to a sequence of QN’s

This section is concentrated on the proof of the following theorem.

Theorem 5.1 Every QTM M with computable space complexity s can be
simulated by a uniform sequence of QN’s P. The space and time complex-
ities are preserved by the simulation. The construction machine of P runs
in space linear in s � n � and in time polynomial in s � n � .

Let us define exactly the concept of the computability of functions. This
restriction is essential for the uniformness of the target sequence of QN’s.

Definition 5.1 We say that a space complexity s : N � N of a QTM is com-
putable, if there exists a mapping s @ : N � N such that s � n �IF s @ � n � & s @ � n � �
O � s � n ��� and the value s @ � n � is computable by a RTM operating in space
linear in s � n � and in time polynomial in s � n � . Let us also suppose s � n � �
Ω � logn � .1

1otherwise the space bounds in this section would have to be recomputed
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Note 5.1 Remind Definition 4.12 of equivalence of distinct programs on
page 48. When simulating a program by another one (possibly in another
computational model) we require both programs being equivalent, other-
wise the simulation would make no sense.

Proof of Theorem 5.1 The QTM M has bounded space complexity, thus
there is a finite number of reachable configurations for every input size
n. The QN Pn will be represented by a graph with vertices corresponding
to the reachable configurations of M. The edges of the graph of Pn will
correspond to the transitions of M between the configurations. The com-
putation of Pn obviously follows the computation of M and the space and
time complexities are preserved.

However we have to show, in addition, that the target sequence P is
uniform. We known that the source machine M is kind of regular (it has
a finite number of internal states and the movement of tape heads is de-
termined by the destination state) and that its space complexity is com-
putable. Let us show that both requirements of uniformness are fulfilled
— P has a finite number of transition types and the description of Pn can
be constructed by a RTM with constant length of computation.

Transition types: Let us fix an input letter σi � Σ, ignore the tape
head movements, and take a monochromatic graph GM

σi
of the transitions

of M when the input letter σi is read. Vertices of GM
σi

correspond to pairs� q � σw � , where q � Q, σw � Σ. From the unitarity condition of the QTM M,
we see that the graph has the same structure as the monochromatic graph
of a QN, i.e. it can be decomposed into distinct families. Moreover the
number of families is constant for all input sizes n. Let us index distinct
families by natural numbers, e.g. by the number of lexicographically first
vertex belonging to it.

Let us imagine the monochromatic graph of the whole QTM M. With-
out the tape movements, it comprises of infinitely many copies of this
graph. Since the tape head movements are fully determined by the target
state, these instances are linked together in a regular way like in Figure 5.1.
The transitions are permuted, hence it does not happen that, for example,
two distinct target vertices are mapped to the same vertex. Hence the
global graph of M has the same transition types as GM

σi
. The global graph

of M is infinite, however we know that the actual space complexity of M
is bounded and therefore the subgraph of reachable configurations is also
finite.

Vertices of the target network Pn will be indexed by the pair [subgraph
identifier, identifier of the vertex in the subgraph ]. From the structure of
the vertex identifier, we see that the identifier according to a configuration
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B C

Movements: A

B

C

Figure 5.1: Structure of the monochromatic graph of a QTM

of M has the form [internal state q, current working tape letter σw, the
rest of the configuration]. The identifiers are not necessarily allocated in
consecutive order — it can happen that there are some holes at the side
subgraphs, again look at Figure 5.1 for an example. The fact that some
identifiers do not correspond to a reachable vertex, does not matter, since
they can not appear in a consistent simulation. The families are indexed
in the same way.

Computability of the encoding of Pn: We are given n � b and we have to
compute the b-th bit of the encoding of Pn. Each such computation starts
with computing the header information, it then transforms b to the speci-
fication of the record asked for, and it finishes by computing and returning
the desired bit.

In the beginning, we compute the upper bound c � s @ � n � of the space
complexity of Pn, which yields the upper bound of maximal identifier of
a vertex. As assumed, this can be computed in space O � s � n ��� and in time
O � p1 � s � n ����� . The time elapsed is constant for a given n. When we know the
number of vertices, we can also compute the number of families of every
monochromatic graph, since the number of families in every subgraph
GM

σi
is constant and the number of subgraphs in the global graph is fully

determined by its size, which is known. We have collected (and written
to a working tape) all the header data of the encoding of Pn. It takes space
O � #Σ D s � n ��� � O � s � n ��� and time O � p2 � s � n ����� . We compare b with the size of
the header. If it is not larger, we return the desired bit and stop.
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We now know the size of a record (since the identifiers are stored in
binary form, it suffices to use O � c � bits for both vertex and family identi-
fiers) and the lengths of the arrays have also been computed. We perform
some arithmetics on b (which is also an O � c � -bit number) and obtain the
number of array we are asked for and an index in it.

If we are asked for a decision variable of a vertex, we extract the po-
sition of the input tape head of the QTM from the vertex identifier using
simple arithmetics (it is stored in some intermediate bits of the identifier)
and return the desired bit of the position. However if we are asked for
a variable the computation decides on in the reverse direction, we have
to correct the obtained position by the input tape head movement in the
reverse step. This movement is resolved by a lookup to a (constant) ta-
ble hard-coded into the construction machine, once we know the internal
state of the QTM. This state is also extracted from the vertex identifier us-
ing simple arithmetics.

If we are asked for a transition type of a family, we decompose the
family number into a pair [subgraph number, identifier of the family in
the subgraph ]. The subgraph number can be ignored and the transition
type of the family in the subgraph is resolved by a lookup to a (constant)
hard-coded table.

If we are asked for a translation table between a vertex number and
a pair [family identifier, index in the family], we progress analogously.
Both vertices and families are indexed in a systematic way according to
the subgraph pattern, we just perform some simple arithmetics, lookups
to (constant) hard-coded tables, and check some side conditions. Let us
just state that for computing the translation of a family child, we need to
take into account shifts of the tape heads determined by this child — these
tables are also hard-coded. The method is valid both for forth and back
translation tables.

We conclude that all computational steps together use no more than
O � s � n ��� temporary space and O � p � s � n ����� time. Let us show that such TM
can be made reversible. There are two ways of doing this: either we pro-
gram the machine very carefully to preserve reversibility (which is not
difficult in this case) or we program just some TM and convert it into a re-
versible one by a general algorithm. This algorithm is not described here,
but it is well known.

The construction machine returns the result in its internal state and it
has to clean the work tapes. This can be achieved by a so-called uncomputa-
tion.2 The computation is run in the forward direction, the result is stored

2uncomputation is running a computation in the reverse direction
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in the internal state, and then the computation is run in the backward di-
rection. During the uncomputation stage, the work tapes and everything
is gradually uncomputed into the initial state.

It remains to show that the length of computation can be made con-
stant. Every block of computation can readily be done obliviously, but
the computation takes distinct time for distinct blocks of the encoding. It
does not really matter for the simulation (see Theorem 5.3 for a particular
algorithm), however if we wish to fulfil exactly the requirements of the
construction machine we use the following trick. The lengths of compu-
tation in individual blocks can be expressed by a formulae. We compute
the maximum of the lengths among distinct blocks and justify faster com-
putations to this maximal length by inserting delay loops at the end of the
computation. A
Note 5.2 Notice that the construction machine of the sequence of QN’s ob-
tained by converting a QTM has low both the space and time complexity.
We see that if a problem is solvable by a QTM, it is also solvable by a uni-
form sequence of QN’s with low-complexity construction machine, and
vice versa (thanks to Theorem 5.4).

Hence if Definition 3.3 of quantum complexity classes on page 31 (us-
ing QTM’s) was reformulated using uniform sequences of QN’s with low-
complexity construction machine, nothing would change. The new defini-
tion would be similar to Definition 2.11 of classical complexity classes on
page 13 (using BP’s).

Theorem 5.2 Every QTM M with advice with bounded space complexity
can be simulated by a sequence of QN’s P with finite number of transition
types. The space and time complexities are preserved by the simulation.

Proof. This theorem is yet simpler to prove. The QTM M for a fixed input
size n will be transformed into a QN Pn in the same way. Since we need
not prove the uniformness of P, the space restriction of M needs not be
computable. Nevertheless the first part of the proof still holds, thus P has
a finite number of transition types.

However the QTM M with advice uses one more working tape. Fortu-
nately it does not complicate anything. The fact that M can use a special
instruction ask-for-advice is also easy to simulate: every possible answer
corresponds to a particular edge inserted into the target network Pn. We
do know which one at construction time, but it does not matter, since we
shall just prove the existence of Pn and need not construct it explicitly. A
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5.2 Converting a sequence of QN’s to a QTM

This section is concentrated on the proof of the following theorem.

Theorem 5.3 Every sequence of QN’s P with finite number of transition
types can be simulated by a QTM M with advice operating in the same
space and with time overhead polynomial in the space complexity and
linear in the input size. The advice of M is equal to the encoding of Pn.

Proof. We shall construct the simulation QTM M. We must pay attention
on that M must be oblivious, since the interference pattern of Pn has to be
preserved. The fact, that M has to be reversible, is another complication.
The solution provided fulfils both constraints.

The input alphabet Σ of M is equal to the input alphabet of P. Let us
choose two distinct letters from Σ and denote them by 0 � 1. They will be
used for work tapes. The output alphabet of M is also equal to the output
alphabet of P. The target QTM has the following (read-write) work tapes:

1. it contains the identifier of the current state of the simulated quan-
tum network Pn,

2. it contains the number of the input variable Pn currently decides on,

3. it contains the identifier of the current family (in the monochromatic
graph with colour equal to the value of the desired input variable)
and the index of the vertex in this family,

4. it is a temporary tape for completing records from the bits collected
by the inquiries on the advice.

The internal state of the QTM has the form [computational step, tem-
porary data storage for tape communication, colour corresponding to the
value of the input variable, transition type, index of the current vertex in
family with given transition type]. First three items are accessed during
all the computation, the last two items serve for the part implementing the
actual quantum branching.

The simulation proceeds in the following way. It is described as a se-
quence of computational steps, however it is clear how to translate it into
the language of Turing Machines.

Initialise. A header of the simulated QN Pn is read from the advice, the identi-
fier of the starting state is written to the first work tape. Everything
must be done in reversible way, it suffices to use the XOR operator3

3XOR is an exclusive OR: x ¸ y «�¹ x º y » mod2.
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as the write operation, since the work tapes are clean in the begin-
ning. Remember that the temporary work tape must be cleaned af-
ter the computation, e.g. by uncomputation. This cleaning process is
involved in every computational step.

Measure. We measure (destructively) the output tape. If there is something
written there, the computation is interrupted and a corresponding
result is returned. Otherwise a loop comprising of all following steps
is launched. The measurement is then performed again. This step
violates the quantum reversibility, but it is the only one.

Do 1. The index i of the input variable xi the computation decides on in the
forward step is extracted from the advice. This process is described
in detail later. The index i is written to the second work tape. A
complementary number n � i of spare input variables on the right
side of the desired one is computed and also written to the second
work tape.

Do 2. The input tape head, currently in the beginning, is shifted to the de-
sired place. The value of the input variable (i.e. the corresponding
colour) is read into the internal state. The input tape head is shifted
right again to the place after the last input variable. This ensures the
constant length of the computation. How the shifts are performed, is
also described in detail later.

Do 3. We now know the value of the input variable and we have chosen
the corresponding monochromatic graph. We translate the identifier
of the current state into a family identifier and an index of the vertex
in the family (current state being a parent). The result is written to
the third work tape. Again, see the following text for the details.

Do 4. We clear the first work tape containing the identifier of the current
state. We indeed perform a reverse lookup on the family identifier
and the index of the vertex in the family using a reverse translation
table. The result (identifier of the state) is XOR-ed to the work tape,
which clears it. Again, see the following text for the details.

Do 5. We extract the family transition type from the advice. This type is
immediately read into the internal state (since it belongs to a fixed
set).

Do 6. We read the index of the vertex in the family into the internal state.
This can be done since the index also belongs to a fixed set. After we
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have completed the reading, we clear the index on the work tape in
second pass (in can be done in reversible way, since we still hold it
in the internal state and thus we can perform the XOR operation).

Quantum. We perform the quantum branching — the QTM is in proper internal
state and we evolve the state according to the appropriate unitary
transformation. Only the fifth item of the internal state (index of
the current vertex in family) is changed by this evolution and the
tape heads are unchanged. Henceforth, the index of the vertex in the
family means the index of the child instead of the parent. This is the
only proper quantum step of the algorithm, all other steps are just
reversible.

Undo 6. Now we shall do the converse of all previous steps of the loop: we
begin by writing the index of the vertex in the family from the inter-
nal state to the work tape. After we have completed the writing, we
clear the item in the internal state by another reading pass.

Undo 5. We clear the family transition type in the internal state by uncom-
puting the step Do 5.

Undo 4. We translate the family identifier and the index of the vertex in the
family to the identifier of the current state by a reverse lookup sim-
ilar to the one performed in step Do 4. Be careful to use a proper
translation table, since the index in the family means the index of the
child instead of the parent now.

Undo 3. We clear the second work tape (containing the family information)
by a lookup similar to the one performed in step Do 3. The informa-
tion read from the advice is XOR-ed to the work tape, this performs
indeed the erasure of the information. Again, be careful to use a
proper translation table.

Undo 2. We clear the colour information in the internal state by uncomputing
the step Do 2. We shift the input tape back to the position, where the
input variable was read. We read the square again to clear the item
and shift the input tape back to the beginning.

