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ABSTRACT
We give a quantum algorithm for evaluating formulas over
an extended gate set, including all two- and three-bit binary
gates (e.g., NAND, 3-majority). The algorithm is optimal on
read-once formulas for which each gate’s inputs are balanced
in a certain sense.

The main new tool is a correspondence between a classi-
cal linear-algebraic model of computation, “span programs,”
and weighted bipartite graphs. A span program’s evaluation
corresponds to an eigenvalue-zero eigenvector of the associ-
ated graph. A quantum computer can therefore evaluate the
span program by applying spectral estimation to the graph.

For example, the classical complexity of evaluating the
balanced ternary majority formula is unknown, and the
natural generalization of randomized alpha-beta pruning is
known to be suboptimal. In contrast, our algorithm gen-
eralizes the optimal quantum AND-OR formula evaluation
algorithm and is optimal for evaluating the balanced ternary
majority formula.

Categories and Subject Descriptors
F.1.2 [Computation by Abstract Devices]: Modes of
Computation; F.2.2 [Analysis of Algorithms and Prob-
lem Complexity]: Nonnumerical Algorithms and Prob-
lems

General Terms
Algorithms, Theory
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1. INTRODUCTION
A formula ϕ on gate set S and of size N is a tree with

N leaves, such that each internal node is a gate from S
on its children. The read-once formula evaluation prob-
lem is to evaluate ϕ(x) given oracle access to the input

string x = x1x2 . . . xN . An optimal, O(
√
N)-query quan-

tum algorithm is known to evaluate “approximately bal-
anced” formulas over the gates S = {AND, OR, NOT} [4].
We extend the gate set S. We develop an optimal quan-
tum algorithm for evaluating balanced, read-once formulas
over a gate set S that includes arbitrary three-bit gates,
as well as bounded fan-in EQUAL gates and bounded-size
{AND, OR, NOT, PARITY} formulas considered as single
gates. The correct notion of “balanced” for a formula in-
cluding different kinds of gates turns out to be “adversary-
balanced,” meaning that the inputs to a gate must have
exactly equal adversary lower bounds. The definition of
“adversary-balanced” formulas also includes as a special case
layered formulas in which all gates at a given depth from the
root are of the same type.

The idea of our algorithm is to consider a weighted graph
G(ϕ) obtained by replacing each gate of the formula ϕ with
a small gadget subgraph, and possibly also duplicating sub-
formulas. Figure 1 has several examples. We relate the eval-
uation of ϕ to the presence or absence of small-eigenvalue
eigenvectors of the weighted adjacency matrix AG(ϕ) that
are supported on the root vertex of G(ϕ). The quantum
algorithm runs spectral estimation to either detect these
eigenvectors or not, and therefore to evaluate ϕ.

As a special case, for example, our algorithm implies:

Theorem 1.1 A balanced ternary majority (MAJ3) for-
mula of depth d, on N = 3d inputs, can be evaluated by
a quantum algorithm with bounded error using O(2d) oracle
queries, which is optimal.

The classical complexity of evaluating this formula is known
only to lie between Ω((7/3)d) and o((8/3)d), and the previ-

ous best quantum algorithm, from [4], used O(
√

5
d
) queries.

The graph gadgets themselves are derived from“span pro-
grams” [19]. Span programs have been used in classical com-
plexity theory to prove lower bounds on formula size [19, 5]
and monotone span programs are related to linear secret-
sharing schemes [8]. (Most, though not all [1], applications
are over finite fields, whereas we use the definition over C.)
We will only use compositions of constant-size span pro-
grams, but it is interesting to speculate that larger span pro-
grams could directly give useful new quantum algorithms.
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Figure 1: To convert a formula ϕ to the correspond-
ing graph G(ϕ), we recursively apply substitution
rules starting at the root to convert each gate into
a gadget subgraph. Some of the rules are shown
here, except with the edge weights not indicated.
The dangling edges at the top and bottom of each
gadget are the input edges and output edge, respec-
tively. To compose two gates, the output edge of
one is identified with an input edge of the next.

Classical and quantum background.
The formula evaluation problem has been well-studied in

the classical computer model. Classically, the case S =
{NAND} is best understood. A formula with only NAND
gates is equivalent to one with alternating levels of AND and
OR gates, a so-called “AND-OR formula,” also known as a
two-player game tree. One can compute the value of a bal-
anced binary AND-OR formula with zero error in expected

time O(N log2[(1+
√

33)/4]) = O(N0.754) [26, 24], and this is
optimal even for bounded-error algorithms [25]. However,
the complexity of evaluating balanced AND-OR formulas
grows with the degree of the gates. For example, in the ex-
treme case of a single OR gate of degree N , the complexity
is Θ(N). The complexity of evaluating AND-OR formulas
that are not “well-balanced” is unknown.

If we allow the use of a quantum computer with coher-
ent oracle access to the input, however, then the situation

is much simpler; between Ω(
√
N) and N

1
2+o(1) queries are

necessary and sufficient to evaluate any {AND, OR, NOT}
formula with bounded error. In one extreme case, Grover
search [14, 15] evaluates an OR gate of degree N using

O(
√
N) oracle queries and O(

√
N log logN) time. In the

other extreme case, Farhi, Goldstone and Gutmann recently
devised a breakthrough algorithm for evaluating the depth-
log2N balanced binary AND-OR formula in O(

√
N) time

in the unconventional Hamiltonian oracle model [12]. Am-

bainis [3] improved this to O(
√
N)-queries in the standard

query model. Childs, Reichardt, Špalek and Zhang [9]

gave an O(
√
N)-query algorithm for evaluating balanced

or “approximately balanced” formulas, and extended the
algorithm to arbitrary {AND, OR, NOT} formulas with

N
1
2+o(1) queries, and also N

1
2+o(1) time after a preprocess-

ing step. (Ref. [4] contains the merged results of [3, 9].)
This paper shows other nice features of the formula evalu-

ation problem in the quantum computer model. Classically,
with the exception of {NAND}, {NOR} and a few trivial
cases like {PARITY}, most gate sets are poorly understood.

In 1986, Boppana asked the complexity of evaluating the bal-
anced, depth-d ternary majority (MAJ3) function [24], and
today the complexity is only known to lie between Ω((7/3)d)
and O((2.655 . . .)d) [18]. In particular, the näıve generaliza-
tion of randomized alpha-beta pruning—recursively evalu-
ate two random immediate subformulas and then the third
if they disagree—runs in expected time O((8/3)d) and is
suboptimal. This suggests that the balanced ternary major-
ity function is significantly different from the balanced k-ary
NAND function, for which randomized alpha-beta pruning
is known to be optimal. In contrast, we show that the opti-
mal quantum algorithm of [9] does extend to give an optimal
O(2d)-query algorithm for evaluating the balanced ternary
majority formula. Moreover, the algorithm also generalizes
to a significantly larger gate set S.

