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Quantum Fan-out is Powerful
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Abstract: We demonstrate that the unbounded fan-out gate is very powerful. Constant-
depth polynomial-size quantum circuits with bounded fan-in and unbounded fan-out over a
fixed basis (denoted by QNC0

f ) can approximate with polynomially small error the follow-
ing gates: parity, mod[q], And, Or, majority, threshold[t], exact[t], and Counting. Classi-
cally, we need logarithmic depth even if we can use unbounded fan-in gates. If we allow
arbitrary one-qubit gates instead of a fixed basis, then these circuits can also be made exact
in log-star depth. Sorting, arithmetic operations, phase estimation, and the quantum Fourier
transform with arbitrary moduli can also be approximated in constant depth.
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1 Introduction

In this paper, we study the power of shallow quantum circuits. Long quantum computations encounter
various problems with decoherence, hence we want to speed them up as much as possible. We can
exploit the following two types of parallelism:

1. Gates on different qubits can be applied at the same time.
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http://theoryofcomputing.org/copyright.html


PETER HØYER, ROBERT ŠPALEK

2. Commutinggates can be applied to thesamequbits at the same time.

The first approach is just the classical parallel computation. The second approach only makes sense
when the gates applied on the same qubits commute, i.e.AB= BA, otherwise the outcome would be am-
biguous. Being able to do this is a strong assumption, however there are models of quantum computers,
in which it is physically feasible: ion-trap computers [4] and bulk-spin resonance (NMR) [9]. The basic
idea is that if two quantum gates commute, so do their Hamiltonians and therefore we can apply their
joint operation by performing both evolutions at the same time. This type of research started after the
Mølmer–Sørensen paper [15]. Recently, a Hamiltonian implementing the fan-out gate (which is crucial
for all our simulations) has been proposed by Fenner [8].

In our paper, we investigate how much the power of quantum computation would increase if we
allow such commuting gates. The computation in the stronger model must be efficient, therefore we
do not require the ability to performanyset of commuting gates. This is in accordance with standard
quantum computation, where we also allow only some gates. We choose a representative, the so-called
unbounded fan-out gate, which is a sequence of controlled-not gates sharing one control qubit. We
call it fan-out, because if all target qubits are zero, then the gate copies theclassicalsource bit inton
copies. We show that fan-out is in some sense universal for all sets of commuting gates. In particular,
the joint operation of any set of commuting gates (that can be easily diagonalised) can be simulated by
a constant-depth quantum circuit using just one-qubit and fan-out gates. To achieve this, we generalise
the parallelisation method of [17, 10] and adapt it to the constant-depth setting.

We state our results in terms of circuit complexity classes. Classically, the main classes computed
by constant-depth, polynomial-size circuits are:

NC0 with Not and bounded fan-in gates: And, Or,
AC0 with Not and unbounded fan-in gates: And, Or,
TC0 with Not and unbounded fan-in gates: And, Or, threshold[t] for allt,
AC0[q] with Not and unbounded fan-in gates: And, Or, mod[q],
ACC0 =

⋃
qAC0[q].

The zero in the exponent means constant depth, in general NCk means(logk n)-depth circuits. Several
separations between these classes are known. Razborov [18] proved that TC0 is strictly more powerful
than ACC0. Using algebraic methods, Smolensky [21] proved that AC0[q] 6= AC0[q′], whereq,q′ are
powers of distinct primes. In other words, threshold gates cannot be simulated by constant-depth circuits
with unbounded fan-in Or gates, and mod[q] gates do not simulate each other.

The main quantum circuit classes corresponding to the classical classes are QNC0, QAC0, QTC0,
and QACC0. We use subscript ‘f’ to indicate circuits where we allow the fan-out gate (e.g. QNC0

f ).
Classically, fan-out (copying the result of one gate into inputs of other gates) is taken for granted. Sur-
prisingly, in contrast to the classical case, some of the quantum circuit classes are the same. Moore [16]
proved that parity is equivalent to fan-out, i.e. QAC0

f = QAC0[2]. Green et al. [10] proved that allowing
mod[q] gates with different moduli always leads to the same quantum classes, i.e. QACC0 = QAC0[q]
for every integerq≥ 2.

In this paper, we extend these results and show that even exact[t] gates (which output 1 if the input
is of Hamming weightt, and 0 otherwise) can be approximated with polynomially small error by fan-
out and single qubit gates in constant depth. Our simulations have polynomially small error. Since
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exact[t] gates can simulate And, Or, threshold[t], and mod[q] gates, we conclude that the bounded-error
versions of the following classes are equal: B-QNC0

f = B-QAC0
f = B-QTC0

f . The exact[t] gate can be
approximated in constant depth thanks to the parallelisation method. However, the simulation is not so
straightforward as for mod[q] in [10] and it works only with high probability.

We then introduce a so-called Or-reduction that convertsn input bitsx into logn output bitsy and
preserves the Or function, i.e.x is nonzero if and onlyy is. We show how to implement it exactly in
constant depth and use it to achieve exact computation of Or and exact[t] in log-star depth. (Circuits of
log-star depth are defined inSection5.) We also apply the Or-reduction to decrease the size of most of
our circuits.

Our results concerning the threshold[t] gate have several interesting implications. Siu et al. [20]
proved that sorting and integer arithmetic (addition and multiplication ofn integers, and division with
remainder) are computable by constant-depth threshold circuits. It follows that all of them can be ap-
proximated in B-QNC0f .

The last contribution of our paper concerns the quantum Fourier Transform (QFT). Cleve and Wa-
trous [5] published an elegant log-depth quantum circuit that approximates the QFT. By optimising their
methods to use the fan-out gate, we can approximate the QFT in constant depth with polynomially small
error. First, we develop a circuit for the QFT with respect to a power-of-2 modulus, and then, using
a technique of [11], we show that the QFT with respect to arbitrary moduli can be approximated too.
Hence the QFT is in B-QNC0f . The QFT has many applications, one of which is the phase estimation of
an unknown quantum state.

Shor’s original algorithm for factoring [19] uses the QFT and the modular exponentiation. Cleve
and Watrous [5] have shown that it can be adapted to use modular multiplication ofn integers. Since
we prove that both the QFT and arithmetic operations are in B-QNC0

f , polynomial-time bounded-error
algorithms with oracle B-QNC0f can factorise numbers and compute discrete logarithms. We can make
the following conclusions: First, if B-QNC0f can be simulated by a BPP machine, then factoring can
be done in polynomial time by bounded-error Turing machines. Second, since it unlikely that BQP=
B-QNC0

f , factoring and discrete logarithms are likely not the hardest things quantum computers can do.

