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Chapter 1

Preliminaries

1.1 Contents of the thesis

We propose a new quantum circuit model — Quantum Circuits with un-
bounded fan-out. We investigate its power, properties, and relations to
existing circuit models. The document has the following structure:

Chapter 2 is an introductory chapter. We introduce the notions of quan-
tum computing. A very short recapitulation of quantum matters (state
space, evolution, measurement) is included, though this document does
not serve as an introduction course of quantum computing. We men-
tion various quantum models of computation: Quantum Circuits, Quan-
tum Turing Machines, and Quantum Branching Programs. We also define
approximations of unitary operations and prove a simple theorem about
them.

In Chapter 3, we propose the desired model. We define the quantum
equivalent of the fan-out operation and the quantum parity operation. We
show that these two operations are indeed equivalent in power. Further-
more, we generalise these operations to controlled one qubit gates. We
prove that the power of this model in unchanged, if we allow an arbitrary
number of fan-out and parity gates operating on the same qubits in one
layer (assuming that we do not mix source and target qubits).

Chapter 4 contains the description of a general parallelisation method.
It can parallelise applying an arbitrary number of commutative gates on
the same qubits. The price of this speedup is bigger space complexity. The
intrinsics of this method are: finding a basis, in which the operators are
diagonal, converting the operators into this basis, and incorporating the
quantum fan-out operation.
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2 CHAPTER 1. PRELIMINARIES

Chapter 5 deals with the main tool for many circuit constructions — the
Quantum Fourier Transform (QFT). We define it and find a decomposition
that leads to efficient circuits. We outline a basic circuit computing the
QFT in place (without ancilla qubits). Since this circuit is quite deep, we
investigate the decomposition of the QFT into two simpler operations: the
QFS and the QFP. We show that the QFS can be implemented exactly in
constant depth. However the QFP seems to be much more difficult and
we present a logarithmic depth approximation circuit taken from [CW00].
We analyse the precision of the circuits and prove, that good approximate
circuits can not be shallow.

Chapter 6 describes an efficient circuit for the integer increment oper-
ation. The increment operator is diagonal in the Fourier basis and, in this
basis, it can be implemented by a constant depth circuit.

Chapter 7 contains descriptions of several shallow circuits for the Tof-
foli, Majority, Threshold, Rank, and Counting operations. Using the par-
allelisation method, the QFT, and the increment operator, we can approx-
imate all of them in depth O

�
loglogn � — by simply performing the incre-

ment operation controlled by each source qubit (in parallel). We further
investigate what happens, if we replace the QFT by the Hadamard trans-
form. We prove that using this method, we yield an exact O

�
log � n � depth

circuit for the Rank operation. Furthermore, this circuit can be used to in-
fer O

�
log � n � depth exact circuits also for other operations (at the price of a

bigger space complexity). Finally, we deal with arithmetical circuits.
Chapter 8 presents several important related results from other arti-

cles ([SBKH93, Sho97]) and applies them to the developed circuit model.
We mention, that several arithmetical operations can be implemented by
a threshold circuit of constant depth, hence they can be computed by a
quantum circuit with fan-out of O

�
log � n � depth. We review Shor’s factor-

ing algorithm and show, that the quantum part of the algorithm can be
implemented by a quantum circuit of logarithmic depth. This suggests,
that QNC1 is probably not contained in P.

The electronic version of this document can be found on the Internet at
URL http://www.ucw.cz/˜robert/qncwf/, you can also contact the
author by e-mail robert@ucw.cz.

1.2 Contribution of the thesis

We have designed a new quantum circuit model QNCk
f , which is contained

in QACCk (defined in [Moo99]). The difference between that 2 models is,
that QNCk

f does not have a Toffoli gate as one of the basic gates.

http://www.ucw.cz/~robert/qncwf/
mailto:robert@ucw.cz


1.3. NOTATION 3

A simple variant of the parallelisation method has been already pro-
posed in [Moo99]. In this thesis, we generalise the method.

The QFT and its decomposition to QFS and QFP have been investi-
gated in detail in [CW00, NC00]. In this thesis, we implement exactly the
QFS by a quantum circuit with fan-out of constant depth (the most shal-
low exact quantum circuit has logarithmic depth). However it seems, that
the quantum fan-out does not help when implementing the QFP, i.e. we
have not found a good sub-logarithmic approximate circuit.

We have discovered, that the increment operator in the Fourier basis
can be implemented exactly in constant depth. Using this result, the par-
allelisation method, and the approximate QFT, we obtain several double-
logarithmic approximate circuits for the Counting, Threshold, and Rank
gates (and their simpler variants: the Toffoli and Majority gates).

We have also developed a new method. We replace the QFT in the cir-
cuit for the Rank gate by the Hadamard transform. We show, that we no
longer obtain the exact rank as the output of the circuit after the replace-
ment, however it is possible to test reliably whether the rank is equal to
a fixed value. There exists an exact constant depth quantum circuit with
fan-out reducing the input size n to O

�
logn � . By iterating this reduction,

we obtain a shallow (O
�
log � n � depth) and exact circuit for the Rank gate.

Since the Threshold gate can be constructed from the Rank gate, it can be
also implemented by a shallow circuit.

Using results from [SBKH93], it implies that several arithmetical oper-
ations and sorting can be performed in depth O

�
log � n � .

1.3 Notation

As usual, N, N0, Z, Zn, R, R �0 , and C will denote natural numbers, natu-
ral numbers including 0, integers, integer numbers 	 0 
 1 
 2 
������
 n � 1 � , real
numbers, non-negative real numbers and complex numbers.

For any set S, both #S and � S � will denote the number of elements in
S and P

�
S � will denote the power set of S, i.e. the set of all subsets of S.

For any set S, Sn is the set of all sequences of S of length n, S � is the set of
all finite sequences of S. For any mapping f and set S, f

�
S � will denote	 f

�
s � � s � S � .
We use the standard notation g � O

�
f � , g � o

�
f � , g � Ω

�
f � , and g �

Θ
�
f � for the asymptotic relation of two functions f 
 g.
For any finite or countable set S, � 2

�
S � will denote the Hilbert space

whose elements are mappings from S to C. Elements of such spaces will be
expressed using Dirac notation; for each s � S, � s � denotes the elementary
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unit vector taking value 1 at s and 0 elsewhere, and 	�� s ��� s � S � is the set
of base vectors of � 2

�
S � . For � φ ����� 2

�
S � , � φ � denotes the linear functional

mapping each �ψ ����� 2
�
S � to the inner product � φ �ψ � (conjugate-linear in

the first coordinate rather than the second). The norm of the vector is
defined in usual way as ��� φ ��� ��� � φ � φ � . For a matrix M, MT denotes the
transpose of the matrix, M � denotes the complex conjugate of the matrix
and M† � �

MT � � denotes the adjoint of the matrix.
A log-star function is a mapping log � : R � N. The value log � � n � � k

such, that log � k � � n � � log log ����� logn  0. It is a very slowly growing func-
tion, however going to infinity. A signum function is a mapping sgn : R �	 0 
 1 � such, that sgn

�
x � � 1 iff x ! 0 and sgn

�
x � � 0 otherwise. For two n-

bit positive integers x 
 y � N0, where x � xn " 1 ����� x1x0, x # y will denote the
bitwise scalar product of x and y, i.e. x # y � ∑n " 1

k � 0 xkyk.
In the thesis, p

�
n � , pk

�
n � , . . . always means a polynomial function.



Chapter 2

Quantum Computation

We shall not supply an introduction course of Quantum Computation
here. Many splendid books have been published about it, e.g. [NC00,
Pre97]. However for purposes of the completeness of this document, we
shall briefly remind basic principles, notions, and the notation in this chap-
ter. This chapter has been taken almost unchanged from [Špa02].

2.1 Intrinsics of Quantum Computation

A classical computer is situated in a unique and observable state at every
instant of the computation. It is possible to dump its memory into a stor-
age medium, examine or modify it and restart the computation from the
interrupted state any times we want. The computation is also determinis-
tic and unless an error occurs, it always yields the same result.

A quantum computer behaves completely else, which we shall remind
in this section.

2.1.1 State space

A quantum computer can be situated in a superposition of classical states.
Its state is completely described by a state vector �ϕ �$�%� 2

�
S � of complex am-

plitudes,1 where S is the set of classical states, e.g. for an n-qubit computer
S � 	 0 
 1 � n thus �ϕ �&� C2n

. The quantum analogue of a bit is called a qubit.
The set of classical states of an n-qubit quantum computer is called a

computational basis and the states are labelled by � i �'
 i �(	 0 
 1 
������)
 2n � 1 � . We

1we shall ignore the notion of mixed states in this thesis, i.e. all states considered will
be the pure states

5



6 CHAPTER 2. QUANTUM COMPUTATION

say that the linear combination ∑i αi �ϕi � is the superposition of states �ϕi �
with the amplitude αi of the state �ϕi � .
Note 2.1 A state vector must fulfil the normalisation condition, which is
a quantum analogue of the requirement that the probabilities of distinct
events sum to 1. It says that �ϕ � is a unit vector, i.e. � ϕ �ϕ � � 1. It should
also be reminded, that the global phase is unobservable for computational
purposes, hence we do not distinguish between �ϕ � and α �ϕ �'
*�α � � 1.

Example 2.1 An one qubit computer has two classical states � 0 � and � 1 �
and it can also be situated in the superposition of these states, e.g. + 0 , � + 1 ,-

2
,+ 0 ,." + 1 ,-

2
or say + 0 ,/" 2i + 1 ,-

5
.

Note 2.2 There is a visual way of representing a qubit. A qubit may be
situated in a general superposition state �ψ � � α � 0 �10 β � 1 � . Since �2�ψ �3� � 1,�α � 2 04�β � 2 � 1 and we can rewrite the equation as�ψ � � eiγ 5 cos

θ
2
� 0 �60 eiϕ sin

θ
2
� 1 �879


where θ 
 ϕ 
 γ are real numbers. We shall ignore the unobservable global
phase eiγ, hence the qubit state is completely described by two real vari-
ables. The two numbers θ 
 ϕ define a point on the unit three-dimensional
sphere, often called Bloch sphere, see Figure 2.1. It provides a useful visu-
alisation of most one qubit quantum operations. Unfortunately there is no
direct generalisation to multiple qubits.

Note 2.3 It turns out that the phase of an individual quantum state in a
superposition state is a quantity of the same importance as the identity of
the state itself. This phenomenon is distinct from the fact, that the global
phase is unobservable. We can not distinguish between � 0 �:0;� 1 � and �<� 0 �1�� 1 � while distinguishing between � 0 ��0=� 1 � and � 0 �>�?� 1 � is trivial thanks to
the Hadamard operation defined in the next subsection.

Note 2.4 Notice that the state space of a joint system is a tensor product
of the state spaces of the individual systems. The composite state �ϕ �@� χ � is
also denoted by �ϕχ � .

Nevertheless it is not true that every composite state is a tensor product
of the individual states. This phenomenon is called entanglement and such
individual states are called entangled. There is an extremely important
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x
y

z

ϕ

θ

A
0 B

A
1 B

A
ψ B

Figure 2.1: Bloch sphere representation of a qubit

example called EPR-pair which serves as a useful tool for many applica-
tions (super-dense coding, quantum state teleportation and many others;
see [NC00]). One of the four EPR-pairs can be written as� χ � � � 00 �604� 11 �C

2



the other three differ by the sign or by flipping the first qubit.

2.1.2 Evolution

A computational step of a quantum computer is described by an evolu-
tion operator. Quantum physics requires that this operator must be unitary,
i.e. reversible and norm-preserving. If a quantum computer is situated
in the state �ϕ � , then it switches to the state U �ϕ � after the operator U is
performed.2 Recall that the product of unitary operators is also a unitary
operator.

Example 2.2 Every permutation operator is unitary, hence any classical
reversible operation is also permitted in the quantum world. The simplest
operators on a qubit are perhaps the identity I and the bit flip operator
X . The operators have the following representations in the computational
basis � 0 �'
'� 1 � :

I � 5 1 0
0 1 7 
 X � 5 0 1

1 0 7 �
2the quantum evolution is indeed a continuous process described by a Hamiltonian,

but this fact is not important for our purposes
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The proper quantum examples of evolution operators are the phase flip
operator Z and the combined flip operator Y . The operators I 
 X 
 Y 
 Z form
a basis over the space of one qubit operators, they are called Pauli operators
and they will be mentioned a few times in the document.

Y � 5 0 � i
i 0 7 
 Z � 5 1 0

0 � 1 7 �
The last but not the least important operator is the Hadamard operator H.

H � 1C
2
5 1 1

1 � 1 7 �
The Hadamard operator has a very interesting property. If we apply it to
the basis state � 0 � , we obtain

� � 0 �D0E� 1 � ��F C 2, which is a uniform superposition
of either states. If we apply it once more, we obtain the basis state � 0 �
again.

Note 2.5 It is very illuminating to imagine how do the one qubit operators
act on the Bloch sphere. The identity I leaves the state unchanged. The
Pauli operators X 
 Y 
 Z reflect the state through the x 
 y 
 z axes respectively.
The Hadamard operation H performs a rotation of the sphere about the y
axis by 90 G followed by a reflection through the x � y plane.

Another interesting examples are the rotation operators. A simple alge-
bra shows, that the operator

Rx
�
θ � � e " iθX H 2 � cos

θ
2

I � isin
θ
2

X

rotates the Bloch sphere about the x axis by angle θ. Similar operators
Ry
�
θ � , Rz

�
θ � can be defined also for other axes.

Example 2.3 The controlled NOT operator (CNOT) acts on two qubits. It
has the following representation in the computational basis � 00 � , � 01 � , � 10 � ,� 11 � :

CNOT �JIKKL 1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

M*NNO �
If the first qubit is nonzero it does nothing, otherwise it flips the second
qubit.
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Note 2.6 Quantum physics allows us to apply any unitary operation in
unit time, at least in principle.3 As a matter of fact, only a small set of
operations is physically feasible. It can be shown (see [NC00]) that there
exists a small (discrete) set of operations that forms a universal set, i.e. ev-
ery quantum operation operating on two qubits can be simulated by a
finite sequence of the universal operators with the precision exponential
in the length of the sequence. Moreover every quantum operation on n
qubits can be decomposed into a finite sequence of two qubit operations.
This sequence is unfortunately exponentially long for most operators — it
can be proved by a simple counting argument.

