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Abstract: We demonstrate that the unbounded fan-out gate is very powerful. Constant-
depth polynomial-size quantum circuits with bounded fan-in and unbounded fan-out over a
fixed basis (denoted by Ql\?glcan approximate with polynomially small error the follow-

ing gates: parity, mod[q], And, Or, majority, threshold[t], exact[t], and Counting. Classi-
cally, we need logarithmic depth even if we can use unbounded fan-in gates. If we allow
arbitrary one-qubit gates instead of a fixed basis, then these circuits can also be made exact
in log-star depth. Sorting, arithmetic operations, phase estimation, and the quantum Fourier
transform with arbitrary moduli can also be approximated in constant depth.
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1 Introduction

In this paper, we study the power of shallow quantum circuits. Long quantum computations encounter
various problems with decoherence, hence we want to speed them up as much as possible. We can
exploit the following two types of parallelism:

1. Gates on different qubits can be applied at the same time.
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2. Commutinggates can be applied to tesamequbits at the same time.

The first approach is just the classical parallel computation. The second approach only makes sense
when the gates applied on the same qubits commutéBe: BA, otherwise the outcome would be am-
biguous. Being able to do this is a strong assumption, however there are models of quantum computers,
in which it is physically feasible: ion-trap computed§ and bulk-spin resonance (NMR9][ The basic
idea is that if two quantum gates commute, so do their Hamiltonians and therefore we can apply their
joint operation by performing both evolutions at the same time. This type of research started after the
Mglmer—Sgrensen paperd]. Recently, a Hamiltonian implementing the fan-out gate (which is crucial
for all our simulations) has been proposed by Fen8kr [

In our paper, we investigate how much the power of quantum computation would increase if we
allow such commuting gates. The computation in the stronger model must be efficient, therefore we
do not require the ability to performny set of commuting gates. This is in accordance with standard
guantum computation, where we also allow only some gates. We choose a representative, the so-called
unbounded fan-out gatevhich is a sequence of controlled-not gates sharing one control qubit. We
call it fan-out, because if all target qubits are zero, then the gate copietagscalsource bit inton
copies. We show that fan-out is in some sense universal for all sets of commuting gates. In particular,
the joint operation of any set of commuting gates (that can be easily diagonalised) can be simulated by
a constant-depth quantum circuit using just one-qubit and fan-out gates. To achieve this, we generalise
the parallelisation method o1}, 10] and adapt it to the constant-depth setting.

We state our results in terms of circuit complexity classes. Classically, the main classes computed
by constant-depth, polynomial-size circuits are:

NCP with Not and bounded fan-in gates: And, Or,

ACP with Not and unbounded fan-in gates: And, Or,

TC? with Not and unbounded fan-in gates: And, Or, threshold]t] fot,all
ACP[g] with Not and unbounded fan-in gates: And, Or, mod[q],

ACC® = J,ACq].

The zero in the exponent means constant depth, in genefahi¢@ns(log® n)-depth circuits. Several
separations between these classes are known. Razd@qwved that T€ is strictly more powerful
than ACC. Using algebraic methods, Smolensii] proved that AC[q] # AC®[q], whereq,q are
powers of distinct primes. In other words, threshold gates cannot be simulated by constant-depth circuits
with unbounded fan-in Or gates, and mod[q] gates do not simulate each other.

The main quantum circuit classes corresponding to the classical classes afe @QNE, QTC,
and QACC. We use subscript ‘f’ to indicate circuits where we allow the fan-out gate (e.g.?(pNC
Classically, fan-out (copying the result of one gate into inputs of other gates) is taken for granted. Sur-
prisingly, in contrast to the classical case, some of the quantum circuit classes are the samel@jloore [
proved that parity is equivalent to fan-out, i.e. A€ QACP[2]. Green et al.10] proved that allowing
mod[q] gates with different moduli always leads to the same quantum classes, i.e "GAQEC[q]
for every integei > 2.

In this paper, we extend these results and show that even exact[t] gates (which output 1 if the input
is of Hamming weight, and O otherwise) can be approximated with polynomially small error by fan-
out and single qubit gates in constant depth. Our simulations have polynomially small error. Since
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exact[t] gates can simulate And, Or, threshold[t], and mod[q] gates, we conclude that the bounded-error
versions of the following classes are equal: B-@NEB-QAC? = B-QTCY. The exactt] gate can be
approximated in constant depth thanks to the parallelisation method. However, the simulation is not so
straightforward as for mod[q] inl0] and it works only with high probability.

We then introduce a so-called Or-reduction that conveitgout bitsx into logn output bitsy and
preserves the Or function, i.B.is nonzero if and only is. We show how to implement it exactly in
constant depth and use it to achieve exact computation of Or and exact[t] in log-star depth. (Circuits of
log-star depth are defined Bection5.) We also apply the Or-reduction to decrease the size of most of
our circuits.

Our results concerning the threshold[t] gate have several interesting implications. Siu2&j al. [
proved that sorting and integer arithmetic (addition and multiplication iotegers, and division with
remainder) are computable by constant-depth threshold circuits. It follows that all of them can be ap-
proximated in B-QNE.

The last contribution of our paper concerns the quantum Fourier Transform (QFT). Cleve and Wa-
trous p] published an elegant log-depth quantum circuit that approximates the QFT. By optimising their
methods to use the fan-out gate, we can approximate the QFT in constant depth with polynomially small
error. First, we develop a circuit for the QFT with respect to a power-of-2 modulus, and then, using
a technique of11], we show that the QFT with respect to arbitrary moduli can be approximated too.
Hence the QFT isin B-QN@Z The QFT has many applications, one of which is the phase estimation of
an unknown quantum state.