Organization.
We introduce span programs and explain their correspon-

dence to weighted bipartite graphs in Section 2. The corre-
spondence involves considering parts of a span program P
as the weighted adjacency matrix for a corresponding graph
GP . We prove that the eigenvalue-zero eigenvectors of this
adjacency matrix evaluate P (Theorem 2.5). This theorem
provides useful intuition.

We develop a quantitative version of Theorem 2.5 in Sec-
tion 3. We lower-bound the overlap of the eigenvalue-zero
eigenvector with a known starting state. This lower-bound
will imply completeness of our quantum algorithm. To show
soundness of the algorithm, we also analyze small-eigenvalue
eigenvectors in order to prove a spectral gap around zero.
Essentially, we solve the eigenvalue equations in terms of
the eigenvalue λ, and expand a series around λ = 0. The
results for small-eigenvalue and eigenvalue-zero eigenvectors
are closely related, and we unify them using a measure we
term“span program witness size.” In this extended abstract,
we only sketch the proofs in Section 3, leaving the details to
our extended arXiv preprint [23].

Section 4 applies the span program framework to the for-
mula evaluation problem. Theorem 4.7 is our general re-
sult, an optimal quantum algorithm for evaluating formu-
las that are over the gate set S of Definition 4.1, and that
are adversary-balanced (Definition 4.5). The proof of The-
orem 4.7 has two parts. First, in Section 4.2, we display an
optimal span program for each of the gates in S. Second, we
compose the span programs for the individual gates to ob-
tain a span program for the full formula ϕ. This is equivalent
to joining together the gadget graphs described in Figure 1
to obtain a graph G(ϕ). We combine the spectral analy-
ses of the individual span programs to analyze the spectrum
of G(ϕ) (Theorem 4.14). This analysis straightforwardly
leads to a quantum algorithm based on phase estimation of
a quantum walk on G(ϕ), in Section 4.4.

Section 5 concludes with a discussion of some extensions
to the algorithm.

2. SPAN PROGRAMS AND EIGENVALUE-
ZERO GRAPH EIGENVECTORS

A span program P is a certain linear-algebraic way of spec-
ifying a function fP . For details on span programs applied
in classical complexity theory, we can still recommend the
original reference [19] as well as, e.g., the more recent [13].



Definition 2.1 (Span program) A span program P con-
sists of a nonzero “target” vector t in a vector space over C,
together with “grouped input” vectors {vj : j ∈ J}. Each vj

is labeled with a subset Xj of the literals {x1, x1, . . . , xn, xn}.
To P corresponds a boolean function fP : {0, 1}n → {0, 1};
defined by fP (x) = 1 (i.e., true) if and only if there exists a
linear combination

P
j ajvj = t such that aj = 0 if any of

the literals in Xj evaluates to zero (i.e., false).

Example 2.2 For example, the span program

XJ = ({x1} {x2} {x3} )

t =

 
1
!
, vJ =

 
1√
3

1√
3

1√
3

!
0 1 e2πi/2 e−2πi/3

computes the MAJ3 function. Indeed, at least two of the
vj must have nonzero coefficient in any linear combina-
tion equaling the target t. Of course, the second row of
(v1 v2 v3) could be any (α β γ) with α, β, γ distinct
and nonzero, and the span program would still compute
MAJ3. This specific setting is used to optimize the running
time of the quantum algorithm (Claim 4.9).

In this section, we will show that by viewing a span pro-
gram P as the weighted adjacency matrix AGP of a certain
graph GP , the true/false evaluation of P on input x corre-
sponds to the existence or nonexistence of an eigenvalue-zero
eigenvector of AGP (x) supported on a distinguished output
node (Theorem 2.5).

In turn, this will imply that writing a span program P
for a function f immediately gives a quantum algorithm for
evaluating f , or for evaluating formulas including f as a gate
(Section 4). The algorithm works by spectral estimation on
AGP (x). Its running time depends on the span program’s
“witness size”(Section 3). For example, if fP (x) is true, then
the witness size is essentially the shortest squared length of
any witness vector (aj)j∈J in Definition 2.1.

Remark 2.3 Let us clarify a few points in Definition 2.1.
1. It is convenient, but nonstandard, to allow grouped

inputs, i.e., literal subsets Xj possibly with |Xj | > 1, instead
of just single literals, to label the columns. A grouped input
j can be thought of as evaluating the AND of all literals in
Xj. A span program P with some |Xj | > 1 can be expanded
out so that all |Xj | ≤ 1, without increasing

P
j |Xj |, known

as the size of P .
2. It is sometimes convenient to allow Xj = ∅. In this

case, vector vj is always available to use in the linear combi-
nation; grouped input j evaluates to true always. However,
such vectors can be eliminated from P without increasing the
size or changing t [19, Theorem 7].

3. By a basis change, one can always adjust the target
vector t to (1, 0, 0, . . . , 0).

2.1 Span program as an adjacency matrix
A span program P with target vector t = (1, 0, . . . , 0)

corresponds to a certain weighted bipartite graph.
Notation: For an index sequence H = (h1, . . . , h|H|) and

a set of variables {ah}, let aH = (ah1 , . . . , ah|H|). For ex-
ample, vJ denotes the sequence of grouped input vectors. It
will be convenient to define several more index sequences:
O (“output”), C (“constraints”) and I (“inputs”). Let O and
C together index the coordinates of the vector space, with

bI|J|

a|J|
. . .

. . .

a1

bI1

bC
aO

bO

︷︸︸︷ ︷︸︸︷

︸ ︷︷ ︸

. . . . . .

AGP =

aO aJz}|{0BBB@
1 AOJ

1CCCA
bO

0
:
0

ACJ

o
bC

0
:
0

AIJ

o
bI

Figure 2: The bipartite graph GP corresponding to
span program P (the output edge is (aO, bO), while
the grouped inputs are a1, . . . , a|J|).

O = {1} being the first coordinate, and C the remainder.
Let Ij indexXj for each j ∈ J , and let I =

S
j∈J Ij a disjoint

union. (Since |Ij | = |Xj |, |I| = size(P ).)
We will construct a graph GP on |I| + |J | + |C| + 2|O|

vertices. Writing the grouped input vectors out as the

columns of a matrix, let
“

AOJ
ACJ

”
=
P

j∈J |vj〉〈j|; AOJ is a

1 × |J | matrix row, and ACJ is a |C| × |J | matrix. Let
AIJ =

P
j∈J,i∈Ij

|i〉〈j|; AIJ encodes P ’s grouped inputs.

Now consider the bipartite graph GP of Figure 2, the upper
right block of whose weighted Hermitian adjacency matrix
is AGP . (The adjacency matrix is block off-diagonal be-
cause the graph is bipartite.) The edges (aj , bi) for j ∈ J
and i ∈ Ij are “input edges,” while (aO, bO) is the “output
edge.” The input and output edges all have weight one. The
weights of edges (bO, aj) for j ∈ J are given by AOJ (the
first coordinates of the grouped input vectors vJ), while the
weights of edges (bc, aj) for c ∈ C, j ∈ J are given by ACJ

(the remaining coordinates of vJ).