The goal of the quantum computational complexity is finding which
operators can be implemented more efficiently and describing such im-
plementations. This is what the quantum algorithm design is about.

Note 2.7 One of the pitfalls of Quantum Computation is the impossibil-
ity of copying unknown quantum states, called no-cloning theorem. It is
explained in detail in [NC00, page 532] and it claims, that there exists no
evolution operator U such, that U

� �ψ ��� 0 � � � �ψ ���ψ � for every superposition
state �ψ � . An operator performing this mapping is inevitably not unitary.

2.1.3 Measurement

From a computer scientists point of view quantum physics provides a
powerful tool for a fast multiplication of exponentially large matrices of
complex numbers. Though the matrices need to be unitary and easily de-
composed, it seems to lead to an exponential speedup over classical com-
puters. However we encounter a substantial problem at the moment —
the amplitudes of a quantum state are hidden and protected from direct
observations.

The only way how to obtain information from a quantum computer is
observing it. The observation is described by an observable. Every observa-
tion inevitably disturbs the quantum state and projects the state vector into
some vector subspace. The more information we get by the measurement,
the more we disturb the state.

Definition 2.1 An observable is a collection 	 Mm � m of measurement opera-
tors. The index m refers to the measurement outcomes that may occur in
the experiment. If a quantum computer is situated in the state �ϕ � imme-
diately before the experiment, then the probability that result m occurs is

3e.g. the operator SAT that solves the satisfiability problem and flips the target bit if
the input problem has a solution is a unitary operator
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p
�
m � � � Mm �ϕ ��� 2 and the state of the system after the measurement is

1� Mm �ϕ �P� Mm �ϕ �'�
The measurement operators must satisfy the completeness condition

∑
m

M†
mMm

� I �
Note 2.8 The definition of the observable just stated is very general and
allows us to perform so-called POVM measurements (see [NC00]). For our
purposes, it suffices that the measurement operators are orthogonal pro-
jection operators, i.e. it holds that MiM j

� δi Q jMi in addition to the com-
pleteness condition. This kind of measurement is called a projective mea-
surement. It turns out that if we can perform an additional unitary oper-
ation before the measurement, this restricted model is equivalent to the
general one.

Example 2.4 Perhaps the simplest projective measurement is the measure-
ment in the computational basis. There are two interesting observables of the
one qubit system of this type:

Oproj
� 	�� 0 �R� 0 �S
'� 1 �R� 1 �T�U


OId
� 	�� 0 �R� 0 �V0W� 1 �R� 1 �X� � 	 I �U�

Let us apply the Oproj measurement to a qubit. If the qubit is in the super-
position state α � 0 �Y0 β � 1 � where �α � 2 0��β � 2 � 1, a simple calculation yields
that the probability of observing 0 is �α � 2 and the target quantum state after
the measurement is � 0 � . Further, the probability of observing 1 is �β � 2 and
the target quantum state after the measurement is � 1 � . On the contrary, the
measurement OId leaves the quantum state untouched and it reveals no
information at all.

Composing projective measurement observables of composite systems
is straightforward. They can be composed by a tensor multiplication of
the individual measurement operators, e.g. if we want to observe only the
first qubit of two qubits, we use the observable Obit1, if we want to observe
both qubits, we use the observable Oboth:

Obit1
� 	�� 00 �R� 00 �Z04� 10 �R� 10 �T
*� 01 �*� 01 �V04� 11 �*� 11 �X�U


Oboth
� 	�� 00 �R� 00 �S
*� 01 �R� 01 �T
*� 10 �R� 10 �T
'� 11 �R� 11 �T�U�

Oboth collapses the two qubit system into a particular basis state. The be-
haviour of Obit1 is more interesting. It collapses the system into a super-
position of states consistent with the measurement outcome, leaving their
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amplitudes untouched except for rescaling. For example, if the system
was in the superposition state ∑3

i � 0 αi � i � immediately before the measure-
ment and the outcome 1 was measured, then the system will collapse to
the state 1+α1 + 2 � +α3 + 2 � α1 � 01 �60 α3 � 11 � � .
Example 2.5 An important example of an observable in other than com-
putational basis is

OHad
� 	 1

2
� � 0 �[0W� 1 � � � � 0 �Z0E� 1 � � 
 12 � � 0 �\�E� 1 � � � � 0 �8�]� 1 � � � ��_^ 1

2
5 1 1

1 1 7�
 1
2
5 1 � 1� 1 1 7<`a�

It is nothing else than a projective measurement in the basis
� � 0 �U0b� 1 � ��F C 2,� � 0 �c�E� 1 � ��F C 2. We denote it by OHad, because the conversion operator be-

tween the computational basis and this one is the Hadamard operator.

We see that measurements reveal very poor information about the orig-
inal quantum state — the quantum states form a continuum and the mea-
surement outcome is a discrete value. Unfortunately the state is disturbed
by the measurement, hence the measurement can not be repeated to reveal
more information. The (difficult) task of the quantum complexity theory is
developing quantum algorithms that yield the desired information merely
from the measurement outcomes.

Note 2.9 One of the essential problems in quantum computing is the prob-
lem of distinguishing quantum states. Having a promise that the system
is situated in one of the fixed quantum states, our task is determining the
quantum state. It turns out that doing this with probability 1 is impossible
unless the fixed states are orthogonal. It follows from the completeness
condition of the observables. This is also the reason why it is impossible
to encode reliably more than 1 classical bit into a qubit — the dimension
of the qubit vector space is 2, hence there are only two orthogonal vectors
there.

2.2 Models of Quantum Computation

Several models of quantum computation have been proposed. Each of
them is suitable for some purposes.
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2.2.1 Quantum Circuits

Perhaps the most natural model of quantum computation is a Quantum
Circuit model. The basic model has been very well described in [NC00].
The extended model (containing the unbounded quantum fan-out opera-
tion) has been investigated in [GHMP02, Moo99]. This thesis is all about
quantum circuits, and they are described in Chapter 3.

The quantum circuit model is non-uniform in principle. If we prescribe
that the sequence of quantum circuits has to be generated by a Turing Ma-
chine, we obtain a uniform version of the model.

2.2.2 Quantum Turing Machines

A Quantum Turing Machine model has been proposed in [Wat98] for the
sake of study of quantum space complexity. This model is uniform in prin-
ciple, however there exists also a non-uniform version (Quantum Turing
Machine with advice). We do not discuss this model further in this thesis.

2.2.3 Quantum Branching Programs

A Quantum Branching Program model was described independently by
many authors. In [Špa02], there is proved the equivalence with Quantum
Turing Machines in both uniform and non-uniform case and the relation
to deterministic and probabilistic branching programs. This model has a
very little inner structure, hence it is hard to write programs in it. However
it is ideal for proving lower bounds. We do not discuss this model further
in this thesis.

2.3 Approximations

Let us define some useful measures of how close are two given quantum
states. The fidelity and the trace distance are defined (for more general
mixed states) and investigated in detail in [NC00]. However, here we limit
ourselves to consider pure states only.

Definition 2.2 Let �ϕ � and �ψ � be pure quantum states. The fidelity of the
states is defined by F

� �ϕ �'
*�ψ � � � �d� ϕ �ψ ��� . The trace distance of the states

is defined by D
� �ϕ �'
*�ψ � � �fe 1 � F

� �ϕ �'
*�ψ � � 2. The Euclidean distance of the
states is defined by �2�ϕ �g�h�ψ �P� .
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Note 2.10 The fidelity and the trace distance are numbers in interval � 0 
 1 � .
The trace distance and the Euclidean distance are equivalent metrics, i.e.
if one goes to zero, so does the other one. The fidelity can be regarded as
a cosinus of the angle between two vectors.

Definition 2.3 We say that unitary operator V approximates U with error ε
iff, for every pure quantum state, the Euclidean distance of applying U to
the state and V to the state is at most ε. We measure the distance in the
Hilbert space that includes the source/target qubits and the ancilla qubits.
We define the error of approximation by E

�
U 
 V � � max +ψ , � � U � V � �ψ ��� .

Theorem 2.1 Let V be an approximate operator operating on n qubits, that
achieves precision ε for each computational basis state. Then V is an ap-
proximate operator with precision ε i 2n H 2. The expected precision for a
random superposition state stays O

�
ε � .

Proof. Let 	�� xk �j� 2n " 1
k � 0 be the computational basis. The state � ỹk � � V � xk � is an

approximation of the desired state � yk � with precision ε, i.e. �2� ỹk �g�h� yk ���@ 
ε. Let � x � � ∑2n " 1

k � 0 αk � xk � be a general superposition state. Using linearity
of unitary operators, the arithmetical-quadratical inequality, and the fact
that ∑k α2

k
� 1, it holds that:�2� ỹ �g�h� y �P� � � ∑

k
αk � ỹk �g� ∑

k
αk � yk ��� � � ∑

k
αk
� � ỹk �\�h� yk � � � ∑

k
�αk �Si[�k� ỹk �g�h� yk ���@ ε i ∑

k
�αk � � 2nε i ∑2n " 1

k � 0 �αk �
2n 2nε i@l ∑k �αk � 2

2n
� 2nε i l 1

2n
� 2n H 2ε �

However the expected precision will be also O
�
ε � . Let Xk be a complex

random vector describing the error of the approximation � ỹk �m�W� yk � . Let
X � ∑2n " 1

k � 0 αkXk be the total error of the approximation. Let us assume that# all random variables Xk have the same distribution,# they are independent,# and their expected value is zero, i.e. EXk
� 0.

Since � Xk �@ ε, the variance varXk is bounded by O n ε2 o . From Central
Limit Theorem, X has approximately normal distribution. It is easy to see,
that EX � ∑k αk i EXk

� 0 and varX � ∑k �αk � 2 varXk
� varXk. Let us estimate

the expected value of X . Using Chebychev’s inequality, P pq� X � EX �@!
λ i C varX r\ 1 F λ2, i.e. P p.� X �@! λε r� 1 F λ2. s
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Chapter 3

Quantum Circuits with fan-out

3.1 Survey of existing circuit classes

There exist four basic models of classical circuits. All models comprise
AND, OR, and NOT logical gates and the so-called unbounded fan-out
operation.# NCk comprises fan-in 2 gates and the circuit has depth O n logk n o ,# ACk comprises unbounded fan-in gates,# ACCk p q r comprises the modulo q gate in addition, and ACCk is the

union of all such classes ACCk ��t
q u N ACCk p q r ,# TCk comprises the unbounded fan-in linear threshold gate (see Defi-

nition 7.2).

Obviously NCk v ACk v ACCk p q r v ACCk and ACk v TCk.
The following models of quantum circuits have been previously de-

fined in [Moo99].# QNCk comprises arbitrary one qubit gates and the controlled NOT
gate,# QACk comprises the general Toffoli gate in addition (the NOT oper-
ation controlled by a logical conjunction of unbounded number of
source qubits),# QACCk comprises the unbounded quantum fan-out gate in addition,# QTCk comprises arbitrary one qubit gates and the unbounded fan-in
linear threshold gate.

15
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Obviously QNCk v QACk v QACCk and QACk v QTCk.
However a model comprising arbitrary one qubit gates and the quan-

tum fan-out gate (and not including explicitly the Toffoli gate) has not yet
been explored. We shall investigate it and show its relation to existing
quantum circuit models.

3.2 Motivation

Taking into account the unbounded fan-out operation is kind of natural
due to the following observation. From a physical framework, it follows,
that commuting quantum operations can possibly be performed at the
same time — if two quantum operations commute, so do their Hamiltoni-
ans and we can perform the joint operation by simply performing either
evolutions at the same time.

In particular, the quantum fan-out operation is a bunch of controlled
NOT operations operating on the same source qubit. We can imagine that
the bunch of target qubits can be evolved at the same time using a shared
external power.

It turns out that the capability of performing the quantum fan-out oper-
ation in constant depth is strong enough to simulate a general set of com-
muting operations. If we neglect the change of basis (see Theorem 4.1),
then the depth of the parallel circuit is approximately equal to the maxi-
mal depth of an operation. This is an argument for the inner consistency
of the model.

3.3 Quantum fan-out operation

First of all, notice that quantum circuits can not involve a naive quantum
counterpart of the classical fan-out operation performing� φ ��� 0 �8w n � � φ �8w � n � 1 � 
 (3.1)

for a general superposition state � φ � . This operation is indeed physically
infeasible, because of the no-cloning theorem (see [NC00]). Notice, that it
is not linear, let alone unitary. However a modified quantum fan-out op-
eration can be defined. It performs exactly (3.1) for each computational
basis state � φ �x�9	�� 0 �'
*� 1 �j� and the effect on superposition states � φ � is deter-
mined by linearity. The quantum fan-out operation can be also regarded
as a bunch of controlled NOT operations sharing the source qubit.
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Figure 3.1: Design of a Quantum Circuit with unbounded fan-out

Definition 3.1 A quantum fan-out operation on source qubit s and n target
qubits tk performs (written in the computational basis)� s � ny

k � 1

� tk �z� � s � ny
k � 1

� � tk 0 s � mod2 �
for computational basis states and the behaviour for superposition states
is defined by linearity.

Definition 3.2 A Quantum Circuit with unbounded fan-out is a quantum cir-
cuit consisting of arbitrary one qubit gates and quantum fan-out gates.
The fan-out gate of arbitrary size is regarded as a unit depth element.

Definition 3.3 The depth of the circuit is defined recursively in usual way:
Input qubits are considered to have depth 0. For each gate G, the depth of
G is equal to 1 plus the maximal depth of a gate G depends on. The depth
of the circuit is equal to the maximal depth of a gate. We define the size of
the circuit to be the total number of gates.