Shor’s original algorithm for factoringlP] uses the QFT and the modular exponentiation. Cleve
and Watrous] have shown that it can be adapted to use modular multiplicationiofegers. Since
we prove that both the QFT and arithmetic operations are in B-K}lpiﬁ]ynomial-time bounded-error
algorithms with oracle B—QNﬁ:can factorise numbers and compute discrete logarithms. We can make
the following conclusions: First, if B-QN?:can be simulated by a BPP machine, then factoring can
be done in polynomial time by bounded-error Turing machines. Second, since it unlikely that BQP
B-QNC,?, factoring and discrete logarithms are likely not the hardest things quantum computers can do.

2 Quantum circuits with unbounded fan-out

Quantum circuitsesemble classical reversible circuits. A quantum circuit is a sequence of quantum
gates ordered intlayers The gates are consecutively applied in accordance with the order of the layers.
Gates in one layer can be applied in parallel. The size of a gate is the number of affected qubits. The
depthof a circuit is the number of layers and thigeis the total size of all its gates. A circuit can solve
problems of a fixed input size, so we defifaniliesof circuits containing one circuit for every input
size. We consider onlyniform families, whose description can be generated by a log-space Turing
machine.

A quantum gateés a unitary operator applied to some subset of qubits. We usually use gates from
a fixeduniversal basifHadamard gate, rotation by an irrational multiplemfand the controlled-not
gate) that can approximate any quantum gate with good precisjoriThe qubits are divided into 2
groups:Input/outputqubits contain the description of the input at the beginning and they are measured
in the computational basis at the erdhcilla qubitsare initialised tg0) at the beginning and the circuits
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Figure 1: Equivalence of parity and fan-out

usually clean them at the end, so that the output qubits are in a pure state and the ancillas may be reused.
Since unitary evolution is reversible, every operation can be undone. Running the computation
backward is calledincomputatiorand is often used for cleaning ancilla qubits.

2.1 Definition of quantum gates

Quantum circuits cannot use a naive quantum fan-out gate mapping every quantum superposition

9)10)...10) — |9) ... |¢)

due to the no-cloning theoren23]. Such a gate is not linear, let alone unitary. Instead, our fan-out
gate copies only classical bits and the effect on superpositions is determined by linearity. It acts as a
controlled-not-. .. -not gate, i.e. it is an unbounded sequence of controlled-not gates sharing one control
gubit. Parity is a natural counterpart of fan-out. It is an unbounded sequence of controlled-not gates
sharing one target qubit.

Definition 2.1. The fan-out gate mapgi)...|yn)|X) — [Y1®X)...|Yn @ X)|X), Wherex@y = (X+Y)
mod 2. The parity gate maps,) ... [Xn)|y) — [X1) ... [Xn) YD (Xa D - -- B Xn)).

Example 2.2. As used in €], parity and fan-out can simulate each other in constant depth. The
1

1 -1
and succeeded by Hadamard gates on both qubits, it just turns around. Since parity is a sequence of
controlled-not gates, we can turn around all of them in parallel. The circuit is shokigume 1

Hadamard gate isl = % ( and it holds thaH? = 1. If a controlled-not gate is preceded

In this paper, we investigate the circuit complexity of, among others, these gates:

Definition 2.3. Letx =X, ... X, and let|x| denote the Hamming weight &f The following(n+ 1)-qubit
gates mapx)|y) — |x)|y® g(x)), whereg(x) = 1 iff

x| > 0: Or, IX| = n: And (Toffoli), x| > 5: majority,
Ix|  modqg=0: mod[q], |x| > t: threshold[t], IX| =t: exact[t],

A counting gate is any gate that maps0™) — |x)||x|) for m= [log(n+1)].
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Figure 2: Implementing an arbitrary controlled one qubit gate

2.2 Quantum circuit classes

Definition 2.4. QNGC;(d(n)) contains operators computed exactly (i.e. without error) by uniform fami-
lies of quantum circuits with fan-out of depth(@(n)), polynomial size, and over a fixed basis. GNE
QNG (log*n). R-QNCK contains operators approximated with one-sided, and B4QM two-sided,
polynomially small error.

Remark 2.5. The circuits below are over a fixed universal basis, unless explicitly mentioned otherwise.
Some of our circuits need arbitrary one-qubit gates to be exact. For simplicity, we sometimes include
several fixed-size gates (e.g. the binary Or gate and controlled one-qubit gates) in our set of basis gates.
This inclusion does not influence the asymptotic depth of our circuits, since ggeitlyit quantum gate
can be decomposed into a sequence of one-qubit and controlled-not gates of I¢sigih [2].

For every one-qubit gatd, there exist one-qubit gatés B,C and a rotatior® = R, (o) such that
the controlled gat&) is computed by the constant-depth circuit showfigure 2[2, Lemma 5.1]. If a
gubit controls more one-qubit gates, then we can still use this method in constant depth. We just replace
the controlled-not gate by the fan-out gate and the rotaffoae multiplied.

3 Parallelisation method

In this section, we describe a general parallelisation method for achieving very shallow circuits. We then
apply it to the rotation by Hamming weight and the rotation by value, and show how to compute them
in constant depth.

3.1 General method

The unbounded fan-out gate is universal for commuting gates in the following sense: Using fan-out,
gates can be applied to the same qubits at the same time whenever (1) they commute, (2) we know the
basis in which they all are diagonal, and (3) we can efficiently change into the basis. The method reduces
the depth, but may in general require the use of ancilla qubits.

Lemma 3.1.[13, Theorem 1.3.19For every set of pairwise commuting unitary gates, there exists an
orthogonal basis in which all the gates are diagonal.