Undo 1. We clear the complementary number n � i by an uncomputation. The
index i of the input variable xi the computation has decided on in the
previous step (in other words decides on in reverse direction now) is
cleared using the well-known trick again. The desired information
is read from the advice and XOR-ed to the work tape. Be careful to
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read the proper record, since we now ask for the reverse direction of
computation.

It is straightforward to see that this algorithm indeed simulates exactly
the behaviour of the QN Pn and that the whole simulation is reversible and
oblivious. It remains to comment in detail individual steps of computation
and to show that the same holds also for them.

Extracting records from the advice: Since the QN Pn is encoded in a
highly regular way (data structure sizes are read from the header and the
records are stored in arrays of known lengths), we need not perform a
sophisticated searching. We just calculate the indexes of the desired bits, it
involves a simple arithmetics that can be done in reversible and oblivious
way. We then either copy the desired bits into another work tape or read
them directly into the internal state.

Even if the records of the advice were stored in sorted lists, we would
still be able to perform fast lookups by a binary search (be careful to im-
plement it in an oblivious way and thus not optimise it by interrupting
the search when the record is prematurely found). However this would
increase the space complexity, since the intermediate indexes of the bi-
nary search would have to be remembered for the sake of the reversibility
(clearing the temporary space would be done in another pass by the un-
computation).

There is an interesting subproblem in searching — comparing the c-bit
numbers. We first compute their difference. To check, whether the result
is nonzero, we need to perform a logical disjunction of c bits. For the sake
of reversibility, it can not be done in one pass. We can use an approach
of halving iteratively the number of bits to disjunct until we obtain a con-
stant number of them. If we know that the result is nonzero, its sign can
be checked by simply reading its highest bit. When we know the result
of the comparison, we can control another quantum operation by it, e.g.
computing the bounds of the left half of the search space is controlled by
the condition result � 0 and vice versa.

If the lists were not stored sorted, the search performed would have
to be exhaustive, which is pretty slow since the length of the encoding is
exponential in the space complexity of Pn. However the space complex-
ity would be lower in this case, since after the comparison is performed
and copying of the target bits controlled by the condition result � 0 is per-
formed, the temporary results can be immediately uncomputed and the
wasted space freed. Be careful to not stop the search when the result is
found, since we have to ensure the oblivion.
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Shifting the input tape: We are given a number k of squares to shift
the tape head to the right. It is written on a work tape. Let us append
a counter i to the work tape (of the same size as k, i.e. it is a 9 log2 k : -bit
number). It is initialised to zero. A loop with the input/output condition4

i � 0 is executed. The body of the loop comprises of shifting the tape head
and incrementing i modulo k. The increment operation is reversible and it
can be done in an oblivious way, hence the loop in global is also reversible.
It is not oblivious though, however if we concatenate two such loops with
shifts k1

� k2 � n, the joint operation is oblivious.

Let us investigate the space overhead of the simulation. We assume
the space complexity of P is Ω � logn � to be able to fit the position of the
input tape head into it. The first and the third work tapes have the length
linear in the space complexity of the problem. The second work tape has
the length O � logn � , since there are 4 indexes of the input tape head stored
there. The length of the fourth work tape depends on the chosen search al-
gorithm. Since the encoding of Pn is stored using arrays, we need to be able
to perform some arithmetics, hence it suffices to have O � s � n ��� space avail-
able. The same holds in the exhaustive search case, however we would
need to store Θ O s2 � n � P bits there in the binary search case.

The time overhead of the simulation is equal to the number of compu-
tational steps performed in the loop. To extract the advice bits, it takes time
O � p1 � s � n ����� to perform the arithmetics and time O � max � logn � s � n ����� to copy
the results. If the binary search is used, it would take time O � p3 � s � n ����� ,
the exhaustive search would take time O � p4 � s � n ���tD 2s � n � � . The shift of the
input tape takes time O � n � . We conclude that the simulation can be per-
formed in linear space and that the time simulation overhead is polyno-
mial in the space complexity and linear in the input size. A
Theorem 5.4 Every uniform sequence of QN’s P with a construction ma-
chine C can be simulated by a QTM M. The space complexity of M is the
sum of the space complexities of P and C. The time complexity of M is the
product of the time complexities of P and C, and the sum of a polynomial
of the space complexity of P plus the input problem size.

Proof. We use the same simulation algorithm as in the previous proof.
Every time the simulation has asked for advice, we launch the construc-
tion machine instead now. This causes the additional claim for the space
and time resources. A

4we live in a reversible world, thus the condition of a loop serves for controlling both
entering and leaving the loop



Chapter 6

Converting QN’s to special forms

In this chapter, we shall show that every QN can be converted into an
equivalent network with more regular structure at low cost — with con-
stant space overhead and with time overhead linear in the input size and
linear in the length of the computation. We investigate the layered, oblivi-
ous, bounded degree, and connected layouts.

Both nonuniform and uniform sequences of QN’s can be converted.
Construction machines of target uniform sequences are also provided.

It happens that some layouts are hard to construct, i.e. their construc-
tion machine has either a big space complexity or a big time complexity.
If the construction machine is regarded just as a proof of uniformness, it
does not matter. It would matter if we simulate the target QN by a QTM.
However there is no reason to simulate the target QN since we can readily
simulate the equivalent source QN.

6.1 Layered layout

Theorem 6.1 Every QN Pn can be converted into a layered QN P @n with
constant space overhead (adding just one qbit) and with constant time
overhead (doubling the length of computation).

The same holds for sequences of QN’s. When converting a uniform se-
quence P constructed by a machine C, the complexities of the construction
machine C @ of P @ are asymptotically equivalent to the complexities of C.

Proof. We can obtain a layered QN P @n from a raw QN Pn by simply dou-
bling the vertices: every vertex q � Q has two representatives q0 � q1 con-
nected by an edge � q0 � q1 � and every original edge � q � q @)� is replaced by a
‘back’ edge � q1 � q @0 � . It is obvious that the target QN has 2 layers: it per-
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forms the identity operation in the first one and the original transforma-
tion in the second one (it goes from the last layer to the first one). The
input vertices will be the representatives of the original input vertices in
the first layer and vice versa.

From the simplicity of the construction of P @n, it is obvious that the con-
struction machine of P @ just calls the construction machine of P, performs a
few corrections, and handles some exceptions (renumbering the vertices,
considering new families of the first identity layer). A
Note 6.1 We see that QN’s layered in this way are indeed not interesting.
To get more insight from the layered layout of a QN, we would have to
restrict, for example, the number of qbits passed from one pass to the next
one, which is an elusive goal depending on the particular task.

We have to use another trick for QBP’s, because the graph of a QBP
must be acyclic. Since we can not use the back edges going to the first
layer, we build the target QBP from slices corresponding to the source
QBP.

Theorem 6.2 Every QBP P can be converted into a layered QBP P @ with
constant space overhead (less than three) and with time overhead linear
in the time complexity (since every computational path will have equal
length). The same holds for sequences of QN’s.

Proof. Let l be the length of the longest computation of the QBP P. To
make P layered, we situate l copies of the modified graph G into consecu-
tive order. We then add several constant edges (independent on the input
variables) connecting the i-th layer with the � i � 1 � -th one. We have to in-
corporate the individual input and output vertices into the computation,
thus we connect them by chains of temporary vertices to the input and
output layers, see Figure 6.1.

The modified graph G is constructed from the graph of the source QN
P in the following way: At first, the vertices are doubled, a vertex q is
replaced by two representatives q0 � q1. Every edge � q � q @�� is replaced by an
edge � q0 � q @1 � . We then independently reorder the vertices in both layers,
the goal is to transpose the input and output vertices to the right, as seen
in Figure 6.1.

The correctness of the simulation is straightforward. The original com-
putational steps are just interwoven by identity transformations. The final
measurement of shorter computational paths is deferred to the last layer.
The vertices at the ends of the chains are labelled in the same way as the
output vertices of G.
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Qout

Qin

G

l ¼ 1 chain groups

1 slice, 2 layers

Figure 6.1: Constructing a layered QBP

Let us evaluate the space complexity — the target graph has 2l Do� #Q �� l � 1 �a½ #Qout � vertices. Since both l � #Qout F #Q � size of P, the target graph
has O O � #P � 3 P vertices and the space overhead is less than three. The com-
putational paths of the target QN have constant length equal to the double
of the length of the longest computational path of P. Since the shortest
computational path is at least 1 computational step long, the time over-
head is not bigger than the time complexity itself. A
Theorem 6.3 Every uniform sequence of QBP’s P constructed by a ma-
chine C can be converted into a layered uniform sequence of QBP’s P @ with
the overhead mentioned in Theorem 6.2.

There exists a construction machine C @1 of the target sequence P @ hav-
ing quadratical space complexity (however having super-exponential time
complexity) and a construction machine C @2 having time complexity poly-
nomial in the size of Pn (however having exponential space complexity).

Proof. The RTM C @ has to compute the encoding of P @n and it is allowed to
ask for the encoding of Pn as an advice.

The layout of P @n is fully determined if we know the following numbers:
the size of Pn, the number of output vertices of Pn, and the length of the
longest computation of Pn. The first one can be read from the header. The
second one can be computed by examining all vertices of Pn consecutively
and counting them. Computing the third one is a crux — we can either
overestimate it by the size of Pn (and thus attenuate the efficiency of the
simulation) or compute it exactly by exploring the graph of Pn.

It turns out that computing the diameter of the graph needs either a big
space or a big time. We can translate this problem to the so-called Reach-
ability problem in this way: The question whether the diameter is smaller
than a given threshold t can be solved by determining the number c1 of
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pairs of connected vertices with the distance shorter than t and comparing
it with the number c2 of pairs of connected vertices. The answer is yes
iff c1 � c2. If we can solve the previous question, the diameter can be lo-
calised by the binary search algorithm over t �8� 0 � 1 � ����� � #Pn 	 . For exploring
the complexity of the involved Reachability problem, look at Lemma 6.4.

If we know the layout of P @n, most of the encoding of P @n can be computed
rather easily — all additional vertices, edges, and thus also families are
bestowed regularly along the layers. The families of Gn are also inferred
from their counterparts of Pn. However, when computing the translation
tables, we have to take into account the renumbering of both layers of
Gn (the transposition of the input and output vertices to the right). Both
directions of the transposition can be computed by simply counting over
vertices of Pn (e.g. the target position of a transposed input vertex of Gn is
a constant inferred from the layout plus the number of input vertices with
smaller index).

Hence computing a bit of the encoding involves the computation of the
layout constants, computing which record are we asked for, performing
some arithmetics on the vertex/family identifier to find out the block of
the graph, and the evaluation of the inquiry. Recall that we have to be
careful to justify the computation length to the longest one.

Let s � n � � 9 log2 #Pn : be the space of complexity of P. Let us neglect
the space and time complexities spent in solving the Reachability problem
(with parameters v � t � 2s � n � ) since it is a dominating term. The space and
time complexities of C are also not counted here. When we look over the
algorithm, wee see that the space complexity of C @ is O � s � n ��� and the time
complexity is O � p � s � n ���§D 2s � n � � .

If we merge the results, we conclude that we can provide a construction
machine working either in space O � 2s � n � D s � n ��� and in time 2O � s � n �5� or in

space O O s2 � n � P and in time 2s2 � n � � O � s � n �5� . A
Note 6.2 Both vertices and families of the target layered QBP are num-
bered consecutively along the layers from the top to the bottom, the ver-
tices in a layer are even numbered consecutively from the left to the right.
It now seems just as a byproduct, but the regular numbering of vertices
will turn out to be a nice simplification for the oblivious layout.

At this moment, we can readily extend the header of the encoding of a
layered QBP by adding the number of layers and the number of vertices in
a layer. The construction machine needs to compute them anyway, hence
it does not complicate it at all. However it will also simplify the oblivious
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layout in the next section. Both matters can be readily managed also for
layered QN’s.

Lemma 6.4 It is possible to solve the Reachability problem (we are given an
oriented graph G having v vertices, two vertices v1 � v2, and a threshold t;
the task is to determine whether there is a path from v1 to v2 in G shorter
than t) using the following resources. They are expressed both in pure
variables t � v and in the special case t � v � 2s.

i. space O � v D logt � � O � 2s D s � and time O � p � v ��� � 2O � s � ,
ii. space O � logv D logt � � O O s2 P and time O O � 2v � log2 t D p � v � P � 2s2 � O � s � .

Proof. The first algorithm is a classical search of the width. We need to
remember a current distance �w� 0 � 1 � ����� � t 	 / ∞ for every vertex. We also
remember a queue of the vertices being processed. The time complexity is
obviously polynomial in v.

The second algorithm is the one used in the proof of the Savitch’s theo-
rem, see [Sav70]. To answer the task, a recursive approach is used. If t � 0
or t � 1, then a direct evaluation is performed. Otherwise we check re-
cursively whether there exists a vertex vm such that there exist both a path
from v1 to vm of length F¾9 t � 2 : and a path from vm to v2 of length F¾¿ t � 2 À .
This involves 2v recursive calls at every level. There are log2 t levels. A
Note 6.3 This algorithm can be also effectively used for converting a QN
into a QBP. Having a promise that every computation finishes indeed in
l computational steps, we can build up the target QBP from l slices com-
prising of the source QN. However we have to ensure, in addition, that
the graph of the target QBP is connected — one of the following sections
concerns that. (There is also another requirement of a QBP prescribing that
the starting vertex must be an input vertex. However everything would
work even with this requirement omitted.)

This method can be used, for example, to obtain a QBP from the QN ob-
tained after the reversibility is achieved (by the back-tracking algorithm)
on a given deterministic BP.