2 Quantum circuits with unbounded fan-out

Quantum circuitsresemble classical reversible circuits. A quantum circuit is a sequence of quantum
gates ordered intolayers. The gates are consecutively applied in accordance with the order of the layers.
Gates in one layer can be applied in parallel. The size of a gate is the number of affected qubits. The
depthof a circuit is the number of layers and thesizeis the total size of all its gates. A circuit can solve
problems of a fixed input size, so we definefamiliesof circuits containing one circuit for every input
size. We consider onlyuniform families, whose description can be generated by a log-space Turing
machine.

A quantum gateis a unitary operator applied to some subset of qubits. We usually use gates from
a fixeduniversal basis(Hadamard gate, rotation by an irrational multiple ofπ, and the controlled-not
gate) that can approximate any quantum gate with good precision [1]. The qubits are divided into 2
groups:Input/outputqubits contain the description of the input at the beginning and they are measured
in the computational basis at the end.Ancilla qubitsare initialised to|0〉 at the beginning and the circuits

THEORY OFCOMPUTING, Volume 1 (2005), pp. 81–103 83



PETER HØYER, ROBERT ŠPALEK
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Figure 1: Equivalence of parity and fan-out

usually clean them at the end, so that the output qubits are in a pure state and the ancillas may be reused.
Since unitary evolution is reversible, every operation can be undone. Running the computation

backward is calleduncomputationand is often used for cleaning ancilla qubits.

2.1 Definition of quantum gates

Quantum circuits cannot use a naive quantum fan-out gate mapping every quantum superposition

|φ〉|0〉 . . . |0〉 → |φ〉 . . . |φ〉

due to the no-cloning theorem [23]. Such a gate is not linear, let alone unitary. Instead, our fan-out
gate copies only classical bits and the effect on superpositions is determined by linearity. It acts as a
controlled-not-. . . -not gate, i.e. it is an unbounded sequence of controlled-not gates sharing one control
qubit. Parity is a natural counterpart of fan-out. It is an unbounded sequence of controlled-not gates
sharing one target qubit.

Definition 2.1. The fan-out gate maps|y1〉 . . . |yn〉|x〉 → |y1⊕ x〉 . . . |yn⊕ x〉|x〉, wherex⊕ y = (x+ y)
mod 2. The parity gate maps|x1〉 . . . |xn〉|y〉 → |x1〉 . . . |xn〉|y⊕ (x1⊕·· ·⊕xn)〉.

Example 2.2. As used in [16], parity and fan-out can simulate each other in constant depth. The

Hadamard gate isH = 1√
2

(
1 1
1 −1

)
and it holds thatH2 = I . If a controlled-not gate is preceded

and succeeded by Hadamard gates on both qubits, it just turns around. Since parity is a sequence of
controlled-not gates, we can turn around all of them in parallel. The circuit is shown inFigure 1.

In this paper, we investigate the circuit complexity of, among others, these gates:

Definition 2.3. Let x= x1 . . .xn and let|x| denote the Hamming weight ofx. The following(n+1)-qubit
gates map|x〉|y〉 → |x〉|y⊕g(x)〉, whereg(x) = 1 iff

|x|> 0: Or, |x|= n: And (Toffoli), |x| ≥ n
2: majority,

|x| modq = 0: mod[q], |x| ≥ t: threshold[t], |x|= t: exact[t],

A counting gate is any gate that maps|x〉|0m〉 → |x〉| |x| 〉 for m= dlog(n+1)e.
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Figure 2: Implementing an arbitrary controlled one qubit gate

2.2 Quantum circuit classes

Definition 2.4. QNCf(d(n)) contains operators computed exactly (i.e. without error) by uniform fami-
lies of quantum circuits with fan-out of depth O(d(n)), polynomial size, and over a fixed basis. QNCk

f =
QNCf(logk n). R-QNCk

f contains operators approximated with one-sided, and B-QNCk
f with two-sided,

polynomially small error.

Remark 2.5. The circuits below are over a fixed universal basis, unless explicitly mentioned otherwise.
Some of our circuits need arbitrary one-qubit gates to be exact. For simplicity, we sometimes include
several fixed-size gates (e.g. the binary Or gate and controlled one-qubit gates) in our set of basis gates.
This inclusion does not influence the asymptotic depth of our circuits, since everys-qubit quantum gate
can be decomposed into a sequence of one-qubit and controlled-not gates of length O

(
s34s

)
[2].

For every one-qubit gateU , there exist one-qubit gatesA,B,C and a rotationP = Rz(α) such that
the controlled gateU is computed by the constant-depth circuit shown inFigure 2[2, Lemma 5.1]. If a
qubit controls more one-qubit gates, then we can still use this method in constant depth. We just replace
the controlled-not gate by the fan-out gate and the rotationsP are multiplied.

3 Parallelisation method

In this section, we describe a general parallelisation method for achieving very shallow circuits. We then
apply it to the rotation by Hamming weight and the rotation by value, and show how to compute them
in constant depth.

3.1 General method

The unbounded fan-out gate is universal for commuting gates in the following sense: Using fan-out,
gates can be applied to the same qubits at the same time whenever (1) they commute, (2) we know the
basis in which they all are diagonal, and (3) we can efficiently change into the basis. The method reduces
the depth, but may in general require the use of ancilla qubits.

Lemma 3.1. [13, Theorem 1.3.19]For every set of pairwise commuting unitary gates, there exists an
orthogonal basis in which all the gates are diagonal.

Theorem 3.2. [17, 10] Let {Ui}n
i=1 be pairwise commuting gates on k qubits. Gate Ui is controlled

by qubit |xi〉. Let T be a gate changing the basis according toLemma 3.1. There exists a quantum
circuit with fan-out computing U= ∏n

i=1Uxi
i having depthmaxn

i=1depth(Ui) + 4 · depth(T) + 2, size
∑n

i=1size(Ui)+(2n+2) ·size(T)+2n, and using(n−1)k ancillas.
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Proof. Consider a circuit that applies allUi sequentially. PutTT† = I betweenUi andUi+1. The circuit
is shown inFigure 3. TakeVi = T†UiT as new gates. They are diagonal in the computational basis,
hence they just impose some phase shifts. Multiple phase shifts on entangled states multiply, so can be
applied in parallel. We use fan-out gates twice: first to createn entangled copies of target qubits and
then to destroy the entanglement. The final circuit with the desired parameters is shown inFigure 4.

Example 3.3. As used in [16], it is simple to prove that mod[q]∈ QNC0
f . Each input qubit controls

one increment moduloq on a counter initialised to 0. At the end, we obtain|x| modq. The modular
increments commute and thus can be parallelised. Sinceq is fixed, changing the basis and the increment
can both be done in constant depth.