Theorem 3.2.[17, 10] Let{U;}]' ; be pairwise commuting gates on k qubits. Gates.tontrolled
by qubit|x). Let T be a gate changing the basis according-tanma 3.1 There exists a quantum
circuit with fan-out computing U= [, U having depthmax!_, depti{U;) + 4 - depti(T) + 2, size
SiLisizeUi) + (2n+2) - size(T) + 2n, and usingn— 1)k ancillas.
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Figure 3: A serial circuit with interpolated basis changes
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Figure 4: A parallelised circuit performind = TT([JL, V)T = [, U

Proof. Consider a circuit that applies &) sequentially. PuT TT = | betweerlJ; andU;, 1. The circuit

is shown inFigure 3 TakeV; = TTU;T as new gates. They are diagonal in the computational basis,
hence they just impose some phase shifts. Multiple phase shifts on entangled states multiply, so can be
applied in parallel. We use fan-out gates twice: first to cread@tangled copies of target qubits and

then to destroy the entanglement. The final circuit with the desired parameters is sHagurand [

Example 3.3. As used in 1], it is simple to prove that mod[g§ QNC?. Each input qubit controls
one increment modulg on a counter initialised to 0. At the end, we obt&h modqg. The modular
increments commute and thus can be parallelised. $jiigcéxed, changing the basis and the increment
can both be done in constant depth.

3.2 Rotation by Hamming weight and value

In this paper, we often useratation by Hamming weight R¢|x|) and arotation by value R(¢x),
whereR; () is one-qubit rotation around tteaxis by anglex: R, (a) = |0)(0| + €%|1)(1|. They can
both be computed in constant depth.

Lemma 3.4. For every anglep, there exist constant-depth, linear-size quantum circuits with fan-out
computing R(¢|x|) and R (¢x) on input Xx= Xp_1 . .. X1Xo.

Proof. The left circuit inFigure 5shows how to compute the rotation by Hamming weight. Each input
qubit controlsR; (¢) on the target qubit, hence the total anglepig|. These controlled rotations are
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Figure 5: Rotation by Hamming weight and value

parallelised using the parallelisation method. The right circuit shows the rotation by value. It is similar
to the rotation by Hamming weight, only the input quixf) controlsR, ((pZJ), hence the total angle is
¢ Y7521 = x. 0

Remark 3.5. The construction uses rotatioRs(¢) for arbitrary € R. However, we are only allowed

to use a fixed set of one-qubit gates. It is easy to see that every rotation can be approximated with poly-
nomially small error byR, (6q) = (R, (8))Y, where sirg = % andq is a polynomially large integed].

Theseg rotations commute, so can be applied in parallel and the depth is preserved. The approximation
can be kept down to polynomially small error while increasing the size of the circuit only polynomially.

4 Constant-depth approximate circuits

4.1 Orgate

It is easy to see that the rotation by Hamming weight of a styinflengthm with anglegp = %” can be
used to distinguish the zero strigg= 0™ from strings with approximatel}}’ ones. We, however, want
to distinguish the zero string froml nonzero strings. It turns out that if we compue= O(nlogn)
rotations by Hamming weight of the inpyiwith angles distributed evenly around the circle, we obtain
a stringy that is either zero (fox=0"), or has expected Hamming weight(for x # 0"). By combining
these two results, we can approximate the Or gate and, with a minor modification, also the exact[t] gate
in constant depth.
Letw € Np and letg be an angle. Define a notation for the following one-qubit state:

1+€eow 1—¢gow
510 +—

ug) = (H-Re(ew)-H)|0) = 1) (4.1)

X

By Lemma 3.4|u,') can be computed in constant depth and linear size.
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Theorem 4.1.Or € R-QNC?. In particular, Or can be approximated with one-sided erﬁdn constant
depth and siz©(n?logn).

Proof. Let n denote the size of the input Let m= a-n, wherea will be chosen later. For all
ke {0,1,...,m— 1}, compute in parallelyx) = yu‘;b for anglegx = 2Zk. If |yx) is measured in the
computational basis, the expected value of the outcgnee{0,1} is

1 dodx |2

| e 21— coggux|)
: :

4 - 2

EM] = '

— ‘e—imm .

If all thesem qubits|y) are measured, the expected Hamming weight of ‘alis

E[IY[] = [Z)Yk] — T—Em 1cos<2rj]:k|x|> {

The qubits]y) are actually not measured, but their Hamming weightontrols another rotation on a

new ancilla qubi{z). So computez) = ]ug‘r/m> Let Z be the outcome after) is measured. Ify| =

thenZ = 0 with certainty. If||y| — 3| < m , then

if x| =0
if |x| #O.

NN

.2” 2
1+dmh
2

Pz=0]=

2 = 2 n

_ 1+ cos(2x]y|) . l—cosz—\/’% :O<1>
n

Assume thafx| # 0. We want to upper-bound the probability of the bad event|as not close td7.
Since 0< Y < 1, we can use Hoeffdinglsemma 4.2be|ow and obtaiP[ |[Y| - J| > em] < i Fix

a=lognande = % Now, P[|ly|— 5| > m] < &% = 2 = +. The probability that we observe the

nl — om/n —
incorrect resulZ = 0 is at most the sum of the probabllltles of the two bad events, i(@) CHence

1 if x| =0,
P[Zz=0] = )
[ ) { O(%) if x| #0.
The circuit has constant depth and sizem®) = O(n?logn). It is outlined inFigure 6 The figure is
slightly simplified: unimportant qubits and uncomputation of ancillas are omitted. O

Lemma 4.2 (Hoeffding[12]). If Y1,...,Ym are independent random variables bounded py & < by,
then, for alle > 0,

—2nPe?
> < —— m Yk
P[|S—E[F]| > em]| 2expZm o —a)? where S= 5, Yk

Remark 4.3. Since the outcomeof the circuit inFigure 6is a classical bit, we can save it in an ancilla
qubit by applying a controlled-not gate and cldghby uncomputation. It remains to prove that the
intermediate qubit$y) need not be measured, in order to be able to uncompute them. We show above
that the output qubit is a good approximation of the logical Or, proviged immediately measured.
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Figure 6: Constant depth circuit approximating Or

By the principle of deferred measurement, we can use controlled quantum operations and Iggasure

at the end. However, the output bit is close to a classical bit (the distance depends on the error of the
computation), thus it is only slightly entangled wity), and hence it does not matter whetir is
measured.