6.2 Oblivious layout

Let us suppose Pn is a layered QN. We want to convert Pn into an oblivious
form, i.e. P @n will be not only layered but it will also decide on exactly one



68 CHAPTER 6. CONVERTING QN’S TO SPECIAL FORMS

x1 x1 x2 x2

x1 x1

x2 x2

Figure 6.2: Converting a layered QN to an oblivious QN

input variable in every layer. We shall show that such conversion exists
and that it is effective.

To convert a uniform sequence of QN’s, we have to provide a construc-
tion machine C @ of the target oblivious sequence P @ . To simplify the task
maximally, we suppose the encoding of a layered QN/QBP has been ex-
tended in the way described in Note 6.2 — the number of layers and the
number of vertices in a layer are provided in addition and the vertices are
guaranteed to be numbered consecutively along the layers.

Theorem 6.5 Every layered QN Pn can be converted into an oblivious QN
P @n with constant space overhead (less than two) and with time overhead
linear in the input size.

The same holds for sequences of QN’s. When converting a uniform se-
quence P constructed by a machine C, the complexities of the construction
machine C @ of P @ are asymptotically equivalent to the complexities of C.

Proof. We divide every layer into n sub-layers, the vertices in the i-th sub-
layer decide on the input variable xi. Every family from the original layer
is situated into the sub-layer corresponding to its decision variable and the
identity operation is performed in other sub-layers. See Figure 6.2 for an
outline.

The length of the computation is increased n times, where n is the input
size. The number of vertices is increased by the same factor. If we assume
the QN looks at every input variable, then the number of vertices is bigger
than the input size and thus the space complexity is less than doubled.

It remains to implement the construction machine C @ of the target uni-
form sequence P @ . Let us first decompose the bit number b into a block
number and a record number in that block.� the header can be computed very easily from the source header, all

numbers can be obtained by an arithmetic expression, remind that
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we also provide the extended header,� the decision variable of a vertex is extremely simple to determine,
since we just need to arithmetically compute the sub-layer number,� the families are numbered in the way that the identifiers of the orig-
inal families are left untouched (we allocate indexes 0 � 1 � ����� � f for
them) and they are followed by a plenty of one-edge families per-
forming the identity operations — hence computing the transition
type of a family is a simple task; these one-edge families are indexed
regularly by the triple [original layer number, column number, sub-
layer identifier],� the translation tables must handle the peculiarity of the family num-
bering: an one-edge family identifier is translated into a target layer
number by the expression

layer number D input size � sub-layer identifier � c �
where c �Á� 0 � 1 	 is a correction depending on whether the original
family of the corresponding original vertex is bestowed below or
above the sub-layer of the desired one-edge family. In Figure 6.2,
it holds that c � 1 for the two left one-edge families and c � 0 for the
two right ones.

When we translate a family number to a vertex identifier, we check
whether the asked family is an original one or a new one-edge one.
The first one is easy to compute, we obtain the vertex identifier from
the advice, ask for its decision variable, and perform some final arith-
metics. The second one is also simple, we just compute the correction
c by asking for the decision variable of the corresponding original
vertex and perform some final arithmetics.

The reverse translation tables are computed similarly. We decom-
pose the vertex identifier, ask for the decision variable of the corre-
sponding original vertex, and see immediately whether it belongs
to an original family or to a new one-edge one. We also obtain the
correction c by this method.

All assertions in the proof hold both for a QBP and for a QN (with back
edges going from the last layer to the first one), however these back-edges
have to be handled. Remember that the pure code needs to be wrapped
by a quantum wrapper: it must be reversible with constant length of com-
putation and it must clean its work tapes.
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We conclude that every bit of the target encoding can be computed by
a few inquiries for the advice and some simple arithmetics. Let us ne-
glect the complexities of the source construction machine C. The construc-
tion machine C @ has the space complexity O � s � n ��� and the time complexity
O � p � s � n ����� . A
Note 6.4 The introduced conversion is worthy for its simplicity, however
it is not optimal in most cases. It could happen that only a few input
variables are present in the labels of vertices from a layer. It is a waste of
time to expand every layer into all n sub-layers.

Hence we can conclude that QN’s can be converted in a better way
(by omitting sub-layers containing only identity edges). Nonuniform se-
quences need not be handled in a special way. However the implementa-
tion of the cleverer construction machine C @2 of the target uniform sequence
would be slightly more complicated: for computing the coordinates of a
vertex, we would have to construct and explore all the graph above, be-
cause there is no implicit way of obtaining the number of sub-layers the
layers above have expanded to. It could be done by a few simple loops,
however the complexities of C @2 would be increased.

6.3 Bounded degree layout

Let Pn be a QN. The task is to convert Pn into a d-bounded degree QN
P @n, i.e. into a QN with both the input and output degree of the vertices
bounded by d. We shall show that such conversion is always possible.

Theorem 6.6 Every QN Pn can be converted into a 2-bounded degree QN
P @n with constant space overhead (just adding a few qbits) and with con-
stant time overhead (depending on the maximal family size).

The same holds for sequences of QN’s. When converting a uniform se-
quence P constructed by a machine C, the complexities of the construction
machine C @ of P @ are asymptotically equivalent to the complexities of C.

To we prove the theorem, we need to claim some intermediate lemmas.

Definition 6.1 We say that an operator M : � 2 � C �#� � 2 � C � is a rotation of
vectors i � j � C by angle α iff i +� j and

M � IC
� �B
 i �o� i 
 � 
 j �o� j 
s�o� cosα � 1 � � �{
 j �o� i 
��u
 i �o� j 
�� sinα �

where IC is the identity operator on � 2 � C � and we denote it by M � RC
i C j � α � .

The superscript C can be omitted if it is clear which space is meant from
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M1 M2 M3

Figure 6.3: Representation of an independent set of 3 rotations by a QBP

the context. We say that a set of rotations S � � Mk 	 k ? K , Mk � RC
ik C jk � αk � is

independent iff

# ° K
k ? K � ik � jk 	�± � 2 D #K �

i.e. the indexes are pairwise distinct.

Example 6.1 A rotation of vectors 2 � 0 on space � 2 �¤� 0 � 1 � 2 	*� by angle α can
be expressed in the computational basis as

R2 C 0 � α � � hk cosα 0 sinα
0 1 0� sinα 0 cosα

ln �
Lemma 6.7 Every independent set S � � Mi 	 ki ; 1 of rotations operating on a
space � 2 � C � can be performed by a layered 2-bounded degree QBP having
just two layers. Vertices in a layer correspond to vectors c � C.

Proof. Let us take the product of M � M1 D M2 D�D�D Mk of the rotation opera-
tors and represent it by a bipartite graph B with labelled edges. From the
independence of S we see that M has either one or two nonzero items in
every row and in every column. Moreover under an assumption that no
rotation angle is a multiple of π � 2, it holds that the family decomposition
of B yields k families of size 2 and � #C � 2k � one-edge families performing
the identity operation. If there are some bad angles, some size-2 families
will punctuate. Look at Figure 6.3 for an example. A

We shall show how to decompose a unitary operator U : � 2 � C ����� 2 � C �
into a product of Θ O d2 P rotations (let d � #C). This immediately implies
the ability of representing U by a layered 2-bounded degree QBP having
Θ O d2 P layers. However if we order the rotations well, it is possible to
divide the rotations into Θ � d � groups of consecutive independent rotations.
It follows that the QBP can be indeed compressed to Θ � d � layers.



72 CHAPTER 6. CONVERTING QN’S TO SPECIAL FORMS

Lemma 6.8 Every nonsingular operator M : � 2 � C ���'� 2 � C � can be decom-
posed as M � VT where V is a product of Θ O #C2 P rotations (thus it is also
a unitary operator) and T is an upper triangular matrix (in the computa-
tional basis). The rotations form Θ � #C � consecutive groups of independent
rotations. Moreover if M is unitary, then T is necessarily a diagonal unitary
matrix.

Proof. Look at the following matrix E. The nonzero items of E denote the
order in which the items of M are consecutively eliminated. The zero items
are henceforth ignored. If the size of M is n � n, then e � n � n � 1 ��� 2 � Θ O n2 P .
We see that the sequence of eliminations consists of 2n � 1 � Θ � n � consec-
utive diagonals and the eliminations are independent on each diagonal.

E � hjjjjjjjk
1 0

2 3 0 . . .
4 5 7 0
6 8 10 13 0

9 11 . . . ... e � 3 0
12 ����� e � 2 e � 1 e

l mmmmmmmn �
Let us describe how the elimination procedure works. We have a register
Mk containing the modified operator after the k-th step was performed. In
the beginning, we set M0 � M. We then consecutively eliminate items in
the order specified by the matrix E. The k-th step eliminating the item � i � j �
comprises of the following operations:� If i � j, i.e. if we are processing a diagonal element, ensure that� j 
Mk 
 j �Â+� 0. If � j 
Mk ( 1 
 j � is zero, find a non-zero item in the same

column, produce a row permutation operator P, and update Mk �
PMk ( 1. Otherwise leave Mk � Mk ( 1 unchanged. Such nonzero item
certainly exists, since M and thus also all Ml’s are nonsingular oper-
ators.� If i � j, we produce a rotation operator Ui C j � Ri C j � αi C j � , where αi C j is
chosen such that � i 
Ui C jMk ( 1 
 j � � 0. Let Mk � Ui C jMk ( 1. The appro-
priate αi C j always exists and moreover the property that � j 
Mk 
 j �Ã+� 0
will be preserved:

(Let a � � j 
Mk ( 1 
 j � and b � � i 
Mk ( 1 
 j � be the items of the source ma-
trix Mk ( 1 and let a @ � � j 
Mk 
 j � and b @ � � i 
Mk 
 j � be the items of the
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resulting matrix Mk.� b @ � � 0 � � sinα D a � cosα D b
tanα � b � a +� ∞ (since a +� 0)

a @ � cosα D a � sinα D b� cosα DY� a � tanα D b �� cosα DY� a � b2 � a ��+� 0 �
since cosα +� 0 and a2 � � b2 has no real solution.)

The rotation operator Ui C j only touches items on the i-th and the j-
th row. However, from the order of the elimination, we see that all
items to the left of � i � j � and � j � j � have already been eliminated to 0
and thus they are left unchanged. We conclude that Ui C j leaves zero
values in the already eliminated items and that it eliminates the item� i � j � in addition.

After all marked items are eliminated, the modified operator Me be-
comes an upper triangular matrix. It holds that UM � Me, hence M �
U ( 1Me. The algorithm finishes and it returns V � U ( 1 and T � Me. We
have obtained 2n � 3 groups of consecutive independent rotation opera-
tors. The groups correspond to inner diagonals. These groups are occa-
sionally interwoven by permutation matrices.

It remains to show, that if M is unitary, then T is a diagonal unitary
operation. We know that T is an upper triangular matrix and that it is also
unitary. It follows that T must be a diagonal matrix. A
Corollary 6.9 Every unitary operator U : � 2 � C �I�Ä� 2 � C � can be simulated
by an equivalent layered 2-bounded degree QBP with Θ � #C � layers.

Proof. We decompose U using Lemma 6.8 into Θ � #C � groups of indepen-
dent rotations. Recall that some permutation operators can be interpolated
between the groups. We then simulate every such group by a layered 2-
bounded degree QBP with 2 layers using Lemma 6.7. We built the target
QBP by appending the individual QBP’s (as slices). Look at Figure 6.4 for
an example representation of a general 6 � 6 unitary operator that needs
not be permuted. The identity edges are omitted for clarity, the first layer
performs the phase changes T . A

We have prepared the main tool for simulating complex unitary oper-
ation by the simple ones. Let us prove the main theorem.
Proof of Theorem 6.6 Let Pn be a QN. Since Pn is finite, it has also a fi-
nite number of transition types. Let us decompose every transition type
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Figure 6.4: Representation of a 6 � 6 unitary operator (that needs not be
permuted) by a QBP

Ui (which is necessarily a unitary operation) using Corollary 6.9 into a 2-
bounded degree QBP Bi having li layers. Let us compute the maximal
number of layers l � maxi li. We justify every decomposition Bi of Ui by
adding dummy layers to l layers, hence the decompositions of all transi-
tion types have equal length.

If we replace every family F having transition type i by the decom-
posed QBP Bi in the source QN Pn, we obtain an equivalent QN P @n, because
both F and Bi have the same input/output interface and they compute the
same function. Moreover the interference pattern is preserved, since all
Bi’s have equal length of computation (even the simple edges have been
stretched to l consecutive edges).

Both the number of vertices and the length of the computation are mul-
tiplied by l by this simulation. l is a constant depending on the transition
types of Pn. Hence the space complexity is increased by Θ � log l � and the
time complexity is multiplied by l.

The same argument holds also for sequences of QN’s. If P is a nonuni-
form sequence, we convert every individual Pn separately and the target
sequence P @ remains nonuniform. If P is a uniform sequence, it has neces-
sarily a finite number t of transition types, thus the parameter l is constant
for all Pn’s. We convert the source sequence P into the target 2-bounded
degree sequence P @ in the same way as stated above. Let us show that P @ is
also a uniform sequence, i.e. there exists a construction machine C @ of P @ .



6.3. BOUNDED DEGREE LAYOUT 75

We first decompose all t transition types into 2-bounded degree QBP’s
having l layers and store the description of all decompositions into a (fixed
size) table hard-coded into the construction machine C @ . Notice that the
number of transition types of � Bi 	 ti ; 1 is also finite, hence the first require-
ment of the target sequence P @ is fulfilled.