Example 2.4 For the MAJ3 span program of Example 2.2,
|C| = 1, |I| = |J | = 3, the graph GP is shown in Figure 1,
and the matrix AGP is0BBBB@

1 1√
3

1√
3

1√
3

0 1 e2πi/3 e−2πi/3

0 1 0 0
0 0 1 0
0 0 0 1

1CCCCA .

2.2 Eigenvalue-zero eigenvectors of the span
program adjacency matrix

Theorem 2.5 For an input x ∈ {0, 1}n, define a weighted
graph GP (x) by deleting from GP the edges (aj , bi) if the ith
literal in Xj is true. Consider all the eigenvalue-zero eigen-
vector equations of the weighted adjacency matrix AGP (x),
except for the constraint at aO. These equations have a solu-
tion with support on vertex aO if and only if fP (x) = 1, and
have a solution with support on bO if and only if fP (x) = 0.

Proof. Notation: Use aj , bi, bc, aO, bO to denote coeffi-
cients of a vector on the vertices of GP . Let AIJ(x) include
only edges to false inputs, i.e., AIJ(x) =

P
j∈J,false i∈Ij

|i〉〈j|.
The eigenvalue-λ eigenvector equations of AGP (x) are

λbO = aO +AOJaJ (2.1a)

λbC = ACJaJ (2.1b)

λbI = AIJ(x)aJ (2.1c)

λaO = bO (2.1d)

λaJ = A†
OJbO +A†

CJbC +A†
IJ(x)bI (2.1e)



At λ = 0, these equations say that for each vertex, the
weighted sum of the adjacent vertices’ coefficients must be
zero. We are looking for solutions satisfying all these equa-
tions except possibly Eq. (2.1d). Since the graph is bipartite,
at λ = 0 the a coefficients do not interact with the b coeffi-
cients. In particular, Eqs. (2.1d,e) (resp. 2.1a-c) can always
be satisfied by setting the b (resp. a) coefficients to zero.

By scaling, there is a solution with nonzero aO iff there is
a solution with aO = −1. Then Eqs. (2.1a,b) are equivalent

to t =
“

AOJ
ACJ

”
aJ =

P
j ajvj . Moreover, Eq. (2.1c) implies

that aj can be nonzero only if grouped input j is true. (If
Xj includes any false inputs, then AIJ(x)|j〉 6= 0, so aj = 0.)
These conditions are the same as those in Definition 2.1.

Next, we argue that there is a solution of Eq. (2.1e) with
λ = 0 and bO = 1 if and only if fP (x) = 0. Indeed,

fP (x) = 0 ⇔ t /∈ Span{vj : j true} ⇔ t /∈ Range
h“

AOJ
ACJ

”
Π
i

where Π =
P

true j |j〉〈j|. In turn, this holds iff there is a
vector w orthogonal to the range and having inner product

one with t—precisely constraint (2.1e) with w =
“

bO
bC

”
.

Remark 2.6 By Theorem 2.5, we can think of the graph
GP as giving a “dual-rail” encoding of the function fP : there
is a λ = 0 eigenvector of GP (x) supported on aO if and only
if fP (x) = 1, and there is one supported on bO iff fP (x) = 0.
This justifies calling edge (aO, bO) the output edge of GP .

2.3 Dual span program
A span program P immediately gives a dual span pro-

gram, denoted P †, such that fP†(x) = ¬fP (x) for all
x ∈ {0, 1}n. For our purposes, though, it suffices to define a
NOT gate graph gadget to allow negation of subformulas.

Definition 2.7 (NOT gate gadget) Implement a NOT
gate x 7→ x as two weight-one edges connected (Figure 1).
The edge (ai, bi) is the input edge, while (aO, bO) is the out-
put edge. The middle vertex ai = bO is shared.

At λ = 0, the coefficient on aO is minus that on bi, and
ai = bO by definition. Therefore, this gadget complements
the dual rail encoding of Theorem 2.5.

The NOT gate gadget of Definition 2.7 can be used to
define a dual span program P † by complementing the output
and all inputs with NOT gates, and also complementing all
input literals in the sets XJ . Since it is not essential here,
we leave the formal definition as an exercise. Alternative
constructions of dual programs are given in [23, 11, 21].

Example 2.8 For distinct, nonzero α, β, γ, the span program

XJ = ( ∅ ∅ {x1} {x2} {x3})

t =

0BB@
1
1CCA , vJ =

0BB@
1 0 0 0 0

1CCA0 1 α 1 0 0
0 1 β 0 1 0
0 1 γ 0 0 1

computes ¬MAJ3(x1, x2, x3). It was constructed, by adding
NOT gate gadgets, as the dual to the span program in Ex-
ample 2.2, up to choice of weights.

x4x1 x2 x3 x5

Figure 3: Graph for MAJ3(x1, x2,MAJ3(x3, x4, x5)),
with input edges labeled by the associated literals.

x4

x1 x2 x3

x4

x1 x2 x3

Figure 4: Graph for MAJ3(x1, x2, x3)⊕x4, and its eval-
uation on input x = 1100.

2.4 Span program composition

Definition 2.9 (Composed graph and span program)
Consider span program Q on {0, 1}n and programs Qi,
i ∈ [n] ≡ {1, . . . , n}, with corresponding graphs GQ and
GQi . The composed graph is defined by identifying the
input edges of GQ with the output edges of copies of the
other graphs. If an edge corresponds to input literal xi, then
identify that edge with the output edge of a copy of GQi ;
and if an edge corresponds to xi, then insert a NOT gate
gadget (i.e., an extra vertex, as in Definition 2.7) before a
copy of GQi . The composed span program, denoted Q◦Q[n],
is the program corresponding to the composed graph (i.e.,
GQ◦Q[n] is the composed graph). Thus fQ◦Q[n] = fQ ◦ fQ[n] .

Definition 2.10 (Formula graph and span program)
Given span programs for each gate in a formula ϕ, we define
the span program P (ϕ) as their composition according to the
formula. Let G(ϕ) be the composed graph, G(ϕ) = GP (ϕ).

Example 2.11 For example, the span program

XJ = ({x1} {x2} ∅ {x3} {x4} {x5})

t =

0BB@
1
1CCA , vJ =

0BB@
1 1 1 0 0 0

1CCA0 α β γ 0 0 0
0 0 0 1 1 1 1
0 0 0 0 α β γ

is a composed span program that computes the function
MAJ3(x1, x2,MAJ3(x3, x4, x5)), provided α, β, γ are distinct
and nonzero. (See Example 2.2.) Figure 3 shows the asso-
ciated composed graph.

Example 2.12 (Duplicating and negating inputs)
To the left in Figure 4 is the composed graph for the formula
MAJ3(x1, x2, x3)⊕x4 = EQUAL2(MAJ3(x[3]), x4), obtained
using the substitution rules of Figure 1. (A span program for



PARITY will be given in Lemma 4.12.) Note that we are
effectively negating some inputs twice, by putting NOT gate
gadgets below the negated literals x1, x2, x3. This is of course
redundant, and is only done to maintain the strict corre-
spondence of graphs to span programs, as in Example 2.8,
by keeping the input vertices bI at odd distances from aO.