Definition 4.4. Let Iog(k)x denote thé&-timesiterated logarithmloglog. . .logx. Thelog-star function
log*x, is the maximum number of iteratiokssuch that loff’ x exists and is red.

Remark 4.5. If we require errorn—lc, we createc copies and compute the exact Or of them by a binary
tree of Or gates. The tree has depthdegO(1). In Section6.1, we show how to approximate Or in
constant depth and size((ﬂog“‘) n) for any constank. In Section6.2, we show how to compute Or

exactlyin log-star depth and linear size.
4.2 Exact[t] and threshold[t] gates

Theorem 4.6. exact[t] € R-QNCP.

Proof. We slightly modify the circuit for Or. As outlined iRigure 7 by adding the rotatioR, (—¢t) to

the rotation by Hamming weight in the first layer, we obtﬁﬂj'ﬂ instead oﬂu‘(:f‘y The second layer
stays the same. If the output qulzt is measured, then

1 if x| =t,
P[z=0] = .
[ ) { O(%) if [x| #t.
We obtain an approximation of the exact[t] gate with one-sided polynomially small error. O

Remark 4.7. Other gates are computed from the exact[t] gate by standard methods. For example,
threshold[t] can be computed as the parity of extatkactf + 1], ..., exacth]. The depth stays constant

and the size is just-times bigger, i.e. (()13Iogn), hence threshold[t§ B-QNC?. In Section6.3, we

show how to approximate exact[t], threshold[t], and counting in constant depth and(siloz0).

1The log-star of the estimated number of atoms in the universe is 5. Consequently, for the computational problems we
consider in this paper, the log-star is in practice at most 5.
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Figure 7: Rotation by Hamming weight with added rotation

4.3 Arithmetic operations

Using threshold gates, one can do arithmetic operations in constant depth. The following circuits take as
part of the input an ancilla register in sta@ and output the result of the computation in that register.

Theorem 4.8. The following functions are iB—QNCﬁ: addition and multiplication of n integers, divi-
sion of integers with remainder, and sorting of n integers.

Proof. By [20], these functions are computed by constant-déblynomial-size threshold circuits. A
threshold circuit is built of weighted threshold gates. It is simple to prove that the weighted threshold
gate (with polynomially large integer weights) also is in B-(}NOne only needs to rotate the phase of
the quantum state ibemma 3.4by integer multiples of the basic angle. O

In the following section, we require a reversible version of modular addition.

Definition 4.9. Let q be ann-bit integer andky, ..., xm € Zq. Thereversible additiorgate maps add:
|a)[X1) - - [Xm) — @) [Xa) - .. [Xm-1)|y), wherey = (31, %) moda.

Lemma 4.10. add" € B-QNC?.

Proof. By Theorem 4.8y = (3, %) modq can be approximated in constant depth and polynomial
size. The resultis, however, stored into ancilla qubits. Hence we have togragieich we may achieve
by first negating the contents yrby |y) — | —y), computing the surw =y + zi”jllxi in a fresh ancilla,

do a bitwise control-not ofv into x,, uncomputew, and finally re-negatg. We then swap the ancillas
ly) with the erased qubits ifxm). O

2The depths are really small, from 2 to 5.
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4.4 Quantum Fourier transform

The QFT is a very powerful tool used in several quantum algorithms, e.g. factoring of integers and
computing the discrete logarithrg).

Definition 4.11. The quantum Fourier transform with respect to modujperforms the Fourier trans-
form on the quantum amplitudes of the state, i.e. it maps

g-1 _
Fq : |X> — |llfx> = \j’q ZO(OXY|y>, wherew = ezﬂ'l/q, (4.2)
y:

forxe {0,1,...,q—1} and it behaves arbitrarily on the other states.

4.4.1 QFT with a power-of-2 modulus

Let q = 2". Coppersmith has shown iB][how to compute the QFT in quadratic depth, quadratic size,
and without ancillas. The depth has further been improved to linear [folklore]. Cleve and Watrous
have shown in] that the QFT can be approximated with erein depth Qlogn+loglogl) and

size (anogg). They also show that if only gates acting on a constant number of qubits are allowed (in
particular, the fan-out gate is not allowed), logarithmic depth is necessary. We show that the approximate
circuit for the QFT from b] can be compressed to constant depth, if we allow the fan-out gate.

Theorem 4.12.QFT € B-QNQ.

Proof. The operatoFx : |X) — |yx) can be computed by composing:

1. Fourier state construction (QFS): IX)|0)...|0) — X} yx)|0) ... |0)
2. Copying Fourier state (COPY): X) [ w)[0)...10)  — X)) ... |wx)
3. Uncomputing phase estimation (QFP)wy) ... [ys)[X)  — |yx) ... |wx)|0)
4. Uncomputing COPY: [ww) ... |yx)|0)  — |yx)|0) ... |0)
The following lemmas show that each of these individual operators is in B?QNC O

Lemma 4.13. QFSe QNC?.

Proof. QFS mapsx)|0) — |x)|yx). Define a shortcuip,) = 0+ g simple to prove thatyy) =

2
|px/21> |px/22> e |px/2”>-

) LS oy — LS Qe gy,
Yx) = 0™y) = o "Yn—k
VT 2 vz 5%

1 2L D10y ey o
= QY (@ )°lb) = R ——7=—"" = QP2
v k=1 bZO k=1 V2 k=1
Then qubits|p, ) can be computed fromin parallel as follows]p, ) = R, (Zz—fx) |0>\+[2‘1> is computed
by the rotation by valuelemma 3.4 in constant depth and linear size. O
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Figure 8: Measurement b, ) in a random basis

Lemma 4.14. COPY< B-QNC?.

