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Abstract. We demonstrate that the unbounded fan-out gate is very
powerful. Constant-depth polynomial-size quantum circuits with bounded
fan-in and unbounded fan-out over a fixed basis (denoted by QNC0

f ) can
approximate with polynomially small error the following gates: parity,
mod[q], And, Or, majority, threshold[t], exact[q], and counting. Classi-
cally, we need logarithmic depth even if we can use unbounded fan-in
gates. If we allow arbitrary one-qubit gates instead of a fixed basis, then
these circuits can also be made exact in log-star depth. Sorting, arith-
metical operations, phase estimation, and the quantum Fourier transform
can also be approximated in constant depth.

1 Introduction

In this paper, we study the power of shallow quantum circuits. Long quantum
computations encounter various problems with decoherence, hence we want to
speed them up as much as possible. We can exploit two types of parallelism:

1. Gates on different qubits can be applied at the same time.
2. Commuting gates can be applied on the same qubits at the same time.

The first possibility is straightforward. There are clues that also the second
possibility might be physically feasible: ion-trap [3] and bulk-spin NMR [5]. If
two quantum gates commute, so do their Hamiltonians and thus we can apply
their joint operation by simply performing both evolutions at the same time.

We define an unbounded fan-out gate as a sequence of controlled-not gates
sharing one control qubit. This gate is universal for all commuting gates: We
show that the parallelisation method of [10, 6] can apply general commuting
gates in parallel using just the fan-out gate and one-qubit gates.

Classically, the main classes computed by polynomial-size, (logk n)-depth cir-
cuits with unbounded fan-out are:

– NCk: bounded fan-in gates, – ACk[q]: unbounded fan-in and mod[q]

– ACk: unbounded fan-in gates, gates, and ACCk =
⋃

q AC
k[q].

– TCk: unbounded threshold gates,

? Supported by the Alberta Ingenuity Fund and the Pacific Institute for the Mathe-
matical Sciences.

?? Work conducted in part while at Vrije Universiteit, Amsterdam. Partially supported
by EU fifth framework project QAIP, IST-1999-11234 and RESQ, IST-2001-37559.



It is known that TCk is strictly more powerful than ACCk [11], and that ACk[q] 6=
ACk[q′] for powers of distinct primes [14].

The main quantum circuit classes corresponding to the classical classes are
QNCk, QACk, QTCk, and QACCk. We use subscript ‘f’ to indicate circuits
where we allow the fan-out gate (e.g. QNCk

f ). In contrast to the classical case,
allowing mod[q] gates with different moduli always leads to the same quantum
classes: QACCk = QACk[q] for every q [6]. Furthermore, parity is equivalent to
unbounded fan-out, hence QACk

f = QACk[2] = QACCk.
In this paper, we show that even threshold gates can be approximated with

fan-out and single qubit gates in constant depth. This implies that the bounded-
error versions of the classes are equal: B-QNCk

f = B-QACk
f = B-QTCk

f .
We first construct a circuit for the exact[q] gate (which outputs 1 if the input

is of Hamming weight q, and 0 otherwise) and then use it for all other gates. The
exact[q] gate can be approximated in constant depth thanks to the parallelisation
method. Furthermore, we show how to achieve exact computation at the cost of
log-star depth.

Sorting and several arithmetical problems including addition and multiplica-
tion of n integers are computed by constant-depth threshold circuits [13], hence
they are in B-QNC0

f . By optimising the methods of [4] to use the fan-out gate,
we also put quantum phase estimation and the quantum Fourier transform in
B-QNC0

f . By results of [12, 4], polynomial-time bounded-error algorithms with
oracle B-QNC0

f can factorise numbers and compute discrete logarithms. Thus,
if B-QNC0

f can be simulated by a BPP machine, then factorisation can be done
in polynomial time by bounded-error Turing machines.

2 Quantum circuits with unbounded fan-out

Quantum circuits resemble classical reversible circuits. A quantum circuit is a se-
quence of quantum gates ordered into layers. The gates are consecutively applied
in accordance with the order of the layers. Gates in one layer can be applied in
parallel. The depth of a circuit is the number of layers and the size is the number
of gates. A circuit can solve problems of a fixed size, so we define families of
circuits containing one circuit for every input size. We consider only uniform
families, whose description can be generated by a log-space Turing machine.