3.2 Rotation by Hamming weight and value

In this paper, we often use arotation by Hamming weight Rz(ϕ|x|) and arotation by value Rz(ϕx),
whereRz(α) is one-qubit rotation around thez-axis by angleα: Rz(α) = |0〉〈0|+eiα |1〉〈1|. They can
both be computed in constant depth.

Lemma 3.4. For every angleϕ, there exist constant-depth, linear-size quantum circuits with fan-out
computing Rz(ϕ|x|) and Rz(ϕx) on input x= xn−1 . . .x1x0.

Proof. The left circuit inFigure 5shows how to compute the rotation by Hamming weight. Each input
qubit controlsRz(ϕ) on the target qubit, hence the total angle isϕ|x|. These controlled rotations are

THEORY OFCOMPUTING, Volume 1 (2005), pp. 81–103 86



QUANTUM FAN-OUT IS POWERFUL

Rz(ϕ)

Rz(ϕ)

Rz(ϕ)

. . .

. . .

|x0〉
|x1〉

|xn−1〉

|0〉+|1〉√
2

|0〉

|0〉

ancillas

|x0〉
|x1〉

|xn−1〉

|0〉+e
iϕ|x||1〉√
2 Rz(ϕ)

Rz(2ϕ)

Rz(2
n−1ϕ)

. . .

. . .

|x0〉
|x1〉

|xn−1〉

|0〉

|0〉

ancillas

|x0〉
|x1〉

|xn−1〉

|0〉+e
iϕx|1〉√
2

|0〉+|1〉√
2

Figure 5: Rotation by Hamming weight and value

parallelised using the parallelisation method. The right circuit shows the rotation by value. It is similar
to the rotation by Hamming weight, only the input qubit|x j〉 controlsRz

(
ϕ2 j
)
, hence the total angle is

ϕ ∑n−1
j=0 2 jx j = ϕx.

Remark 3.5. The construction uses rotationsRz(ϕ) for arbitraryϕ ∈R. However, we are only allowed
to use a fixed set of one-qubit gates. It is easy to see that every rotation can be approximated with poly-
nomially small error byRz(θq) = (Rz(θ))q, where sinθ = 3

5 andq is a polynomially large integer [1].
Theseq rotations commute, so can be applied in parallel and the depth is preserved. The approximation
can be kept down to polynomially small error while increasing the size of the circuit only polynomially.

4 Constant-depth approximate circuits

4.1 Or gate

It is easy to see that the rotation by Hamming weight of a stringy of lengthmwith angleϕ = 2π

m can be
used to distinguish the zero stringy = 0m from strings with approximatelym2 ones. We, however, want
to distinguish the zero string fromall nonzero strings. It turns out that if we computem= O(nlogn)
rotations by Hamming weight of the inputx with angles distributed evenly around the circle, we obtain
a stringy that is either zero (forx= 0n), or has expected Hamming weightm

2 (for x 6= 0n). By combining
these two results, we can approximate the Or gate and, with a minor modification, also the exact[t] gate
in constant depth.

Let w∈ N0 and letϕ be an angle. Define a notation for the following one-qubit state:

|µw
ϕ〉= (H ·Rz(ϕw) ·H) |0〉=

1+eiϕw

2
|0〉+ 1−eiϕw

2
|1〉. (4.1)

By Lemma 3.4, |µ |x|
ϕ 〉 can be computed in constant depth and linear size.
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Theorem 4.1. Or ∈R-QNC0
f . In particular, Or can be approximated with one-sided error1

n in constant
depth and sizeO

(
n2 logn

)
.

Proof. Let n denote the size of the inputx. Let m = a · n, wherea will be chosen later. For all
k ∈ {0,1, . . . ,m− 1}, compute in parallel|yk〉 = |µ |x|

ϕk
〉 for angleϕk = 2π

m k. If |yk〉 is measured in the
computational basis, the expected value of the outcomeYk ∈ {0,1} is

E[Yk] =
∣∣∣∣1−eiϕk|x|

2

∣∣∣∣2 =
∣∣∣e−iϕk|x|

∣∣∣ · ∣∣eiϕk|x|+e−iϕk|x|−2
∣∣

4
=

1−cos(ϕk|x|)
2

.

If all thesem qubits|y〉 are measured, the expected Hamming weight of allY’s is

E[|Y|] = E

[
m−1

∑
k=0

Yk

]
=

m
2
− 1

2

m−1

∑
k=0

cos

(
2πk
m

|x|
)

=
{

0 if |x|= 0,
m
2 if |x| 6= 0.

The qubits|y〉 are actually not measured, but their Hamming weight|y| controls another rotation on a

new ancilla qubit|z〉. So compute|z〉 = |µ |y|
2π/m〉. Let Z be the outcome after|z〉 is measured. If|y| = 0,

thenZ = 0 with certainty. If
∣∣|y|− m

2

∣∣≤ m√
n, then

P[Z = 0] =

∣∣∣∣∣1+ei 2π

m |y|

2

∣∣∣∣∣
2

=
1+cos

(
2π

m |y|
)

2
≤

1−cos2π√
n

2
= O

(
1
n

)
.

Assume that|x| 6= 0. We want to upper-bound the probability of the bad event that|Y| is not close tom
2 .

Since 0≤Yk ≤ 1, we can use Hoeffding’sLemma 4.2below and obtainP
[∣∣|Y|− m

2

∣∣≥ εm
]
≤ 1

2ε2m
. Fix

a = logn andε = 1√
n. Now, P

[∣∣|y|− m
2

∣∣ ≥ m√
n

]
≤ 1

2m/n = 1
2a = 1

n. The probability that we observe the

incorrect resultZ = 0 is at most the sum of the probabilities of the two bad events, i.e. O
(

1
n

)
. Hence

P[Z = 0] =
{

1 if |x|= 0,
O
(

1
n

)
if |x| 6= 0.

The circuit has constant depth and size O(mn) = O
(
n2 logn

)
. It is outlined inFigure 6. The figure is

slightly simplified: unimportant qubits and uncomputation of ancillas are omitted.

Lemma 4.2 (Hoeffding[12]). If Y1, . . . ,Ym are independent random variables bounded by ak ≤Yk ≤ bk,
then, for allε > 0,

P[|S−E[S]| ≥ εm]≤ 2exp
−2m2ε2

∑m
k=1(bk−ak)2 , where S= ∑m

i=kYk.

Remark 4.3. Since the outcomezof the circuit inFigure 6is a classical bit, we can save it in an ancilla
qubit by applying a controlled-not gate and clean|y〉 by uncomputation. It remains to prove that the
intermediate qubits|y〉 need not be measured, in order to be able to uncompute them. We show above
that the output qubit is a good approximation of the logical Or, provided|y〉 is immediately measured.
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Figure 6: Constant depth circuit approximating Or

By the principle of deferred measurement, we can use controlled quantum operations and measure|y〉
at the end. However, the output bit is close to a classical bit (the distance depends on the error of the
computation), thus it is only slightly entangled with|y〉, and hence it does not matter whether|y〉 is
measured.