Quantum circuits of depth d operating on s qubits can be represented
by a rectangular grid having s horizontal lines (representing states of the
qubits) and d consecutive columns (layers). In each layer, we can either
perform an arbitrary one qubit operation on a qubit or perform a quantum
fan-out operation on a subset of qubits. However each qubit takes part in
at most one operation in a layer. Look at the first two layers of the example
in Figure 3.1.

In the beginning of the computation, all qubits except for the input
ones are initialised to � 0 � . The computation proceeds in computational
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steps corresponding to the layers of the circuit. At the end of the computa-
tion, the qubits are observed in the computational basis. The values of the
qubits denote the output of the problem. For decision problems, an input
is accepted/rejected according to the value of some qubit.

Definition 3.4 We define QNCk
f to be the class of problems solvable by

families of Quantum Circuits with unbounded fan-out of depth O n logk n o
and size polynomial in n, where n is the input size. We also define QNCf

�t
k u N QNCk

f .

Note 3.1 Every quantum operation of a fixed size n can be decomposed
into a sequence of arbitrary one qubit operations and controlled NOT op-
erations (which is a special case of the fan-out operation) of length O n n34n o
using the methods described in [BBC � 95]. Hence the power of QNCk

f is
unchanged if we allow these operations in addition (for a fixed n). Es-
pecially the following operations are useful: the fan-in 2 Toffoli gate (the
controlled controlled NOT computing a logical AND), and an arbitrary
controlled one qubit operation.

3.4 Quantum parity operation

Let us investigate a natural counterpart of the quantum fan-out operation.
It is also a bunch of controlled NOT operations, but it shares the target
qubit. Having the target qubit initialised to � 0 � , it computes the parity of
x1 
������)
 xn.

Definition 3.5 A quantum parity operation on n source qubits sk and target
qubit t performs (written in the computational basis)� t � ny

k � 1

� sk �z� � � t 0 n

∑
k � 1

sk � mod2 � ny
k � 1

� sk �
for computational basis states and the behaviour for superposition states
is defined by linearity.

Theorem 3.1 [Moo99] The parity operation is equivalent to the fan-out op-
eration — if one of them can be performed in constant depth, so can the
other one.

Proof. First of all, let us state a remarkable relation — if we precede and
succeed the controlled NOT operation by Hadamard operations on both
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Figure 3.2: Equivalence of the fan-out and parity gates

qubits, the direction of the controlled NOT operation is reverted. Let H
denote the Hadamard operation and Ck Q l denote the NOT operation per-
formed on l-th qubit controlled by the k-th qubit. It holds that�

H | H � i C0 Q 1 i � H | H � � C1 Q 0 �
This equation can be verified by simply multiplying the matrix represen-
tations of the operators (in the computational basis 	�� 00 �'
*� 01 �'
*� 10 �'
*� 11 �j� ,
where bits are numbered in the order � x � � � x1x0 � ):

H � 1-
2
5 1 1

1 � 1 7 
 H | H � 1
2
IKKL 1 1 1 1

1 � 1 1 � 1
1 1 � 1 � 1
1 � 1 � 1 1

M*NNO 

C0 Q 1 � IKKL 1 0 0 0

0 0 0 1
0 0 1 0
0 1 0 0

M*NNO 
 C1 Q 0 � IKKL 1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

M*NNO 

C0 Q 1 i � H | H � � 1

2
IKKL 1 1 1 1

1 � 1 � 1 1
1 1 � 1 � 1
1 � 1 1 � 1

M NNO
�
H | H � i C0 Q 1 i � H | H � � 1

4
IKKL 4 0 0 0

0 4 0 0
0 0 0 4
0 0 4 0

M*NNO � C1 Q 0 �
Let us implement the parity operation in constant depth using the fan-

out operation and Hadamard operations. The converse simulation is sim-
ilar. The progress is sketched in Figure 3.2. We first decompose the parity
operation into a bunch of controlled NOT operations. We then revert all
of them and precede and succeed them by Hadamard operations, which
leaves the global operation unchanged. Since two consecutive Hadamard
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operations cancel, we obtain a new bunch of controlled operations form-
ing the fan-out operation. The overhead of this simulation is just adding
two layers. s
Note 3.2 From the equivalence of the fan-out and parity gates, it is not
important which one is included in the definition. The QNCk

f class can
be regarded as QNCk with the unbounded fan-out gate or equivalently as
QNCk with the unbounded parity gate.

3.5 Generalised quantum operations

In this section, we shall outline that even if we allow somehow stronger
primitive operations, we would not obtain a stronger model. That is, every
circuit using the stronger operations can be simulated by a quantum circuit
with fan-out at low cost.

Theorem 3.2 The power of QNCk
f is unchanged if we allow an arbitrary

number of fan-out and parity operations on a qubit in a layer (like those in
the 3rd layer of the example in Figure 3.1). With the only restriction, that
each qubit is either always a source qubit or always a target qubit.

Let S be the set of source qubits and T be the set of target qubits in
the layer. Let n � #S 0 #T . The layer can be then simulated by a quantum
circuit with fan-out having 5 layers and using O n n2 o ancilla qubits.

Proof. We first rewrite quantum operations in the layer in such a way that
each target qubit is modified by at most one operation. For each target
qubit t � T , we compose a parity operation equivalent to the set of original
operations concerning it. This is always possible since the total effect of
applying more parity and fan-out operations on the same target qubit is
always another parity operation. We obtain #T � O

�
n � optimised parity

gates. The simulation then works in this way:

1. A fan-out operation of appropriate size is performed on each source
qubit s � S (the number of target qubits ts is equal to the number of
parity operations the qubit s controls). This is the place where the
∑s u S ts  ∑s u S #T � #S i #T � O n n2 o ancilla qubits are allocated (and
initialised to � 0 � ).

2. The optimised parity gates are then applied on target qubits T . The
source qubits of these gates will not overlap, since we have fanned
them out. Hence they can be performed in parallel. Recall that this
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indeed costs 3 layers since the parity operation is simulated by the
fan-out operation and Hadamard operations.

3. Ancilla qubits are erased by applying the fan-out operations again.
This clears the ancilla qubits for a future use, since the fan-out oper-
ation is its own inversion.

The constructed quantum circuit with fan-out has 5 layers and uses
O n n2 o ancilla qubits. s
Definition 3.6 Let 	 Vk � n

k � 1 be arbitrary one qubit operations. A generalised
quantum fan-out operation on source qubit s and n target qubits tk is the
operator mapping a computational basis input state� s � ny

k � 1

� tk �z� � s � ny
k � 1

V s
k � tk �'�

The behaviour for superposition states is defined by linearity.

Definition 3.7 Let 	 Vk � n
k � 1 be arbitrary commuting one qubit operations.

A generalised quantum parity operation on n source qubits sk and target qubit
t is the operator mapping a computational basis input state� t � ny

k � 1

� sk �}� ~ n

∏
k � 1

V sk
k � � t �6| ny

k � 1

� sk �'�
The behaviour for superposition states is defined by linearity.

Note 3.3 The original quantum fan-out/parity operations are just special
cases of these generalised operations. It suffices to use the bit flip X as Vk.

Theorem 3.3 The power of QNCk
f is unchanged if we allow the generalised

quantum fan-out operation (like that in the 4th layer of the example in
Figure 3.1). Every such operation can be simulated by a quantum circuit
with fan-out having 5 layers and using no additional ancilla qubits.

Proof. It is well known that every controlled one qubit operation U can
be decomposed into a circuit consisting of one qubit operations A, B, and
C, a phase change P, and two controlled NOT operations. The circuit is
outlined in Figure 3.3 and examined in [NC00].

If we are to implement the generalised fan-out operation, we simply
repeat the bottom line for each target qubit. Either controlled NOT opera-
tions will be replaced by quantum fan-out operations. The phase changes
multiply into P � P1 i8i�i Pn. s
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U A B C

P{
Figure 3.3: Implementing an arbitrary controlled one qubit operation

Note 3.4 We have demonstrated the implementation of the generalised
fan-out operation. There exists also an implementation of the generalised
parity operation. Moreover, both these generalised quantum operations
can be also parallelised at low cost under the restriction described in The-
orem 3.2, assuming that the one qubit operations Vk commute — like at the
5th layer of the example in Figure 3.1.

However performing more general operations on a qubit in the same
layer is not so straightforward as composing parity operations, hence a
more sophisticated parallelisation method is needed. We shall demon-
strate it in Theorem 4.3.

Using Theorem 4.3, let us formulate an equivalent definition of Quan-
tum Circuits with unbounded fan-out.

Definition 3.8 A Quantum Circuit with unbounded fan-out is a quantum cir-
cuit consisting of layers. In each layer, an arbitrary number of generalised
fan-out and parity operations can be performed. It must hold, that each
qubit is either always a source qubit or always a target qubit in a layer.
Furthermore, unitary operations performed on a target qubit in a layer
must commute.



Chapter 4

Parallelisation method

In this chapter, we shall show that the capability of performing the un-
bounded quantum fan-out operation in constant depth is sufficient for be-
ing able to perform a much more general task: an arbitrary number of
(possibly controlled) commuting operations operating on the same qubits
can be performed at the same time in the model of Quantum Circuits with
unbounded fan-out at the price of bigger space complexity.

4.1 Parallelising commuting operations

Let us have n commuting unitary operators U1, U2, . . . , Un operating on k
qubits, i.e. UiU j

� U jUi for every i 
 j. We also have n other control qubits
such, that qubit xi controls, whether Ui is performed. We want to apply
all given operators on target qubits. An obvious way is applying them
in serial, as shown in Figure 4.1. However since the operators commute,
there exists a smarter circuit applying them in parallel.

U1 U2 Un. . .

. . .n

k

Figure 4.1: A serial circuit performing U � ∏n
i � 1 U xi

i

23
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. . .n

k . . .T †

V1

U1 TT T †

V2

U2 T T †

Vn

Un T T †

Figure 4.2: A serial circuit with interpolated changes of basis

It is well known that if two operators commute, then they are diago-
nal in the same basis (see Theorem 4.2). Let D � 	�� d j �j� 2k " 1

j � 0 be a basis in

which each Ui is diagonal, i.e. Ui
� ∑2k " 1

j � 0 ui Q j � d j �R� d j � , and B � 	�� j �j� 2k " 1
j � 0 be

the computational basis. Let T � ∑2k " 1
j � 0 � j �R� d j � be the conversion operator

from D to B. Then the operator Vi
� TUiT † is unitary and diagonal in the

computational basis, since

Vi � j � � TUiT † � j � � TUi � d j � � ui Q jT � d j � � ui Q j � j �'�
Since T and T † are inverses of each other, we can convert the circuit from
Figure 4.1 into an equivalent circuit shown in Figure 4.2. It is obvious,
that TU xi

i T † � V xi
i . Notice, that the latter circuit can be regarded as another

instance of the former one — it is also a sequence of controlled operations
Vi having the target qubits pre-processed and post-processed. However
the operators Vi used now are diagonal in the computational basis.

A diagonal unitary operator consists just of phase shifts, because ev-
ery coefficient in the diagonal is a complex unit. Furthermore, applying
multiple phase shifts on a qubit can be parallelised by using the following
trick:

1. Apply the fan-out operation on a qubit to “copy” the state.

2. Apply each phase shift on a distinct “copy”.

3. By applying the fan-out operation again, clear the ancilla qubits.

The intrinsics of this method is the fact that the phase shifts multiply.
At one moment, the amplitude of every computational basis state in the
superposition is multiplied by all phase shifts of the individual qubits.
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Figure 4.3: A parallelised circuit performing U � T † � ∏n
i � 1V xi

i � T
This method can be readily modified for a bunch of qubits. We first

copy all target qubits using the fan-out operation, then apply the opera-
tors Vi (which perform exactly phase shifts, because they are diagonal in
the same basis as the fan-out operation works in, i.e. the computational
basis), and finally clear the ancilla qubits. A circuit doing this is shown in
Figure 4.3.

Let us prove the correctness of the method. In the beginning, the target
qubits are in a general state �ψ � � ∑2k " 1

j � 0 α j � j � and the ancilla qubits are
cleared in the basis state � 0 � . Let us suppose w.l.o.g. the control qubits xi
are not in a superposition. Then the correctness for superposition states
follows from linearity. The states of the system at individual stages of the
computation are: �ψ �6|4� 0 � w � n " 1 �� ∑ j α j � j �6|4� 0 � w � n " 1 �

fan-out � ∑ j α j � j � w n� ∑ j α j � n
i � 1 � j �

Vi performed � ∑ j α j � iV
xi
i � j �

(Vi is diagonal) � ∑ j α j � i vxi
i Q j � j �

(phase shifts multiply) � ∑ j α j � Πiv
xi
i Q j � � i � j �� ∑ j α j � Πiv
xi
i Q j � � j � w n

fan-out � � ∑ j α j � Πiv
xi
i Q j � � j � � |4� 0 � w � n " 1 �

(Vi is diagonal) � n ∑ j α j
�
ΠiV

xi
i � � j � o |4� 0 � w � n " 1 �

(moving out) � �
ΠiV

xi
i � ∑ j α j � j �6|4� 0 � w � n " 1 �� �

ΠiV
xi
i � �ψ �[|4� 0 � w � n " 1 � �

We see that not only the product of Vi’s has been performed, but also
the ancilla qubits have been cleared and thus they can be reused.
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Theorem 4.1 Let U1, U2, . . . , Un be commuting unitary operators operating
on k qubits. Each operation Ui can be controlled by another qubit xi. Let
D be a basis in which all the operators are diagonal. Let T be a circuit
performing a change of basis from D to the computational basis. Then
there exists a quantum circuit U with fan-out performing ∏n

i � 1U xi
i having

depth
depth

�
U � � max

i � 1 Q 2 Q�������Q n depth
�
Ui � 0 4 i depth

�
T � 0 2

and using
�
n � 1 � k ancilla qubits.