A quantum gate is a unitary operator applied on some subset of qubits. We
usually use gates from a fixed universal basis (Hadamard gate, rotation by an
irrational multiple of π, and the controlled-not gate) that can approximate any
quantum gate with good precision [1]. The qubits are divided into 2 groups:
Input/output qubits contain the description of the input at the beginning and
they are measured in the computational basis at the end. Ancilla qubits are
initialised to |0〉 at the beginning and the circuits usually clean them at the end,
so that the output qubits are in a pure state and the ancillas could be reused.

Since unitary evolution is reversible, every operation can be undone. Running
the computation backward is called uncomputation and is often used for cleaning
ancilla qubits.



2.1 Definition of quantum gates

Quantum circuits cannot use a naive quantum fan-out gate mapping every su-
perposition |φ〉|0〉 . . . |0〉 to |φ〉 . . . |φ〉 due to the no-cloning theorem [16]. Such a
gate is not linear, let alone unitary. Instead, our fan-out gate copies only classi-
cal bits and the effect on superpositions is determined by linearity. It acts as a
controlled-not-not-. . . -not gate, i.e. it is an unbounded sequence of controlled-
not gates sharing one control qubit. Parity is a natural counterpart of fan-out.
It is an unbounded sequence of controlled-not gates sharing one target qubit.

Definition 1. The fan-out gate maps |x〉|y1〉 . . . |yn〉 → |x〉|y1 ⊕ x〉 . . . |yn ⊕ x〉,
where x⊕y = (x+y)mod 2. The parity gate maps |x1〉 . . . |xn〉|y〉 → |x1〉 . . . |xn〉
|y ⊕ (x1 ⊕ . . .⊕ xn)〉.

Example 1. As used in [6], parity and fan-out can simulate each other in constant

depth. Recall the Hadamard gate H = 1√
2

(

1 1
1 −1

)

and that H2 = I. If a

controlled-not gate is preceded and succeeded by Hadamard gates on both qubits,
it just turns around. Since parity is a sequence of controlled-not gates, we can
turn around all of them in parallel. The circuit is shown in the following figure:
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In this paper, we investigate the circuit complexity of among others these gates:

Definition 2. Let x = x1 . . . xn and let |x| denote the Hamming weight of x.
The following (n+ 1)-qubit gates map |x〉|y〉 → |x〉|y ⊕ g(x)〉, where g(x) = 1 iff

|x| > 0: Or, |x| ≥ n
2 : majority, |x| = q: exact[q],

|x| = n: And (Toffoli), |x| ≥ q: threshold[q], |x|mod q = 0: mod[q].

The counting gate is any gate that maps |x〉|0m〉 → |x〉| |x| 〉 for m = dlog(n+1)e.

2.2 Quantum circuit classes

Definition 3. QNCf(d(n)) contains operators computed exactly (i.e. without
error) by uniform families of quantum circuits with fan-out of depth O(d(n)),
polynomial-size, and over a fixed basis. QNCk

f = QNCf(log
k n). R-QNCk

f con-
tains operators approximated with one-sided, and B-QNCk

f with two-sided, poly-
nomially small error.

Remark 1. Every s-qubit quantum gate can be decomposed into a sequence of
one-qubit and controlled-not gates of length O

(

s34s
)

[2]. Hence it does not mat-
ter whether we allow one-qubit or fixed-size gates in the basis. All our circuits



below are over a fixed basis, unless explicitly mentioned otherwise. Some of our
circuits need arbitrary one-qubit gates to be exact.

We do not distinguish between a quantum operator computed by a quantum
circuit, a classical function induced by that operator by a measurement, and a
language decided by that function. All of them are denoted by QNCk

f .

3 Parallelisation method

In this section, we describe a general parallelisation method for achieving very
shallow circuits. Furthermore, we apply it on the rotation by Hamming weight
and the rotation by value and show how to compute them in constant depth.

3.1 General method

The unbounded fan-out gate is universal for commuting gates in the following
sense: Using fan-out, gates can be applied on the same qubits at the same time
whenever (1) they commute, and (2) we know the basis in which they all are
diagonal, and (3) we can efficiently change into the basis. The method reduces
the depth, however it costs more ancilla qubits.

Lemma 1. [8, Theorem 1.3.19] For every set of pairwise commuting unitary
gates, there exists an orthogonal basis in which all the gates are diagonal.