Proof. COPY mapsyx)|0)...|0) — |yk) ... |yx). Take the reversible addition gate modufbor2apping
(addk)ly)[%) = Iy)|(x-+y) mod 2). Itis simple to prove that add | yg)[ys) = [y | ¥&)-

121 1
lwy) ly) = 7 ;ow'”kxum —add ! 5;w'y+kxll>lk—l>

1 | | 1 |
= g Im = g 0PI = vy

Hence add® |wo)|w) = |w)|y). The statdyp) = HE"|0") is easy to prepare in constant depth. Fur-
thermore,(addn) | wo) ... [wo) [wx) = |ws) ... k)| wx), because the addition @h— 1 numbers into

one register is equivalent tm— 1 consecutive additions of one number. Each such a reversible addi-
tion copies|yy) into 1 register. Note that the afidgate performs all these additions in parallel. By
Lemma 4.10the reversible addition gate is in B-QRC O

Lemma 4.15. QFP € B-QNC.

Proof. QFP mapsyx) ...|wx)[0) — |yx)...|yx)|X). By Cleve and Watrous5| Section 3.3], we can
computex with probability at least 1 & from O(log ?) copies of|y) in depth Qlogn+loglog) and
size qmogg). Usee = ﬁ It is simple to convert their circuit into constant depth, provided we
have fan-out. The details are sketched below.

The input consists ah = O(log ) copies of|yx) = |py/21)[Px/22) - - - |Px/2n). Measure eaclp, )
2 times in the basig|po.01),|p0.11)} and 3 times in the Hadamard basf$po.o0), |po.10)}- The state
|y y26) = %(!0) + e2m(0%-1-%1%0)) |ies on the middle circle of the Bloch sphere; it is showiFigure 8
If |px/2¢) is in the white region, then the measurement in the first basis tells whethet 0 or 1 with
probability at Ieasﬁ. If [py/2x) is in the shaded region, then the measurement in the Hadamard basis
tells whethery 1 = x¢_» or =x¢_» (denoted by P, N) with probability at Iea%l

For eachk, perform the majority vote and obtain the correct answes {0,1,P,N} with error
probability at mostzim = £. The probability of having any error is at mastimes bigger, i.e. at most
Computex,_1...X1% from z,_1...217 in constant depth. The bk is computed as follows:
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1. If zz—1...241 € {P,N} andz € {0,1}, compute the parity of the number of N's and add ito
(assuming_1 = 0), otherwise return 0.
2. Check and compute all prefixes parallel and take the logical Or of the results.

All the gates used (fan-out, parity, And, Or, majority) are in B-GNC O

4.4.2 QFT with an arbitrary modulus

Letqg# 2". Cleve and Watrous have shown ) fhat the QFT can be approximated with erean depth

O((Iog logq)(log Iog%)) and size polylogq+ Iog%). We show that their circuit can also be compressed
into constant depth, if we use the fan-out gate. The relation between quantum Fourier transforms with
different moduli was described id]].

Remark 4.16. We actually implement a slightly more general operation, wdpiesmot a fixed constant,

but ann-bit input number. This generalised QFT map$|x) — |q)|yx). The registeiq) is implicitly
included in all operations. We will henceforth omit it and the generalised operations are denoted simply
by QFTq, QFS;, COPY, and QFR.

Theorem 4.17.QFT, € B-QNC.

Proof. Let \dummyﬁ7x> denote an unspecified quantum state depending on two paramgeterghe
operatorf : [x) — |yy)|dummy, o) can be computed by composing:

1 QFS; X — )|y [dummyg,) -
2. copygtt: — X [ys) [dummyg ) (i ]dummxm)

3. Uncomputing QFS — %) (| yx) [dummy, o>)

4. Uncomputing QFf (Wx)]dumm)ﬁp))

5. Uncomputing COPY: — [y |dummy, o),

where empty registers are omitted for clarity. The sfdtenmy, ;) is not entangled witfx) and hence
it can be traced out. We obtain the quantum Fourier transktrithe following lemmas show that each
of these individual operators is in B-QEIC O

Lemma 4.18. QFS, € B-QNC?.

Proof. QF§; maps|x)|0) — [X)|ysx)[dummy, ,) for some “garbage” statedlummy, ,). We will show that
QFS, is well approximated by a QFS with a power-of-2 modulus of the magnitfideet n = [logq].
TakeN = 3nand extend< by leading zeroes inthl bits. UsingLemma 4.13perform QFSv and obtain

the statex) —1- = zy 0 e Y|y,
Setu= |2N/q] and apply integer division by to the second register, i.e. mgp — |y1)|y2), where

y1 = |y/u| € {0,1,...,9} andy, =y modu. This can be done reversibly in constant depth by a few
applications ofTheorem 4.81sing the method frohemma 4.10 The quantum state can be written as

1 oN_ 1 9 1u-
NG Z)” yolye) = 3 Z SOy o) )
y1=0y>=0
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where|w) = \/TN Sy s e X(aut?) |a)|z) andv=2N modu=2Y —qu=2" modq < g. The sum has

been rearranged usiyg= y1u+ Yo. ) = /2—°N = 0O(27") is exponentially small and so it can
be neglected. Decompose the quantum state into the tensor product

1 4t
\/qyl

(q u)xy1 q u-1 271'ixy2
e @y g oN D e 2)
y2=0

Now, uis exponentially close t%‘, becausefu = 22,5" =1-0(27). Since%’1 = O(2"), the replace-
ment of% by 1 in the exponent causes only exponentially small erf@ 0. Hence the quantum state
is exponentially close to

2mi

% Z)eﬂyry f ;ezw — |ys|dummy ) -

The “garbage” statéedummy, ) arises as a byproduct of the higher precisionb@ arithmetic. We
clean it up later by uncomputing QF&fter copying|ysy); see the proof offheorem 4.17 It actually
gets replaced bydummy, ;) = \% y4"2|2), which does not depend orand it thus causes no harm. We
have approximated QRS constant depth. O

Lemma 4.19. COPY]' € B-QNC,.