To the right is the same graph evaluated on input x =
1100, i.e., with edges to true literals deleted. Since the for-
mula evaluates to true, Theorem 2.5 promises that there is
a λ = 0 eigenvector supported on aO. In this case, that
eigenvector is unique. It has support on the black vertices.

3. SPAN PROGRAM WITNESS SIZE
In Section 2, we established that by converting a for-

mula ϕ into a weighted graph G(ϕ), by replacing each gate
with a gadget subgraph coming from a span program, the
eigenvalue-zero eigenvectors of the graph effectively evalu-
ate ϕ. The dual-rail encoding of ϕ(x) = fP (ϕ)(x) promised
by Theorem 2.5 will suffice to give a phase-estimation-based
quantum algorithm for evaluating ϕ. The goal of this sec-
tion is to make Theorem 2.5 more quantitative, which will
enable us to analyze the algorithm’s running time.

In particular, we will lower-bound the achievable squared
support on either aO or bO of a unit-normalized λ = 0 eigen-
vector. (This will enable the algorithm to detect if ϕ(x) = 1
by starting a quantum walk at aO; if ϕ(x) = 1, then |aO〉
will have large overlap with the λ = 0 eigenvector.)

We also study eigenvalue-λ eigenvectors of GP (ϕ)(x), for
|λ| 6= 0 sufficiently small. At small enough eigenvalues, the
dual-rail encoding property of Theorem 2.5 still holds, in
a different fashion. Note that since the graph is bipartite,
we may take λ > 0 without loss of generality. For small
enough λ > 0, it will turn out that the function evaluation
corresponds to the output ratio rO ≡ aO/bO. If fP (x) = 1,
then rO is large and negative, roughly of order −1/λ. If
fP (x) = 0, then rO is small and positive, roughly of order
λ. (Ultimately, the point of this analysis is to show that if
the formula evaluates to false, then there do not exist any
eigenvalue-λ eigenvectors supported on aO for small enough
|λ| 6= 0. This spectral gap will prevent the algorithm from
outputting false positives.)

Consider a span program P . Let us generalize the setting
of Theorem 2.5 to allow P ’s inputs to be themselves span
programs, as in Definition 2.9. Assume that for some x, ev-
ery λ ∈ [0,Λ) and each input i ∈ I, we have constructed
unit-normalized states |ψi(λ)〉 satisfying the eigenvalue-λ
constraints for all the ith subgraph’s vertices except ai.

Definition 3.1 (Subformula complexity) At λ = 0, for
each input i ∈ Ij, let γi lower-bound |ψi〉’s squared support
on either aj or bi, depending on whether the input evaluates
to true or false, respectively.

For λ > 0, assume that the coefficients of |ψi〉 along the
ith input edge are nonzero, and let ri = aj/bi be their ratio.
If the literal associated to input i evaluates to false, then let
si = ri/λ; if it is true, then let si = −1/(riλ). Assume that
si > 0 and let Si ≥ si for each i.

For an input i ∈ I, its subformula complexity is

σi = max
x

max


1/γi, max

λ∈(0,Λ)
Si

ff
. (3.1)

For example, if σi is small, then |ψi(0)〉 has large support on

either ai or bi. In general, σi ≥ 1. If input i corresponds to
a literal and not the output edge of another span program,
then σi = 1.

We construct a normalized state |ψO(λ)〉 that satisfies
all the eigenvalue-λ eigenvector constraints of the composed
graph, except at aO. We construct |ψO〉 by putting together
the scaled |ψi〉’s and also assigning coefficients to the vertices
in GP . Similarly to Eq. (3.1), define

σO(x) = max


1/γO, max

λ∈(0,Λ)
sO

ff
, (3.2)

where γO is the squared support of |ψO(0)〉 on aO or bO,
and sO is rO/λ or −1/(rOλ) for λ > 0. We will relate σO =
maxx σO(x) to the input complexities σI (Theorem 3.6).

First of all, notice that if |Ij | > 1, then several of the input
subgraphs share the vertex aj . They must be scaled so that
their coefficients at aj all match, motivating the following
definition. (Recall that grouped input j evaluates to true iff
all inputs in Ij are true.)

Definition 3.2 The grouped input complexity of j ∈ J is

σ̃j(x) =

8<: max
nP

i∈Ij
σi, 1

o
if j is true“P

false i ∈ Ij
σ−1

i

”−1

otherwise
(3.3)

When j is false, some input i ∈ Ij is false, so the coefficient
at aj must be set to zero at λ = 0. However, for each false i ∈
Ij , |ψi〉 can be scaled arbitrarily. The definition in Eq. (3.3)
comes from choosing scale factors fi in order to maximize
the sum of the scaled coefficients on the vertices bi, under
the constraint that the total norm be one,

P
i∈Ij

|fi|2 = 1.

A few more definitions are needed to state Theorem 3.6.

Definition 3.3 (Matrix notations) For a given input x,
let Π =

P
true j |j〉〈j| a projection onto the true grouped in-

puts, Π = 1− Π, and S =
P

j

p
σ̃j(x)|j〉〈j|, i.e., a diagonal

matrix of the grouped input complexity square roots. Let

A =
“

AOJ
ACJ

”
=
P

j |vj〉〈j| with columns the vectors |vj〉.

Definition 3.4 (Moore-Penrose pseudoinverse) For a
matrix M , let M+ denote its Moore-Penrose pseudoin-
verse. If the singular-value decomposition of M is M =P

k mk|k〉〈k′| with all mk 6= 0 and for sets of orthonormal

vectors {|k〉} and {|k′〉}, then M+ =
P

k m
−1
k |k′〉〈k|. Note

that MM+ =
P

k |k〉〈k| is the projection onto M ’s range.

Definition 3.5 (Span program witness size) For span
program P and input subformula complexities σI , the wit-
ness size of P on input x, wsize(P, x), is defined as follows:

• If fP (x) = 1, then |t〉 ∈ Range(AΠ), so there is a witness
|w〉 of length |J | satisfying AΠS−1|w〉 = |t〉. Then the
witness size is the minimum squared length of any such
witness:

wsize(P, x) = min
|w〉:AΠS−1|w〉=|t〉

‖|w〉‖2 (3.4)

= ‖(AΠS−1)+|t〉‖2 .

• If fP (x) = 0, then |t〉 /∈ Range(AΠ). Therefore there is
a witness |w′〉 of length |C|+ 1 satisfying 〈t|w′〉 = 1 and



ΠA†|w′〉 = 0. Then

wsize(P, x) = min
|w′〉:〈t|w′〉=1

ΠA†|w′〉=0

‖SA†|w′〉‖2 (3.5)

= ‖
`
1 + (Π(AS)+AS − 1)+Π

´
(AS)+|t〉‖−2 ,

the inverse squared length of the projection of (AS)+|t〉
onto the intersection of Π and Range(SA†).