Theorem 1. [10, 6] Let {Ui}
n
i=1 be pairwise commuting gates on k qubits. Gate

Ui is controlled by |xi〉. Let T be a gate changing the basis according to Lemma 1.
There exists a quantum circuit with fan-out computing U =

∏n
i=1 U

xi
i having

depth maxni=1 depth(Ui)+4·depth(T )+2, size
∑n

i=1 size(Ui)+(2n+2)·size(T )+2,
and using (n− 1)k ancillas.

Proof. Consider a circuit that applies all Ui sequentially. Put TT
† = I between

Ui and Ui+1. Take Vi = T †UiT as new gates. They are diagonal in the compu-
tational basis, hence they just impose some phase shifts. The circuit follows:

. . .n

k . . .T †

V1

U1 TT T †

V2

U2 T T †

Vn

Un T T †

Multiple phase shifts on entan-
gled states multiply, so can be
applied in parallel. We use fan-
out gates twice: first to create n
entangled copies of target qubits
and then to destroy the entan-
glement. The final circuit with
the desired parameters follows:

n

k

n

. . .

. . .

V1

V2

Vn

|0〉

|0〉

|0〉

|0〉

T †T

ut



Example 2. As used in [6], it is simple to prove that mod[q] ∈ QNC0
f : Each

input qubit controls one increment modulo q on a counter initialised to 0. At
the end, we obtain |x|mod q. The modular increments commute and thus can
be parallelised. Since q is fixed, changing the basis and the increment can both
be done in constant depth.

3.2 Rotation by Hamming weight and value

In this paper, we often use a rotation by Hamming weight Rz (ϕ|x|) and a rotation
by value Rz (ϕx), where Rz (α) is one-qubit rotation around z-axis by angle α:
Rz (α) = |0〉〈0|+ eiα|1〉〈1|. They both can be computed in constant depth.

First of all, it is convenient to use controlled one-qubit gates as basic ele-
ments. The following lemma shows that they can be simulated by one-qubit and
controlled-not gates.

Lemma 2. [2, Lemma 5.1] For every one-
qubit gate U , there exist one-qubit gates
A,B,C and rotation P = Rz (α) such that
the controlled gate U is computed by the fol-
lowing constant-depth circuit:

U A B C

P

=

Remark 2. If a qubit controls more one-qubit gates, then we can still use this
method. The controlled-not gate is just replaced by the fan-out gate and the
rotations P are multiplied.

Lemma 3. For every angle ϕ, there exist constant-depth, linear-size quantum
circuits with fan-out computing Rz (ϕ|x|) and Rz (ϕx) on input x = xn−1 . . . x1x0.

Proof. The left figure shows how to compute the rotation by Hamming weight:
Each input qubit controls Rz (ϕ) on the target qubit, hence the total angle is
ϕ|x|. These controlled rotations are parallelised using the parallelisation method.

The right figure shows the rotation by value. It is similar to the rotation by
Hamming weight, only the input qubit |xj〉 controls Rz

(

ϕ2j
)

, hence the total

angle is ϕ
∑n−1

j=0 2jxj = ϕx.

Rz(ϕ)

Rz(ϕ)

Rz(ϕ)

. . .

. . .

|x0〉
|x1〉

|xn−1〉

|0〉+|1〉√
2

|0〉

|0〉

ancillas

|x0〉
|x1〉

|xn−1〉

|0〉+eiϕ|x||1〉√
2 Rz(ϕ)

Rz(2ϕ)

Rz(2n−1ϕ)

. . .

. . .

|x0〉
|x1〉

|xn−1〉

|0〉

|0〉

ancillas

|x0〉
|x1〉

|xn−1〉

|0〉+eiϕx|1〉√
2

|0〉+|1〉√
2

ut



Remark 3. The construction uses rotations Rz (ϕ) for arbitrary ϕ ∈ R. However,
we are only allowed to use a fixed set of one-qubit gates. It is easy to see that
every rotation can be approximated with polynomially small error by Rz (θq) =
(Rz (θ))

q
, where sin θ = 3

5 and q is a polynomially large integer [1]. These q
rotations commute, so can be applied in parallel and the depth is preserved.

4 Approximate circuits

In this section, we present very shallow approximate circuits for all gates from
Definition 2.

4.1 Quantum Fourier transform

QFT is a very powerful tool used in several quantum algorithms, e.g. factorisa-
tion of integers [12]. In this section, we use it for a different purpose: paralleli-
sation of increment gates.