Proof. Straightforward using the method described above. The depth of
the parallelised sub-circuit V is equal to the depth of the deepest Vi plus 2
for the fan-outs. Vi is built from the circuit performing Ui and the circuits
T 
 T † changing the basis. The desired circuit U consists of V and the circuits
T 
 T † again. s

A simpler version of this method has been published in [Moo99]. They
considered equal operators U1

� U2
� �8��� � Un, hence they did not arrive

to the restriction of commutativity. Finding a basis, in which U1 is diago-
nal, and changing the basis come from that article. The generalisation is
original.

For clarity, it remains to show the existence of a proper basis D.

Theorem 4.2 Let U � 	 U1 
 U2 
����8��
 Un � be a set of commuting unitary oper-
ators operating on a vector space V . Then there exists a basis D � 	�� d j �j� j
of V such, that all the operators are diagonal in D, i.e. Ui

� ∑ j ui Q j � d j �R� d j � .
Proof. We shall constructively form the basis D using mathematical induc-
tion.

Let e
�
i � be the number of distinct eigen-values of Ui, λi Q k be the k-th

eigen-value of Ui, v
�
i 
 k � be the dimension of the vector space of eigen-

vectors corresponding to the eigen-value λi Q k, and � vi Q k Q l � be the correspond-
ing eigen-vector. Let Li Q k � L

� 	�� vi Q k Q l ��� v � i Q k �
l � 1 � be the vector subspace spanned

by eigen-vectors of Ui corresponding to the eigen-value λi Q k. Notice that
every vector in Li Q k is also an eigen-vector of Ui.

We have the following task: getting a vector space V and a set of uni-
tary operators U, we are to return a basis D of V such, that each Ui � U is
diagonal in the basis D, i.e. the elements of D are eigen-vectors of each Ui.
Let n � #U.

i. If n � 0, find any basis of V (using standard methods) and return it.
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ii. If n � 0, we first decompose Un on its eigen-values:

Un
� e � n �

∑
k � 1

λn Q k ~ v � n Q k �
∑
l � 1

� vn Q k Q l �R� vn Q k Q l � � �
From the commutativity

�q�
i � UnUi

� UiUn, it holds that���
i � Un

�
Ui � vn Q k Q l � � � UiUn � vn Q k Q l � � λn Q k � Ui � vn Q k Q l � ��}� Ui � vn Q k Q l ��� Ln Q k�}� Ui n Ln Q k okv Ln Q k �

(From the unitarity of Ui, the last inclusion is indeed an equality.)
We have decomposed the vector space V into a tensor product of or-

thogonal vector subspaces V � � e � n �
k � 1 Ln Q k in such a way, that Ln Q k is closed

for each operator Ui and every vector � v �&� Ln Q k is an eigen-vector of Un.
If there exist bases D1, D2, . . . , De � n � of these subspaces such that each

operator Ui � U �;	 Un � is diagonal in all of them (when restricted to the
appropriate subspace), then the set D � t e � n �

k � 1 Dk is the desired base: it is
obviously a base and each vector � d j ��� D is an eigen-vector of each oper-
ator Ui. The existence of the smaller bases follows from mathematical in-
duction — since the subspaces are orthogonal, it suffices to find the bases
Dk separately.

(A not important, but perhaps illuminating note: in most cases, the
subspaces Ln Q k will degenerate very fast into one dimension and stay such
until n � 0.) s

A cumbersome proof for the special case of n � 2 operators has been
published in [NC00, page 77]. This generalisation is original.

Note 4.1 The operators Ui need not be controlled. If Ui is always per-
formed, just replace the control qubit xi by 1 at proper places. The method
and the proof remain the same.

Note 4.2 The operators Ui need not operate on all k target qubits. If Ui
operates on a subset of the qubits, it can be simply regarded as a larger
operator operating on all k qubits and not touching some of them.

4.2 Application to one qubit operators

In Note 3.4, we have mentioned that allowing overlapping commutative
generalised quantum fan-out and parity operations does not change the
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power of QNCk
f . However we have proved it only for some special cases

(in Theorem 3.2 and Theorem 3.3). Let us use the parallelisation method
and prove a more general theorem.

Theorem 4.3 Let B be an arbitrary bunch of (possibly overlapping) com-
mutative generalised fan-out and parity operations operating on n qubits.
The operations must fulfil the requirement stated in Theorem 3.2, i.e. each
qubit is either always a source qubit or always a target qubit.

Let S be the set of source qubits and T be the set of target qubits in
the layer. Let n � #S 0 #T . Then B can be simulated by a quantum circuit
F with fan-out having 9 layers and using O n n2 o ancilla qubits. F has no
overlapping operations.

Proof. Straightforward from the presented theorems using the following
method:

1. For each target qubit t � T , find a basis in which all applied one
qubit operations are diagonal. Since we allow performing an arbi-
trary quantum operation on a qubit in 1 layer, the changes of basis
cost 2 layers.

2. Browse the generalised fan-out and parity operations and, for each
source qubit s � S, construct a list of one qubit operations controlled
by it (if two operations are applied on the same target qubit, we
multiply them) of length ts. There are #S � O

�
n � lists of lengths

ts  #T � O
�
n � .

3. “Copy” each target qubit using the fan-out operation. This costs 2
layers and uses #S i #T � O n n2 o ancilla qubits.

4. For each source qubit, perform the generalised fan-out operation on
some copy of the target qubits (using the method described in Theo-
rem 3.3). Since we have “copied” the target qubits, we can do this in
parallel. It costs 5 layers.

The correctness follows from the parallelisation method. It is slightly
simplified, since the change of basis is performed only twice (because the
inner diagonal one qubit operation can be performed directly).

The total overhead of the simulation is: constant depth overhead and
quadratic width overhead. The simulation does not significantly change
the complexity of the circuit according to Definition 3.4. If we allow over-
lapping commutative generalised quantum operations in one layer, we do
not change the power of QNCk

f . s



Chapter 5

Quantum Fourier Transform

5.1 Definition and decomposition

Definition 5.1 A Quantum Fourier Transform (QFT) on n qubits is the fol-
lowing operator (written in the computational basis):

F � 1
2n H 2 2n " 1

∑
t � 0

� t � 2n " 1

∑
s � 0

ξts � s �T
 (5.1)

where ξ � e2πi H 2n
is the 2n-th complex root of unity.

Lemma 5.1 The inverse QFT F† is defined by equation (5.1) for ξ � e " 2πi H 2n
.

Proof. To verify that F† is indeed the inverse of F , we check whether
FF† is the identity, i.e. � t �FF† � s � � δt Q s. From the definition, � t �FF† � s � �
2 " n ∑2n " 1

k � 0 ξ � t " s � k. If t � s, then the sum equals ∑2n " 1
k � 0 ξ0 � 2n. Otherwise

2n " 1

∑
k � 0

�
ξt " s � k � �

ξt " s � 2n � 1
ξt " s � 1

� �
e2πi � t " s � 1
ξt " s � 1

� 1t " s � 1
ξt " s � 1

� 0 � s
Note 5.1 The Quantum Fourier Transform is a quantum analogue of the
Fourier Transform. It, however, operates on quantum amplitudes of the
computational states. As presented, it is not usable for performing the
Fourier Transform on a given array of numbers.

The representation of F in the computational basis is indeed the Van-
dermond matrix of numbers 1 
 ξ 
 ξ2 
��8���8
 ξ2n " 1.

29
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Let us infer an efficient method of performing the QFT. Let � x � be a
computational basis state, i.e. x is not in a superposition. We shall show
that the output qubits of F � x � are not entangled and each of them can be
conveyed by a simple formulae.

Theorem 5.2 [GN96, CEMM98] Let xn " 1 ���8� x1x0 be the binary representa-
tion of x, i.e. qubits are ordered in descending order from the most signifi-
cant one. Then

F � x � � 1
2n H 2 n " 1y

b � 0
� � 0 �60 e2πi x H 2b � 1 � 1 � � � n " 1y

b � 0

� 0 �60 e2πi � 0 � xb ����� x1x0 � � 1 �C
2

� (5.2)

Proof. Since exponents are in the form 2πi i z, only the value zmod1 is sig-
nificant. Furthermore, x F 2b � 1 � �

0 � xb ����� x1x0 � � mod1 � . Let y � yn " 1 ����� y1y0.
Let us compute � y �F � x � and compare it with the desired value:� y �F � x � � � � yn " 1 �Z������� y1 �d� y0 � � F � x � � ~ n " 1y

b � 0

� yn " 1 " b � � F � x �� 1
2n H 2 ~ n " 1y

b � 0

� yn " 1 " b � � ~ n " 1y
b � 0

� � 0 �[0 e2πi x H 2b � 1 � 1 � � �� 1
2n H 2 n " 1

∏
b � 0

exp
�
2πi i yn " 1 " b i x F 2b � 1 �� 1

2n H 2 exp ~ 2πi i n " 1

∑
b � 0

yn " 1 " b i x F 2b � 1 � (let b � n � 1 � c)� 1
2n H 2 exp ~ 2πi i x i n " 1

∑
c � 0

yc F 2n " c � � 1
2n H 2 exp ~ 2πi i x F 2n i n " 1

∑
c � 0

2cyc �� 1
2n H 2 exp

�
2πi i yx F 2n � � ξyx

2n H 2 

which is the desired value. s

Having inferred this remarkable result, there have been constructed
several interesting circuits performing the QFT. The space complexity can
be traded-off with the depth of the circuit and with the precision achieved.

Henceforth, let � µ0 � xk ����� x1x0 � � � � 0 �[0 e2πi � 0 � xk ����� x1x0 � � 1 � ��F C 2.
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H

H

H

H

H

A
xn � 1 BA
xn � 2 BA
x0 B. . .

A
y0 BA
y1 BA
yn � 1 B. . .

controlled rotations

Figure 5.1: The basic narrow circuit performing the QFT

5.2 Basic narrow circuit

Perhaps the best known is the circuit described in [Sho94]. It needs no
ancilla qubits, since it operates directly on the source qubits.

Theorem 5.3 The QFT on n qubits can be implemented exactly by a quan-
tum circuit of depth O n n2 o using no ancilla qubits.

Proof. The circuit is sketched in Figure 5.1. The Hadamard operation
turns a computational basis state � xb � into

� � 0 �g0 � � 1 � xb � 1 � ��F C 2 � � µ0 � xb � .
The two qubit gate operating on the t-th and the s-th qubit is the controlled
rotation gate Rc

z
�
π F 2 + t " s + � . It is represented in the computational basis by

the following matrix:

Rz
�
α � � � 0 �R� 0 �Z0 eiα � 1 �R� 1 � � 5 1 0

0 eiα 7 

Rc

z
�
α � � IKKL 1 0 0 0

0 1 0 0
0 0 1 0
0 0 0 eiα

M*NNO � (controlled version)

Notice that Rc
z is a symmetric gate, that is why the orientation of the gate is

not marked in the figure. Consecutive rotations multiply, hence the overall
rotation yielded by the b-th qubit is e2πi � 0 � xbxb � 1 ����� x1x0 � , which is exactly what
is needed.

It is obvious that the presented circuit has depth O n n2 o . s
Note 5.2 If the quantum fan-out operation is allowed, the depth of the
circuit can be decreased to O

�
n � . Since the rotations commute, each of the

n blocks of controlled rotations can be parallelised into a constant depth
circuit. However the parallelisation needs O n n2 o ancilla qubits.
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Let us present also an approximate version of this circuit. It is a circuit
where rotations by phases smaller than a given threshold δ are omitted.
For each qubit, only O

�
log

�
1 F δ �8� rotations are performed, hence the depth

is linear even in the QNC model. The error of the circuit will be investi-
gated later.

5.3 Decomposition of QFT

Definition 5.2 A quantum Fourier state computation (QFS) is any unitary op-
eration mapping (5.3) for each computational basis state � x � . A quantum
Fourier phase computation (QFP) is any unitary operation mapping (5.4) for
each computational basis state � x � .� x �@� 0 ��� � x � � F � x � � (5.3)�

F � x � � � 0 ��� �
F � x � � � x � (5.4)� y ��� 0 ��� � y � � F† � y � � (5.5)

Note 5.3 Notice that equation (5.3) holds only for computational basis in-
put states � x � . The behaviour of QFS on superposition states is defined by
linearity and it does not fulfil equation (5.3)! If QFS has mapped all su-
perposition states � x0 � by � x0 ��� 0 �}� � x0 � � F � x0 � � , then, by applying F† on the
second part of the state, we would be able to yield � x0 ��� x0 � , i.e. copy an
unknown quantum state. This would violate the no-cloning theorem.

It turns out that equation (5.3) is fulfilled for no superposition state. If
there exists a superposition state �ϕ � , that is mapped in such a way, then
we would be able to copy exactly at least 2n 0 1 distinct quantum states (all
computational basis states and �ϕ � ). By repeating quantum measurements
on several copies, we would be able to distinguish between them. How-
ever this is feasible only only for members of a fixed orthogonal set. Every
orthogonal set on n qubits contains at most 2n vectors.

The QFP has been defined by equation (5.4). Let us substitute � y � � F � x � ,
thus also � x � � F† � y � . It is tempting to define QFP by a similar equa-
tion (5.5), because this resembles equation (5.3) of the QFS more. It would
be correct iff we declare � y � to be a Fourier basis state. However the map-
ping defined by equation (5.5) for computational basis states � y � is not the
QFP — it follows from the previous paragraph and it can be also verified
on a simple counterexample.

Theorem 5.4 [CW00] The QFT can be computed by composing the QFS
and the inverse of the QFP.
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A
xb BA
x0 B. . .

A
xb BA
x0 B. . .

A
0b B A

0b BA
0 B A

yn � 1 � b B

Figure 5.2: The parallelised shallow circuit computing an output qubit of
the QFS

Proof. Straightforward: � x �@� 0 �>� � x � � F � x � � � � 0 � � F � x � � . Notice that the QFP
is applied on registers in reverse order. s

This method requires Θ
�
n � ancilla qubits to store intermediate results.

If we can use them, we can compute the QFT by composing the QFS and
the QFP. It turns out that shallower circuits can be achieved using this
decomposition.