The witness size of P is wsize(P ) = maxx wsize(P, x). By
|wx〉, resp. |w′

x〉, we denote an optimal witness for input x
achieving the minimum in Eq. (3.4), resp. (3.5).

The span program witness size is easily computed on any
given input x. Now our main result is:

Theorem 3.6 Consider a constant span program P . As-
sume that Λσi ≤ ε for a small enough constant ε > 0
to be determined and for all i ∈ I. Assume also that
(maxi∈I σi)/(mini∈I σi) = O(1). Let a . b mean a ≤
constant + b(1 + constant′|λ|maxi σi). Then

σO(x) . wsize(P, x) . (3.6)

For λ = 0, Eq. (3.6) says that the achievable squared mag-
nitude on aO or bO of a normalized eigenvalue-zero eigen-
vector is at least 1/wsize(P, x), up to small controlled terms.
For λ > 0, Eq. (3.6) says that the ratio rO = aO/bO is ei-
ther in (0,wsize(P, x)λ] or (−∞,−1/(wsize(P, x)λ)], up to
small controlled terms, depending on whether fP (x) is false
or true. Note that wsize(P, x) is monotone in S and thus
also in all Si, and therefore we get a valid bound on σO(x)
even without knowing the actual values of si ≤ Si.

Proof sketch of Theorem 3.6. At λ = 0, the proof
of Theorem 3.6 is the same as that of Theorem 2.5, except
scaling the inputs so as to maximize the squared magnitude
on aO or bO. This maximization problem is essentially the
same as the problems stated in Definition 3.5 (up to additive
constants). The explicit expressions for the solutions follow
by geometry.

For λ > 0, we solve the eigenvalue equations (2.1a-c) by
inverting a matrix and applying the Woodbury formula. We
argue that all inverses exist in the given range of λ. We
obtain

rO = aO/bO = λ+ 〈o|R̃|o〉+ λ〈o|R̃A†
CJX

−1ACJ R̃|o〉 ,

where |o〉 = A†
OJ , R̃ = − 1

λ
S−2Π + λS2Π and X =

ACJS
−2ΠA†

CJ − λ2ACJS
2ΠA†

CJ − λ2. The largest term in

X, ACJS
−2ΠA†

CJ , is only invertible restricted to its range,
∆ = ACJΠ(ACJΠ)+. Therefore, we compute the Taylor se-
ries against λ of the pseudoinverse of ∆X∆ and of its Schur
complement, (X/(∆X∆)), separately, and then recombine
them. The lowest-order term in the solution again corre-
sponds to Definition 3.5 (if fP (x) is false, the 1/λ term is
zero), and we bound the higher-order terms.

Remark 3.7 In case fP (x) = 0, A†|w′〉 appears also in the
“canonical form” of P [19].

The above analysis of span programs does not apply to
the NOT gate, because the ability to complement inputs was
assumed in Definition 2.1. Implementing the NOT gate x 7→
x with a span program on the literal x would be circular.
Therefore we give a separate analysis.

Lemma 3.8 (NOT gate) Consider a NOT gate, imple-
mented as two weight-one edges connected as in Defini-
tion 2.7. Assume |λ| ≤ 1/(

√
2σi). Then σO . σi.

Proof. Analysis atλ = 0. If the input is true, then γi

measures the squared support on ai of a normalized λ =
0 eigenvector. Then γO = γi, since ai = bO the output
vertex. If the input is false, so bi =

√
γi, then bi + aO = 0.

Therefore, we simply need to renormalize: γO = γi/(1+γi),
or equivalently 1

γO
= 1

γi
+ 1.

Analysis for smallλ > 0. We are given ri = ai/bi. The
eigenvector equation is bi + aO = λai = λbO. Therefore,
rO = aO/bO = λ − 1/ri. If the input is false, so si = ri/λ,
then sO = −1/(λrO) = si/(1− λ2si). Therefore, si ≤ sO ≤
si(1 + 2λ2si) since λ2si ≤ 1/2. If the input is true, so
si = −1/(λri), then sO = rO/λ = si + 1 .

Therefore σO . σi as claimed. Note that w.l.o.g. we may
assume there are never two NOT gates in a row in the for-
mula ϕ, so the additive constants lost do not accumulate.

4. FORMULA EVALUATION ALGORITHM
In Section 4.1, we specify the gate set S (Definition 4.1)

and define the correct notion of “balance” for a formula that
includes different kinds of gates (Definition 4.5). These two
definitions allow us to formulate the general statement of our
results, Theorem 4.7, of which Theorem 1.1 is a corollary.

In Section 4.2, we present span programs for each of the
gates in S having optimal witness size. In Section 4.3, we
plug together the spectral analyses of the individual span
programs to obtain a spectral analysis of G(ϕ). Finally, in
Section 4.4, we sketch how this implies a quantum algorithm,
therefore proving Theorem 4.7.

4.1 General formula evaluation result

Definition 4.1 (Extended gate set S) Let

S ′ =


arbitrary 1-, 2-, or 3-bit gates,
O(1)-fan-in EQUAL gates

ff

S =

8<: O(1)-size {AND, OR, NOT, PARITY}
read-once formulas composed onto

the gates from S ′

9=;
(4.1)

Example 4.2 The gate set S includes simple gates like
AND, as well as substantially more complicated gates like
MAJ3(x1, x2, x3)∧(x4⊕x5⊕· · ·⊕xk−1⊕(xk∨xk+1)), provided
k = O(1). It does not include gates from S ′ composed onto
gates from S: for example MAJ3(x1, x2 ⊕ x3, x4 ∧ x5) /∈ S.

To define“adversary-balanced”formulas, we need to define
the nonnegative-weight quantum adversary bound.

Definition 4.3 (Nonnegative adversary bound)
Let f : {0, 1}k → {0, 1}. Define

Adv(f) = max
Γ≥0
Γ6=0

‖Γ‖
maxi ‖Γ ◦Di‖

, (4.2)

where Γ◦Di denotes the entrywise matrix product between Γ
and Di a zero-one-valued matrix defined by 〈x|Di|y〉 = 1 if
and only if bitstrings x and y differ in the ith coordinate, for
i ∈ {1, . . . , k}. The maximum is over all 2k × 2k symmetric
matrices Γ with nonnegative entries satisfying 〈x|Γ|y〉 = 0 if
f(x) = f(y).



The motivation for this definition is that Adv(f) gives a
lower bound on the number of queries to the phase-flip input
oracle Ox required to evaluate f on input x.

Theorem 4.4 (Adversary lower bound [2, 7])
The two-sided ε-bounded error quantum query complexity of

function f , Qε(f), is at least
1−2

√
ε(1−ε)

2
Adv(f).

To match the lower bound of Theorem 4.4, our goal will be
to use O(Adv(ϕ)) queries to evaluate ϕ.