Vertices of the target QN P @n are indexed by the pair [original vertex
identifier, sub-layer number k] and families of P @n are indexed by the triple
[original family identifier, sub-layer number k, index j of the family in the
sub-layer], where k � j ��� 0 � 1 � ����� � l � 1 	 . Notice that not all family identifiers
are valid.� the target header can be computed from the source header using sim-

ple arithmetics,� the decision variable of a vertex q @ � � q � k � is resolved by asking the
advice for the decision variable of the original vertex q (q is extracted
from q @ using simple arithmetics),� the transition type of a family f @ � � f � k � j � is resolved by asking the
advice for the transition type of the original family f and then trans-
lating it (using the parameters k � j) using the hard-coded description
of the decompositions,� finally, the translation tables are inferred in a similar way: To trans-
late a family identifier f @ and a number i @ of a vertex in the family
into a vertex identifier q @ , we decompose f @ � � f � k � j � , combine k � j � i @
using the hard-coded tables into i, ask the advice for the translation
of f � i into q, and combine � q � k � � q @ . This method is valid both for
parents and for children.

To translate a vertex q @ into a family identifier f @ and a number i @ of
a vertex in the family, we decompose q @ � � q � k � , ask the advice for
the translation of q into f � i, combine k � i using the hard-coded tables
into j � i @ , and combine � f � k � j � � f @ . This method is also valid both for
parents and for children.

Remember that the pure code needs to be wrapped by a quantum
wrapper: it must be reversible with constant length of computation and
it must clean its work tapes.

We conclude that every bit of the target encoding can be computed by
a few inquiries for the advice and some arithmetics. Let us neglect the
complexities of the source construction machine C. The target construc-
tion machine C @ has the space complexity O � s � n ��� and the time complexity
O � p � s � n ����� . A
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a vertex reachable
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Figure 6.5: Reachable vertices in the QBP of the Hadamard operation

Note 6.5 It is not clear whether a similar regular construction exists for
other degree bounds d, however it is not important anyway since the con-
struction for the special case d � 2 is already optimal in the following
sense. Let M be an n � n operator and let B be its decomposition.

i. B has asymptotically minimal number of edges: there are Θ � n � lay-
ers, each with n vertices and the degree of a vertex is bounded. Hence
B has Θ O n2 P edges. A unitary operator of such dimension has Ω O n2 P
degrees of freedom.

ii. B has asymptotically minimal number of layers: every layer is inci-
dent with only Θ � n � edges, since the number of vertices in a layer is
n and the degree of a vertex is bounded. For a general operator M,
there are Ω O n2 P edges needed, hence Ω � n � layers is a lower bound. B
has Θ � n � layers.

6.4 Connected graphs

We often work with a QN comprising of a graph with more components.
The components other than the starting one are useless, of course. If we get
rid of them, we decrease the space complexity while the time complexity
is preserved.

We have to be cautious. It might seem that deleting all vertices that
are not reachable from the starting vertex is the best way of doing this.
However many vertices are essential for the reversibility of the evolution
— remind the simple Hadamard operation in Figure 6.5. Deleting vertices
that are unreachable in the corresponding undirected graph is a safe way
of cleaning without disturbing the quantum properties.

Theorem 6.10 Every QN Pn can be converted into a QN P @n with connected
graph. The space complexity is appropriately decreased, the time com-
plexity is preserved.
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The same holds for sequences of QN’s. When converting a uniform
sequence P constructed by a machine C, the target sequence P @ is also uni-
form and there exists a construction machine C @1 with quadratical space
complexity and a construction machine C @2 with time complexity linear in
the size of Pn.

Proof. Let us consider the set of vertices K that need to be included into
the target QN P @ . We first add the starting vertex q0. It is obvious that if it
happens for a configuration q, that the amplitude of 
 q � is nonzero during
the computation, then there exists an oriented path from q0 to q in the
graph of Pn. Hence if we add all vertices connected to the starting vertex,
we handle the forward direction of the computation. Since we live in a
reversible world, we must apply the rule also for the reverse direction. We
apply it forth and back while new vertices are found. We conclude that
the component K of the undirected graph corresponding to Pn containing
q0 is closed under both directions of computation.

Hence the QN P @n comprising of the subgraph induced by the compo-
nent K is equivalent to Pn. The time complexity is preserved and the space
complexity has possibly been reduced.

It remains to show, how to implement the construction machine C @ of
the target sequence P @ from the construction machine C of the source uni-
form sequence P. We use the same tricks as those used in the former con-
struction machines: programming just some machine and achieving the
reversibility by a general procedure, the uncomputation for cleaning the
work tapes, the waiting loops at the end of the computation to justify the
length of it, the arithmetics to compute the type and the number of the
record we are asked for (after we compute sizes of the data structures).
Again, we shall often use the procedure solving the Reachability problem,
see Lemma 6.4.� some records of the header are trivially computed by looking up

to the encoding of Pn, the only interesting records are: the number
of vertices of P @n (computed by repeated calling Reachability(q0, q)
for all q’s and summing the results), the number of families in the
monochromatic graphs (done in the same way over the families of
the source graph, we use some vertex of the family obtained from
the translation tables as the second argument q of the Reachability
call), and the index q @0 of the starting vertex (it is equal to the number
of reachable vertices having an identifier lower than q0),� the decision variable of a vertex q @ is answered by a simple lookup to
the encoding of Pn for the decision variable of a vertex q, where q is
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the q @ -th reachable vertex in Pn,� the family transition types are evaluated in the same way,� the translation tables are evaluated simply by incorporating both di-
rections of translation (e.g. the parents p @1 � p @2 � ����� of the family f @ can
be obtained by looking up for parents p1 � p2 � ����� of the corresponding
family f and translating them into p @1 � p @2 � ����� ).

The complexity of C is determined by the choice of the algorithm solv-
ing the Reachability problem. It is analogous to the complexity of the con-
struction machine of a layered QN: we can provide a construction ma-
chine working either in space O � 2s � n � D s � n � � and in time 2O � s � n �Å� or in space

O O s2 � n � P and in time 2s2 � n � � O � s � n �5� . A
6.5 Conclusion

Theorem 6.11 Every QN/QBP Pn can be converted into a 2-bounded de-
gree oblivious QN P @n with connected graph. The space overhead is con-
stant, the time overhead is the product of the time complexity (because all
computations are justified to equal length), the input size, and a constant.

The same holds for sequences of QN’s. When converting a uniform
sequence P constructed by a machine C, the construction machine C @ of
the target uniform sequence P @ will have either a big space complexity or
a big time complexity: Let s be the space complexity of P. Then C @ works
either in space O � 2s � n � D s � n ��� and in time 2O � s � n �5� or in space O O s2 � n � P and

in time 22 Æ s2 � n � � O � s � n �5� . The complexities of C are not counted here.

Proof. The source QN/QBP Pn is converted consecutively into a layered
(Theorems 6.1 and 6.2), an oblivious (Theorem 6.5), a 2-bounded degree
(Theorem 6.6), and a connected (Theorem 6.10) form. Space overheads are
summed, time overheads are multiplied.

The construction machine C @ is composed from the construction ma-
chines Cl � Co � Cb � Cc corresponding to the individual conversion steps. The
space complexities are summed, the time complexities are multiplied (this
is just an upper bound for the unrealistic case where every computational
step of each construction machine involves a call of the lower construction
machine). Since the O � f � n ��� notation is used, the complexity formulas
look almost unchanged. A



Chapter 7

Achieving reversibility

We have proposed a quantum model of computation — Quantum Net-
works. Then we have proved its equivalence with Quantum Turing Ma-
chines. Let us investigate the relationship of QN’s with the classical mod-
els of computation — Branching Programs and Probabilistic Branching
Programs.

The latter models are not reversible in general. The task of this chap-
ter is to develop the conversion procedures achieving reversibility while
preserving the acceptance probabilities. Since these procedures exist, it
follows that QN’s are at least as powerful as their classical counterparts.
There are indeed 3 distinct methods how to accomplish this, each has its
own advantages and drawbacks.

It turns out that to convert a classical program to a reversible one, either
the space complexity or the time complexity have to be increased.

7.1 The back-tracking method

This method is designed for the conversion of a deterministic Branching
Program P to the reversible one P @ . The space complexity is preserved by
the simulation, however the time complexity is substantially (in worst case
exponentially) increased.

It works in the following way: imagine that every edge of a monochro-
matic graph Gσ of P is doubled — one edge for either direction. Hence
the graph Gσ becomes an Euler graph Gσ C 2 (with even degrees of vertices).
Then the vertices of P @ correspond to the edges of Gσ C 2. The computational
path of P @ follows the back-tracking search of the graph Gσ C 2 (recall the
name of this method — back-tracking method). It is apparent that every
vertex has a unique predecessor and a unique subsequent vertex. Look
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1

1 Q 2 2 Q 3

3 Q
4

4 Q 5

5 Q 1

2 Q
2

3 Q
3 4

5 Q54 Q
1 Q

Figure 7.1: Sketch of the back-tracking method

at Figure 7.1 for an example conversion of an individual monochromatic
graph.

To complete the conversion of P, we have to combine the converted
monochromatic graphs into one global graph, we must be especially cau-
tious to the vertices with input degrees distinct in individual monochro-
matic graphs. At last we have to punctuate the Euler cycles at appropriate
vertices to obtain the input and output vertices of P @ .
Theorem 7.1 Every BP P can be converted into a RBP P @ with constant
space overhead (adding just a few bits) and with time overhead exponen-
tial in the space complexity of P. The target program P @ does not have an
acyclic graph, however every its consistent computational path is acyclic.

Proof. The conversion follows from the sketched algorithm. However we
shall describe it using another notation — instead of talking about doubled
edges in the individual monochromatic graphs we will index the original
vertices by a counter according to the input edge.

Let P � � n, Σ, Π, Qpc, Epc, q0, d, v � be a BP. Let us modify the graph� Qpc � Epc � of P by inserting dummy vertices at appropriate places to fulfil
the parental condition. (If there are more than one input variable assigned
to the parents of a vertex, we choose one of them xi and interpolate a tem-
porary vertex deciding also on xi for every foreign input variable. This
is needed since the conversion algorithm needs the source graph having
the parental condition already fulfilled. Look at Figure 7.2 for an example.
This interpolation is done separately for every monochromatic graph, but
the temporary vertices interpolated have its one outgoing edge labelled
by every colour.) The target graph will be denoted by � Q � E � . The function
returning the decision variable of the parents of a vertex will be denoted
by dp.

Now we will construct the target RBP P @ � � n, Σ, Π / � err 	 , Q @ , E @ , q @0,
d @ , v @�� . Let us denote the monochromatic input degree of a vertex by Dσ � q �
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Figure 7.2: Fulfilling of the parental condition in a BP

and the maximal monochromatic input degree of a vertex by D � q � :
Dσ � q � � d (� Q C Eσ � � q �L� D � q � � max

σ ? Σ Dσ � q � �
Let us denote the i-th monochromatic parent of vertex q by parentσ C i � q � and
the only monochromatic child of vertex q by childσ � q � . The rank of vertex
p in the monochromatic list of parents of another vertex q is denoted by
rankσ C p � q � . The particular ordering is not important, but it must be fixed.

The set Q @ of vertices of P @ can be decomposed into the following sets:

i. � qback 
 q � Q 	 corresponds to the set of additional backward edges in
the sketched algorithm,

ii. � qi 
 q � Q & 1 F i F max � D � q �L� 1 �{	 corresponds to the set of original
forward edges incoming to the vertex (however there are a little bit
more of them, since the number of target vertices is constant for all
colours). The input vertices have the input degree zero, a new vertex
is allocated for them.

We define a shortcut qdecide, it denotes the vertex corresponding to the last
incoming edge. Notice that if the back-tracking search has arrived into this
vertex, it continues by following the forward edge going from the original
vertex q.

qdecide � qmax � D � q ��C 1 � �
The next step is to define the edges of P @ . We shall construct E @ , d @ , and

v @ in one pass. The starting vertex of P @ will be q @0 � qdecide for q � q0. Let us
browse all vertices of the target graph and state for every vertex q @¬� Q @ its
decision variable and all its outgoing edges:

i. qback for q � q0: it is an output vertex denoting that an error has oc-
curred. A valid computational path should never reach this vertex,
however it is needed for the reversibility. d @Ç� qback � � err.
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ii. qback for q � Qinp � q +� q0: it revolves the computation back into the
forward mode, it decides on d � q � and all its output edges go to qdecide.

iii. qback for q � Qchild � Qinp: it keeps back-tracking going up, it decides
on dp � q � , the output edge for colour σ � Σ is determined in this way:� if Dσ � q ��E 1 then it goes to pback, where p � parentσ C 1 � q � is the

first parent of q,� if Dσ � q � � 0 then it goes to q1 (back-tracking revolved).

iv. qdecide for q � Qout: it is an output vertex labelled by the corresponding
result. d @È� qdecide � � d � q � .

v. qdecide for q � Qpar � Qout: it moves forth into the following vertex
(being careful on the appropriate rank), it decides on d � q � , the output
edge for colour σ � Σ goes to crankσ É q � c � , where c � childσ � q � is the only
child of q.

vi. qi for qi +� qdecide: it keeps on back-tracking since in is not the last
incoming edge, it decides on dp � q � , the output edge for colour σ � Σ
is determined in this way:� if i � Dσ � q � then it goes pback, where p � parentσ C i � 1 � q � is the next

parent of q,� if i E Dσ � q � then it goes to the next incoming edge qi � 1 (skipping
the superfluous input edges).