5.4 Parallelising QFS

Let � x � be a computational basis state. The mapping QFS is defined by
equation (5.3). Remember, that F can be decomposed using equation (5.2).
Output qubits of F can be computed in parallel, since they are completely
independent. It is only needed to preserve the values of source qubits,
which is not a problem, because the results are stored into target qubits.
From equation (5.2), each output qubit can be obtained by simply applying
a sequence of rotations controlled by source qubits.

Theorem 5.5 The QFS on n qubits can be computed exactly by a quantum
circuit with fan-out of constant depth and using O n n2 o ancilla qubits.

Proof. In Figure 5.2, there is outlined a quantum circuit with fan-out com-
puting the output qubit � yn " 1 " b � � � µ0 � xb ����� x1x0 � � � � 0 �U0 e2πi � 0 � xb ����� x1x0 � � 1 � ��F C 2.
It follows from the parallelisation method introduced in Chapter 4. After
the Hadamard operation is applied on the target qubit, it is copied by the
fan-out operation. The controlled rotations are then applied and, finally,
the ancilla qubits are cleared. The ensemble of the controlled rotations
yields the desired output qubit � yn " 1 " b � .
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To obtain all output qubits of the QFS in parallel, we first need to copy
source qubits using the fan-out operation (since each source qubit controls
O
�
n � rotations). We then substitute the circuit from Figure 5.2 at appro-

priate places (they can overlap in the first layer). The total cost is O n n2 o
ancilla qubits and 4 layers. The presented circuit is exact (however, only
if we are able to perform the controlled rotations exactly, which can be a
problem for large n). s
Corollary 5.6 QFS � QNC0

f . Since the fan-out n operation can be trivially
simulated by a binary tree of controlled NOT operations of depth O

�
logn � ,

also QFS � QNC1.

The approximate version of the QFS can be performed by simply omit-
ting rotations by small phases, as it was done for the former circuit. To
achieve precision ε of the circuit, the threshold δ � ε F C n should be chosen.
The pruned circuit has depth O

�
loglog

�
n F ε �8� and size O

�
n i log

�
n F ε ��� .

5.5 Implementing QFP

Having implemented QFS very easily in constant depth, one would ex-
pect the same for QFP.1 If we succeed, then also QFT could be performed
in constant depth. Unfortunately QFP seems to be much more difficult
than QFS. Although we have no exact proof, we can present some clues
concerning the approximate computation:

There exists an approximate circuit performing the QFS with arbitrary
precision ε. Each output qubit depends on only O

�
log

�
n F ε �8� input qubits

in the circuit. If there exists a similar circuit approximating the QFP, then
also the QFT could be approximated well (because the errors of consec-
utive operations are just summed) even if it ignores some input qubits.
However it can be proved that to approximate the QFT well enough, all
input qubits must be read.

Before we present this analysis, let us summarise, what is known about
implementations of the QFP. It is an open problem whether there exists
an exact circuit of depth O

�
logn � performing the QFP (in both models

with/without fan-out). However, in [CW00], there has been published
a quantum circuit of depth O

�
logn 0 log log

�
1 F ε ��� and size O

�
n i log

�
n F ε ��� ,

1The author of this thesis believed for several weeks, that the QFP is like the QFS.
We mistook equation (5.5) instead of (5.4), and implemented the QFP by a similar circuit
(using Lemma 5.1, it suffices to negate angles of controlled rotations). It is shown in
Note 5.3 that this approach is wrong.
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which performs the approximate QFP on n qubits with precision ε. The
circuit is rather complicated (in comparison with circuits defined here). It
is a classical quantum circuit without fan-out. Hence, for exponentially
small error ε � 2 " O � n � , the QFP can be approximated in QNC1. The size of
the circuit is the smallest for polynomially small error ε � 1 F O �

p
�
n ��� .

Theorem 5.7 [CW00] The QFP on n qubits can be approximated with pre-
cision ε by a quantum circuit having depth O

�
logn 0 loglog

�
1 F ε ��� and size

O
�
n i log

�
n F ε ��� .

Proof. Let us just outline the method. For details, read the article. Let
us assume � y � is a Fourier basis state, i.e. � y � � F � x � for a computational
basis state � x � . Again, the correctness for superposition states follows from
linearity.

1. It first copies exactly the input Fourier basis state � y � by a so-called
reversible prefix addition. This is possible in principle, since the
Fourier basis is orthogonal.

The description of the reversible prefix addition is beyond the scope
of this document. For our purposes, it is only important, that it be-
haves like the controlled NOT for computational basis states.

2. Having constructed many copies of � y � , it estimates statistically the
computational basis output state � x � � F† � y � and stores it into the sec-
ond register. The estimation proceeds as follows.# The

�
n � 1 � b � -th qubit of � y � � F � x � equals� yn " 1 " b � � � µ0 � xb ����� x1x0 � � � � 0 �[0 e2πi � 0 � xb ����� x1x0 � � 1 � ��F C 2 


i.e. the phase of � yn " 1 " b � is determined mostly by xb, however it
is perturbed by lower bits xb " 1 
 xb " 2 
������ .# Let us assume the phase of � yn " 1 " b � is in � 1

4π 
 3
4 π �Y�(� 5

4π 
 7
4 π � . By

measuring with respect to the basis 	�� µ0 � 01 � , � µ0 � 11 ��� , it can be
tested whether xb

� 0 or xb
� 1, and the correct result is obtained

with probability at least 3
4 .# Let us assume the phase of � yn " 1 " b � is in ��� 1

4π 
 1
4 π �U��� 34π 
 5

4π � . By
measuring with respect to the Hadamard basis 	�� µ0 � 0 � , � µ0 � 1 ��� , it
can be tested whether xb

� xb " 1 or xb
� 1 � xb " 1, and the correct

result is obtained with probability at least 3
4 .
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ual copies. The obtained results 0, 1, P, and N denote that proba-
bly xb

� 0, xb
� 1, xb

� xb " 1, and xb
� 1 � xb " 1. The most frequent

result is chosen for each b.# The bits x0 
 x1 
����8�8
 xn " 1 are estimated in parallel. Notice that x0 is
always estimated exactly, i.e. only one result appears.
Performing this step sequentially would lead to a O

�
n � depth

circuit. Using the fact, that the results can be represented by
2 � 2 matrices

0 � 5 1 1
0 0 7�
 1 � 5 0 0

1 1 7�
 P � 5 1 0
0 1 7�
 N � 5 0 1

1 0 7�

and computing the value of xb can be done by multiplying these
matrices (which is associative), we can estimate each bit by a
binary tree of depth O

�
logn � .# The quantum measurements are indeed not performed. Us-

ing the principle of deferred measurements ([NC00, page 186]),
they are replaced by controlled quantum operations.

3. Finally, it uncomputes the reversible prefix addition, leaving only
one copy of the input state � y � .

With high probability, the phase estimation was correct, and the rest
of the circuit is exact. It suffices to produce O

�
log

�
n F ε ��� copies to achieve

precision ε. s
Note 5.4 We do not suppose, that this method can be implemented in
smaller depth by a quantum circuit with fan-out, because the algorithm
involves reducing a sequence of length n by an associative but not com-
mutative operation. The fan-out operation does not help here.

By joining approximate versions of the QFS and the QFP, the following
result is obtained. It is essential for several presented circuits.

Corollary 5.8 [CW00] The QFT on n qubits can be approximated with pre-
cision ε by a quantum circuit having depth O

�
logn 0 loglog

�
1 F ε ��� and size

O
�
n i log

�
n F ε ��� .

Note 5.5 There might be a possible objection, why do we actually deal
with the QFP. The QFS already computes the desired Fourier transform
into the second register, so why we do not simply forget the value of the
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input register? The reason is the quantum interference. If we forget the
value of the first register, the pure quantum state would become mixed
and a bulk of the entanglement would be lost.

5.6 Precision of the approximate QFT

Let us investigate, what is the error of the approximate QFT F̃ (according
to Definition 2.3). It is distinguished from the exact QFT F by the absence
of small controlled rotations — for each target qubit, not more than k rota-
tions of phase Ω n 2 " k o are performed on it. The trace distance is defined in
Definition 2.2.

Lemma 5.9 Let F̃ be the approximate QFT that performs only rotations of
phase at least δ � π i 2 " k. Then, for each computational basis state � x � , the
trace distance between F̃ � x � and F � x � is O

�C
n i δ � .

Proof. Let � x � be a computational basis state. Remind, that � µ0 � xk ����� x1x0 � �� � 0 �60 e2πi � 0 � xk ����� x1x0 � � 1 � ��F C 2. Then� y � � F � x � � n " 1y
b � 0

� µ0 � xbxb � 1 ����� x1x0 �'
� ỹ � � F̃ � x � � ky
b � 0

� µ0 � xbxb � 1 ����� x1x0 �6| n " 1y
b � k � 1

� µ0 � xbxb � 1 ����� xb � k �'
� ỹ � y � � k

∏
b � 0

� µ0 � xb ����� x0 � µ0 � xb ����� x0 �� �*� �
1

n " 1

∏
b � k � 1

� µ0 � xb ����� xb � k � µ0 � xb ����� x0 �� �*� �
rotationally invariant� n " 1

∏
b � k � 1

� µ0 � 0k � 1 � µ0 � 0k � 1xb � k � 1 ����� x1x0
��d� ỹ � y �@��! n " 1

∏
b � 0

�d� µ0 � 0 � µ0 � 0k1 �@� ������ 12 � � 0 �Z0E� 1 � � � � 0 �60 e2πi H 2k � 1 � 1 � � ���� n� ����� 1 0 eπi H 2k

2
����� n � ���� � 1 0 cosδ � 0 i i sinδ

2
���� n 

cos2α � 2cos2 α � 1 
 sin2α � 2sinα i cosα
1 � cos δ

2
� cos2 δ

2 
 sinδ
2
� sin δ

2 i cos δ
2 ¡� ���� cos2 δ

2
0 i i sin

δ
2
i cos

δ
2
���� n � cosn δ

2
i�� enδi H 2 � � cosn δ

2
�
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We approximate the trigonometric functions on the interval
�
0 
 1 � and com-

pute the trace distance:

cosδ � 1 � δ2

2!
0 δ4

4!
�¢�����£! 1 � δ2

2!



F
�
ỹ 
 y � � �d� ỹ � y �@�_! cosn δ

2
! 5 1 � δ2

8
7 n � l 1 � δ2

8

2n !¤l 1 � nδ2

4

D
�
ỹ 
 y � � e 1 � F

�
ỹ 
 y � 2  l nδ2

4
� 1

2
C

n i δ � O n C n i δ o � s
Corollary 5.10 It suffices to perform O

�
log

�
n F ε ��� controlled rotations on

each qubit to achieve expected precision ε (for a random input state) of the
approximate QFT.

Proof. Since the trace distance metric is equivalent with the Euclidean
metric, the error of the approximation is ε � D

�
ỹ 
 y � . From Lemma 5.9, the

threshold of rotations performed must be δ � O
�
ε F C n � to achieve the pre-

cision ε for each computational basis input state. The number of controlled
rotations is k � O

�
log

�
1 F δ ��� � O

�
log

� C
n F ε �8� � O

�
log

�
n F ε ��� .

The error estimation was inferred for computational basis input states.
From Theorem 2.1, it follows that the expected approximation error is
small enough also for superposition input states.

However, to have the error of the approximate QFT guaranteed below
ε for every input state � x � , we need to achieve precision 2 " n H 2ε for each
computational state. Hence we need to perform

Ω 5 log
n

2 " n H 2ε
7 � Ω � log

�
n F ε � 0 log2n H 2 � � Ω

�
log

�
1 F ε � 0 n �

controlled rotations. s
The following theorem shows, that every good approximate circuit

must incorporate each input qubit.

Theorem 5.11 [CW00] Let C be a circuit computing the high-order output
qubit � yn " 1 � of the QFT operation. If there exists an input qubit � xk � that� yn " 1 � does not depend on, then the error of C exceeds 1 F 10. That is there
exists an input state �ψ � , for which the error of the approximation (Eu-
clidean distance of the exact and approximated output) exceeds 1 F 10.
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Note 5.6 Let us first clarify a possible objection: Theorem 5.2 implies that� yn " 1 � � � µ0 � x0 � � H � x0 � for each computational basis input state � x � . This
suggest that it suffices to just perform the Hadamard operation on � x0 �
and return the result. Nevertheless this does not work for superposition
states, because the evolution � x0 �$� � yn " 1 � is not a closed quantum system
and the state � x0 � interacts also with other qubits (and thus passes some
information about its value to them).

In other words, for a general superposition input state � x � , the output
qubit � yn " 1 � will not be in tensor product with other qubits, otherwise it
would be possible to yield information about the quantum state � x0 � with-
out disturbing it. The information about its value has been passed to an-
other part of the system and that part is in tensor product with � yn " 1 � ,
which contains complete information about � x0 � . This is a contradiction
with the no-cloning theorem.

Proof of Theorem 5.11. For a computational basis state � y � � � yn " 1 ����� y1y0 � ,
let �ψy � � � n " 1

b � 0 � µ � " 0 � yb ����� y1y0 � � be the inverse Fourier basis state (with phase
parameter y). Since �ψy � � F† � y � , also F �ψy � � � y � . Hence when C is applied
on � x � � �ψy � , a good approximation of � yn " 1 � should be yielded. (The in-
formation about � yn " 1 � is stored in the input qubit � x0 � and it is perturbed
by other qubits there: � x0 � � � µ � " 0 � yn � 1 ����� y1y0 � � .)

Let us prove by contradiction, that if � yn " 1 � does not depend on an in-
put qubit � xk � (for any k � Zn), then the error exceeds 1 F 10. Let r � n � k � 1.

We first consider states �ψz � , �ψz � 2r � for z � 2n � 1. The circuit C ap-
proximates � yn " 1 � with error  1 F 10 on every input. Since z � 1n and
z 0 2r � 0n " r1r � mod2n � in binary, the output qubit � yn " 1 � approximates � 1 �
on input �ψz � and � 0 � on input �ψz � 2r � . Recall that the trace distance is up-
per bounded by the Euclidean distance, hence D n � 1 �'
*� yn " 1 � + x ,�� +ψz , o  1 F 10
and vice versa.