Definition 4.4. Let log(k) x denote thek-timesiterated logarithmlog log. . . logx. Thelog-star function,
log∗ x, is the maximum number of iterationsk such that log(k) x exists and is real.1

Remark 4.5. If we require error1
nc , we createc copies and compute the exact Or of them by a binary

tree of Or gates. The tree has depth logc = O(1). In Section6.1, we show how to approximate Or in
constant depth and size O(nlog(k) n) for any constantk. In Section6.2, we show how to compute Or
exactlyin log-star depth and linear size.

4.2 Exact[t] and threshold[t] gates

Theorem 4.6. exact[t]∈ R-QNC0
f .

Proof. We slightly modify the circuit for Or. As outlined inFigure 7, by adding the rotationRz(−ϕt) to

the rotation by Hamming weight in the first layer, we obtain|µ |x|−t
ϕ 〉 instead of|µ |x|

ϕ 〉. The second layer
stays the same. If the output qubit|z〉 is measured, then

P[Z = 0] =
{

1 if |x|= t,
O
(

1
n

)
if |x| 6= t.

We obtain an approximation of the exact[t] gate with one-sided polynomially small error.

Remark 4.7. Other gates are computed from the exact[t] gate by standard methods. For example,
threshold[t] can be computed as the parity of exact[t], exact[t +1], . . . , exact[n]. The depth stays constant
and the size is justn-times bigger, i.e. O

(
n3 logn

)
, hence threshold[t]∈ B-QNC0

f . In Section6.3, we
show how to approximate exact[t], threshold[t], and counting in constant depth and size O(nlogn).

1The log-star of the estimated number of atoms in the universe is 5. Consequently, for the computational problems we
consider in this paper, the log-star is in practice at most 5.
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Figure 7: Rotation by Hamming weight with added rotation

4.3 Arithmetic operations

Using threshold gates, one can do arithmetic operations in constant depth. The following circuits take as
part of the input an ancilla register in state|0〉 and output the result of the computation in that register.

Theorem 4.8. The following functions are inB-QNC0
f : addition and multiplication of n integers, divi-

sion of integers with remainder, and sorting of n integers.

Proof. By [20], these functions are computed by constant-depth,2 polynomial-size threshold circuits. A
threshold circuit is built of weighted threshold gates. It is simple to prove that the weighted threshold
gate (with polynomially large integer weights) also is in B-QNC0

f . One only needs to rotate the phase of
the quantum state inLemma 3.4by integer multiples of the basic angle.

In the following section, we require a reversible version of modular addition.

Definition 4.9. Let q be ann-bit integer andx1, . . . ,xm ∈ Zq. Thereversible additiongate maps addm :
|q〉|x1〉 . . . |xm〉 → |q〉|x1〉 . . . |xm−1〉|y〉, wherey = (∑m

i=1xi) modq.

Lemma 4.10. addm∈ B-QNC0
f .

Proof. By Theorem 4.8, y = (∑m
i=1xi) modq can be approximated in constant depth and polynomial

size. The result is, however, stored into ancilla qubits. Hence we have to erasexm, which we may achieve
by first negating the contents iny by |y〉 → |−y〉, computing the sumw = y+∑m−1

i=1 xi in a fresh ancilla,
do a bitwise control-not ofw into xm, uncomputew, and finally re-negatey. We then swap the ancillas
|y〉 with the erased qubits in|xm〉.

2The depths are really small, from 2 to 5.
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4.4 Quantum Fourier transform

The QFT is a very powerful tool used in several quantum algorithms, e.g. factoring of integers and
computing the discrete logarithm [19].

Definition 4.11. The quantum Fourier transform with respect to modulusq performs the Fourier trans-
form on the quantum amplitudes of the state, i.e. it maps

Fq : |x〉 → |ψx〉=
1
√

q

q−1

∑
y=0

ω
xy|y〉, whereω = e2π i/q, (4.2)

for x∈ {0,1, . . . ,q−1} and it behaves arbitrarily on the other states.

4.4.1 QFT with a power-of-2 modulus

Let q = 2n. Coppersmith has shown in [6] how to compute the QFT in quadratic depth, quadratic size,
and without ancillas. The depth has further been improved to linear [folklore]. Cleve and Watrous
have shown in [5] that the QFT can be approximated with errorε in depth O

(
logn+ log log1

ε

)
and

size O
(
nlog n

ε

)
. They also show that if only gates acting on a constant number of qubits are allowed (in

particular, the fan-out gate is not allowed), logarithmic depth is necessary. We show that the approximate
circuit for the QFT from [5] can be compressed to constant depth, if we allow the fan-out gate.

Theorem 4.12.QFT∈ B-QNC0
f .

Proof. The operatorF2n : |x〉 → |ψx〉 can be computed by composing:

1. Fourier state construction (QFS): |x〉|0〉 . . . |0〉 → |x〉|ψx〉|0〉 . . . |0〉
2. Copying Fourier state (COPY): |x〉|ψx〉|0〉 . . . |0〉 → |x〉|ψx〉 . . . |ψx〉
3. Uncomputing phase estimation (QFP):|ψx〉 . . . |ψx〉|x〉 → |ψx〉 . . . |ψx〉|0〉
4. Uncomputing COPY: |ψx〉 . . . |ψx〉|0〉 → |ψx〉|0〉 . . . |0〉

The following lemmas show that each of these individual operators is in B-QNC0
f .

Lemma 4.13. QFS∈ QNC0
f .

Proof. QFS maps|x〉|0〉 → |x〉|ψx〉. Define a shortcut|ρr〉= |0〉+e2π ir |1〉√
2

. It is simple to prove that|ψx〉=
|ρx/21〉|ρx/22〉 . . . |ρx/2n〉.

|ψx〉 =
1√
2n

2n−1

∑
y=0

ω
xy|y〉=

1√
2n

2n−1

∑
y=0

n⊗
k=1

ω
x2n−kyn−k|yn−k〉

=
1√
2n

n⊗
k=1

1

∑
b=0

(ω2n−kx)b|b〉=
n⊗

k=1

|0〉+e2π ix/2k|1〉√
2

=
n⊗

k=1

|ρx/2k〉.

Then qubits|ρx/2k〉 can be computed fromx in parallel as follows:|ρx/2k〉= Rz
(

2π

2k x
) |0〉+|1〉√

2
is computed

by the rotation by value (Lemma 3.4) in constant depth and linear size.
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|ρ0.0〉

|ρ0.1〉

|ρ0.01〉|ρ0.11〉

1

4
π

3

4
π

5

4
π

7

4
π

|ρx/2k〉

Figure 8: Measurement of|ρx/2k〉 in a random basis

Lemma 4.14. COPY∈ B-QNC0
f .