This description may seem rather involved, in fact it is involved. How-
ever if we look closer, we see that the target RBP fulfils all requirements:� it has 1 � #Qout input vertices (qdecide for q � q0 and qback for q � Qout)

and 1 � #Qout output vertices (qback for q � q0 and qdecide for q � Qout),
the starting vertex is the sink of the graph,� the forward step of computation is well defined in every non-output
vertex (exactly one outgoing edge of every colour σ � Σ),� the parental condition is fulfilled in the target graph (assuming that
it was fulfilled in the source graph),� thus also the reverse step of computation is well defined in every
non-input vertex (exactly one ingoing edge of every colour σ � Σ),� the target graph is connected,



7.1. THE BACK-TRACKING METHOD 83

A
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C

D

Figure 7.3: Inconsistent cyclic path obtained using the back-tracking
method� well, it is not acyclic, but every consistent computational path is

acyclic. For a counterexample that can not be unfortunately reme-
died look at Figure 7.3: the computation back-tracks consistently via
the vertices A � B � C � D, it will consistently return to C afterwards,
however there exists a backward edge to A — this edge is necessar-
ily inconsistent with the previous computation because there is only
one edge outgoing from A and this is another one — and its existence
can not be avoided.

Let us compute the space complexity of P @ . The number of vertices
interpolated for having parental condition fulfilled is certainly less than
the original number of vertices. Since the output degree of a vertex is fixed,
it holds that #E � O � #Q � . Hence #Q @ � O � #Q � and the space complexity of
P @ is bigger by some constant.

The longest possible computational path of P @ goes twice via every
edge. The shortest possible computation of P comprises of one step. Since
#E @ � O � #Q @ � , we conclude that the time overhead of P @ is not worse than
exponential in the space complexity. A
Example 7.1 Let us demonstrate the conversion algorithm on a BP P com-
puting the logical conjunction x1 & x2 & x3. The first step of conversion
(adding dummy vertices to fulfil the parental condition) is sketched in
Figure 7.4. The rightmost sketch denotes the numbering of vertices.

The vertices of the target RBP P @ are numbered as following: i j denotes
the j-th incoming edge of the original vertex i and iB denotes the back edge
going to the original vertex i. The final RBP P @ has 7 � 7 � 1 � 1 � 16 vertices
and it is outlined in Figure 7.5. Recall that solid edges are labelled by 0 and
dashed edges are labelled by 1. The input/output vertices are highlighted,
the decision variable of a vertex is marked by the fill style.
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Figure 7.4: Adding dummy vertices to a real BP
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Figure 7.5: Performing the back-tracking on a real BP
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Nonuniform sequences of BP’s can be obviously converted in the same
way. To prove the validity of the conversion method also for uniform se-
quences we have to provide a construction machine of the target sequence.

Theorem 7.2 Every uniform sequence of BP’s P constructed by a machine
C can be converted into a uniform sequence of RBP’s P @ with the overhead
and constraints mentioned in Theorem 7.1.

Let s be the space complexity of P. The construction machine C @ of P @
has space complexity linear in s and time complexity polynomial in s.

Proof. The encoding of a BP has been vaguely defined on page 8. To
achieve low complexities of the construction machine, let us modify it
slightly in the following way:

i. we add another sorted list of edges — the present list is sorted using
source vertices, the augmented list will be sorted using destination
vertices,

ii. we split either lists of edges to #Σ smaller lists corresponding to the
transitions when σ � Σ is read,

iii. we represent the edges by arrays (instead sorted lists), because the
binary search would increase the space complexity too much and the
exhaustive search would be too slow.1

The changes should not make problems to the construction machine C (in-
deed they simplify it) and they help C @ a lot. Notice that the length of the
encoding is no more than squared.

Target RBP P @n will be encoded as a QN according to the Definition 4.9
on page 45. Consider that it is actually no longer a branching program, but
a network. However the maximal length of computation is known, hence
we can convert the target QN to a QBP using the conversion to the layered
form, see Note 6.3 on page 67.

Let us decompose the target construction machine C @ into two sub-
machines C @1, C @2. The first one C @1 will interpolate temporary vertices to
fulfil the parental condition and the second one C @2 will perform the actual
back-tracking algorithm. The intermediate program Ppc

n provided by C @1
will be encoded in the same way as Pn. The machine C @ will be the space
preserving conjunction of C @1 and C @2, i.e. C @2 is run and when it asks for a
bit of the advice, C @1 is launched.

1this introduces holes in the encoding, moreover there are more backward edges inci-
dent with a vertex thus the reverse list needs to be enlarged #Q times to handle that
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Parental condition: The vertices of Ppc
n are indexed by the pair [original

vertex identifier q, colour c � Σ / � old 	 ], where � q � old� corresponds to the
original vertex q and � q � σ � corresponds to the vertex interpolated after q
when input letter σ is read. Not all interpolated vertices are incorporated
to the computation, i.e. the numbering contains holes.� it is clear that the header of Ppc

n containing the data sizes can be com-
puted readily from the header of Pn,� the decision variable of an original vertex � q � old� is resolved easily
by a lookup to the advice, however the decision variable of an in-
terpolated vertex � q � σ � is equal to the decision variable of p, where
p � parentσ C 1 � childσ � q ��� , thus p can be computed by two lookups to
the arrays of edges labelled by σ,� since the produced lists of edges are stored in arrays (rather than
sorted lists), we can also decompose the index of the desired bit b
into colour σ and vertex identifier � q � c � , c � Σ / � old 	 using simple
arithmetics.

When asking for the forward direction of computation (i.e. ask-
ing for a record in the array sorted using source vertices), we check
whether a vertex has been interpolated after q, i.e. whether d � q �,+�
d � parentσ C 1 � childσ � q ��� . If it has, then � q � old� goes to � q � σ � (when σ is
read) and � q � σ � goes to childσ � q � (for every colour). Otherwise � q � old�
goes directly to childσ � q � (when σ is read) and � q � σ � is marked as a
dummy record (for every colour).

The reverse direction is computed in similar way. The array of re-
verse edges is, however, much longer, since it is indexed by the triple
[original vertex number q, colour c � Σ / � old 	 , index i of the back
edge], where i �Ê� 1 � 2 � ����� � #Q 	 . There are 0 or 1 edges going to an in-
terpolated vertex � q � σ � , which can be computed as described in the
previous paragraph. However because the number of edges going
to an original vertex � q � old � can be quite big, we first identify its orig-
inal parent vertices p1 � parentσ C 1 � q � , pi � parentσ C i � q � , which can also
be done by a lookup, then we progress as described in the previous
paragraph.

Back-tracking: This conversion is slightly simpler than the previous
one. The vertices of P @n are indexed by the pair [original vertex q, type
t �Ë� 1 � 2 � ����� � #Q 	 / � back 	S� . The numbering has holes, since the number of
types t really used for a vertex q depends on its input degree, however it
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does not matter. A survey along the back-tracking algorithm reveals that
the complete behaviour of P @n is very regular and can be computed using
simple arithmetics:� the header is simple to compute: the maximal identifier of a vertex is

known, there are approximately as many families as vertices (minus
the number of output vertices), and the starting vertex is also known,� the decision variable of a vertex � q � t � is either d � q � or dp � q � depending
on whether q is an input vertex in Pn and whether t � D � q � , we can
obtain both numbers by asking for advice,� families correspond to their (only) parent vertex, hence every family
has decision type 1 (a simple one-edge family),� both translations between the parent vertex and the family identifier
are trivial (identity), the child vertex of the family corresponds to the
transition from its parent vertex � q � t � : all types of transitions are cat-
egorised within the description of the algorithm, so we just compute
some of the variables

D � q �L� Dσ � q �L� childσ � q �L� parentσ C 1 � q �B� parentσ C t � 1 � q �L� rankσ C q � childσ � q ���
from the source graph, which can be done fast since its edges are
encoded in arrays, and compose the target vertex from them. The re-
verse translation corresponds to the reverse transition, which is also
regular.

As usual, we wrap both C @1 and C @2 by a quantum wrapper (achieving
reversibility, cleaning work tapes, and ensuring constant length of compu-
tation). The space complexity of C @1 is O � s � n ��� . Notice that if the source BP
Pn was encoded using sorted lists, it would be O O s2 � n � P instead. The time
complexity of C @1 is O � p � s � n ����� . Also the space complexity of C @2 is O � s � n ���
and its time complexity is O � p � s � n ����� .

We conclude that even if C @2 calls C @1 at every its computational step, the
final construction machine C @ has total space complexity O � s � n ��� and time
complexity O � p � s � n ����� . We neglect the complexities of the source construc-
tion machine C. A
Note 7.1 This conversion works only for branching programs and it does
not work for networks. The essential fact the algorithm relies on is that the
source graph is acyclic, thus the back-tracking stops in finite time.
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Note 7.2 The results of this section imply that both nonuniform and uni-
form sequences of BP’s can be simulated by QTM’s in the same space (and
exponentially longer time).

7.2 The infinite iteration method

This method serves as a counterpart of the back-tracking method for prob-
abilistic computations. It converts a PBP with random choice type � 1

2 � 12 	
to a QN operating in the same space. However the target QN does not halt
absolutely, and its expected length of computation is exponentially longer.
The method has been proposed by J. Watrous in [Wat98].

The problem of simply replacing the fair coin flip by a quantum op-
eration U (e.g. the Hadamard operation) is the quantum interference.
From the unitarity of U some transition amplitudes are negative, which
causes that some computational paths interfere with each other. The solu-
tion stated avoids these amplitudes by assuming that the argument of the
Hadamard operation is reset to 
 0 � every time. The second problem is the
irreversibility of transitions. It is circumvented by storing the new state
separately and exchanging this new state with the current one. Again we
suppose the new state is reset to 
 00 ����� 0 � every time.

Since the direct erasure of information is not allowed, it is indeed per-
formed by applying the Hadamard operation on every erased bit and test-
ing whether the result is zero. The testing is not performed by a measure-
ment, but the internal error counter is increased in appropriate case. The
computation continues regardless until the end. At the end of the compu-
tation we measure whether the number of errors is zero. If it is zero, then
we measure the result and finish. Otherwise the computation was useless
and must be repeated.

To be able to repeat the computation we need to reset the memory,
which is done by uncomputation. The final trick is multiplying the cur-
rent amplitude by � 1 in the case that we have not arrived to the starting
configuration, it is explained below.

Note 7.3 The simulation could be made in much simpler way by observ-
ing the QN after every coin flip. It would collapse the QN into compu-
tational state every time, but the acceptance probabilities would be pre-
served. However this method does not fit into the computational model
of QN’s, where the measurements are more restricted: the computation
can continue for at most one measurement outcome while it immediately
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stops for the others. The simple method just stated needs to measure the
QN and continue in both cases.

Lemma 7.3 Let P be a PBP for input size n with constant length of com-
putation t, with space complexity s and with the only random choice type� 1

2 � 12 	 . Then P can be interpreted by a QBP P @ in linear space and time.
Let us also assume that for every output result π � Π there is at most one
output vertex labelled by π. The interpretation differs from the simulation
in the acceptance probabilities: if the acceptance probability of P yielding
π � Π on input x � Σn is denoted by pP

π � x � , the acceptance probabilities of
P @ will be

pP �
π � x � � 2 ( st O pP

π � x � P 2 �
Target QBP P @ has one additional outcome “unkn” denoting that it does not
know the result. Its probability is pP �

unkn � x � � 1 � ∑π ? Π pP �
π � x � .

Proof. The states of P @ are indexed by the sequence [current state q1, new
state q2, random bit b, number of errors e, interpretation step]. The starting
vertex is q @0 � � q0 � 0 � 0 � 0 � i � � . We suppose the computation of P comprises
only of fair coin flips. If, at some instant, P moves directly to another
state, it is regarded as if a coin flip was performed and the result was
ignored. Now we are sure that every computational path comprises of
the same number t of coin flips. A computational step of P is interpreted
(in reversible way) by P @ in the following way:

1. apply the Hadamard operation H on b,

2. set q2 � q2 Ì q, where q is the destination state corresponding to q1
assuming the result of coin flip was b,

3. exchange q1 and q2,

4. perform H ~ s on q2 and H on b,

5. increment e iff q2 +� 0s or b +� 0.

At the end of computation, we measure e. If it is nonzero, we return
“unkn”. Otherwise we know that q2 and b have been properly erased in ev-
ery loop, hence the transitions of b have always had positive amplitudes
and q2 have always been set to q indeed, hence the computation of P @ has
simulated the computation of P. We can measure q1 and return the appro-
priate result.

The probability of being lucky is P � e � 0 � � 2 ( � s � 1 � t . Let us assume we
have been lucky. The amplitude of an output vertex q is a � q � � c � q ��� 2t g 2,
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where c � q � is the number of computational paths ending at q (because the
amplitude of every single transition is 1 � d 2). For every outcome π � Π
there is a unique output vertex qπ labelled by π. We know that pπ �
c � qπ ��� 2t . Hence a � qπ � � 2t g 2 pπ. We conclude that the probability of ob-
taining qπ is 2 ( � s � 1 � t D 2t p2

π � 2 ( st p2
π.

The space complexity is increased approximately three times (q2 takes
the same space as q1 and e F #Q), and the time complexity is increased five
times. A
Note 7.4 We see that the amplitudes of P @ somehow mimic the probabili-
ties of P. This is the reason why the final accept probabilities are squared.
This impediment can not be avoided by this method.

Let us analyse the accepting probabilities a � b for #Π � 2. We know that
a � b � 1, let 0 F a F 1 � 2 F b F 1. The target probabilities after rescaling
become a @ � a2 ��� a2 � b2 � , b @ � b2 ��� a2 � b2 � .