Now, we consider a third state �ψ ¥z � . It resembles �ψz � , but the k-th qubit
(the one that is ignored) is distinct:�ψ ¥z � � � µ0 � 1 �6�����j� µ0 � 1r �6|4� µ0 � 01r �[|4� µ0 � 1r � 2 �6�����j� µ0 � 1n �'�
Notice that the distinct qubits are orthogonal: � µ0 � 01r � µ0 � 1r � 1 � � � µ0 � 0 � µ0 � 1 � �
0. Since � yn " 1 � does not depend on � xk � , the circuit C must also yield an
approximation of � 1 � on input �ψ ¥z � (likewise on input �ψz � ).

On the other hand, the trace distance between �ψ ¥z � and �ψz � 2r � can be
calculated to be below 0 � 7712, as follows. The two states are identical in
qubit positions n � 1 
 n � 2 
�������
 k. In qubit position k � b for b ��	 1 
 2 
������)
 k � ,
the two states differ by an angle of π F 2b � 1. (Remind the trigonometric
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equalities used in the proof of Lemma 5.9.) In particular,� ψ ¥z �ψz � 2r � � k

∏
b � 1

� µ0 � 1r � b � 1 � µ0 � 0b � 11r � � k

∏
b � 1

� µ0 � 1b � 1 � µ0 � 0b � 1 �� k

∏
b � 1

� µ0 � 0 � µ0 � 0b1 � � k

∏
b � 1

5 1
2
� � 0 �Z0E� 1 � � � � 0 �60 e2πi H 2b � 1 � 1 � � 7� k

∏
b � 1

1 0 eπi H 2b

2
� k

∏
b � 1

� cos
π

2b � 1 i eπi H 2b � 1 � 
�¦� ψ ¥z �ψz � 2r ��� � k

∏
b � 1

cos
π

2b � 1 � ∞

∏
b � 0

cos
π

4 i 2b � 0 � 6366 �
This implies that the trace distance between �ψ ¥z � and �ψz � 2r � is less thanC

1 � 0 � 63662 � 0 � 7712. Since the trace distance is contractive, it follows
that the trace distance of the states of the high-order output � yn " 1 � of C
on inputs �ψ ¥z � and �ψz � 2r � is also less than 0.7712. But, by the triangle
inequality

D
� � 0 �'
*� 1 � �  D n*� 0 �j
*� yn " 1 � + x ,�� +ψz � 2r , o 0 D nR� yn " 1 � + x ,�� +ψz � 2r , 
*� yn " 1 � + x ,�� +ψz , o 00 D n � yn " 1 � + x ,�� +ψz , 
*� 1 � o   1

10
0 D

� �ψz � 2r �'
*�ψz � � 0 1
10

 1
10
0 0 � 7712 0 1

10
� 0 � 9712 §§ 1 


which is a contradiction, since � 0 � and � 1 � are orthogonal. s
Note 5.7 The state �ψ ¥z � needs to be used, since the scalar product of the
original vectors � ψz �ψz � 2r � � 0 due to involving cos π

2
� 0 in the product.

Conclusion 5.12 [CW00] There exist small (narrow and shallow) quantum
circuits approximating the QFT with exponentially small error. To achieve
precision better than 1 F 10 for all input states, every output qubit needs to
depend on all lower-order input qubits.



Chapter 6

Increment operation

Definition 6.1 An increment operator (denoted by P) on n qubits is an oper-
ator mapping each computational basis state � x � to � x 0 1 mod2n � .
6.1 Classical circuit

Let us first review an efficient classical circuit for the increment operator.
We then convert it to a quantum circuit using standard methods.

Lemma 6.1 n-bit numbers can be incremented by a classical (irreversible)
circuit of depth O

�
logn � using O

�
n � ancilla bits.

Proof. The input n-bit number is denoted by x � xn " 1 ����� x1x0. The output
number y � x 0 1 is denoted by y � yn " 1 ����� y1y0. It is easy to sea, that yk

�
xk ¨ 1 iff all lower-order input bits x0 
 x1 
�������
 xk " 1 are set, otherwise yk

� xk.
In other word, yk

� xk ¨ � k " 1
j � 0 x j. Let ck

�=� k
j � 0 x j denote the k-th carry bit.

If we have computed all carry bits ck, we can compute y in one layer by
setting yk

� xk ¨ ck " 1.
We have reduced incrementing a number to computing all carry bits,

i.e. computing logical conjunctions of all prefixes of input variables ck
�� k

j � 0 xk. From associativity of © , computing a conjunction of one such pre-
fix can be done in depth O

�
logn � by a balanced tree of AND gates. To

compute all conjunctions in parallel, we need to reuse temporary results.
Let us assume w.l.o.g. that n � 2m, otherwise we cut a left part of the

circuit. In Figure 6.1, there is outlined a classical circuit that, for inputs	 xk � n " 1
k � 0 , yields outputs 	 ck � n " 1

k � 0 . Every arrow going from xa to xb denotes
setting xb : � xb © xa. The right dashed line represents a constant 1 and it
is included just for symmetry of the figure (and it can be omitted with all
adjacent arrows).

41
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x0. . . x1x2x2m � 1 1

c0. . . c1c2c2m � 1 1

Figure 6.1: Computing logical conjunctions of all prefixes ck
��� k

j � 0 xk

After the first part of the circuit, each bit contains the conjunction of in-
put variables from its corresponding subtree. In the second part, carry bits
are computed by merging adjacent blocks. The correctness of the circuit is
straightforward.

The total circuit uses O
�
n � ancilla bits for storing the carry bits and it

has depth O
�
logn � . s

Theorem 6.2 n-bit numbers can be incremented by a classical reversible
circuit of depth O

�
logn � using O

�
n � ancilla bits.

Proof. We convert the classical irreversible circuit from Lemma 6.1 into
a reversible one. Since there are O

�
n � irreversible AND operations in to-

tal, only O
�
n � new ancilla bits are needed (instead of replacing a bit, we

allocate a new one).
Having computed all carry bits, we compute the output number y and

store it to target bits. We then uncompute the carry bits. The depth is
doubled, but is stays O

�
logn � . s

Corollary 6.3 There exists a quantum circuit computing the increment op-
eration exactly in depth O

�
logn � using O

�
n � ancilla qubits. Hence the in-

crement operator P � QNC1.
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6.2 Quantum circuit

Let us investigate the diagonal form of the increment operator P. A simple
argument yields that P is diagonal in the Fourier basis. Let F be the QFT.

Theorem 6.4 P � F†DF , where D � Diag
�
1 
 ξ 
 ξ2 
������)
 ξ2n " 1 � � ∑2n " 1

x � 0 ξx � x �*� x �
is an operator diagonal in the computational basis and ξ � e2πi H 2n

.

Proof. Let � x � be a computational basis state. Using equation (5.1) on
page 29,

F†DF � x � � F†D
2n " 1

∑
y � 0

ξyx � y � � F†
2n " 1

∑
y � 0

ξy i ξyx � y � � F†
2n " 1

∑
y � 0

ξy � x � 1 � � y �� F†
2n " 1

∑
y � 0

ξy � x � 1mod 2n � � y � � F† � F � x 0 1mod2n � �� � x 0 1mod2n � � P � x �j�
The equality for superposition states follows from linearity. s

Next, let us show that the operator D is easy to implement. It turns out
that D operates on each qubit separately, i.e. it is a tensor product of one
qubit operators. Let us fix n and set D � Dn, where Dk

� Diag
�
1 
 ξ 
8�����)
 ξ2k " 1 �

is a k-qubit operator (diagonal in the computational basis).
Remind, that the rotation operator rotation about the z-axis by angle θ

is defined by Rz
�
θ � � � 0 �R� 0 �Z0 eθi � 1 �R� 1 � .

Theorem 6.5 For every k �(	 1 
 2 
����8��
 n � , Dk
� Rz

�
π F 2n " k � | Dk " 1. The trivial

0-qubit operator D0 is considered to be D0
� 1.

Proof. A tensor product of two diagonal operators is a diagonal operator.
Hence we need to verify only the equality of diagonal elements. Let � x � �� xk " 1 ��� x � be a k-qubit computational basis state (x � xk " 2 �8��� x1x0). From the
definition of Dk, � x �Dk � x � � ξx and � x �Dk " 1 � x � � ξx. On the other hand,� x �Rz

�
π F 2n " k � | Dk " 1 � x � � � xk " 1 �¦� x � � Rz

�
π F 2n " k � | Dk " 1 � � xk " 1 ��� x �� � xk " 1 �Rz

�
π F 2n " k � � xk " 1 �gi*� x �Dk " 1 � x �� eπ H 2n � k ª i ª xk � 1 i ξx � e � 2πi H 2n � ª � 2k � 1xk � 1 � i ξx� ξ � 2k � 1xk � 1 � i ξx � ξ � 2k � 1xk � 1 � x � � ξx 


which is the desired value. The case D0
� 1 is obvious. s
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Rz « π ¬
Rz « π  2 ¬

Rz « π  2n � 1 ¬. . .

A
xn � 1 BA
xn � 2 BA
x0 B

Figure 6.2: Diagonal form D � FPF† of the increment operator P

Corollary 6.6 The increment operator P is diagonal in the Fourier basis
and, in this basis, it can be implemented exactly by a constant depth quan-
tum circuit. It consists of just one layer.

Hence the operator D � FPF† (the increment in the Fourier basis, i.e.
the operator mapping F � x �$� F � x 0 1mod2n � ) is in QNC0.

Proof. Using Theorem 6.5 and mathematical induction, the operator D can
be implemented by a simple depth 1 circuit shown in Figure 6.2. s
Note 6.1 If we need to work in the computational basis, i.e. implement the
operator P, we have to precede D by F and succeed it by F†. The QFT can
be approximated with exponential precision by a O

�
logn � -depth quantum

circuit. Hence the increment operation can be approximated in QNC1.
This result is not interesting, as is, because the classical circuit has also

depth O
�
logn � and it is exact. However the strength of this method is

the capability of being parallelised by the method presented in Chapter 4,
since D is diagonal in the computational basis. This result is original.

Note 6.2 Since Pk � F†DkF and Rz
�
α � k � Rz

�
kα � , the operator Pk adding a

fixed number k can be also implemented by the presented method. One
just needs to multiply the rotations of the operator D by k.



Chapter 7

Interesting shallow circuits

In this chapter, we implement quantum circuits with fan-out for Toffoli,
Majority, Threshold, and Counting gates having sub-logarithmic depth.
More methods with distinct depths, space complexities, and precisions are
presented. Results presented in this chapter are original.

Using a similar method, we also mention how to implement approx-
imations of two basic arithmetical operators (summing and multiplying)
in logarithmic depth.

Definition 7.1 A linear Threshold gate G on n source qubits � x1 �j
*� x2 �'
8�����)
*� xn �
and one target qubit � t � with weights 	 αk � n

k � 1 and threshold m is a quantum
operation performing (written in the computational basis)~ ny

k � 1

� xk � � � t �m� ~ ny
k � 1

� xk � � � t ¨ sgn
�
z � �'
 z � n

∑
k � 1

αkxk � m (7.1)

for each computational basis state and the behaviour for superposition
states is defined by linearity. Recall that sgn

�
z � � 1 iff z ! 0, hence the gate

flips the target qubit if the linear combination of source qubits exceeds the
threshold. We assume the gate parameters αk 
 m � Z.

A uniform Threshold gate is a linear Threshold gate with weights αk
� 1

for each k. A Majority gate is a uniform Threshold gate with threshold
m �f® n F 2 ¯ . A Toffoli (AND) gate is a uniform Threshold gate with threshold
m � n.

Definition 7.2 TCk is a class of problems solvable by circuits of depth
O n logk n o . It is allowed to use the same gates as in ACk (i.e. unbounded
fan-in AND and OR gates, and the NOT gate) and the linear Threshold
gate. QTCk is its quantum variant (inferred from QACk by adding the lin-
ear Threshold gate).
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Pα1 Pα2 Pαn. . .

. . .

A
x1 BA
xn B. . .A
0p B A

z BP � m

Figure 7.1: A serial circuit implementing the linear Counting gate

Definition 7.3 A linear Rank gate behaves similarly to the linear Threshold
gate from Definition 7.1, but the target qubit t is flipped iff z � 0, i.e. the
equality ∑n

k � 1 αkxk
� m is tested. A uniform Rank gate is a linear Rank gate

with weights αk
� 1 for each k.

Note 7.1 The Toffoli gate is also a special case of the uniform Rank gate
with rank m � n.

Definition 7.4 A linear Counting gate on n qubits is a quantum operation
that, for each computational basis input state, computes the integer num-
ber z � ∑n

k � 1 αkxk � m. (It assumes ancilla qubits are cleared on the input
and it stores the result there.) On superposition states, it is defined by lin-
earity. A (uniform) Counting gate is a linear Counting gate with weights
αk
� 1 for each k, i.e. it outputs the number of source qubits set to 1.

7.1 Approximative Counting and Threshold gate

Let us develop a shallow circuit for the linear Counting gate by incorpo-
rating presented techniques. The desired value z is computed and stored
in numerical register Z. We have already implemented an efficient and
easily diagonalisable version of the operator Pa, adding an arbitrary fixed
integer number a to Z. Hence it suffices if, for each source qubit xk, we
apply the operator Pαk controlled by xk. After this, we subtract m by ap-
plying P " m. Since the operators Pαk commute, they can be parallelised by
the parallelisation method.

The size p of the register Z needs to be chosen big enough to carry any
number that can arise during the computation. Let g 
 h be the minimal
and maximal possible value of z. It suffices to have Z consisted of p � 1 0® log2

�
1 0 max

� � g �S
'� h � �8� ¯ qubits. (The 0 1 qubit is for the sign of the result.)
If all weights are 1, then p � O

�
logn � . For general weights bounded by f ,

p � O
�
logn f � � O

�
logn 0 log f � .
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A raw serial circuit implementing the desired operation is outlined in
Figure 7.1. This circuit needs to be parallelised. We already know that Pa �
F†DaF , where F is the Quantum Fourier Transform, and D is a diagonal
operator that can be represented by a one-layer circuit consisting of one
qubit gates.