Definition 4.5 (Adversary-balanced formula)
For a gate g in formula ϕ, let ϕg denote the subformula of
ϕ rooted at g. Define ϕ to be adversary-balanced if for every
gate g, the adversary lower bounds for its input subformulas
are the same; if g has children h1, . . . , hk, then Adv(ϕh1) =
· · · = Adv(ϕhk ).

To motivate Definition 4.5, we need a version of an adversary
composition result [2, 17]:

Theorem 4.6 (Adversary composition [17])
Let f = g ◦ (h1, . . . , hk), where Adv(h1) = · · · = Adv(hk)
and ◦ denotes function composition. Then Adv(f) =
Adv(g)Adv(h1).

If ϕ is adversary-balanced, then by Theorem 4.6 Adv(ϕg)
is the product of the gate adversary bounds along any non-
self-intersecting path χ from g up to an input, Adv(ϕg) =Q

h∈χ Adv(h). Note that Adv(¬f) = Adv(f), so NOT gates
can be inserted anywhere in an adversary-balanced formula.

The main result of this paper is

Theorem 4.7 (Main result) There exists a quantum al-
gorithm that evaluates an adversary-balanced formula ϕ(x)
over S using O(Adv(ϕ)) queries to the phase-flip input or-
acle Ox. After efficient classical preprocessing independent
of the input x, and assuming O(1)-time coherent access to
the preprocessed classical string, the running time of the al-
gorithm is Adv(ϕ)(log Adv(ϕ))O(1).

From Figure 5, the adversary bound Adv(MAJ3) = 2. By
Theorem 4.6 the adversary bound for the balanced MAJ3

formula of depth d is 2d. Theorem 1.1 is therefore essen-
tially a corollary of Theorem 4.7 (for the balanced MAJ3

formula, coherent access to a preprocessed classical string is
not needed).

4.2 Optimal span programs for gates inS
In this section, we will plug specific span programs into

Definition 3.5, in order to prove:

Theorem 4.8 Let S be the gate set of Definition 4.1. For
every gate f ∈ S, there exists a span program P computing
fP = f , such that the witness size of P (Definition 3.5) on
equal input complexities σi = 1 is

wsize(P ) = Adv(f) . (4.3)

Adv(f) is the adversary bound for f (Definition 4.3).

Proof sketch. We analyze five of the fourteen inequiv-
alent binary functions on at most three bits, listed in Fig-
ure 5: 0 and x1 (both trivial), the MAJ3 gate (Claim 4.9),

the k-bit EQUALk gate (Claim 4.10), and a certain three-bit
function, g(x) = (x1 ∧ x2 ∧ x3) ∨ (x1 ∧ x2) (Claim 4.11).

For all the remaining gates in S, it suffices to analyze the
NOT gate (Lemma 3.8), and OR and PARITY gates on un-
balanced inputs (Lemma 4.12). That is, we allow σ1 and σ2

to be different, with σ1/σ2, σ2/σ1 = O(1). For functions b
and b′ on disjoint inputs, Adv(b ⊕ b′) = Adv(b) + Adv(b′),

and Adv(b ∨ b′) =
p

Adv(b)2 + Adv(b′)2 [6, 17]; we ob-
tain matching upper bounds for span program witness
size. Then, e.g., the function EXACT2 of 3(x1, x2, x3) =
MAJ3(x1, x2, x3) ∧ (x1 ∨ x2 ∨ x3), so Lemma 4.12 implies
a span program for EXACT2 of 3 with witness size

√
7 =p

wsize(MAJ3)2 + wsize(OR3)2.

Claim 4.9 wsize(PMAJ3) = 2 = Adv(MAJ3), where PMAJ3

is the span program from Example 2.2.

Proof. Substitute PMAJ3 into Definition 3.5. Some of
the witness vectors are |w′

000〉 = (1, 0), |w′
100〉 = (1,−1/

√
3),

and |w110〉 = (e−iπ/6, eiπ/6, 0), |w111〉 = (1, 1, 1)/
√

3.

Claim 4.10 Letting α = 4
√
k − 1, the span program

XJ = ({x1, x2, . . . , xk} {x1, x2, . . . , xk})
t = (1) , vJ = ( α α )

computes EQUALk with witness size k√
k−1

= Adv(EQUALk).

Proof. Substitute into Definition 3.5. The witnesses are
|w′

unequal〉 = (1), |w0k 〉 =
`
0,

√
k

α

´
and |w1k 〉 =

`√
k

α
, 0
´
.

Claim 4.11 Let g(x) = (x1 ∧ x2 ∧ x3) ∨ (x1 ∧ x2). Letting

α1 = 4
q

1 + 1√
3

and α2 =
p√

3− 1, the span program

XJ = ({x1, x2} {x1, x2} {x3})

t =

„
1
«
, vJ =

„
α1 α1α2 0

«
0 α2 0 1

computes g with witness size
p

3 +
√

3 = Adv(g).

Proof. By substitution into Definition 3.5.

Lemma 4.12 Consider f(x, x′) = f ′(b(x), b′(x′)), with
f ′ ∈ {PARITY,OR}, and b and b′ functions on O(1) bits.
Assume that there exist span programs Pb and Pb′ for b
and b′ with respective witness sizes B = wsize(Pb) and
B′ = wsize(Pb′). Then there exists a span program P for
f with witness size wsize(P ) = B +B′ if f ′ = PARITY, or√
B2 +B′2 if f ′ = OR.

Proof. Substitute the following span programs with zero
constraints into Definition 3.5:

XJ = ( {x1, x2} {x1, x2} )

PPARITY : t = (1) , vJ = ( 1 1 ) ,

XJ = ( {x1} {x2} )

POR : t = (1) , vJ =
“ √

B
4
√

B2+B′2

√
B′

4
√

B2+B′2

”
.

The witness vectors for PARITY are |w′
00〉 = (1) and

|w10〉 = (
√
B2 +B′2, 0), and the witness vectors for OR

are |w′
00〉 = (1), |w10〉 = ( 4

√
B2 +B′2, 0), and |w11〉 =

(1, 1) · 1
2

4
√
B2 +B′2.



Gate f Adv(f) Gate f Adv(f)
0 0 MAJ3(x1, x2, x3) = (x1 ∧ x2) ∨ ((x1 ∨ x2) ∧ x3) 2

x1 1 EQUAL3(x1, x2, x3) = (x1 ∧ x2 ∧ x3) ∨ (x1 ∧ x2 ∧ x3) 3/
√

2

x1 ∧ x2

√
2 (x1 ∧ x2 ∧ x3) ∨ (x1 ∧ x2)

p
3 +

√
3

x1 ⊕ x2 2 x1 ∨ (x2 ⊕ x3)
√

5

x1 ∧ x2 ∧ x3

√
3 x1 ⊕ (x2 ∧ x3) 1 +

√
2

x1 ∨ (x2 ∧ x3)
√

3 EXACT2 of 3(x1, x2, x3) = MAJ3(x1, x2, x3) ∧ (x1 ∨ x2 ∨ x3)
√

7
(x1, x2)1+x3 = (x3 ∧ x2) ∨ (x3 ∧ x1) 2 x1 ⊕ x2 ⊕ x3 3

Figure 5: Binary gates on up to three bits. Up to equivalences—permutation of inputs, complementation of
some or all inputs or output—there are fourteen binary gates on three inputs x1, x2, x3. Adversary bounds
Adv(f) for all functions f on up to four bits have been computed by [16], and see [22].