Proof. COPY maps|ψx〉|0〉 . . . |0〉 → |ψx〉 . . . |ψx〉. Take the reversible addition gate modulo 2n mapping
(add2

2n)|y〉|x〉= |y〉|(x+y) mod 2n〉. It is simple to prove that add−1 |ψy〉|ψx〉= |ψx+y〉|ψx〉.

|ψy〉|ψx〉 =
1
2n

2n−1

∑
l ,k=0

ω
ly+kx|l〉|k〉 →add−1

1
2n ∑

l ,k

ω
ly+kx|l〉|k− l〉

=
1
2n ∑

l ,m

ω
ly+(m+l)x|l〉|m〉=

1
2n ∑

l ,m

ω
l(x+y)+mx|l〉|m〉= |ψx+y〉|ψx〉.

Hence add−1 |ψ0〉|ψx〉 = |ψx〉|ψx〉. The state|ψ0〉 = H⊗n|0n〉 is easy to prepare in constant depth. Fur-
thermore,(addm

2n)−1|ψ0〉 . . . |ψ0〉|ψx〉 = |ψx〉 . . . |ψx〉|ψx〉, because the addition ofm− 1 numbers into
one register is equivalent tom−1 consecutive additions of one number. Each such a reversible addi-
tion copies|ψx〉 into 1 register. Note that the addm

2n gate performs all these additions in parallel. By
Lemma 4.10, the reversible addition gate is in B-QNC0

f .

Lemma 4.15. QFP∈ B-QNC0
f .

Proof. QFP maps|ψx〉 . . . |ψx〉|0〉 → |ψx〉 . . . |ψx〉|x〉. By Cleve and Watrous [5, Section 3.3], we can
computex with probability at least 1−ε from O

(
log n

ε

)
copies of|ψx〉 in depth O

(
logn+ log log1

ε

)
and

size O
(
nlog n

ε

)
. Useε = 1

poly(n) . It is simple to convert their circuit into constant depth, provided we
have fan-out. The details are sketched below.

The input consists ofm= O
(
log n

ε

)
copies of|ψx〉 = |ρx/21〉|ρx/22〉 . . . |ρx/2n〉. Measure each|ρx/2k〉

m
2 times in the basis{|ρ0.01〉, |ρ0.11〉} and m

2 times in the Hadamard basis{|ρ0.00〉, |ρ0.10〉}. The state
|ρx/2k〉= 1√

2
(|0〉+e2π i(0.xk−1...x1x0)) lies on the middle circle of the Bloch sphere; it is shown inFigure 8.

If |ρx/2k〉 is in the white region, then the measurement in the first basis tells whetherxk−1 = 0 or 1 with

probability at least34. If |ρx/2k〉 is in the shaded region, then the measurement in the Hadamard basis

tells whetherxk−1 = xk−2 or¬xk−2 (denoted by P, N) with probability at least3
4.

For eachk, perform the majority vote and obtain the correct answerzk ∈ {0,1,P,N} with error
probability at most1

2m = ε

n. The probability of having any error is at mostn times bigger, i.e. at mostε.
Computexn−1 . . .x1x0 from zn−1 . . .z1z0 in constant depth. The bitxk is computed as follows:
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1. If zkzk−1 . . .zl+1 ∈ {P,N} andzl ∈ {0,1}, compute the parity of the number of N’s and add it tozl

(assumingz−1 = 0), otherwise return 0.

2. Check and compute all prefixesl in parallel and take the logical Or of the results.

All the gates used (fan-out, parity, And, Or, majority) are in B-QNC0
f .

4.4.2 QFT with an arbitrary modulus

Let q 6= 2n. Cleve and Watrous have shown in [5] that the QFT can be approximated with errorε in depth
O
(
(log logq)(log log1

ε
)
)

and size poly(logq+ log 1
ε
). We show that their circuit can also be compressed

into constant depth, if we use the fan-out gate. The relation between quantum Fourier transforms with
different moduli was described in [11].

Remark 4.16. We actually implement a slightly more general operation, whenq is not a fixed constant,
but ann-bit input number. This generalised QFT maps|q〉|x〉 → |q〉|ψx〉. The register|q〉 is implicitly
included in all operations. We will henceforth omit it and the generalised operations are denoted simply
by QFTq, QFSq, COPYm

q , and QFPq.

Theorem 4.17.QFTq ∈ B-QNC0
f .

Proof. Let |dummyq,x〉 denote an unspecified quantum state depending on two parametersq,x. The
operatorF ′

q : |x〉 → |ψx〉|dummyq,0〉 can be computed by composing:

1. QFSq: |x〉 → |x〉|ψx〉|dummyq,x〉
2. COPYm+1

q : → |x〉|ψx〉|dummyq,x〉
(
|ψx〉|dummyq,0〉

)⊗m

3. Uncomputing QFSq: → |x〉
(
|ψx〉|dummyq,0〉

)⊗m

4. Uncomputing QFPq: →
(
|ψx〉|dummyq,0〉

)⊗m

5. Uncomputing COPYmq : → |ψx〉|dummyq,0〉,

where empty registers are omitted for clarity. The state|dummyq,0〉 is not entangled with|x〉 and hence
it can be traced out. We obtain the quantum Fourier transformFq. The following lemmas show that each
of these individual operators is in B-QNC0

f .

Lemma 4.18. QFSq ∈ B-QNC0
f .

Proof. QFSq maps|x〉|0〉→ |x〉|ψx〉|dummyq,x〉 for some “garbage” state|dummyq,x〉. We will show that
QFSq is well approximated by a QFS with a power-of-2 modulus of the magnitudeq3. Let n = dlogqe.
TakeN = 3n and extendx by leading zeroes intoN bits. UsingLemma 4.13, perform QFS2N and obtain

the state|x〉 1√
2N ∑2N−1

y=0 e
2π i
2N xy|y〉.

Setu = b2N/qc and apply integer division byu to the second register, i.e. map|y〉 → |y1〉|y2〉, where
y1 = by/uc ∈ {0,1, . . . ,q} andy2 = y modu. This can be done reversibly in constant depth by a few
applications ofTheorem 4.8using the method fromLemma 4.10. The quantum state can be written as

1√
2N

2N−1

∑
y=0

e
2π i
2N xy|y1〉|y2〉=

1√
2N

q−1

∑
y1=0

u−1

∑
y2=0

e
2π i
2N x(y1u+y2)|y1〉|y2〉+ |w〉 ,
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where|w〉 = 1√
2N ∑v−1

z=0 e
2π i
2N x(qu+z)|q〉|z〉 andv = 2N modu = 2N −qu= 2N modq < q. The sum has

been rearranged usingy = y1u+y2. Now,‖ |w〉 ‖=
√ v

2N = O(2−n) is exponentially small and so it can
be neglected. Decompose the quantum state into the tensor product

1
√

q

q−1

∑
y1=0

e
2π i
q ( q

2N u)xy1|y1〉⊗
√

q
2N

u−1

∑
y2=0

e
2π i
2N xy2|y2〉 .