A simple analysis shows that a @|F a, b @§E b and the equivalence hap-
pens for a ��� 0 � 1 � 2 	 , i.e. the squared probabilities are more bounded from
1 � 2 than the original probabilities. On the other hand if the original prob-
abilities are bounded from 0 and 1, i.e. a E ε, b F 1 � ε then the target
probabilities are also bounded from 0 and 1, though the ε would also need
to be squared.

When we look at the Table 2.1 with most common acceptance modes on
page 12, we see that these properties are sufficient to state that the target
QN with squared probabilities can accept the same language in the same
mode as the source PBP.

Note 7.5 The requirement, that the source PBP has at most one output ver-
tex assigned to every result, arises from the effort to convey the acceptance
probabilities by a simple equation. For example if the source PBP yields π
in two distinct output vertices p � q, then

pP �
π � x � � c1 D O pP

p � x � 2 � pP
q � x � 2 P +� c1 D O pP

p � x � � pP
q � x � P 2 � c1 D O pP

π � x � P 2 �
thus it would not suffice to use the acceptance probabilities of the source
PBP.

Note 7.6 The fact that we require the source PBP P having one random
choice type � 1

2 � 12 	 , does not restrict it very much, since every other random
choice type can be simulated by the fair coin flip at little cost. The constant
length of computation constraint also does not matter.
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Figure 7.6: Gaining acceptance probabilities of a QBP

Lemma 7.4 Let P be a QBP for input size n with constant length of com-
putation t and with space complexity s. Let pP

π � x � be the probability that
P yields π � Π on input x � Σn. Let unkn � Π (obtaining “unkn” means that
the task has not yet been solved) and let us assume that pP

unkn � x ��F 1 � ε
and ε � 0 for every x.

Then there exists a layered QN N with space complexity s and expected
time complexity O � t � ε � such that pP �

π � x � � pP
π � x ����� 1 � pP

unkn � x ��� for every
π � Π �Ë� unkn 	 and pP �

unkn � x � � 0.

Proof. The target network N consists of five layers: computing P, storing
results separately, uncomputing P, adjusting the quantum amplitude, and
the measurement plus the identity transformation provided by the back-
edges. Everything is outlined in Figure 7.6.

Since the measurement is performed in the last layer, we add t D #Qout
vertices to the left side of P to carry the amplitudes. After performing the
computation of P we exchange the output vertices with zero vertices hav-
ing zero amplitudes — it behaves as if a measurement yielding the result
“unkn” has been performed. Then we uncompute P, correct the amplitude
of q0 (notice that q0 +� Qin, however it is allowed) and perform the deferred
measurement. It is obvious that if we are lucky and the result is found in
first iteration then the probabilities are scaled exactly as stated.

Let us investigate what happens when we obtain “unkn” instead, i.e.
the measurement collapses N to the state as if the measurement with nega-
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tive outcome has been performed at the time when the results were saved.
We immediately obtain an important remark: if we do not perform the
amplitude correction in the fourth layer, the sequence P ( 1P would behave
exactly as the identity operator, hence the computation of N would never
finish yielding “unkn” at the end of every iteration. The correction can be
regarded as a small kick that perturbs the state enough to leave an un-
wanted vector subspace.

However we have to compute exactly what happens. N begins in state
 q0 � . After P if launched, the target state 
ψ � � Ux 
 q0 � can be expressed
as 
ψ � � ∑π ? Π 
ψπ � , where 
ψπ � is a projection of 
ψ � onto the subspaces
spanned by ��
 q ��
 q � Qout & d � q � � π 	 . We know that !Í
ψπ ��! 2 � pP

π � x � .
Let us suppose that N has collapsed to 
ψunkn � , i.e. we have not obtained

the result in first iteration. Let Π @ � Π �Á� unkn 	 . After P is uncomputed,
the target state becomes
 q1 � � U ( 1

x 
ψunkn � � U ( 1
x �{
ψ �t� ∑π ? Π � 
ψπ ���� 
 q0 �§� ∑π ? Π � U ( 1

x 
ψπ �L�
ignoring the fact that another block of computation has been performed,
i.e. a component of the internal state is different. Let us choose 
 ξπ � �
U ( 1

x 
ψπ �|� pP
π � x ��
 q0 � deliberately such that � q0 
 ξπ � � 0. We express 
 q1 � us-

ing these new variables and after the amplitude correction on states or-
thogonal to 
 q0 � is performed, the computational state becomes 
 q2 � .
 q1 � � � 1 � ∑π ? Π � pπ � x ���t
 q0 �§� ∑π ? Π � 
 ξπ �L�
 q2 � � punkn � x ��
 q0 � � ∑π ? Π � 
 ξπ � �

We enter second iteration: after P is launched again, the state becomes
 q3 � � punkn � x � Ux 
 q0 � � ∑π ? Π � Ux 
 ξπ �� punkn � x ��� ∑π ? Π 
ψπ ��� � ∑π ? Π � O 
ψπ �§� pπ � x � O ∑ρ ? Π 
ψρ � PSP� 2punkn � x � ∑π ? Π � 
ψπ � � � 1 � 2∑π ? Π � pπ � x ���§
ψunkn �L�
hence the amplitude of 
ψunkn � is c � � 1 � 2∑π ? Π � pπ � x ��� times larger than
it was at first iteration. Therefore at the third, fourth, . . . , i-th iteration all
amplitudes will be ci ( 1 times larger, i.e. the state after the program P is
launched for the i-th time (i E 2) will be

2punkn � x �tD ci ( 2 ∑
π ? Π � 
ψπ � � ci ( 1 
ψunkn � �
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Hence the probability that N ever accepts π is calculated as (adding the
probability from the first iteration)

pP �
π � x � � pP

π � x � � 4 � punkn � x ��� 2 ∑∞
i ; 2 O c2 P i ( 2 !Í
ψπ ��! 2 �

∑∞
i ; 0 � c2 � i � ∑∞

i ; 0 � 1 � 4∑π ? Π � pπ � x � � 4 � ∑π ? Π � pπ � x ��� 2 �� 1
4∑π Î Π � pπ � x � ( 4 � ∑π Î Π � pπ � x � � 2 � 1

4∑π Î Π � pπ � x � � 1 ( ∑π Î Π � pπ � x � �
pP �

π � x � � pπ � x � � pπ � x � 4 � punkn � x �5� 2
4∑π Î Π � pπ � x � punkn � x �� pπ � x ��� 1 � punkn � x �

1 ( punkn � x � � � pπ � x �
1 ( punkn � x � �

which is the desired result. The expected time can be computed from the
same equation using creating functions:

ExpTime � N � � ∑π ? Π � pP
π � x �#Ï 1 � 4 � punkn � x ��� 2 D ∑∞

i ; 0 � i � 2 �o� c2 � i Ð �
f � x � � ∑∞

i ; 0 O c2x P i � 1
1 ( c2x �

f @Ç� x � � ∑∞
i ; 1 i O c2x P i ( 1 c2 � c2 ∑∞

i ; 0 � i � 1 � O c2x P i� ( � ( c2 �� 1 ( c2x � 2 � c2� 1 ( c2x � 2 �
ExpTime � N � � � 1 � punkn � x ��� Ï 1 � 4 � punkn � x ��� 2 DY� f � 1 � � f � � 1 �

c2 � Ð �
We know that ∑π ? Π � pP

π � x ��E ε, pP
unkn � x ��F 1 � ε, and c F 1 � 2ε. Let us

assume the inequalities are equalities, as this would be the worst case. We
substitute these equations:

ExpTime � N � � ε Ï 1 � 4 � 1 � ε � 2 � 1
1 ( c2

� c2

c2 � 1 ( c2 � 2 � Ð� ε � 4ε � 1 � ε � 2 � 1 ( c2 � 1� 1 ( c2 � 2 � �
c2 � 1 � 4ε � 4ε2 �

ExpTime � N � � ε � 4ε � 1 � ε � 2 1 � 4ε ( 4ε2� 4ε � 1 ( ε �5� 2� ε � 1 � 4ε ( 4ε2

4ε � 4ε2 � 1 � 4ε ( 4ε2

4ε� 1 � 4ε
4ε F 1 � 4

4ε � 5
4ε �

ExpTime � N � � O � 1 � ε � � (in iterations)

We have constructed a layered QN N working in space s and expected
time O � t � ε � (however not halting absolutely), that never yields “unkn”
and the probabilities of other outcomes correspond to the probabilities of
source QBP P appropriately scaled. A
Theorem 7.5 Every PBP P with time complexity t can be interpreted by a
QN N with the same space complexity and with expected time complexity



94 CHAPTER 7. ACHIEVING REVERSIBILITY

O � t D 2st � . N does not halt absolutely. If the source acceptance probabilities
are pP

π � x � , the target acceptance probabilities are pN
π � x ��ÑÒ� pP

π � x ��� 2.
The theorem holds also for sequences of PBP’s.

Proof. Let us just sketch the proof. We first need to modify P to have just
one random choice type (fair coin flip), which can be done with a constant
time overhead. Then we justify all computational paths of P to have equal
length, it can be done by adding a counter to the internal state, which does
not increase the space complexity very much. Then we merge all output
vertices labelled by the same output letter π. We apply Lemma 7.3 and
obtain a QBP P @ with acceptance probabilities squared and decreased 2st

times. Since the output alphabet Π is finite, one of the acceptance proba-
bilities of P is big enough: �32 π � Π � pP

π � x �I� 1 � #Π �
hence the sum of the target probabilities is not less than 1 ��� 2st#Π � . We
apply Lemma 7.4 and obtain a target QN N with time complexity O � t D 2st � .

This theorem obviously holds for nonuniform sequences. To prove it
also for uniform sequences, let us outline a target construction machine
C @ . It will comprise of three machines C @1 (justifying P), C @2 (constructing P @ )
and C @3 (constructing N).

The justification of P: replacing the complex random choice types by
the chain of simple ones can be done easily, since we need not take care
of the interference pattern. Stretching the computational paths to unique
length can be done by adding a counter to the internal state.

The intermediate QBP P @ is very regular: its internal states have simple
structure, description of almost all computational steps can be computed
using simple arithmetics, the encoding of the computational step perform-
ing the desired operation is obtained by asking for advice.

The target QN N is also very regular: it comprises of two copies of P @
(one of them reversed) and a few additional vertices and edges. Every bit
of the encoding can be computed using simple arithmetics and asking for
advice.

We conclude (using the same arguments that have been used in pre-
vious theorems) that the construction machine C @ has space complexity
O � s � n ��� and time complexity O � p � s � n ����� . A



7.3. THE PEBBLE GAME METHOD 95

0 1 2 3 4 5 6 7 8 9 10 11

Figure 7.7: Scheme of the Pebble game

7.3 The Pebble game method

Both methods introduced increase the time complexity exponentially. Let
us search a method achieving faster reversible programs.

We ignore the simplest method that remembers the complete history of
computation. This method is apparently reversible since it never forgets
anything, it rather allocates a new storage space for every computational
step. This method increases the space complexity too much.

However the notion of remembering a part of the history of compu-
tation is very useful. To decrease the space complexity we should not re-
member every instant of computation, but only a few discrete places. We
exploit the fact the the other instants can be always recomputed from the
nearest place when needed. This increases the time complexity, but if we
implement this method well, both time overhead and space overhead will
be polynomial.

Let us reformulate the method as a game.

Game 7.1 Pebble game: We are given n � 1 pebbles. One of them lies per-
manently on the number 0, the other n pebbles are on a pile. At every
instant we can either put a pebble on a natural number i or pick a pebble
lying on i up. However both operations can be done only if there is an-
other pebble already lying on i � 1. The question is: What is the largest
number dn, which can be covered by a pebble? How many operations tn
need to be performed to reach dn?

Claim 7.6 dn � 2n � 1, tn � � 3n � 1 ��� 2.

Proof. Let us prove that dn E 2n � 1, i.e. show a particular procedure reach-
ing dn. We construct recursively a procedure P � n � . It gets n pebbles for its
disposal and has to reach the most distant number dn. It works in the fol-
lowing way:

1. if n � 0, it can do nothing and stops the job, reaching position d0 � 0,
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2. call P � n � 1 � to use all but one pebble and shift the current position
dn ( 1 numbers to the right,

3. place the last pebble on the furthest reachable number A � dn ( 1
� 1,

4. call the inverse of P � n � 1 � to collect the n � 1 pebbles back from the
plane into the pile,

5. call again P � n � 1 � to use all spare pebbles and thus shift the current
position dn ( 1 numbers to the right again, now starting from A.

We see that P � n � reaches dn � 2dn ( 1
� 1 using tn � 3tn ( 1

� 1 operations.
The equations can be proved by mathematical induction. It holds that
d0 � t0 � 0. The second step of induction:

dn � 2dn ( 1
� 1 � 2 � 2n ( 1 � 1 � � 1 � 2n � 2 � 1 � 2n � 1 �

tn � 3tn ( 1
� 1 � 3 � 3n ( 1 � 1 ��� 2 � 1 � � 3n � 3 � 2 ��� 2 � � 3n � 1 ��� 2 �

Let us prove dn F 2n � 1, i.e. the method can not be improved. We can
do this also by induction. The first step d0 F 0 is obvious. The second step:
let us look at the first instant when all pebbles are put on the line and let
A be the largest reached number. Even if we gather all pebbles except the
last one lying on A, we can not reach further number than A � dn ( 1. If we
know that dn ( 1 F 2n ( 1 � 1, if follows that A F 2n ( 1 and thus dn F 2n � 1. A

Let us apply the results for reversible computation. A pebble can be
regarded as a storage space for one instant of computation: If it lies on
number i, it means we remember the state of computation after the i-th
step. If it is on the pile it means the storage space is empty. Putting a
pebble on number i when i � 1 is covered corresponds to computing the
i-th step of computation by running the source program P, because the
state of computation after the � i � 1 � -th step is loaded in memory. The
irreversibility of P does not matter, since we store the results into a new
clear storage space. Further, picking a pebble up from number i when
i � 1 is covered corresponds to uncomputing the results of the i-th step of
computation and hence clearing the storage space.