Remark 4.13 Our procedure for analyzing a function f has
been as follows:

1. First determine a span program P computing fP =
f . The simplest span program is derived from the
minimum-size {AND, OR, NOT} formula for f .

2. Next, compute wsize(P, x) for each input x, as a func-
tion of the variable weights of P .

3. Finally, optimize the free weights of P to minimize
wsize(P ) = maxx wsize(P, x). For example, note that
scaling AOJ up helps the true cases in Definition 3.5,
and hurts the false cases; therefore choose a scale to
balance the worst true case against the worst false case.

We respect the symmetries of f during optimization.
On the other hand, if two literals are not treated sym-
metrically by f , then we do not group them together in
any grouped input Xj. For example, in Claim 4.11 we
do not group x3 together with x1 and x2 in X1.

4.3 Span program spectral analysis ofϕ

Theorem 4.14 Consider an adversary-balanced formula ϕ
on the gate set S, with adversary bound Adv(ϕ). Let P be
the composed span program computing fP = ϕ. For an input
x ∈ {0, 1}N , recall the definition of the weighted graph GP (x)
from Theorem 2.5; if the literal on an input edge evaluates
to true, then delete that edge from GP . Let G̃P (x) be the
same as GP (x) except with the weight on the output edge

(aO, bO) set to w = εw/
p

Adv(ϕ) (instead of weight one),
where εw > 0 is a sufficiently small constant. Then,

• If ϕ(x) = 1, there exists a normalized eigenvalue-zero
eigenvector of the adjacency matrix AG̃P (x) with Ω(1)
support on the output vertex aO.

• If ϕ(x) = 0, then for some small enough constant ε >
0, AG̃P (x) does not have any eigenvalue-λ eigenvectors

supported on aO or bO for |λ| ≤ ε/Adv(ϕ).

Proof. The proof of Theorem 4.14 has two parts. First,
we will prove by induction that σg = O(Adv(ϕg)). Then,
by considering the last eigenvector constraint, λaO = wbO,
we either construct the desired eigenvector or derive a con-
tradiction, depending on whether ϕ(x) is true or false.

Base case.Consider an input xi to the formula ϕ. If
xi = 1, then the corresponding input edge (aj , bi) is not
in GP (x). In particular, the input i does not contribute to

the expression for σ̃j(x) in Eq. (3.3), so Si and γi may be
left undefined. If xi = 0, then the input edge (aj , bi) is in
GP (x). The eigenvalue-λ equation at bi is λbi = aj . For
λ = 0, this is just aj = 0, so let γi = 1. For λ > 0, this is
ri = λsi = aj/bi = λ, so si = Si = 1.

Induction. Assume that |λ| ≤ ε/Adv(ϕ), for some small
enough constant ε > 0.

Consider a gate g. Let h1, . . . , hk be the inputs to g. Let
ϕg denote the subformula of ϕ based at g. By Theorem 3.6
and Theorem 4.8, the output bound σg satisfies

σg . Adv(g)max
i
σhi , (4.4)

or equivalently

σg ≤ c1 + Adv(g)(max
i
σhi)(1 + c2 · |λ|Adv(ϕg)) (4.5)

for certain constants c1, c2. Different kinds of gates give
different constants in Eq. (4.5), but since the gate set is
finite, all constants are uniformly O(1).

Since |λ| ≤ ε/Adv(ϕ), the recurrence Eq. (4.5) has solu-
tion

σg ≤ O

 
max

χ

Y
h∈χ

Adv(h)
“
1 + ε′

Adv(ϕh)

Adv(ϕ)

”!
,

where the maximum is taken over the choice of χ a non-
self-intersecting path from g up to an input. Because
ϕ is by assumption adversary balanced (Definition 4.5),Q

h∈χ Adv(h) = Adv(ϕg) (Theorem 4.6). Also,
Q

h∈χ(1 +

ε′ Adv(ϕh)
Adv(ϕ)

) = O(1). Therefore, the solution satisfies

σg = O(Adv(ϕg)) . (4.6)

Final amplification step. Assume ϕ(x) = 1. Then by
Eq. (4.6), there exists a normalized eigenvalue-zero eigen-
vector of the graph GP (x) with squared amplitude |aO|2 ≥
γO = 1/O(Adv(ϕ)). Recall that w = εw/

p
Adv(ϕ) is the

weight of the output edge (aO, bO) of P in G̃P (x), and let

âO = waO. The λ = 0 eigenvector equations for G̃P (x) are
the same as those for GP (x), except with âO in place of aO.
Therefore, we may take |âO|2 = 1/O(Adv(ϕ)), so for a nor-

malized eigenvalue-zero eigenvector of G̃P (x), |aO|2 = Ω(1).
By reducing the weight of the output edge from 1 to w, we
have amplified the support on aO up to a constant.

Now assume that ϕ(x) = 0. By Theorem 2.5, there does
not exist any eigenvalue-zero eigenvector supported on aO.
Also bO = 0 at λ = 0 by the constraint λaO = wbO. For λ 6=



0, |λ| ≤ ε/Adv(ϕ), Eq. (4.6) implies that in any eigenvalue-

λ eigenvector for G̃P (x), either âO = bO = 0 or the ratio
|âO/bO| ≤ |λ| ·O(Adv(ϕ)), so

|aO/bO| ≤ constant · |λ|
w

Adv(ϕ) (4.7)

for some constant that does not depend on w. We have
not yet used the eigenvector equation at aO, λaO = wbO.
Combining this equation with Eq. (4.7), we get w2 ≤
constant · λ2Adv(ϕ) ≤ constant · ε2/Adv(ϕ). Substituting

w = εw/
p

Adv(ϕ), this is a contradiction provided we set
εw so ε2w > constant · ε2. Therefore, the adjacency matrix of
G̃P (x) cannot have an eigenvalue-λ eigenvector supported
on aO or bO.

4.4 Quantum algorithm
We apply Theorem 4.14 and the Szegedy correspondence

between discrete- and continuous-time quantum walks [28]
to design the optimal quantum algorithm needed to prove
Theorem 4.7. The approach is similar to that used for the
NAND formula evaluation algorithm of [9], with only tech-
nical differences. For details, see Ref. [23].

The main idea is to construct a discrete-time quantum
walk Ux = OxU0N on the directed edges of GP whose
spectrum and eigenvectors correspond exactly to those of
AG̃P (x). Here U0N is a fixed unitary operator only depending
on the formula graph AG̃P (0N ), which can be implemented
efficiently without access to the input x, and Ox is the input
oracle mapping

Ox|v, w〉 =

(
(−1)xi(v) |v, w〉 if v is a leaf

|v, w〉 otherwise

where i(v) is the index of the input variable corresponding
to the leaf v.