Theorem 7.1 The linear Counting gate operating on n qubits with polyno-
mially bounded parameters (and thus also the simpler uniform Counting
gate) can be approximated with polynomially small error by a quantum
circuit with fan-out of depth O

�
loglogn � operating on O

�
n logn � ancilla

qubits.

Proof. We apply the simplified1 parallelisation method (described by The-
orem 4.1) to the serial circuit shown in Figure 7.1: The ancilla qubits are
converted into the Fourier basis by applying F in the beginning and F† at
the end of the raw circuit. Furthermore, each operator Pa is replaced by its
diagonal form Da. Let f � O

�
p1
�
n ��� be the number bounding the gate pa-

rameters (all weights αk and the constant number m). The ancilla register Z
consists of p � O

�
logn 0 log f � � O

�
logn � ancilla qubits. Let ε � 1 F O �

p2
�
n ���

be the approximation error.
The depth: Using Corollary 5.8, the QFT F can be approximated in

O
�
log p 0 log log

�
1 F ε ��� � O

�
loglogn 0 log log p2

�
n ��� � O

�
loglogn � layers and

we need to perform it twice. Furthermore, 2 layers are spent in copying the
ancilla qubits using the fan-out operation (and clearing them back). Each
operator Da can be implemented in 1 layer, however a controlled version
needs to be performed. Using Theorem 3.3, this can be done in 5 layers.
The total depth is double-logarithmic.

Ancilla qubits: The register Z has size p � O
�
logn � . The parallelisation

method uses O
�
n logn � ancilla qubits (to store n 0 1 copies of Z). The QFT

operator uses O
�
p log

�
p F ε ��� � O

�
logn i log

�
logn i p2

�
n ��� � O n log2 n o ancilla

qubits. The total space complexity is O
�
n logn � . s

Theorem 7.2 The linear Threshold gate operating on n qubits with poly-
nomially bounded parameters (and thus also the simpler uniform Thresh-
old, Majority, and Toffoli gates) can be approximated with polynomially
small error by a quantum circuit with fan-out of depth O

�
loglogn � operat-

ing on O
�
n logn � ancilla qubits.

1It is simplified in the sense that we already have an efficient implementation of the
diagonal form of the increment operator and hence we need not perform the QFT four
times, but only twice.
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F F†

. . .

Dα1

Dα2

Dαn

D � m

X

C { linear Counting gate

C � 1

A
t B

A
0p BA
0p BA
0p B

A
Z B { A 0p BA

s1s2 °/°±° sn B

A
t ² sgn « z ¬±B

Figure 7.2: A parallel circuit implementing the linear Threshold gate

Proof. Using the linear Counting gate described by Theorem 7.1, we com-
pute the value of z. The sign of z can be obtained by simply negating the
most significant qubit of the register Z, because Z is just a simple signed
integer register. We negate the target qubit t iff sgn

�
z � � 1 and clear all an-

cilla qubits by uncomputing z. The total depth stays double-logarithmic
and also the space complexity is preserved. The final circuit (after the par-
allelisation method has been performed) is outlined in Figure 7.2. s
7.2 Approximative Rank and Toffoli gate

Having implemented the Counting gate, we can also readily obtain the
Rank gate — it suffices, instead of looking at the sign of z, to compare z
with 0, e.g. by applying the uniform Threshold gate on z. It immediately
follows that the Rank gate can be approximated well in depth O

�
loglogn � .

Nevertheless, a better depth can be achieved if we incorporate the Chinese
Remainder Theorem.

Theorem 7.3 The Rank gate (and hence also the Toffoli gate) can be ap-
proximated with precision ε by a quantum circuit with fan-out having
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depth O
���

logloglogn � log
�
loglogn 0 log

�
1 F ε ����� and using O

�
n logn loglogn �

ancilla qubits.

Proof. Let us just outline the method, because it will be improved by a
forthcoming method that is exact and has smaller depth. Let us assume
w.l.o.g., that all weights are positive integers.

We choose a set of integer numbers M � 	 mk � such, that m � ∏k mk is
bigger than the biggest possible value v of Z and gcd

�
mk 
 ml � � 1 for each

k ³� l. From Chinese Remainder Theorem, z1
� z2

�
modm � iff z1

� z2
�
modmk �

for each k. It can be shown, that M can be chosen in such a way, that
#M � O

�
logv � and mk

� O
�
logv � for each k.

We will not compute the actual value of z, but remainders zmodmk for
each k. To do that, we need to replace the regular QFT (modulo a power
of 2) by the generalised QFT (modulo an arbitrary integer) and perform
the increment operation modulo the same integer. From [CW00], the QFT
modulo q can be approximated with error δ by a quantum circuit of depth
O
�8�

loglogq � � loglog
�
1 F δ ����� . There exists a classical circuit for the operation

increment modulo q of depth O
�
loglogq � .

After we have computed all #M � O
�
logn � remainders in parallel, we

compare each of them with the expected value and perform the Toffoli
(AND) gate on the results. It suffices to use the simpler method working
in depth O

�
loglog#M � � O

�
log loglogn � with polynomially small error.

Since v � O
�
p
�
n ��� , each mk

� O
�
logv � � O

�
logn � . Hence the compu-

tation of zmodmk can be done in depth O
�8�

logloglogn � � loglog
�
1 F δ ����� us-

ing O
�
n logmk � � O

�
n log logn � ancilla qubits. Since we perform and com-

bine O
�
log#M � � O

�
logn � independent computations, the total error is

ε � O
�
δ logn � .

To achieve precision ε, the constructed quantum circuit will be of depth
O
�8�

logloglogn � � loglog
�
logn F ε ����� and it will use O

�
n logn loglogn � ancilla

qubits. s
Corollary 7.4 The Rank gate can be approximated with logarithmically
small error by a quantum circuit with fan-out of depth O n log2 log logn o .
7.3 Exact Rank and Toffoli gate

To achieve circuits shallower than O
�
log logn � , we need to get rid of the

QFT, because it seems to have at least logarithmic depth. It turns out,
that if we replace the QFT by the Hadamard transform (which has con-
stant depth) and preserve the rest of the circuit, the modified circuit keeps
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working in a special case. We no longer obtain the exact number z of source
qubits set in the register Z, but the final quantum state contains enough in-
formation to identify an arbitrary fixed value with probability 1.

Definition 7.5 The Hadamard transform on n qubits is the following opera-
tor (written in the computational basis):

Hn
� 1

2n H 2 2n " 1

∑
y � 0

� y � 2n " 1

∑
x � 0

� � 1 � y ´ x � x �S

where y # x is the bitwise scalar product. The Hadamard operator on 1
qubit is also denoted by H � H1.

Note 7.2 The Hadamard operator is essential for quantum computation
and it is defined in every textbook of Quantum Computing, e.g. in [NC00].
It has a very simple and well known decomposition, which leads to an
efficient depth 1 quantum circuit.

Theorem 7.5 Hn
� H w n.

Proof. Let x 
 y be any computational basis states. Let � x � � � xn " 1 ����� x1x0 �
and � y � � � yn " 1 ����� y1y0 � . Then� y �Hn � x � � 2 " n H 2 � � 1 � y ´ x � n " 1

∏
k � 0

� � 1 � ykxkC
2

� n " 1

∏
k � 0

� yk �H � xk � � � y �H w n � x �'

which implies the operators are equal. s
Theorem 7.6 The linear Rank gate operating on n qubits with polynomi-
ally bounded parameters can be computed exactly by a quantum circuit
with fan-out of depth O

�
log � n � operating on O

�
n logn � qubits.

Proof. We use the same method as in Theorem 7.2, but we replace the
QFT by the Hadamard transform. Let us compute, what happens to the
register Z during the computation. Since Z is cleared in the beginning of
the computation, it does not matter whether the QFT or the Hadamard
transform is used — anyway it is mapped to the state

Z � F � 0 � � 1
2p H 2 2p " 1

∑
y � 0

� y � � Hp � 0 � � H w p � 0 �'�
Let the input qubits be in a computational basis state. (If the input qubits
are in a superposition, the correctness of the method follows from lin-
earity.) The total phase shift (number of increments in the Fourier basis)
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H µ p H µ p

. . .

Dα1

Dα2

Dαn

D � m

A
s1s2 °/°/° sn BA

0p B
reducing n qubits to p { O « logn ¬ qubits

A
t B

constant depth

log ¶ « n ¬ iterations

Figure 7.3: The Rank gate consists of an iterated n � O
�
logn � reduction

gained by Z is denoted by z. At the end of the computation, we need to
check, whether z � 0. Let ξ � e2πi H 2p

. The register Z is mapped by the
second Hadamard transform to the final state

H ~ 1
2p H 2 2p " 1

∑
y � 0

ξzy � y � � � 1
2p

2p " 1

∑
x � 0

� x � 2p " 1

∑
y � 0

� � 1 � x ´ y i ξzy �
The amplitude of the zero state � 0 � is 2 " p i ∑2p " 1

y � 0 ξzy. If z � 0, then this
amplitude is 1, otherwise it is 0 (see the proof of Lemma 5.1 for details of
computing the sum).

Let the input qubits be in computational basis state � x1x2 �8��� xn � . If they
fulfil the original equation z � ∑n

k � 1 αkxk � m � 0, then the register Z �
Zp " 1 ���8� Z1Z0 is in computational basis state � 0 � with amplitude 1, i.e. its
bits fulfil a new equation ∑p " 1

k � 0 Zk
� 0. Otherwise the register Z is in a gen-

eral superposition state, and we know that no computational basis state
in this superposition fulfils the new equation. That is the new equation is
equivalent to the original equation.

Hence we have reduced the question of whether n input variables ful-
fil a linear equation, to the question of whether p � O

�
logn � ancilla qubits

fulfil another equation of the same type. We can thus iterate the method.
After log � � n � iterations, the number of ancilla qubits is bounded by a con-
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stant and we can use a normal exact method of depth O
�
1 � . We then copy

the final result into another ancilla qubit and uncompute everything. The
circuit is outlined in Figure 7.3, one iteration corresponds to a dashed box.
(For clarity, unimportant ancilla qubits arise and end in the middle of the
computation and the uncomputation is omitted.)

Every iteration except for the last one can be performed by a constant
depth circuit consisting of the following 9 layers: 2 for the Hadamard
transform, 2 for the fan-out operation, and 5 for the controlled rotations.
The last iteration also takes O

�
1 � layers. Everything is doubled since we

need to uncompute intermediate results. The total depth is O
�
log � n � . The

number of ancilla qubits is O
�
n logn � , they all are spent in the first iteration,

the other ones need less ancilla qubits. s
Corollary 7.7 The Toffoli gate on n qubits can be computed exactly by a
quantum circuit with fan-out of depth O

�
log � n � operating on O

�
n logn �

ancilla qubits.

Note 7.3 It is quite interesting, that even for computational basis input
states, the registers Z 
 Z ¥.
 Z ¥�¥q
��8��� at further iterations are in superpositions
in the negative case. This does not happen in the positive case, where all
these registers are in the zero state.

However, all intermediate superposition states lead to the same final
result. Hence there is no need to investigate these superpositions. This is
fortunate, since they look quite “random”.

Note 7.4 Since the simulations presented here do not work in constant
depth, we still do not know whether QACCk v QNCk

f , let alone QTCk v
QNCk

f .

7.4 Exact Threshold and Counting gate

Using Theorem 7.6, we can test exactly by the Rank gate in depth O
�
log � n �

and space O
�
n logn � , whether the rank of n source qubits is equal to an

arbitrary fixed value m. The rank is the linear combination z � ∑n
k � 1 αkxk of

the source qubits. We will show next, that the other important gates can
be built from an ensemble of these gates.

Let 	 αk � n
k � 1 be any integer weights of n qubits. Let V � 	 v1 
 v2 
��8����
 vw � be

the set of possible values of the linear combination z � ∑n
k � 1 αkxk, xk �·	 0 
 1 � .

Let w � #V . For every value v � V , we can test exactly by the linear Rank
gate, whether z � v.
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We can fan-out the source qubits to w copies and then, in the j-th copy,
test whether z � v j. All these tests are done in parallel. We obtain w new
boolean variables 	�� r j ��� w

j � 1, where � r j � � � 1 � iff z � v j, otherwise r j
� � 0 � .

For every input, exactly one of these w tests yields true and the others
yield false. This costs depth O

�
log � n � and O

�
wn logn � ancilla qubits.

Next, we use these intermediate results to compute the desired result
and, finally, uncompute everything. Let us look at particular examples.

Theorem 7.8 The linear Threshold gate on n qubits with weights 	 αk � n
k � 1

upper-bounded by p
�
n � and threshold m can be computed exactly by a

quantum circuit with fan-out of depth O
�
log � n � and using O n n2 p

�
n � logn o

qubits.

Proof. Straightforward, using the described method. Since �αk �1 p
�
n � ,

it follows that � z � � � ∑n
k � 1 αkxk �1 n i p � n � . Hence w � #V  2n i p � n � . We

fan-out the source variables, compute the boolean variables � r j � , perform
a final test, and uncompute everything. The final test consists of a parity
gate over the variables 	�� r j ��� v j � V & v j ! m � . Since not more than one of
these variables is set, the parity operation yields whether z ! m.

The circuit should be optimised in the following way: the boolean vari-
ables 	�� r j �@� v j � V & v j § m � are not computed, since they are never used.

The circuit uses O
�
wn logn � � O n n2 p

�
n � logn o ancilla qubits and its total

depth is O
�
log � n � . s

Theorem 7.9 The linear Counting gate on n qubits with weights 	 αk � n
k � 1

upper-bounded by p
�
n � can be computed exactly by a quantum circuit

with fan-out of depth O
�
log � n � and using O n n2 p

�
n � logn o qubits.