Now, u is exponentially close to2
N

q , becauseq
2N u= 2N−v

2N = 1−O
(
2−2n

)
. Sincexy1

q = O(2n), the replace-
ment of qu

2N by 1 in the exponent causes only exponentially small error O(2−n). Hence the quantum state
is exponentially close to

1
√

q

q−1

∑
y=0

e
2π i
q xy|y〉⊗ 1√

u

u−1

∑
z=0

e
2π i
2N xz|z〉= |ψx〉|dummyq,x〉 .

The “garbage” state|dummyq,x〉 arises as a byproduct of the higher precision 3n-bit arithmetic. We
clean it up later by uncomputing QFSq after copying|ψx〉; see the proof ofTheorem 4.17. It actually
gets replaced by|dummyq,0〉= 1√

u ∑u−1
z=0 |z〉, which does not depend onx and it thus causes no harm. We

have approximated QFSq in constant depth.

Lemma 4.19. COPYm
q ∈ B-QNC0

f .

Proof. COPYm
q maps|ψx〉|0〉 . . . |0〉→ |ψx〉(|ψx〉|dummyq,0〉)⊗(m−1). The proof is similar to the proof of

Lemma 4.14. First, preparem− 1 states|ψ0〉|dummyq,0〉 by applying QFSq to |0〉|0〉 (Lemma 4.18).
Second, use the inverse of the reversible addition moduloq to map (addm

q )−1 : |ψ0〉 . . . |ψ0〉|ψx〉 →
|ψx〉 . . . |ψx〉|ψx〉 (Lemma 4.10).

Lemma 4.20. QFPq ∈ B-QNC0
f .

Proof. QFPq maps|ψx〉 . . . |ψx〉|0〉→ |ψx〉 . . . |ψx〉|x〉. We use an idea similar to the proof ofLemma 4.18.
Let n = dlogqe andN = 3n. Extend|ψx〉 by leading zeroes toN bits and applyF†

2N to them (Theo-
rem 4.12). We obtain many copies of the state

F†
2N(|0〉|ψx〉) =

1√
2Nq

2N−1

∑
z=0

(
q−1

∑
y=0

e
−2π i
2N zy+ 2π i

q xy

)
|z〉 .

The exponent can be rewritten to 2π i( x
q −

z
2N ) ·y. Intuitively, if |z−2N x

q| ≤
2N

8q , then| x
q −

z
2N | ≤ 1

8q, the
absolute value of the angle in the exponent is at mostπ

4 for everyy∈ {0,1, . . . ,q−1}, and the amplitudes
sum up constructively. Ifz is not close to 2N x

q, then the amplitudes interfere destructively. The quantum
state has most of its amplitude on the goodz’s. So we compute reversibly by division with remainder an
estimatex′ = b zq

2N + 1
2c. A detailed analyzis shows thatP[x′ = x] ≥ 1

2 + δ for some constantδ [5, 11].
Here we do not present the details, because our goal is the compression of the circuit from [5] into
constant depth.
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We transform allm = O
(
log n

ε

)
input quantum states|ψx〉 into m independent estimates|x′〉. We

then estimate all bits ofx one-by-one from thesem estimates by majority gates. Each bit ofx is wrong
with probability at most 2−m = 2− log n

ε = ε

n. The probability of having an error among then bits of x is
thus at mostε. Finally, save the estimation ofx in the target register and uncompute the divisions and
the quantum Fourier transforms. With probability at least 1−ε, the mapping QFPq has been performed.
Useε = 1

polyn.

4.5 Quantum phase estimation

The method of computing QFT2n can be also used for phase estimation.

Theorem 4.21.Given a gate Sx : |y〉|φ〉→ |y〉Rz
(

2πx
2n y
)
|φ〉 for basis states|y〉, where x∈Z2n is unknown,

we can determine x with probability at least1− ε in constant depth, sizeO
(
nlog n

ε

)
, and using the Sx

gateO
(
nlog n

ε

)
times.

Proof. Obtain an estimate ofx by applying the QFP to O
(
log n

ε

)
copies of the quantum state|ψx〉 =

|ρx/21〉|ρx/22〉 . . . |ρx/2n〉. Each|ρx/2k〉 can be computed by one application ofSx to |2n−k〉 |0〉+|1〉√
2

, because

|ρx/2k〉= Rz
(

2πx
2k

) |0〉+|1〉√
2

= Rz
(

2πx
2n 2n−k

) |0〉+|1〉√
2

.

5 Exact circuits of small depth

In the previous section, we have shown how toapproximatethe exact[t] gate in constant depth. In this
section, we show how tocompute it exactlyin log-star depth. The circuits in this section use arbitrary
one-qubit gates instead of a fixed basis, otherwise they would not be exact.

Lemma 5.1. The function Or on n qubits can be reducedexactlyto Or on m= dlog(n+ 1)e qubits in
constant depth and sizeO(nlogn).

Proof. We use a technique similar to the proof ofTheorem 4.1. Recall the quantum state|µw
ϕ〉 defined

by Equation (4.1)on page87. Fork∈ {1,2, . . . ,m}, compute in parallel|yk〉= |µ |x|
ϕk
〉 for angleϕk = 2π

2k .
Let |y〉= |y1y2 . . .ym〉.

• If |x|= 0, then〈y|0m〉= 1, because|yk〉= |0〉 for eachk.

• If |x| 6= 0, then〈y|0m〉 = 0, because at least one qubityk is one with certainty. Take the unique
decomposition of|x| into a product of a power of 2 and an odd number:|x| = 2a(2b+ 1) for
a,b∈ N0. Then

〈1|ya+1〉=
1−eiϕa+1|x|

2
=

1−ei 2π

2a+1 2a(2b+1)

2
=

1−eiπ(2b+1)

2
=

1−eiπ

2
= 1 .

It follows that x is non-zero if and only ify is. Hence the original problem is exactly reduced to a
problem of logarithmic size.
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Theorem 5.2. exact[t]∈ QAC0
f .

Proof. Using the methods fromTheorem 4.6andLemma 5.1, exact[t] can also be reduced to Or of log-
arithmic size. The reduction has constant depth and size O(nlogn). Hence exact[t] is QNC0f -reducible
to Or, or simply exact[t]∈ QAC0

f , because QAC0f includes both QNC0f and the Or gate.