Now starting at the output edge |aO, bO〉, run phase es-
timation [10] on Ux with precision δp = 1/O(Adv(ϕ)) and
error δe a small enough constant. Output “ϕ(x) = 1” iff the
output phase is zero. The query complexity of this algorithm
is O(1/δp) = O(Adv(ϕ)). The first part of Theorem 4.14
implies completeness, because the initial state has constant
overlap with an eigenstate of Ux with phase zero. The sec-
ond part of Theorem 4.14 implies soundness, because the
spectral gap away from zero is greater than the precision δp.

5. EXTENSIONS
Theorem 4.7 can be extended in several directions.

5.1 Unbalanced formulas
Can the restriction that the gates have adversary-balanced

inputs be significantly weakened? So far, we have only ana-
lyzed the PARITY and OR gates for unbalanced inputs, in
Lemma 4.12. For the MAJ3 gate, we have found an optimal
span program for the case in which only two of the inputs
are balanced:

Lemma 5.1 Let f(x, x′, x′′) = MAJ3(b(x), b
′(x′), b′′(x′′))

with b, b′, b′′ functions on O(1) bits computed by span pro-
grams Pb, Pb′ , Pb′′ with witness sizes B = wsize(Pb) =
Adv(b) = wsize(Pb′) = Adv(b′) and B′′ = wsize(Pb′′) =
Adv(b′′). Let β = B′′/B. Then there exists a span program

P for f with wsize(P ) = 1
2

`p
8 + β2 + β

´
B = Adv(f):

XJ = ({x1} {x2} {x3} )

t =

 
1
!
, vJ =

 
α α

q
1
2

+ βα2

!
,

0 i −i 2α

where α = 1

2
√

2
(
p

8 + β2 − β)1/2.

Therefore, for example, the gates MAJ3(x1, x2, x3 ∧x4) and
MAJ3(x1, x2, x3⊕x4) can be added into S without affecting
the correctness of Theorem 4.7. However, we do not have
an understanding of MAJ3 when all three input complexities
differ, and for most other gates we know similarly little.

5.2 Four-bit gates
The gate set S includes all three-bit binary gates. What

about four-bit gates? Up to symmetries, there are 208 in-
equivalent binary functions that depend on exactly four in-
put bits x1, . . . , x4. The functions we have considered so far
are listed at the webpage [22]. To summarize,

• Thirty functions can be written as a PARITY or OR
of two subformulas on disjoint inputs. These functions
are already included in S (Definition 4.1).

• For 24 additional functions, we have found a span pro-
gram with witness size matching the adversary lower
bound. These functions can be added to S.

Example 5.2 (Threshold 2 of 4) In analogy to Exam-
ple 2.2, one might consider the span program

XJ = ({x1} {x2} {x3} {x4})

t =

„
1
«
, vJ =

„
1 1 1 1

«
.

0 1 i −1 −i

This span program computes Threshold2 of 4(x[4])—MAJ3 is
Threshold2 of 3—but it is not optimal. Intuitively, the prob-
lem is that the different pairs of inputs are not symmetrical.
An optimal span program, with witness size

√
6, is

XJ = ({x1}{x1}{x2}{x2}{x3}{x3}{x4}{x4})

t =

0@1
1A , vJ =

0@ 1 1 1 1 1 1 1 1
1A0 1 1 1 −1 i −i i i

0 i −i i i 1 1 1 −1

It was derived by embedding a four-simplex symmetrically in
the 2× 2 unitaries, in correct analogy to Example 2.2.

It seems that inevitably k-bit gates are going to require
more involved techniques to evaluate optimally, for k large
enough. It may well be that four-bit gates are already in-
teresting in this sense.

5.3 Witness vectors and the adversary bound
The witnesses in Definition 3.5 have an interesting prop-

erty related to a dual version of the adversary bound [20, 27]:
Assume that all |Xj | = 1 and S = 1. For x, y ∈ {0, 1}n with
fP (x) = 1, fP (y) = 0, consider the witnesses |wx〉, |w′

y〉
achieving the minima in Eqs. (3.4), (3.5), and let |wy〉 =
A†|w′

y〉. Then |wx〉 = Π(x)|wx〉 and Π(y)|wy〉 = |wy〉, so

〈wx|Π(x)Π(y)|wy〉 = 〈wx|A†|w′
y〉 = 〈t|w′

y〉 = 1 .

Therefore, if we define px(i) = 1
‖|wx〉‖2

P
j: Xj={xi}
∨Xj={xi}

|〈j|wx〉|2

for each x (for both true and false fP (x)) and for i ∈ [n],



then we get a feasible set of probability distributions for
the minimax formulation of the adversary bound [27]. If
wsize(P ) = Adv(fP ), then this set of probability distribu-
tions is optimal.

In this paper, we only use the nonnegative version of the
adversary bound. Høyer, Lee and Špalek introduced a gener-
alized adversary bound Adv±, with negative entries allowed
in the adversary matrix, and showed that it is also a lower
bound on the quantum query complexity [17]. For most
functions f on 4 bits, Adv±(f) > Adv(f) [16]. Since Adv±

composes similarly to Theorem 4.6, one gets an asymptot-
ically higher lower bound for formulas with such functions
as gates than using Adv. We have not been able to find
a matching span program for any such function. The dual
formulation of Adv± cannot be expressed using probabil-
ity distributions and one therefore cannot hope for a simple
correspondence with the witnesses like described above.

Both variants of the adversary bound, Adv and Adv±,
can be expressed as optimal solutions of certain semidefinite
programs. Can one find a semidefinite formulation of span
program witness size?
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S. Zhang. Every NAND formula of size N can be

evaluated in time N1/2+o(1) on a quantum computer.
quant-ph/0703015, 2007.

[10] R. Cleve, A. Ekert, C. Macchiavello, and M. Mosca.
Quantum algorithms revisited. Proc. R. Soc. London
A, 454(1969):339–354, 1998.

[11] R. Cramer and S. Fehr. Optimal black-box secret
sharing over arbitrary Abelian groups. In Proc.
CRYPTO 2002, LNCS vol. 2442, pages 272–287.
Springer-Verlag, 2002.

[12] E. Farhi, J. Goldstone, and S. Gutmann. A quantum
algorithm for the Hamiltonian NAND tree.
quant-ph/0702144, 2007.

[13] A. Gál and P. Pudlák. A note on monotone
complexity and the rank of matrices. Information
Processing Letters, 87(6):321–326, 2003.

[14] L. K. Grover. A fast quantum mechanical algorithm
for database search. In Proc. of 28th ACM STOC,
pages 212–219, 1996.

[15] L. K. Grover. Tradeoffs in the quantum search
algorithm. quant-ph/0201152, 2002.

[16] P. Høyer, T. Lee, and R. Špalek. Source codes of
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