Proof. COPYg' maps|y4)|0)...[|0) — ]wx>(]wx>|dumm3ﬁo)) 2(m-1) The proof is similar to the proof of
Lemma 4.14 First, preparen— 1 statesyp)|dummy, ) by applying QF§ to |0)[0) (Lemma 4.18.
Second, use the inverse of the reversible addition moduio map (adc[]”)*l D lwo) - vo) |l wk) —
(W) - - [ [ys) (Lemma 4.10. [

Lemma 4.20. QFP, € B-QNC?.

Proof. QFRy mapsiyy) ... |wx)|0) — |yy) ... |yx)|X). We use an idea similar to the prooflafmma 4.18
Let n = [logq] andN = 3n. Extend|yy) by leading zeroes tdl bits and appIyFZTN to them (Theo-
rem 4.13. We obtain many copies of the state

1 2N_1 qi —2mi 2nmi
Fa(0)ys) = NeT Zj ( e ZWXV) 2) .
L the

The exponent can be rewritten t@i2g — ) - y. Intuitively, if [z— 2NX\ <z gq, then|g — 5| < g5
absolute value of the angle in the exponent is at dsr everyy < {0, 1 ..,q—1}, and the amplitudes
sum up constructively. IZis not close to Eg, then the amplitudes interfere destructively. The quantum
state has most of its amplitude on the gasd So we compute reversibly by division with remainder an
estimatex' = [ 5 + 1|. A detailed analyzis shows thBfx = x| > 3 + & for some constand [5, 11].
Here we do not present the details, because our goal is the compressmn of the circuB]fiota [
constant depth.
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We transform alim = O(log?) input quantum statey) into m independent estimatéx’). We
then estimate all bits of one-by-one from thesa estimates by majority gates. Each bibos wrong
with probability at most 2m = 2-109¢ — £. The probability of having an error among théits of x is
thus at most. Finally, save the estimation afin the target register and uncompute the divisions and
the quantum Fourier transforms. With probability at leastel the mapping QFfhas been performed.

_ 1
Usee = 5oin- 0

4.5 Quantum phase estimation

The method of computing QR can be also used for phase estimation.

Theorem 4.21.Given agate : y)|¢) — |y)R, (Z2'y) |¢) for basis statefy), where x Zn is unknown,
we can determine x with probability at leakt- € in constant depth, siz@(nlogg), and using the .S
gateO(nlog?) times.

Proof. Obtain an estimate of by applying the QFP to Oogg) copies of the quantum statey) =

|Px/21)|Pxs22) - - - [Pxyn) - EaACh|pyo) can be computed by one applicationSfto \2”*")%, because
) =R () O =Re (20 0. N

5 Exact circuits of small depth

In the previous section, we have shown hovapproximatethe exact[t] gate in constant depth. In this
section, we show how toompute it exactlyn log-star depth. The circuits in this section use arbitrary
one-qubit gates instead of a fixed basis, otherwise they would not be exact.

Lemma 5.1. The function Or on n qubits can be reducexhctlyto Or on m= [log(n+ 1)] qubits in
constant depth and siz&(nlogn).
Proof. We use a technique similar to the proofidfeorem 4.1 Recall the quantum stalg ) defined
by Equation (4.1pn page87. Fork € {1,2,...,m}, compute in parallely) = ]u[f,‘k') for anglegy = 22—’{
Let|y) =|yiy2...Ym)-

e If x| =0, then(y|0™) =1, becauséyk) = |0) for eachk.

e If |x| # 0, then(y|0™) = 0, because at least one quiitis one with certainty. Take the unique
decomposition ofx| into a product of a power of 2 and an odd numbpd: = 22(2b+ 1) for
a,b € Ng. Then

Aoy — 1— @il 1_ dz12(20+1) S 1-dr@®)  q_gr .
Yat+1) = > = > = 5 =— =1

It follows that x is non-zero if and only ify is. Hence the original problem is exactly reduced to a
problem of logarithmic size. O
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Theorem 5.2. exact[t] € QAC?.

Proof. Using the methods fromheorem 4.@andLemma 5.1 exact[t] can also be reduced to Or of log-
arithmic size. The reduction has constant depth and s{péo@n). Hence exact[t] is QNﬁ;reducibIe
to Or, or simply exact[tt QAC?, because QARincludes both QNEand the Or gate. O

Theorem 5.3. exact[t] € QNC;(log* n), i.e. exact[t] can be computezkactlyin log-star depth and size
O(nlogn).

Proof. Apply the reduction used ihemma 5.1in total (log* n)-times, until the input size is at most 2.
Compute and save the outcome, and clean ancillas by uncomputation. The circuit zgnD [

6 Circuits of small size

In this section, we decrease the size of some circuits. We allow the use of arbitrary one-qubit gates
instead of a fixed basis.

6.1 Constant depth approximation of Or

In this section, we apply the reduction frdmmma 5.1repeatedly to shrink the circuit for Or. We first
reduce the size of the circuit to(®ogn). We then develop a recurrent method that reduces the size
even further. Let us define a useful notation.

Definition 6.1. Let X = X1X2...Xy. By Or-reduction n— m with error € we mean a quantum circuit
mapping|x)|0™) — |x)|¢@) such that, ifix| = 0, then|e) = |0™) and, if |x| # O, then(0™|¢p) < €.