Theorem 5.3. exact[t]∈QNCf(log∗n), i.e. exact[t] can be computedexactlyin log-star depth and size
O(nlogn).

Proof. Apply the reduction used inLemma 5.1in total (log∗n)-times, until the input size is at most 2.
Compute and save the outcome, and clean ancillas by uncomputation. The circuit size is O(nlogn).

6 Circuits of small size

In this section, we decrease the size of some circuits. We allow the use of arbitrary one-qubit gates
instead of a fixed basis.

6.1 Constant depth approximation of Or

In this section, we apply the reduction fromLemma 5.1repeatedly to shrink the circuit for Or. We first
reduce the size of the circuit to O(nlogn). We then develop a recurrent method that reduces the size
even further. Let us define a useful notation.

Definition 6.1. Let x = x1x2 . . .xn. By Or-reduction n→ m with error ε we mean a quantum circuit
mapping|x〉|0m〉 → |x〉|ϕ〉 such that, if|x|= 0, then|ϕ〉= |0m〉 and, if |x| 6= 0, then〈0m|ϕ〉 ≤ ε.

The Or-reduction preserves the logical Or of qubits, i.e.|x| = 0 iff |ϕ| = 0 with high probability.
Theorem 4.1provides an Or-reductionn→ 1 with error 1

n, constant depth, and sizen2 logn. Lemma 5.1
provides an Or-reductionn→ logn with error 0, constant depth, and sizenlogn.

Lemma 6.2. There is an Or-reduction n→ 1 with error 1
n, constant depth, and size nlogn.

Proof. Divide the input into
√

n
logn blocks of size

√
nlogn. First, reduce each block byLemma 5.1

to 1
2 logn+ log logn = O(logn) qubits in constant depth and size

√
nlog2n. In total, we obtain

√
n

new qubits in sizenlogn. Second, compute the logical Or byTheorem 4.1in constant depth, size√
n2 log

√
n = O(nlogn), and error 1√

n. To amplify the error to1
n, repeat the computation twice and

return 1 if any of them returns 1 (the error is one-sided). The circuit size is doubled.

The circuit size can be reduced to O(nlog(d) n) for any constant numberd of iterations of the log-
arithm. The trick is to divide input qubits into small blocks and perform the reduction step on each of
them. The number of variables is reduced by a small factor and we can thus afford to apply a circuit of
a slightly bigger size. It we repeat this reduction stepd times, we obtain the desired circuit.
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Theorem 6.3.There exist constants c1,c2 such that for every d∈N, there is an Or-reduction n→ 1 with
error 1

n, depth c1d, and size c2dnlog(d) n.

Proof. By induction ond: we have already verified the cased = 1 in Lemma 6.2. For the induction
step: Dividen input qubits inton/ log(d−1) n blocks of log(d−1) n qubits. UsingLemma 5.1, reduce each
block to log(d) n qubits in constant depth and sizec2 log(d−1) n · log(d) n. Total size isc2nlog(d) n. We
obtain n

log(d−1) n
log(d) n = o(n) new qubits. Using the induction hypothesis, compute their logical Or in

depthc1(d− 1) and sizec2(d− 1)
(

n
log(d−1) n

log(d) n
)
· log(d−1) o(n) ≤ c2(d− 1)nlog(d) n. Together, it

takes depthc1d and sizec2dnlog(d) n.
The only approximate step is the application ofLemma 6.2for d = 1. It is applied on n

logn log(d) n

variables, hence the error is O(logn/n). It can be amplified to1n by running the computation twice.

6.2 Log-star depth computation of Or

Our best constant-depth circuit for Or is described byTheorem 6.3. It is approximate and it has slightly
super-linear size. In this section, we show that we can achieve anexactcircuit of linear size if we
relax the restriction of constant depth. We considerd in Theorem 6.3a slowly growing function ofn
instead of a constant. Now we can use an Or-reduction better thanLemma 6.2. Theorem 5.3provides
an Or-reductionn→ 1 with error 0, log-star depth, and sizenlogn.

Lemma 6.4. There exist constants c1,c2 such that for every d∈ N, there is an Or-reduction n→ 1 with
error 0, depth c1d+ log∗n, and size c2dnlog(d) n.

Proof. The same as ofTheorem 6.3, but use the Or-reduction fromTheorem 5.3instead ofLemma 6.2
in the last layer (ford = 1). The size stays roughly the same, the circuit becomes exact, and the depth is
increased by an additional term of log∗n.

Theorem 6.5. There is an Or-reduction n→ 1 with error 0, log-star depth, and linear size.

Proof. Divide the input into n
log∗ n blocks of size log∗n. Compute the logical Or of each block by a

balanced binary tree of depth log(log∗n) < log∗n and inlinear size. UsingLemma 6.4with d = log∗n,

compute the logical Or of n
log∗ n new qubits in log-star depth and size O

(
log∗n· n

log∗ n · log(log∗ n) n
)

=
O(n).

6.3 Approximation of counting and threshold[t]

In this section, we use the QFT for the parallelisation of increments. This allows us to approximate the
Hamming weight of the input in smaller size O(nlogn).

Definition 6.6. The increment gate maps Incrn : |x〉 → |(x+1) mod 2n〉.

Lemma 6.7. The increment gate is diagonal in the Fourier basis and its diagonal form is inQNC0.

Proof. Let ω = e2π i/2n
and let|x〉 be any computational basis state. It is simple to prove the following

two equations:
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1. Incrn = F†
2nDnF2n for diagonalDn = ∑2n−1

y=0 ωy|y〉〈y|.

F†DF |x〉= F†D
∑2n−1

y=0 ωxy|y〉
√

2n
= F† ∑2n−1

y=0 ω(x+1)y|y〉
√

2n
= |(x+1) mod 2n〉 .

2. D = Rz(π)⊗Rz(π/2)⊗·· ·⊗Rz
(
π/2n−1

)
.

D|x〉 = ω
x|x〉=

n⊗
k=1

ω
2n−kxn−k|xn−k〉=

n⊗
k=1

(e2π i/2k
)xn−k|xn−k〉=

=
n⊗

k=1

Rz

(
2π/2k

)
|xn−k〉=

(
Rz(π)⊗·· ·⊗Rz

(
π/2n−1)) |x〉.

We conclude that Incr= F†DF , and thatD is a tensor product of one-qubit operators.

Remark 6.8. The addition of a fixed integerb is as hard as the increment. ByLemma 6.7, Incrb =
F†DbF and(Rz(ϕ))b = Rz(ϕb), hence the diagonal version of the addition ofb is also in QNC0.

Theorem 6.9. Counting can be approximated in constant depth and sizeO(nlogn).