Theorem 7.7 Let P be a layered BP with space complexity s and time com-
plexity t. Let w denote the width of the widest layer of P. Then there exists
a layered RBP P @ equivalent with P with space complexity O � logw D logt � �
O O s2 P and time complexity O O t log2 3 P � O O t1 Ó 585 P .
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Proof. Let p � 9 log2 t : be the number of pebbles and let Zw � � 0 � 1 � ����� � w �
1 	 be the storage space big enough to store the computational state in any
layer. The memory of P @ will comprise of p copies of Zw, i.e. Q @§Ñ Zp

w.
To perform the computation of P in reversible way, we follow the Pebble
game. Notice that p has been chosen such that t � O � 2p � is a reachable
computational step.

The space complexity of P @ is p log2 w � O � logw D logt � , both t � w F #Q �
O � 2s � hence the space complexity of P @ is O O s2 P . The time complexity of P @
is O � 3p � . We know that 3log2 t � 3log3 t g log3 2 � � 3log3 t � log2 3 � t log2 3.

It remains to be shown that a computational step of BP P can be sim-
ulated by RBP P @ under an assumption that the results are stored into
cleared memory. Let � q1 � q2 � ����� � qp � , qi � Zw be the current state of P @ . To
perform the l-th computational step on state stored at index a and store it
to index b, the following operation is performed:

qb : � qb Ì P � l � � qa �B�
where P � l � is the extended operation performed by P in l-th layer. P � l � is
extended (e.g. by zeroes) to be defined for all qa � Zw, since the original
BP P can have narrower layers. It is clear that such operation is reversible
and moreover that it is its own inversion. Hence it can serve also for the
uncomputation. A

This method obviously works for nonuniform sequences without need
of change.

Theorem 7.8 Every uniform sequence of layered BP’s P constructed by a
machine C can be converted into a uniform sequence of layered RBP’s P @
with the overhead and constraints mentioned in Theorem 7.7.

Let s be the space complexity of P. The construction machine C @ of P @
has space complexity linear in s and time complexity polynomial in s.

Proof. Let us use similar encoding of the source program P as in the proof
of Theorem 7.2 on page 85. We also require the source encoding contains
the width of the layer and the number of layers in the header and the
source vertices are indexed consecutively along the layers (see Note 6.2 on
page 66, the same requirements have simplified the proof of Theorem 6.5
on page 68).

Under these assumptions the conversion of P to P @ involves just simple
arithmetics and it comprises of a few inquiries for an advice:� target vertices Q @ will be indexed by the pair [layer number l @ , in-

dex of the vertex in the layer v @ ], target families will be indexed in
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similar way by the pair [layer l @ , index of its leftmost vertex v @ ] inde-
pendently on the source family indexing (we must be cautious since
there will be many holes in the family indexing),� when working with target vertex q @ � � l @�� v @p� , our first task is to trans-
late the target layer number l @ to triple l � a � b, where l is the number of
source layer and a � b are the indexes of the internal storage space, it
can be done using simple arithmetics by expanding l @ in basis 3 and
following the behaviour of the Pebble game algorithm,� when working with target family f @ � � l @1� v @Ô� , first task after expand-
ing l @ to l is to check whether such family exists (done by asking the
advice for the family of � l � v @ � and checking whether v @ is the leftmost
vertex of its family), all other steps also imply from the arithmetics
and asking the advice,� after the behaviour P � l � of P in l-th layer is obtained from the advice,
it is not difficult to transform it into the operation qb : � qb Ì P � l � � qa �
using simple arithmetics: we know l @5� l � a � b, all activity is determined
by the vertex qa (qb is uninteresting since it is just XOR-ed).

All numbers C @ works with must be big enough to carry the index of a
vertex, a layer or a family, hence the space complexity of C @ is O � s � n ��� and
the time complexity of C @ is O � p � s � n ����� . A

It is tempting to state a similar theorem also for PBP’s — replacing
fair coin flips by Hadamard operations (avoiding negative amplitudes by
ensuring the argument is 
 0 � ) and achieving reversibility by storing the
results separately and then uncomputing the arguments. Unfortunately
this does not work so easily due to the interference pattern.

Look at Figure 7.8. The source PBP has only one irreversible step in
the third layer with destination set of size 2. Hence we need not convert
the target QBP exactly using the Pebble game algorithm, but we can short-
cut the construction a little: first two layers are directly replaced by a set
of Hadamard operations, the third layer is simulated exactly is described
above, and finally the uncomputation of first two layers finishes the com-
putation. Therefore only two copies of the graph need to be involved.

Let us investigate the progress of computation of the target QBP, which
is described in Table 7.1. Every column corresponds to the amplitude of a
vertex in current layer. We see that separating an amplitude in the third
layer perturbs the amplitude distributions in either copies of the graph in
such a way that the uncomputation yields neither the desired distribution� $ 3 � 4 � $ 1 � 4 � nor its pure squared variant � c D 3 � 4 � c D 1 � 4 � , but something
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1
1

1 1

1 Õ 21 Õ 21 Õ 21 Õ 2 1 Õ 21 Õ 2 Hadamards

saving apart

uncomp.

Figure 7.8: A PBP converted using Pebble game

layer 1 2 3 4 5 6 7 8
1 1 0 0 0 0 0 0 0
2 1[

2
1[
2

0 0 0 0 0 0
3 — uniform 1

2
1
2

1
2

1
2 0 0 0 0

4 — permuted 1
2

1
2

1
2 0 0 0 0 1

2
5 1[

2
1

2
[

2
0 1

2
[

2
0 1

2
[

2
0 ( 1

2
[

2
6 3

4
1
4

1
4 ( 1

4
1
4 ( 1

4 ( 1
4

1
4

probabilities 9
16

1
16

1
16

1
16

1
16

1
16

1
16

1
16

Table 7.1: Computation of the PBP in Figure 7.8

more chaotic: the squared variant � 3 � 4 � 1 � 4 � justified by some ‘random’
amplitudes of the other vertices. It turns out that this is not casual, but it
is the rule. Anyway, this chaotic distribution is useless as an intermediate
state of the computation.

Let us investigate in detail what indeed happens to the amplitudes. Let
r denote the number of fair coin flips and x � y be the bitwise scalar product.� the fair coin flips distribute the amplitude of the starting vertex uni-

formly into 2 ( r g 2 ∑t ? Q 
 0 � t � in the third layer,� after the vertices are permuted, the uncomputation of the fair coin
flips distributes the amplitude of every vertex 
 q � t � in the fourth layer
into 2 ( r g 2 ∑i ? Q �v� 1 � i Ö t 
 q � i � ; the sign is always � 1 for 
 q � 0 � , hence 
 q � 0 �
gains total amplitude 2 ( rc � q � � pP

q � x � , where c � q � is the number of
vertices 
 q � t � from the fourth layer,
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plitudes in the fourth layer do not form the desired pattern and the
uncomputation of fair coin flips does not abate the randomness by
interfering destructively the amplitudes of vertices 
 q � i � , i +� 0; their
amplitudes can be regarded as an unwanted noise,� even if we get rid of the unwanted amplitudes, we would have to
consider that the resulting probability distribution is squared.

One way of circumventing this impediment is by avoiding the uncom-
putation of coin flips. If we flip all coins in the beginning of the compu-
tation and remember the results, the rest of the computation of the PBP
can be performed deterministically — the i-th coin flip is replaced by a
conditional jump depending on the i-th stored result.

Theorem 7.9 Let P be a layered PBP with space complexity s, with time
complexity t and with the only random choice types � 1

2 � 12 	 (fair coin flip)
and � 1 	 (deterministic step). Let w denote the width of the widest layer
of P and r denote the maximal number of random choices on a com-
putational path. Then there exists a layered QBP P @ equivalent with P
with space complexity O � r � logw D logt � � O O r � s2 P and time complexity
O O r � t log2 3 P � O O t1 Ó 585 P .
Proof. The target QBP P @ has memory big enough to remember r results
y � � yi 	 ri ; 1 of coin flips and p � 9 log2 t : computational states in any layer.
The computation of P @ starts with applying the Hadamard operation on
every qbit yi, this can be done in r layers (with constant size families).

Henceforth the source PBP P is regarded as a BP Pd that comprises
of only deterministic (though irreversible) steps. The i-th fair coin flip is
replaced by a deterministic transition to the vertex corresponding to the
result stored in yi. We convert the BP Pd into a RBP Pd @ using Theorem 7.7
and include it in P @ .

Hence P @ finishes in state � y1 � y2 � ����� � yr � 0 � ����� � 0 � c � 0 � ����� 0 � , yi �Á� 0 � 1 	 , c is
such that qt C c � Pd @ � x � y ��� Qout (uniquely determined by x � y) with ampli-
tude 2 ( r g 2. If we measure c, the probability pP �

π � x � of observing a vertex
labelled by π � Π is equal to 2 ( r D ∑y ?Ø× 0 C 1 Ù r pPd �

π � x � y � � pP
π � x � . We conclude

that P @ simulates (not interprets) P. A
Note 7.7 Since r � O � t � , the target QBP P @ has space complexity O O s2 � t P
while the naive method (remembering complete history of computation)
would lead to an algorithm with space complexity O � st � . It is slightly
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better, but since it can happen that r � Θ � t � and t � Θ � 2s � , the space com-
plexity of P @ could reach O O s2 � 2s P .

This method obviously works for nonuniform sequences without need
of change.

Theorem 7.10 Every uniform sequence of layered PBP’s P with simple
structure of random choices constructed by a machine C can be converted
into a uniform sequence of layered QBP’s P @ with the overhead and con-
straints mentioned in Theorem 7.9. We say that a PBP Pn has simple struc-
ture of random choices iff it uses only fair coin flips and the rank of the ran-
dom choice can be computed from the vertex identifier in little space and
time.

Let s be the space complexity of P. The construction machine C @ of P @
has space complexity linear in s and time complexity polynomial in s.

Proof. The first phase of P @n (applying Hadamard operations on stored ran-
dom qbits) is very regular and can be generated by C @ without problems.
The second phase (reversible simulation of Pd

n ) is constructed in the same
way as in the proof of Theorem 7.8. We only need to obtain the determin-
istic BP Pd

n from the source PBP Pn, which is also straightforward, since
random choices of Pn have a simple structure. A
7.4 Tradeoffs between the methods

We have developed more methods achieving reversibility, two of them
preserve space and increase time too much, another one almost preserves
time and increases space a little. It is also possible to combine these meth-
ods and obtain a variety of algorithms with scaled space and time com-
plexities. Some tradeoffs of this type have been already independently
explored in [Ben89].

Let us imagine that we convert a source BP P1 to another BP P2 using
the Pebble game method. If we are given enough storage space, P2 could
be made reversible directly and the job is finished. Otherwise only blocks
of the computation comprising of l � t consecutive layers can be made re-
versible. The i-th block starts in the state � qi � 0 � 0 � ����� � and it leaves P2 in the
state � qi � qi � 1 � 0 � ����� � . Since the reversible computation of every block needs
to get all memory items cleared, we must erase qi and replace it by qi � 1
before the computation of the � i � 1 � -th block is launched. Hence P2 com-
prises of ¿ t � l À irreversible layers interpolated by a reversible computation.
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3s steps (2s orig. steps)

t Õ 2s ¼ 1 irreversible steps
. . .

. . .

s º 2 copies

Figure 7.9: Tradeoff between the Pebble game and back-tracking

If we convert P2 to a RBP P3 using the back-tracking method, we obtain a
RBP working in the same space.

Theorem 7.11 Let P be a layered BP with time complexity t. Let w denote
the width of the widest layer of P. Then for every s �G� 0 � 1 � 2 � ����� �Ø9 log2 t :M	
there exists a layered RBP Ps equivalent with P with space complexity
O ��� s � 2 �tD logw � and time complexity O � � 3 � 2 � s D t D wt g 2s ( 1 � .

The theorem holds also for sequences of BP’s. The construction ma-
chine of the target uniform sequence has little space and time complexi-
ties.

Proof. Let us fix the value of the parameter s. Since the first memory posi-
tion is reserved for the input value, we have s � 1 free memory positions.
Using Claim 7.6, we see that the Pebble game can reach position 2s � 1 � 1
using � 3s � 1 � 1 ��� 2 movements. However we want to empty all memory
items besides the input and output value, hence we stop playing the Peb-
ble game at the place A in the middle of the first recursive call, thus only
position 2s is reached and it takes 3s movements.

The computation of the intermediate BP Pg consists of 9 t � 2s : blocks.
The computation of every block comprises of 3s layers obtained by the
reversible simulation of the corresponding block of P. After each block
except the last one the contents of the input memory item is replaced by
the output memory item (this operation is not reversible). See Figure 7.9.