Proof. Let b � log2
® 2n i p � n � ¯ be the appropriate size of the register. The

goal is to compute exactly the integer value z and store it into the target
register �Z � � �Zb " 1 ����� Z1Z0 � .

Again, we first compute the variables 	�� r j �@� v j � V � . This costs most
of the ancilla qubits and it takes O

�
log � n � layers. Next, we fan-out these

variables into b copies — each copy is used for another qubit of the register�Z � . Finally, we compute the output qubits �Zl � for l �;	 0 
 1 
����8��
 b � 1 � in
parallel and clear ancilla qubits by uncomputation.

The computation of the output qubit �Zl � is done as follows. We use the
boolean variables 	�� r j ��� v j � V & v j # 2l ³� 0 � , i.e. those whose rank has the
l-th bit set. We apply the parity gate on them and store the result into �Zl � .
If the l-th bit of z is 1, then exactly one of these tests yielded true, otherwise
all of them yielded false. Obviously, the parity gate computes the desired
value of �Zl � and the computation takes another O

�
1 � layers.
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Rank « v1 ¬
Rank « v2 ¬
Rank « v3 ¬
Rank « vw ¬. . .

A
xk B ’s A

r j B ’s A
Zb � 1 BA
Zb � 2 BA
Zb � 3 BA
Z0 B. . .

Figure 7.4: The Counting gate built up from Rank gates

The circuit is outlined in Figure 7.4. (Again, only important qubits
are highlighted.) The total depth of the circuit is O

�
log � n � and the cir-

cuit uses O
�
wn logn 0 bw � � O

�
w
�
n logn 0 log2n 0 log p

�
n ����� � O

�
wn logn � �

O n n2 p
�
n � logn o ancilla qubits. s

7.5 Arithmetics

Note 7.5 The method from Theorem 7.1 can be also used for performing
arithmetical operations. If the source qubits � x j �j
*� y j � control adding 2 j to
the register Z (instead of 1) and the size of the register Z is p � n 0 1 (in-
stead of p � O

�
logn � ), we obtain the sum � x 0 y � . The product � xy � can

be computed in a similar way — adding 2 j � k to the 2n-qubit register Z is
controlled by the logical conjunction � x j © yk � .

However, from using the QFT on the register Z, the final circuit is ap-
proximate and of depth O

�
log p � � O

�
logn � . There exist exact classical cir-

cuits of the same depth (the summing is straightforward and the multi-
plication is a bit tricky). Furthermore, from Theorem 8.1, these operations
can be computed exactly by a O

�
log � n � circuit.

Note 7.6 The modular exponentiation (computing z � ab modc) could not
be performed by this method. To perform the individual modular mul-
tiplications in parallel, we would first have to convert the register Z into
a suitable basis. The operator Ma Q c (multiplying Z by a modulo c) is not
diagonal in the Fourier basis. The change of basis seems to be as hard as
computing the discrete logarithm.



Chapter 8

Lower and upper bounds

This chapter closes the document. We compare the quantum circuit classes
to each other and try to find lower and upper bounds for them.

We first deal with shallow circuits for several arithmetical problems
(published in [SBKH93]). They are inferred from neural networks by ap-
proximating the Threshold gate by a quantum circuit of depth O

�
log � n � .

Furthermore, we present a modified version of Shor’s factoring al-
gorithm (published in [CW00]). It consists of classical polynomial time
pre-processing and post-processing stages and a logarithmic depth quan-
tum circuit performing the Order Finding. It implies that FACTORING� RPFQNC1

. Assuming that FACTORING is not in RPF, it follows that QNC1

(let alone QNC1
f ) are probably not contained in P. If QNC1 v P, then FAC-

TORING � RPFP � RPF, which is a contradiction.
Finally, we outline relations between the investigated quantum circuit

classes and recapitulate open problems.

8.1 Arithmetics using threshold circuits

In [SBKH93], there have been developed shallow threshold circuits for
several arithmetical operations. We have already shown that every thresh-
old gate can be simulated by a quantum circuit with fan-out having depth
O
�
log � n � and polynomial size. Hence the results inferred in the threshold

circuit model can be reformulated also in the model of quantum circuits
with fan-out.

Let us just state the results. Look at the original article for a detailed
discussion and for proofs.

55
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Definition 8.1 A linear threshold function f
�
X � : 	 0 
 1 � n ��	 0 
 1 � is a Boolean

function such that f
�
X � � sgn

�
F
�
X ��� , and F

�
X � � ∑n

k � 1 wkxk 0 w0 for X ��
x1 
��8���8
 xn � ��	 0 
 1 � n. We assume the weights wk are integers and bounded

by a polynomial in n, i.e. �wk �@ nc for some constant c � 0.
A threshold circuit (or equivalently a neural network) is a Boolean circuit

of linear threshold gates. The depth and size of the circuit is defined in a
usual way. We assume the sizes of the considered circuits are all polyno-
mially bounded. We do not impose any restriction on the fan-in and fan-out
of each threshold gate in the circuit.

Theorem 8.1 The product of two input n-bit integers can be computed in
a depth-4 threshold circuit.

Theorem 8.2 Let X be an input n-bit integer and let m be a fixed positive
integer bounded by a polynomial in n. Then X mod m can be computed in
a depth-2 threshold circuit.

Theorem 8.3 Let X be an input n-bit integer. Let p be a prime number
bounded by a polynomial in n and c be a positive integer not divisible by
p. Then Xn mod p and cX mod p can both be computed in depth-2 threshold
circuits.

Theorem 8.4 Let X be an input O
�
logn � -bit integer (i.e. X  nk for some

constant k) and c ! 0 be a fixed integer. We define EXPONENTIATION
to be the O n nk o -bit representation of cX . The EXPONENTIATION can be
computed in a depth-2 threshold circuit.

Theorem 8.5 Let X be an input n-bit integer. We define POWERING to
be the n2-bit representation of Xn.The POWERING can be computed in a
depth-4 threshold circuit.

Theorem 8.6 Let 	 Xk � n
k � 1 be n input n-bit integers. We define MULTIPLE

PRODUCT to be the n2-bit representation of x1x2 i8i�i xn. The MULTIPLE
PRODUCT can be computed in a depth-5 threshold circuit.

Theorem 8.7 Let X and Y ! 1 be two input n-bit integers. Let X F Y be the
quotient of X divided by Y . We define DIVk

�
X F Y � to be X F Y truncated

to the nearest
�
n 0 k � -bit number. Then DIVk

�
X F Y � can be computed in a

depth-4 threshold circuit.

Theorem 8.8 The SORTING of n input n-bit numbers can be computed
in a depth-3 threshold circuit. Any polynomial size threshold circuit for
SORTING must have depth at least 3.
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Note 8.1 Depths of many presented circuits have been further improved.
However, for our purposes, it is only important, that the depths are con-
stant, i.e. the equivalent quantum circuit has depth O

�
logn � (if fan-out is

available, depth O
�
log � n � is enough). In particular, we are interested in

the MULTIPLE PRODUCT problem.

8.2 Factoring problem

In [CW00], there has been discussed a simple modification of the Shor’s
factoring algorithm. Let us review their method.

The Shor’s factoring algorithm works as follows. It is assumed the
input is an n-bit integer N.

1. (Classical) If N is even, then output 2. Otherwise determine whether
N � ab for integers a ! 1, b ! 2 (it can be done fast, since there are
only O

�
logN � possible b’s), and if so output the factor a. Otherwise

continue to step 2.

2. (Classical) Randomly select a �9	 2 
 3 
����8��
 N � 1 � . If gcd
�
a 
 N � � 1, then

output gcd
�
a 
 N � , otherwise continue to step 3.

3. (Quantum) Attempt to find information about the order of a in Z �N :

3.1. Initialise a 2n-qubit register and an n-qubit register to computa-
tional basis state � 0 �@� 1 � .

3.2. Perform the Hadamard transform on each qubit of the first reg-
ister.

3.3. (Modular exponentiation step) Perform the unitary mapping� x ��� y �}� � x ��� axymodN � .
3.4. Perform the inverse QFT on the first register and measure it in

the computational basis. Let y denote the result.

4. (Classical) Use the continued fraction algorithm to find relatively
prime integers k and r, 0  k § r § N, such that � y F 22n � k F r �¸ 2 " 2n.
If ar � 1

�
modN � , then continue to step 5, otherwise the computation

has been erroneous (it can be restarted from step 3).

5. (Classical) If r is even and ar H 2 ³� � 1
�
modN � , then compute d1 Q 2 �

gcd
�
ar H 2 ¹ 1 
 N � and find out which of them is a nontrivial factor of N.

Otherwise the computation has been unsuccessful (it can be restarted
from step 2).
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Let us assume N is composite. Step 1 ensures that N is an odd integer
with more than one prime factor. Step 2 filters out a trivial case of finding
a factor casually. It is shown in [NC00] that, in Step 4, the probability of
yielding a correct order r is at least 1

4 (if we use a slightly more complicated
algorithm involving 2 repetitions of the order finding procedure). For a
correct order r, it holds that r is even and ar H 2 ³� � 1

�
modN � with probability

at least 1
2 . It follows that at least one of d1 Q 2 is a nontrivial factor in such

case.

Corollary 8.9 If N is composite, then the algorithm finds a solution in one
iteration with probability at least 1

8 , otherwise it never returns a wrong
answer. Hence FACTORING can be computed by a polynomial time algo-
rithm with bounded one-sided error using a quantum oracle.

The bottleneck of the quantum part of the algorithm is not the QFT, but
the modular exponentiation. However, as noted in [Sho97], most of the
work can be shifted to the classical computation in Step 2 of the proce-
dure. If we pre-compute bk

� a2k
modN for k �º	 0 
 1 
������)
 2n � 1 � using the

recursive formulae bk � 1
� b2

k modN, then

ax � a∑2n � 1
k » 0 2kxk � 2n " 1

∏
k � 0

� a2k � xk � 2n " 1

∏
k � 0

bxk
k
� 2n " 1

∏
k � 0

b ¥k � modN � 

which is an instance of the MULTIPLE PRODUCT problem. The quantum
circuit gets all bk’s on the input. If xk

� 1, then it sets b ¥k : � bk, otherwise
it sets b ¥k : � 1. The modular exponentiation is then performed by simply
multiplying b ¥0b ¥1 i�i8i b ¥2n " 1.

In [CW00], the presented method has led to a result, that the quan-
tum part of the algorithm can be performed by a quantum circuit of depth
O n log2 n o . It follows from the fact, that QFT � QNC1 and that the 2n mul-
tiplications can be performed by a binary tree of depth O

�
logn � and each

multiplication can be performed in O
�
logn � layers.

This simple solution can be further improved by incorporating the pre-
sented shallow circuit for computing the MULTIPLE PRODUCT (having
depth O

�
logn � , respect. O

�
log � n � if the fan-out is available). The QFT� QNC1 and MULTIPLE PRODUCT � QNC1. Hence the quantum part of

the computation is also in QNC1.

Corollary 8.10 FACTORING � RPFQNC1
, i.e. it is computable by a polyno-

mial time algorithm with bounded one-side error using the oracle solving
QNC1 problems. The algorithm either returns a non-trivial factor of N, or
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NC0

AC0

TC0

. . .
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ACC0 ¼ q ½ ’s
QNC0

QAC0

QTC0

QACC0

QNC0
f

Figure 8.1: Relations of the circuit classes

conjectures that N is a prime number. It can only mistake that a composite
number N is proposed to be prime.

Assuming FACTORING ³� RPF, then QNC1 ³v P. If it held that QNC1 v
P, then FACTORING � RPFP � RPF, which is a contradiction.

Note 8.2 In the model of quantum circuits with fan-out, the bottleneck of
the algorithm is the QFT. If it can be improved to depth O

�
log � n � , then the

whole quantum part of the algorithm would have depth O
�
log � n � .

8.3 Relations of the quantum circuit classes

It is obvious that QNCk v QNCk
f
v QACCk. Unfortunately it is not known

at this time, what the relation between QACk, QTCk, and QNCk
f is. We have

presented several interesting simulations using the fan-out gate:# The linear Rank gate and thus also the Toffoli gate of size n can be
simulated exactly in depth O

�
log � n � using O

�
n logn � ancilla qubits.# The linear Threshold gate and the linear Counting gate of size n with

weights bounded by p
�
n � can both be approximated with polynomi-

ally small error in depth O
�
log logn � using O

�
n logn � ancilla qubits.

They both can be also computed exactly using O n n2 p
�
n � logn o ancilla

qubits in depth O
�
log � n � .

However none of these results imply that QAC0 v QNC0
f , let alone QTC0 v

QNC0
f . The converse simulation (of the parity gate in the circuit class QAC0

or QTC0) is also unknown yet.
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8.4 Open problems

We do not know whether QACk v QNCk
f , let alone QTCk v QNCk

f . To give a
positive answer, we would have to improve the presented O

�
log � n � depth

circuits to depth O
�
1 � . Hence it would be necessary to get rid of the it-

eration n � O
�
logn � and solve the Rank problem immediately in the first

iteration. We do not know how to gather more information from the su-
perposition state of the register Z after the Hadamard operation is applied
for the second time — the state looks very “noisy”.

We do not know whether the QFT can be performed in o
�
logn � depth.

The QFS can be performed in constant depth, but it leaves source qubits
unchanged, which disturbs the desired interference pattern of the target
qubits. The QFP circuit, presented in [CW00], uses a reduction of a se-
quence of n numbers using an associative operation, hence it can be done
by a balanced binary tree in depth O

�
logn � . However the binary opera-

tion is not commutative, thus we can not directly apply the parallelisation
method.

Let V be an operator on n qubits that approximates U with error ε for
each computational basis state. We know that the expected error for a
random superposition state is also ε, but the maximal error is known to be
bounded by 2n H 2 i ε. Could this bound be improved?

The space complexity of the O
�
log � n � depth Counting and Threshold

operators is quite big, since we apply the Rank gate for each possible value
v � V of the variable z. Can it be decreased?
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