The Or-reduction preserves the logical Or of qubits, |xe= 0 iff |¢| = 0 with high probability.
Theorem 4.Jrovides an Or-reduction— 1 with error%, constant depth, and sirélogn. Lemma 5.1
provides an Or-reduction— logn with error 0, constant depth, and siziagn.

Lemma 6.2. There is an Or-reduction r- 1 with error % constant depth, and sizéagn.

Proof. Divide the input into% blocks of size,/nlogn. First, reduce each block byemma 5.1

to %Iogn+ loglogn = O(logn) qubits in constant depth and sizénlog?n. In total, we obtain,/n
new qubits in sizenlogn. Second, compute the logical Or Bheorem 4.1in constant depth, size
ﬁzlogﬁ = O(nlogn), and error\%. To amplify the error to%, repeat the computation twice and
return 1 if any of them returns 1 (the error is one-sided). The circuit size is doubled. O

The circuit size can be reduced to{r@og(d) n) for any constant numbet of iterations of the log-
arithm. The trick is to divide input qubits into small blocks and perform the reduction step on each of
them. The number of variables is reduced by a small factor and we can thus afford to apply a circuit of
a slightly bigger size. It we repeat this reduction sigpmes, we obtain the desired circuit.
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Theorem 6.3. There exist constantg @, such that for every & N, there is an Or-reduction r» 1 with
error 1, depth gd, and size gdnlog@ n

Proof. By induction ond: we have already verified the cade= 1 in Lemma 6.2 For the induction
step: Dividen input qubits inton/log®~Y n blocks of log®~) n qubits. Using_emma 5.1 reduce each
block to Iog(d n qubits in constant depth and sizglog® Y n-log@ n. Total size isconlog@ n. We
obtaln Iog n = o(n) new qubits. Using the induction hypothesis, compute their logical Or in

depthcl(d 1) and sizecy(d — 1) (I H-log@n ) log'®~Y o(n) < ca(d — 1)nlog™@ n. Together, it
takes deptitid and sizec,dnlog@ n

The only approximate step is the applicationLeimnma 6.2for d = 1. It is applied on_- Iogn n-2-log@n
variables, hence the error iglogn/n). It can be amplified t<% by running the computation twice.[

6.2 Log-star depth computation of Or

Our best constant-depth circuit for Or is describedibgorem 6.31t is approximate and it has slightly
super-linear size. In this section, we show that we can achievexactcircuit of linear size if we
relax the restriction of constant depth. We considén Theorem 6.3 slowly growing function oh
instead of a constant. Now we can use an Or-reduction bettel #grama 6.2 Theorem 5.3rovides
an Or-reductiom — 1 with error 0, log-star depth, and siaéogn.

Lemma 6.4. There exist constantg &, such that for every & N, there is an Or-reduction A~ 1 with
error 0, depth g¢d + log* n, and size sdnlog@

Proof. The same as ofheorem 6.3but use the Or-reduction froffheorem 5.3nstead ofLemma 6.2
in the last layer (fod = 1). The size stays roughly the same, the circuit becomes exact, and the depth is
increased by an additional term of lag O

Theorem 6.5. There is an Or-reduction R+ 1 with error 0, log-star depth, and linear size.

Proof. Divide the input intologi*n blocks of size logn. Compute the logical Or of each block by a
balanced binary tree of depth Idgg™ n) < log* n and inlinear size. Using_.emma 6.4with d = log*n,
compute the logical Or of;% new qubits in log-star depth and size(l@g*n- mi*n-log('og* " n) =
Oo(n). O
6.3 Approximation of counting and threshold]t]

In this section, we use the QFT for the parallelisation of increments. This allows us to approximate the
Hamming weight of the input in smaller sizg®@ogn).

Definition 6.6. The increment gate maps IRcrx) — |(x+1) mod 2V).
Lemma 6.7. The increment gate is diagonal in the Fourier basis and its diagonal form@Na®.
Proof. Let o = €™/2" and let|x) be any computational basis state. It is simple to prove the following

two equations:
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1. Incry = F,DnFon for diagonalDn = 32" @Y]y) (y.

23”:61 @™y) gt 232/”:61 w(x+1)y|Y>

v van

2.D=R (1) ®R,(1/2)® - @R, (m/2"1).

F'DF|x) =F'D =|(x+1) mod?2) .

n n
Dix) = ox)= ®w2nikxnfk‘xnfk> = ®(ezm/2k)xnfk|xnfk> =
k=1 k=1
n
- QR (27r/2k) X k) = (R () @+~ @R, (/2" 1)) ).
k=1
We conclude that Ince FTDF, and thaD is a tensor product of one-qubit operators. O

Remark 6.8. The addition of a fixed integds is as hard as the increment. Bgmma 6.7 Incr® =
FTDPF and(R, (¢))° = R, (¢b), hence the diagonal version of the additiorbd$ also in QNG.

Theorem 6.9. Counting can be approximated in constant depth and®izgogn).