The target RBP Ps is obtained by back-tracking Pg. There are O � 3s D t � 2s �
layers and t � 2s � 1 of them are irreversible. The back-tracking just passes
through at a reversible layer, but it explores all input edges at an irre-
versible layer. Since one memory item is erased in such layer, every vertex
has w incoming edges there. We conclude that wt g 2s ( 1 branches of length� 3 � 2 � s D t are explored.
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Since we have already proved that the construction machines for both
back-tracking and the Pebble game method have little complexities, so has
the construction machine C @ of the combined method. The machine C @ is
just a composition of two machines: C @1 constructing Pg and C @2 construct-
ing P @ . C @2 has already been discussed, C @1 is a simple variant of the original
Pebble game construction. A

It is also possible to form a tradeoff for the interpretation of PBP’s. It
comprises of converting large blocks of the source program by the Peb-
ble game method, concatenating the consecutive blocks into a global QBP,
getting rid of unwanted intermediate amplitudes by counting a number of
errors, and iterating the computation until we are lucky and observe that
no errors have occurred.

Let us describe in detail how the conversion is performed. Given the
space complexity of the target QBP P @ , we choose the block size l as large as
possible and also allocate a space in P @ for an error counter. We divide the
computation of the source PBP P into blocks P � i � of size l and convert the
i-th block using the Pebble game method into a QBP Pg Cr� i � . The QBP Pg C�� i �
starts in the state � 0l � qi � 0 � 0 � ����� � and ends in the state � y1 � ����� � yl � qi � qi � 1 � 0 � ����� � .
We uncompute l fair coin flips (by applying Hadamard operations again)
and try to erase qi also by applying Hadamard operations. If we have
not arrived to a state in the form � 0l � 0 � x � 0 � ����� � , we increment the error
counter. Otherwise we permute the components of the internal state into� 0l � qi � 1 � 0 � 0 � ����� � . The global QBP Pg comprises of a concatenation of the in-
dividual Pg C�� i � ’s. It measures the error counter at the end and yields “unkn”
if it is nonzero. Otherwise it measures also the output vertices and fin-
ishes. The output probabilities will be squared. The target QBP P @ will
iterate Pg while “unkn” has been observed.

Theorem 7.12 Let P be a layered PBP with time complexity t and with the
only random choice types � 1

2 � 12 	 and � 1 	 . Let w denote the width of the
widest layer of P. Let us also assume that for every result π � Π there ex-
ists at most one output vertex labelled by π. Then for every value of the
parameter s �e� 0 � 1 � 2 � ����� �Ø9 log2 t :M	 there exists a layered QN Ps interpreting
P with space complexity O � 2s � � s � 2 �§D logw � and expected time complex-
ity O �N� 3 � 2 � s D t D wt g 2s Ú 1 � . It, however, does not halt absolutely.

The theorem holds also for sequences of PBP’s. The construction ma-
chine of the target uniform sequence has little space and time complexities.

Proof. Let us fix the value of the parameter s. The target QN Ps will work
as described above and in the proof of Theorem 7.11. To be able to sim-
ulate in reversible way the 2s consecutive layers of the source PBP P, it
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remembers the computational state in � s � 2 � independent layers, 2s re-
sults of the coin flips, and an error counter. Since the number of errors is
not bigger than t � 2s and the target layer number is less than � 3 � 2 � s D t, the
space complexity of P is O � 2s � � s � 2 �§D logw � .

The time complexity of the intermediate QBP Pg is � 3 � 2 � s D t. The proba-
bility that the number of errors will not be increased in a layer erasing the
memory items is at least 1 � w2, because every bit of configuration qi can
evolve into 0 or 1 and there are log2 w such bits, and the probability that
the fair coin flips are properly cleared is ∑q ? Q � i Û 1 � � pP � i �

q � x ��� 2 � 1 � w (it follows

from ∑q ? Q � i Û 1 � pP � i �
q � x � � 1 and #Q � i � 1 � F w by applying the arithmetical-

quadratical inequality). Since there are t � 2s erasing layers, we conclude
that the probability of observing no errors is � 1 � w2 � t g 2s � 1 � wt g 2s Ú 1

. The
expected time complexity of the target QBP P @ is the product of the time
complexity of Pg and the inverse of the probability of being lucky.

Let us show that P @ interprets P. Assuming no errors have been ob-
served, we know that the amplitudes of the intermediate vertices at the
erasing layers are proportional to their probabilities in the source program
P. We know that every output letter is assigned to less than one vertex,
hence the probabilities are pP �

π � x � � � pP
π � x ��� 2.

The construction machine C @ is apparently composed from the con-
struction machines C @1 (playing the Pebble game), C @2 (concatenating the
individual QBP’s, erasing the allocated space and counting the number of
errors), and C @3 (iterating the computation until we are lucky). A



Chapter 8

Space bounded Quantum
Computation

We state two interesting related results in this chapter. The first result
described in [Bar89] says that width-5 oblivious RBP’s recognise NC1 lan-
guages in polynomial time. The second one described in [AMP02] claims
the same about width-2 oblivious QBP’s. Hence a quantum memory com-
prising just of one qbit is big enough to perform a useful computation.

8.1 Recognising NC1 languages by 5-PBP’s

Definition 8.1 Let L .Ü� 0 � 1 	 
 be a language. We say that L � NCk, if there
exists a sequence of circuits C � � Cn 	 ∞n ; 1 such that Cn recognises Ln � L Ý� 0 � 1 	 n (it yields 1 iff x � Ln). Cn is a Boolean circuit with n inputs x1, x2,
. . . , xn comprising of AND, OR and NOT gates of fan-in 2 and it has depth
O O logk n P . If such sequence is uniform (the encodings of Cn’s can be con-
structed by a TM), we say that L � uniform NCk.

Definition 8.2 We say that P is a width-w permutation Branching Program
(w-PBP), if it is an oblivious (i.e. layered with one decision variable in
every layer) reversible BP having exactly w vertices in every layer.

It is straightforward that a w-PBP performs a permutation on vertices
in every layer. Hence a w-PBP can be regarded as a machine composing
permutations.

D. A. Barrington has proved in [Bar89] that for every L � NC1 there
exists a sequence P of 5-PBP’s of polynomial length recognising L and vice
versa. If L is uniform then P can also be taken uniform. Let us outline the
method.

105
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Definition 8.3 We say that a 5-PBP P five-cycle recognises a language L .� 0 � 1 	 n if there exists a five-cycle σ (called the output) in the permutation
group S5 such that P � x � � σ if x � L and P � x � � 1 if x +� L (1 is the identity
permutation).

Theorem 8.1 Let L be recognised by a depth d fan-in 2 Boolean circuit.
Then L is five-cycle recognised by a 5-PBP P of length at most 4d .

Lemma 8.2 If P five-cycle recognises L with output σ and τ is any five-
cycle, then there exists a 5-PBP P @ recognising L with output τ. It has the
same length as P.

Proof. Since σ and τ are both five-cycles, there exists a permutation θ such
that τ � θσθ ( 1. To get P @ we simply take P and for every layer i, we replace
either permutations αi and βi (performed respectively when the value of
the decision variable is 0 and 1) by θαiθ ( 1 and θβiθ ( 1 in the i-th layer. A
Lemma 8.3 If L is five-cycle recognised in length l, so is its complement
L @ � � 0 � 1 	 n � L.

Proof. Let P be a 5-PBP recognising L with output σ. Let us take its last
layer and replace either permutations αi and βi by αiσ ( 1 and βiσ ( 1. We
denote the target 5-PBP by P @ . Then P @Ç� x � � 1 if x � L and P @Ç� x � � σ ( 1 if
x +� L, hence P @ five-cycle recognises L @ . A
Lemma 8.4 There exist two five-cycles ϕ1 � ϕ2 � S5 whose commutator is a
five-cycle. (The commutator of a and b is aba ( 1b ( 1.)

Proof. Take ϕ1 � � 12345 � , ϕ2 � � 13542 � . Then ϕ1ϕ2ϕ ( 1
1 ϕ ( 1

2 � � 13254 � . A
Proof of Theorem 8.1. By induction on the depth d: If d � 0, the circuit
is just an input gate and L can easily be recognised by an one instruc-
tion 5-PBP. Assume w.l.o.g. that L � L1 Ý L2, where L1 � L2 have circuits of
depth d � 1 and thus are recognised by 5-PBP’s P1 � P2 of length at most 4d ( 1

(use Lemma 8.3 for the implementing NOT and OR gates). Let P1 � P2 have
outputs ϕ1 � ϕ2 from Lemma 8.4 and P @1 � P @2 have outputs ϕ ( 1

1 � ϕ ( 1
2 (it can be

prescribed by Lemma 8.2).
Let P be the concatenation P1P2P @1P @2. P yields 1 if x +� L1 Ý L2 � L, but it

yields the commutator of ϕ1 � ϕ2 if x � L. The commutator is a five-cycle,
hence P five-cycle recognises L. Moreover P has length at most 4 D 4d ( 1 �
4d . Given a circuit and a desired output, this proof gives a deterministic
method of constructing the 5-PBP. A
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Theorem 8.5 Let L .Ü� 0 � 1 	 n be recognised by a w-PBP P of length l. Then
L is recognised by a fan-in 2 circuit C of depth O � log l � , where the constant
depends on w.

Proof. A permutation of w items can be represented by O O w2 P Boolean
variables telling whether f � i � � j for every i � j. The composition of two
permutations can be performed by a constant depth circuit. The target cir-
cuit C will comprise of a constant depth section composing a permutation
yielded by each instruction of P, a binary tree of composition circuits, and
a constant depth section at the top determining the acceptance given the
permutation yielded by P. A
Corollary 8.6 The w-PBP’s (for w E 5) of polynomial length recognise ex-
actly NC1 languages. The equivalence holds both for nonuniform and uni-
form sequences.

8.2 NC1 is contained in 2-EqQBP

All permutations used in the previous section have been indeed members
of A5 . S5 (the group of even permutations of 5 items). A5 is the smallest
non-Abelian simple group.

Definition 8.4 A group G is Abelian iff ab � ba for all a � b � G. A subgroup
H . G is normal iff aH � Ha for all a � G. A group G is simple iff it has no
normal subgroups other than � 1 	 and G.

Let us restate the Barrington’s result using the group language.

Theorem 8.7 Let G be a non-Abelian simple group and let a � G, a +� 1 be
a non-identity element. Then any language L in NC1 can be recognised by
a sequence P of BP’s over G of polynomial length such that P � x � � a if x � L
and P � x � � 1 if x +� L.

Definition 8.5 We define 2-EqQBP to be the class of languages recognised
exactly (in mode Eq) by sequences of width-2 oblivious QBP’s of polyno-
mial length.

Theorem 8.8 NC1 . 2-EqQBP and w-EqQBP . NC1 (without proof here).

Proof. Recall that A5 is the set of rotations of an icosahedron. Therefore
SO � 3 � (the group of rotations of R3, i.e. the 3 � 3 orthogonal matrices with
determinant 1) contains a subgroup isomorphic to A5.
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There exists a well-known 2-to-1 mapping from SU � 2 � (the group of 2 �
2 unitary matrices with determinant 1) to SO � 3 � . Recall the Bloch sphere
representation of a qbit: if we neglect the unobservable global phase, a qbit
a 
 0 � � b 
 1 � where 
 a 
 2 � 
 b 
 2 � 1 can be regarded as a point on the unit sphere
with latitude θ and longitude ϕ, i.e. � cosϕcosθ � sinϕcosθ � sinθ � , where a �
cos � θ � 2 � and b � eiϕ sin � θ � 2 � .

Given this representation, an element of SU � 2 � is equivalent to some
rotation of the unit sphere. Recall the Pauli operators X , Y and Z and the
rotation operators Rx � θ � � e ( iθX g 2, Ry � θ � � e ( iθY g 2 and Rz � θ � � e ( iθZ g 2 ro-
tating an angle θ around the x, y and z axes. This makes SU � 2 � a double
cover of SO � 3 � , where each element of SO � 3 � corresponds to two elementsÞ

U in SU � 2 � . The angles are halved by this mapping. Therefore SU � 2 � has
a subgroup which is a double cover of A5.

One way to generate this subgroup is with 2π � 5 rotations around two
adjacent vertices of an icosahedron. Since two such vertices are an angle
tan ( 1 2 apart, if one is pierced by the z axis and the other lies in the x � z
plane, we have

a � Rz � 2π � 5 � � ] eiπ g 5 0
0 e ( iπ g 5 ^ �

b � Ry � tan ( 1 2 �§D a D Ry �v� tan ( 1 2 �� 1[
5
] eiπ g 5τ � e ( iπ g 5τ ( 1 � 2isin � π � 5 �� 2isin � π � 5 � e ( iπ g 5τ � eiπ g 5τ ( 1 ^e�

where τ � � 1 � d 5 ��� 2 is the golden ratio. Now consider the group element
c � aba, this rotates the icosahedron by π around the midpoint of the edge
connecting these two vertices. In SU � 2 � , this maps each of the eigenvectors
of Y to the other times an overall phase. Taking these as the initial and final
state es � �B
 0 � � i 
 1 ����� d 2, et � �B
 0 �t� i 
 1 ����� d 2 we have!�� es 
 c 
 et �#! 2 � 1 �!�� es 
 1 
 et �#! 2 � 0

(because the two eigenvectors are orthogonal). Hence we have found a
rotation c from the group such that we can measure with probability 1
whether or not it has been performed.

Now Theorem 8.7 tells us, that for any language L � NC1 we can con-
struct a polynomial length program over A5 that yields the element equiv-
alent to c if the input is in L and 1 otherwise. Mapping this language to
SU � 2 � gives a program which yields

Þ
c or 1 and accepts with probability

1 or 0. A
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