Proof. Compute the Hamming weight of the input. Each input qubit controls one increment on an
m-qubit counter initialised to 0, wherem= dlog(n+1)e. The increments Incrm are parallelised (Theo-
rem 3.2andLemma 6.7), so we apply the quantum Fourier transformF2m twice (Theorem 4.12) and the
n constant-depth controlledDm gates in parallel. The size is O(poly(m)+nm) = O(nlogn).

Remark 6.10. threshold[t] is equal to the most significant qubit of the counter if we align it to a power
of 2 by adding a fixed integer 2m− t. exact[t] can be computed by comparing the counter witht.

7 Concluding remarks

7.1 Comparison with randomised circuits

Let us compare our results for quantum circuits with similar results for classical randomised circuits.
We consider randomised circuits with bounded fan-in of Or and And gates, and unbounded fan-out and
parity (similar to the quantum model). Classical lower bounds are folklore and we attach the proofs for
the convenience of the reader inAppendix A.

Gate Randomised Quantum
Or and threshold[t] exactly Θ(logn) O(log∗n)
mod[q] exactly Θ(logn) Θ(1)
Or with error 1

n Θ(log logn) Θ(1)
threshold[t] with error1n Ω(log logn) Θ(1)
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7.2 Relations of quantum circuit classes

We have shown that B-QNC0f = B-QAC0
f = B-QACC0 = B-QTC0

f (Theorem 4.6). If we allow arbitrary
one-qubit gates, then also QTC0

f = QAC0
f ⊆ QNCf(log∗n) (Theorem 5.2andTheorem 5.3). Several

open problems of [10] have thus been solved. Only little is known about classes that do not include the
fan-out gate. For example, we do not know whether TC0 ⊆ QTC0, we only know that TC0 ⊆ QTC0

f .
It is simple to prove that parity is in TC0. Take the logical Or of exact[1], exact[3], exact[5], . . . , and
compute exact[k] from threshold[k] and threshold[k+ 1]. However, this method needs fan-out to copy
the input bits and hence it is not in QTC0.

Fang et al. proved [7] a lower bound for fan-out. In particular, they showed that logarithmic depth
is needed to approximate parity using only a constant number of ancillas. Unfortunately, their method
breaks down with more than a linear number of ancillas and it cannot be extended to other unbounded
fan-in gates such as majority or threshold[t].

7.3 Upper bounds for B-QNC0
f

Shor’s original factoring algorithm [19] uses modular exponentiation and the quantum Fourier transform
modulo 2n followed by a polynomial-time deterministic algorithm. The modular exponentiationax can
be replaced by multiplication of some subset of numbersa, a2, a4, . . . ,a2n−1

[5]. Then numbersa2k
can

be quickly precomputed classically.
Since both multiplication ofn numbers (Theorem 4.8) and the QFT (Theorem 4.12) are in B-QNC0

f ,
there is a polynomial-time bounded-error classical algorithm with oracle B-QNC0

f factoring numbers,
i.e. factoring∈ RP[B-QNC0

f ]. If B-QNC0
f ⊆ BPP,3 then factoring∈ RP[BPP]⊆ BPP[BPP] = BPP. Dis-

crete logarithms can be computed in a similar way using modular exponentiation and the quantum
Fourier transform modulo generalq [19]. Since QFTq ∈ B-QNC0

f (Theorem 4.17), we conclude that
also discrete-log∈ RP[B-QNC0

f ].

7.4 Open problems

We propose the following open problems on computational aspects of multi-qubit gates:

i. Is there a constant-depth exact circuit for Or?

ii. Is there a constant-depth linear-size circuit for Or?

iii. Are there exact circuits with a fixed basis?

iv. Can we simulate unbounded fan-out in constant depth using unbounded fan-in gates, e.g. thresh-
old[t] or exact[t]?

3In this context, B-QNC0f denotes the set of languages decided with bounded error by constant-depth quantum circuits with
fan-out.
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A Lower bounds on classical circuits

Using the polynomial method [3], we prove several lower bounds on the depths of deterministic circuits.
We consider circuits with fan-in of Or and And gates at most 2, and unbounded fan-out and parity, the
same as in the quantum model.

Basically, the value of each bit computed by a circuit can be computed by a multi-linear polynomial
(over the fieldZ2) in the input bits. We are interested in the degree of such a polynomial; by proving a
lower bound on the degree, we also lower-bound the depth of the circuit. It is simple to prove that the
polynomial computing a Boolean function is unique.

Each input bitxk ∈ {0,1} is computed by the polynomialxk of degree 1. The Not gate computes the
polynomial 1−p(x), wherep(x) is the polynomial computing its argument, and the degree is unchanged.
The And gate computes the polynomialp1(x) · p2(x) and the two degrees are summed. The parity gate
computes the polynomial(p1(x)+ · · ·+ pk(x)) mod 2 of degree equal to the maximum degree among
the arguments.

Lemma A.1. The output of a circuit of depth d has degree at most2d.

Proof. By induction: by adding a new layer, we can at most double the degree when using the And
gate.

And of n bits is computed by a (unique) polynomialx1x2 . . .xn of degreen. Hence every circuit
computing And has depth at least logn. It is simple to prove by contradiction that also Or, threshold[t],
and exact[t] have full degreen. Smolensky has proved a much stronger result [21], which implies that
also the degree of mod[q] forq > 2 isn.

Randomised circuits have access to random bits and may produce the result with a small error. Some
functions are computed in smaller depth in this model.

Lemma A.2. Or can be computed with one-sided error1
2 by a randomised circuit of depth 2. The error

can be decreased to1n in additional depthlog logn.

Proof. Taken random bits and output the parityx1r1⊕ x2r2⊕ ·· · ⊕ xnrn. If |x| = 0, then the circuit
always outputs 0. If|x| > 0, then the probability that the parity is odd is equal to1

2. If we perform
the computation(logn)-times using independent random bits, we decrease the probability of error to
(1

2)logn = 1
n. This can be done in additional depth log logn by a balanced binary tree of Or gates.

By Yao’s principle [24], if we have a randomised circuit with error less than 2−n, then there exists
an assignment of random bits such that the result is always correct. That is there exists a deterministic
circuit of the same shape. Hence also randomised circuits computing the logical Or with exponentially
small error have depth at least logn.

Lemma A.3. Every circuit computing Or with error1n has depth at leastlog logn.

Proof. Assume the converse: there exists a circuit of depthd < log logn with error 1
n. By computing

the logical Or independentlyn
logn-times, we can reduce the error to(1

n)
n

logn = 2−n. This can be done in
additional depth logn

logn = logn− log logn. The total depth of this circuit is logn− log logn+d < logn.
However, by Yao’s principle, the depth has to be at least logn.
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