Definition 4. The quantum Fourier transform (QFT) performs the Fourier
transform on the quantum amplitudes of the state, i.e. it maps

Fn : |x〉 → |ψ x
n 〉 =

1

2n/2

2n−1
∑

y=0

e2πixy/2
n

|y〉. (1)

Shor has shown in [12] how to compute QFT in quadratic depth, quadratic
size, and without ancillas. The depth has further been improved to linear. Cleve
and Watrous have shown in [4] that QFT can be approximated with error ε in
depth O

(

log n+ log log 1
ε

)

and size O
(

n log n
ε

)

. Furthermore, they have shown
that logarithmic depth is necessary (in the model without fan-out).

4.2 Circuits of double-logarithmic depth

Circuits in this sub-section are not optimal, however they give a good insight.
They are based on counting the weight of the input, which is parallelised.

Definition 5. The increment gate maps Incrn : |x〉 → |(x+ 1)mod 2n〉.

Lemma 4. The increment gate is diagonal in the Fourier basis and its diagonal
version is in QNC0.

Proof. It is simple to prove the following equations:

1. Incrn = F †nDnFn for diagonal Dn =
∑2n−1

x=0 e2πix/2
n

|x〉〈x|,

2. Dn = Rz (π)⊗Rz (π/2)⊗ . . .⊗Rz

(

π/2n−1
)

. ut



Remark 4. Classically, Incr ∈ NC1. The circuits for QFT mentioned above also
have logarithmic depth and they are only approximate. However, quantum cir-
cuits of this type can be parallelised, which we cannot do with classical circuits.

Furthermore, the addition of a fixed integer q is as hard as the increment: by
Lemma 4, Incrq = F †DqF and (Rz (ϕ))

q
= Rz (ϕq), hence the diagonal version

of the addition of q is also in QNC0.

Theorem 2. Using fan-out, the counting gate can be approximated with error
ε in depth O

(

log log n+ log log 1
ε

)

and size O
(

(n+ log 1
ε ) log n

)

.

Proof. Compute the Hamming weight of the input: Each input qubit controls one
increment on an m-qubit counter initialised to 0, where m = dlog(n + 1)e. The
increments Incrm are parallelised, so we apply the quantum Fourier transform
Fm twice and the n constant-depth controlled Dm gates in parallel. ut

Remark 5. Other gates are computed from the counting gate by standard meth-
ods: threshold[t] can be computed as the most significant qubit of the counter if
we align it to a power of 2 by adding fixed integer 2m − t.

4.3 Constant-depth circuits

Rotations by Hamming weight computed for many elementary angles in parallel
can be used for approximating the Or and exact[q] gates in constant depth.

Define one-qubit state |µwϕ〉 = (H ·Rz (ϕw) ·H) |0〉 = 1+eiϕw

2 |0〉+ 1−eiϕw
2 |1〉.

By Lemma 3, |µ
|x|
ϕ 〉 can be computed in constant-depth and linear-size.

Theorem 3. Or ∈ R-QNC0
f , i.e. it can be approximated with one-sided polyno-

mially small error in constant-depth.

Proof. Let m = a · n, where a will be chosen later. For all k ∈ {0, 1, . . . ,m− 1},

compute in parallel |yk〉 = |µ
|x|
ϕk〉 for angle ϕk = 2π

m k. If |yk〉 is measured in the
computational basis, the expected value is

E[Yk] =

∣

∣

∣

∣

1− eiϕk|x|

2

∣

∣

∣

∣

2

=
∣

∣

∣
e−iϕk|x|

∣

∣

∣
·

∣

∣eiϕk|x| + e−iϕk|x| − 2
∣

∣

4
=

1− cos(ϕk|x|)

2
.

If all these m qubits |y〉 are measured, the expected Hamming weight is

E[|Y |] = E

[

m−1
∑

k=0

Yk

]

=
m

2
−

1

2

m−1
∑

k=0

cos

(

2πk

m
|x|

)

=

{

0 if |x| = 0,
m
2 if |x| 6= 0.

The qubits |y〉 are actually not measured, but their Hamming weight |y| controls

another rotation on a new ancilla qubit |z〉. So compute |z〉 = |µ
|y|
2π/m〉.