Proof. Compute the Hamming weight of the input. Each input qubit controls one increment on an
m-qubit counter initialised to 0, whema = [log(n+1)]. The increments Ingrare parallelisedTheo-
rem 3.2andLemma 6.7, so we apply the quantum Fourier transfdfgn twice (Theorem 4.1pand the
n constant-depth controlledy, gates in parallel. The size is(@oly(m) +nm) = O(nlogn).
O

Remark 6.10. threshold][t] is equal to the most significant qubit of the counter if we align it to a power
of 2 by adding a fixed integerf™2-t. exact[t] can be computed by comparing the counter with

7 Concluding remarks

7.1 Comparison with randomised circuits

Let us compare our results for quantum circuits with similar results for classical randomised circuits.
We consider randomised circuits with bounded fan-in of Or and And gates, and unbounded fan-out and
parity (similar to the quantum model). Classical lower bounds are folklore and we attach the proofs for
the convenience of the readerAppendix A

Gate Randomised| Quantum
Or and threshold[t] exactly ©(logn) O(log*n)
mod[q] exactly O(logn) 0(1)
Or with errori O(loglogn) | ©(1)
threshold[t] with errorlﬁ Q(loglogn) | ©(1)
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7.2 Relations of quantum circuit classes

We have shown that B-QNC= B-QAC? = B-QACC® = B-QTC (Theorem 4.% If we allow arbitrary
one-qubit gates, then also Q¥€ QAC? C QNG (log*n) (Theorem 5.2and Theorem 5.3 Several
open problems of][0] have thus been solved. Only little is known about classes that do not include the
fan-out gate. For example, we do not know whethef TOQTC?, we only know that T€ C QTC?.
It is simple to prove that parity is in TC Take the logical Or of exact[1], exact[3], exact[5], ..., and
compute exack] from thresholdk] and thresholdf+ 1]. However, this method needs fan-out to copy
the input bits and hence it is not in Q¥C

Fang et al. proved?] a lower bound for fan-out. In particular, they showed that logarithmic depth
is needed to approximate parity using only a constant number of ancillas. Unfortunately, their method
breaks down with more than a linear number of ancillas and it cannot be extended to other unbounded
fan-in gates such as majority or threshold]t].

7.3 Upper bounds for BQNCY

Shor’s original factoring algorithml] uses modular exponentiation and the quantum Fourier transform
modulo 2' followed by a polynomial-time deterministic algorithm. The modular exponentiatiaan
be replaced by multiplication of some subset of numbeeg, a*, ...,a2" " [5]. Then numbersa can
be quickly precomputed classically.
Since both multiplication of numbers Theorem 4.8and the QFT Theorem 4.1pare in B—QNC?,
there is a polynomial-time bounded-error classical algorithm with oracle B%Q‘alﬁoring numbers,
i.e. factoringe RPB-QNCY). If B-QNC? C BPP? then factoringc RPBPH C BPPBPH = BPP. Dis-
crete logarithms can be computed in a similar way using modular exponentiation and the quantum
Fourier transform modulo generql[19]. Since QFT, € B-QNC? (Theorem 4.1y, we conclude that
also discrete-log: RP[B-QNC?].

7.4 Open problems
We propose the following open problems on computational aspects of multi-qubit gates:
i. Isthere a constant-depth exact circuit for Or?
ii. Isthere a constant-depth linear-size circuit for Or?
iii. Are there exact circuits with a fixed basis?

iv. Can we simulate unbounded fan-out in constant depth using unbounded fan-in gates, e.g. thresh-
old[t] or exact[t]?

3In this context, B-QNQ denotes the set of languages decided with bounded error by constant-depth quantum circuits with
fan-out.

THEORY OF COMPUTING, Volume 1 (2005), pp. 81-103 99



PETERH@YER, ROBERT SPALEK

A Lower bounds on classical circuits

Using the polynomial method]J, we prove several lower bounds on the depths of deterministic circuits.
We consider circuits with fan-in of Or and And gates at most 2, and unbounded fan-out and parity, the
same as in the quantum model.

Basically, the value of each bit computed by a circuit can be computed by a multi-linear polynomial
(over the fieldZy) in the input bits. We are interested in the degree of such a polynomial; by proving a
lower bound on the degree, we also lower-bound the depth of the circuit. It is simple to prove that the
polynomial computing a Boolean function is unique.

Each input bit € {0, 1} is computed by the polynomiaj of degree 1. The Not gate computes the
polynomial 1- p(x), wherep(x) is the polynomial computing its argument, and the degree is unchanged.
The And gate computes the polynomal(x) - p2(x) and the two degrees are summed. The parity gate
computes the polynomidlps(X) +--- + pk(X)) mod 2 of degree equal to the maximum degree among
the arguments.

Lemma A.1. The output of a circuit of depth d has degree at ntdst

Proof. By induction: by adding a new layer, we can at most double the degree when using the And
gate. O

And of n bits is computed by a (unique) polynomialx,...X, of degreen. Hence every circuit
computing And has depth at least lndt is simple to prove by contradiction that also Or, threshold][t],
and exact[t] have full degre® Smolensky has proved a much stronger redl}, [which implies that
also the degree of mod[q] far> 2 isn.

Randomised circuits have access to random bits and may produce the result with a small error. Some
functions are computed in smaller depth in this model.

Lemma A.2. Or can be computed with one-sided erl%)by a randomised circuit of depth 2. The error
can be decreased %)in additional deptHoglogn.

Proof. Taken random bits and output the parikgri @ Xoro @ -+ © Xarn. If [x| = 0, then the circuit
always outputs 0. Ifx| > 0, then the probability that the parity is odd is equal%tolf we perform

the computatior{logn)-times using independent random bits, we decrease the probability of error to
(%)'09” = % This can be done in additional depth logfolgy a balanced binary tree of Or gates. [

By Yao's principle R4], if we have a randomised circuit with error less thar,2hen there exists
an assignment of random bits such that the result is always correct. That is there exists a deterministic
circuit of the same shape. Hence also randomised circuits computing the logical Or with exponentially
small error have depth at least lng

Lemma A.3. Every circuit computing Or with erro;li has depth at leadbglogn.

Proof. Assume the converse: there exists a circuit of depthloglogn with error%. By computing

the logical Or independentl%-times, we can reduce the error(tﬁ))ﬁ = 27", This can be done in
additional depth Io% = logn—loglogn. The total depth of this circuit is lag— loglogn+d < logn.
However, by Yao’s principle, the depth has to be at leastlog O
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