Let Z be the outcome after |z〉 is measured. If |y| = 0, then Z = 0 with
certainty. If

∣

∣|y| − m
2

∣

∣ ≤ m√
n
, then

P [Z = 0] =

∣

∣

∣

∣

∣

1 + ei
2π
m |y|

2

∣

∣

∣

∣

∣

2

=
1 + cos

(

2π
m |y|

)

2
≤

1− cos 2π√
n

2
= O

(

1

n

)

.



Assume that |x| 6= 0. Since 0 ≤ Yk ≤ 1, we can use Hoeffding’s Lemma 5
below and obtain P

[∣

∣|Y | − m
2

∣

∣ ≥ εm
]

≤ 1
2ε2m

. Fix a = log n and ε = 1√
n
. Now,

P
[

∣

∣|y| − m
2

∣

∣ ≥ m√
n

]

≤ 1
2m/n

= 1
2a = 1

n . Hence P [Z = 0] =

{

1 if |x| = 0,
O
(

1
n

)

if |x| 6= 0.

The circuit has constant depth and
size O(mn) = O

(

n2 log n
)

. It is out-
lined in the following figure. The fig-
ure is slightly simplified: unimpor-
tant qubits and uncomputation of
ancillas are omitted.

|µ
|x|
2π
m

0
〉

|µ
|x|
2π
m

1
〉

|µ
|x|
2π
m

(m−1)
〉

. . .

|µ
|y|
2π
m

〉
|z〉

|x1 . . . xn〉

|00 . . . 0〉

|00 . . . 0〉

|y〉

ut

Lemma 5 (Hoeffding). [7] If Y1, . . . , Ym are independent random variables
bounded by ak ≤ Yk ≤ bk, then, for all ε > 0,

P [|S − E[S]| ≥ εm] ≤ 2 exp
−2m2ε2

∑m
k=1(bk − ak)

2
, where S =

∑m
i=k Yk.

Remark 6. Since the outcome is a classical bit, we can save it and clean all
ancillas by uncomputation. It remains to prove that the intermediate qubits |y〉
need not be measured, in order to be able to uncompute them.

We have only proved that the output qubit is a good approximation of the
logical Or, if |y〉 is immediately measured. By the principle of deferred measure-
ment, we can use controlled quantum operations and measure |y〉 at the end.
However, the outcome is a classical bit hardly entangled with |y〉, hence it does
not matter whether |y〉 is measured.

Remark 7. If we need smaller error 1
nc , we create c copies and compute exact

Or of them by a binary tree of Or gates. The tree has depth log c = O(1). Using

Theorem 6, the size can be reduced to O
(

dn log(d) n
)

and the depth is O(d).

Theorem 4. exact[q] ∈ R-QNC0
f .

Proof. Slight modification of the circuit for Or:
As outlined in the figure, by adding rotation
Rz (−ϕq) to the rotation by Hamming weight

in the first layer, we obtain |µ
|x|−q
ϕ 〉 instead of

|µ
|x|
ϕ 〉. The second layer stays the same. If the

output qubit |z〉 is measured, then

P [Z = 0] =

{

1 if |x| = q,
O
(

1
n

)

if |x| 6= q.

We obtain an approximation of the exact[q] gate
with one-sided polynomially small error. ut

H Rz(ϕ)

Rz(ϕ)

Rz(ϕ)

Rz(–ϕq)

H

. . .

. . .

|x0〉
|x1〉
|xn−1〉

|0〉

|0〉

|0〉

|0〉

|µ|x|−qϕ 〉

added

|x0〉
|x1〉
|xn−1〉

rotation



Remark 8. Other gates are computed from the exact[q] gate by standard meth-
ods: threshold[t] can be computed as the parity of exact[t], exact[t + 1], . . . ,
exact[n]. The depth stays constant and the size is just n-times bigger, i.e.
O
(

n3 log n
)

, hence threshold[t] ∈ B-QNC0
f .

Using Theorem 7 and the technique of Theorem 2, threshold[t] can be com-
puted in constant-depth and smaller size O(n log n).

4.4 Arithmetical operations

The threshold gate is very powerful, so the fan-out gate is powerful too:

Theorem 5. The following functions are in B-QNC0
f : addition and multiplica-

tion of n integers, division of two integers, and sorting of n integers.

Proof. By [13], these functions are computed by constant-depth, polynomial-size
threshold circuits. The depths are really small, from 2 to 5. A threshold circuit
is built of weighted threshold gates. It is simple to prove that also the weighted
threshold gate (with polynomially large integer weights) is in B-QNC0

f . ut

5 Exact circuits

In the previous section, we have shown how to approximate the exact[q] gate in
constant depth. In this section, we show how to compute it exactly in log-star
depth. The circuits in this section need arbitrary one-qubit gates instead of a
fixed basis, otherwise they would not be exact.

Theorem 6. Or on n qubits can be reduced exactly to Or on m = dlog(n+ 1)e
qubits in constant-depth and size O(n log n).

Proof. For k ∈ {1, 2, . . . ,m}, compute in parallel |yk〉 = |µ
|x|
ϕk〉 for angle ϕk = 2π

2k
:

– If |x| = 0, then |yk〉 = |0〉 for each k.
– If |x| 6= 0, take unique decomposition x = 2a(2b+ 1) where a, b ∈ N0. Then

〈1|ya+1〉 =
1− eiϕa+1|x|

2
=

1− eiπ(2b+1)

2
=

1− eiπ

2
= 1.

It follows that |x| = 0⇐⇒ |y| = 0. Hence the original problem is exactly reduced
to a problem of logarithmic size. ut

Remark 9. If all input qubits are zero, then also all output qubits are zero. Oth-
erwise the output qubits are in a general superposition such that the amplitude
of the zero state is 0.

Corollary 1. exact[q] ∈ QAC0
f .

Proof. Using the same method as in Theorem 4, also the exact[q] gate can be
reduced to Or, which is in QAC0

f . ut

Corollary 2. exact[q] ∈ QNCf(log
∗ n).

Proof. Repeat the exact reduction log∗ n times until the input size ≤ 2. Compute
and save the outcome and clean ancillas by uncomputation. ut



6 Quantum Fourier transform and phase estimation

6.1 Constant-depth QFT

We show that the approximate circuit for QFT from [4] can be compressed to
constant depth, if we use the fan-out gate. Recall Definition 4 of QFT.

Theorem 7. QFT ∈ B-QNC0
f .

Proof. The operator Fn : |x〉 → |ψ x
n 〉 can be computed by composing:

1. Fourier state construction (QFS): |x〉|0〉 . . . |0〉 → |x〉|ψ x
n 〉|0〉 . . . |0〉

2. Copying Fourier state: |x〉|ψ x
n 〉|0〉 . . . |0〉 → |x〉|ψ x

n 〉 . . . |ψ
x
n 〉

3. Uncomputing phase estimation (QFP): |ψ x
n 〉 . . . |ψ

x
n 〉|x〉 → |ψ x

n 〉 . . . |ψ
x
n 〉|0〉

4. Uncopying Fourier state: |ψ x
n 〉 . . . |ψ

x
n 〉|0〉 → |ψ x

n 〉|0〉 . . . |0〉

The following lemmas show that each of these four operators is in B-QNC0
f . ut

Lemma 6. QFS ∈ QNC0
f .

Proof. QFS maps |x〉|0〉 → |x〉|ψ x
n 〉. Define |ρr〉 = |0〉+e2πri|1〉√

2
. It is simple to

prove that |ψ x
n 〉 = |ρx/21〉|ρx/22〉 . . . |ρx/2n〉. The n qubits |ρx/2k〉 can be com-

puted from x in parallel. Computation of |ρx/2k〉 = Rz

(

2π
2k
x
) |0〉+|1〉√

2
is done by

the rotation by value (Lemma 3) in constant depth and linear size. ut

Definition 6. Let x1, . . . , xm be n-bit integers. The reversible addition-gate maps
addmn : |x1〉 . . . |xm〉 → |x1〉 . . . |xm−1〉|y〉, where y = (

∑m
i=1 xi)mod 2n.

Lemma 7. addmn ∈ B-QNC0
f .

Proof. By Theorem 5, y = (
∑m

i=1 xi)mod 2n can be approximated in constant
depth and polynomial size. The result is, however, stored into ancilla qubits.
Uncompute xm = (y−

∑m−1
i=1 xi)mod 2n in the same way (subtraction is as hard

as addition). ut

Lemma 8. Copying Fourier state is in B-QNC0
f .

Proof. Take the reversible addition-gate: (add2
n)|y〉|x〉 = |y〉|(x+y)mod 2n〉. It is

simple to prove that (add2
n)
−1|ψ y

n 〉|ψ
x
n 〉 = |ψ

x+y
n 〉|ψ x

n 〉. Hence (add2
n)
−1|ψ 0

n 〉|ψ
x
n 〉 =

|ψ x
n 〉|ψ

x
n 〉. The state |ψ 0

n 〉 = H⊗n|0n〉 is easy to prepare in constant depth.
By the same arguments, (addmn )−1|ψ 0

n 〉 . . . |ψ
0
n 〉|ψ

x
n 〉 = |ψ

x
n 〉 . . . |ψ

x
n 〉|ψ

x
n 〉. ut

Lemma 9. QFP ∈ B-QNC0
f .

Proof. QFP maps |ψ x
n 〉 . . . |ψ

x
n 〉|0〉 → |ψ x

n 〉 . . . |ψ
x
n 〉|x〉. By Cleve and Watrous [4,

sub-section 3.3], we can compute x with probability ≥ 1−ε from O
(

log n
ε

)

copies

of |ψ x
n 〉 in depth O

(

log n+ log log 1
ε

)

and size O
(

n log n
ε

)

. Use ε = 1
poly(n) . It is

easy to see that their circuit can have constant depth, if we use fan-out, parity,
And, Or, majority gate. All these gates are in B-QNC0

f . ut



6.2 Quantum phase estimation

The method of computing QFT can be also used for phase estimation:

Theorem 8. Given a gate Sx : |y〉|φ〉 → |y〉Rz

(

2πx
2n y

)

|φ〉 for basis states |y〉,
where x ∈ Z2n is unknown, we can determine x with probability ≥ 1 − ε in
constant depth, size O

(

n log n
ε

)

, and using the Sx gate O
(

n log n
ε

)

times.

Proof. Compute |ρx/2k〉 = Rz

(

2πx
2k

) |0〉+|1〉√
2

= Rz

(

2πx
2n 2n−k

) |0〉+|1〉√
2

, which is the

result of one application of Sx

(

|2n−k〉 |0〉+|1〉√
2

)

. Apply QFP on O
(

log n
ε

)

copies

of |ψ x
n 〉 = |ρx/21〉|ρx/22〉 . . . |ρx/2n〉. ut

7 Concluding remarks

7.1 Relations of quantum circuit classes

We have shown that B-QNC0
f = B-QAC0

f = B-QACC0 = B-QTC0
f (Theorem 4).

If we allow arbitrary one-qubit gates, then also QAC0
f = QTC0

f ⊆ QNCf(log
∗ n)

(Corollaries 1 and 2). Several open problems of [6] have thus been solved.
Only little is known about classes that do not include the fan-out gate. For ex-

ample, we do not know whether TC0 ⊆ QTC0, we only know that TC0 ⊆ QTC0
f .

It is simple to prove that parity is in TC0: take Or of exact[1], exact[3], exact[5],
. . . , and compute exact[k] from threshold[k] and threshold[k+1]. However, this
method needs fan-out to copy the input bits.

7.2 Randomised versus quantum depth

We compare depths of randomised classical circuits and quantum circuits, both
with bounded fan-in and unbounded parity and fan-out. Quantum upper bounds
are proved in this paper. Classical lower bounds can be proved by Yao’s principle
and the polynomial method (with polynomials modulo 2).

Gate Randomised Quantum
Or and threshold[t] exactly Θ(log n) O(log∗ n)
mod[q] exactly Θ(log n) Θ(1)
Or with error 1

n Θ(log log n) Θ(1)
threshold[t] with error 1

n Ω(log log n) Θ(1)

7.3 Upper bounds for B-QNC0

f

Shor’s original factoring algorithm uses modular exponentiation and the quan-
tum Fourier transform followed by a polynomial-time deterministic algorithm.
The modular exponentiation ax can be replaced by multiplication of some subset

of numbers a, a2, a4, . . . , a2n−1

[4]. Numbers a2k are precomputed classically.
Since both multiplication of n numbers (Theorem 5) and QFT (Theorem 7)

are in B-QNC0
f , there is a polynomial-time bounded-error algorithm with oracle

B-QNC0
f factoring numbers, i.e. factoring ∈ RP[B-QNC0

f ]. If B-QNC0
f ⊆ BPP,

then factoring ∈ RP[BPP] ⊆ BPP[BPP] = BPP.
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