
A New Quantum Lower Bound Method, with Applications
to Direct Product Theorems and Time-Space Tradeoffs

Andris Ambainis
∗

University of Waterloo

ambainis@math.uwaterloo.ca

Robert Špalek
†

CWI, Amsterdam
sr@cwi.nl

Ronald de Wolf
‡

CWI, Amsterdam
rdewolf@cwi.nl

ABSTRACT
We give a new version of the adversary method for prov-
ing lower bounds on quantum query algorithms. The new
method is based on analyzing the eigenspace structure of
the problem at hand. We use it to prove a new and opti-
mal strong direct product theorem for 2-sided error quantum
algorithms computing k independent instances of a symmet-
ric Boolean function: if the algorithm uses significantly less
than k times the number of queries needed for one instance
of the function, then its success probability is exponentially
small in k. We also use the polynomial method to prove
a direct product theorem for 1-sided error algorithms for
k threshold functions with a stronger bound on the suc-
cess probability. Finally, we present a quantum algorithm
for evaluating solutions to systems of linear inequalities, and
use our direct product theorems to show that the time-space
tradeoff of this algorithm is close to optimal.

Categories and Subject Descriptors
F.1.2 [Computation by Abstract Devices]: Modes of
Computation; F.1.3 [Computation by Abstract Devices]:
Complexity Measures and Classes—Relations among com-
plexity measures; F.2.3 [Analysis of Algorithms and Prob-
lem Complexity]: Tradeoffs between Complexity Mea-
sures

General Terms
Algorithms, Theory

∗Institute for Quantum Computing and Department of
Combinatorics and Optimization, University of Waterloo.
Supported by NSERC, ARO, CIAR and IQC University
Professorship.
†Supported in part by the European Commission under
projects RESQ, IST-2001-37559, and QAP, IST-015848.
‡Supported by a Veni grant from the Netherlands Organiza-
tion for Scientific Research (NWO) and partially supported
by the EU projects RESQ and QAP.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’06, May 21–23, 2006, Seattle, Washington, USA.
Copyright 2006 ACM 1-59593-134-1/06/0005 ...$5.00.

Keywords
quantum computing, lower bounds, direct product theo-
rems, time-space tradeoffs

1. INTRODUCTION

1.1 A new adversary method
Most of the known quantum algorithms work in the black-

box model of computation. Here one accesses the n-bit input
via queries and our measure of complexity is the number
of queries made by the algorithm. In between the queries,
the algorithm can make unitary transformations for free.
This model includes for instance the algorithms of Grover,
Deutsch and Jozsa, Simon, quantum counting, the recent
quantum walk-based algorithms, and even Shor’s period-
finding algorithm (which is the quantum core of his factoring
algorithm).

Much work has focused on proving lower bounds in this
model. The two main methods known are the polynomial
method and the adversary method. The polynomial method
[24, 8] works by lower-bounding the degree of a polynomial
that in some way represents the desired success probability.

The adversary method was originally introduced by Am-
bainis [3]. Many different versions have since been given [19,
7, 4, 21, 30], but they are all equivalent [29]. Roughly
speaking, the adversary method works as follows. Suppose
we have a T -query quantum algorithm that computes some
function f with high success probability. Let |ψtx〉 denote
the algorithm’s state on input x after making the t-th query.
Suppose x and y are two inputs with distinct function val-
ues. At the start of the algorithm (t = 0), the states |ψ0

x〉
and |ψ0

y〉 are the same (the input has not been queried yet),
so their inner product is 〈ψ0

x|ψ0
y〉 = 1. But at the end of the

algorithm (t = T), the inner product 〈ψTx |ψTy 〉 must be less
than some small constant depending on the error probabil-
ity, otherwise the algorithm cannot give the correct answer
for both x and y. The adversary method takes a (weighted)
sum of such inner products (for x, y pairs with f(x) 6= f(y))
and analyzes how quickly this sum can go down after each
new query. If it cannot decrease quickly in one step, then
it follows that we need many steps and we obtain a lower
bound on T .

The two lower bound methods are incomparable. On the
one hand, the adversary method proves stronger bounds
than the polynomial method for certain iterated functions [4],
and also gives tight lower bounds for constant-depth AND-
OR trees [3, 18], where we do not know how to analyze
the polynomial degree. On the other hand, the polyno-

mial method works well for analyzing zero-error or low-error
quantum algorithms [8, 12] and gives optimal lower bounds
for the collision problem and element distinctness [1]. The
adversary method fails for the latter problem (and also for
other problems like triangle-finding), because the best bound

provable with it is O(
p
C0(f)C1(f)) [29, 30]. Here C0(f)

and C1(f) are the certificate complexities of f on 0-inputs
and 1-inputs. In the case of element distinctness and triangle-
finding, one of these complexities is constant. Hence the
adversary method in its present form(s) can prove at most

an Ω(
√
N) bound, while the true bound is Θ(N2/3) [5] in

the case of element distinctness and the best known algo-
rithm for triangle-finding costs O(N13/20) [22]. A second
limitation of the adversary method is that it cannot deal
well with the case where there are many different possible
outputs, and a success probability much smaller than 1/2
would still be considered good.

In this paper we describe a new version of the adversary
method that does not suffer from the second limitation, and
possibly also not from the first—though we have not found
an example yet where the new method breaks through thep
C0(f)C1(f) barrier.
Very roughly speaking, the new method works as follows.

We view the algorithm as acting on a 2-register state space
HA⊗HI . Here the actual algorithm’s operations take place
in the first register, while the second contains (a superpo-
sition of) the inputs. In particular, the query operation on
HA is now conditioned on the basis states in HI . We start
the analysis with a superposition of 0-inputs and 1-inputs in
the input register, and then track how this register evolves
as the computation moves along. Let ρt be the state of this
register (tracing out the HA-register) after making the t-th
query. By employing symmetries in the problem’s structure,
such as invariances of the function under certain permuta-
tions of its input, we can decompose the input space into
orthogonal subspaces S0, . . . , Sm. We can decompose the
state accordingly:

ρt =

mX
i=0

pt,iσi,

where σi is a density matrix in subspace Si. Thus the t-
th state can be fully described by a probability distribution
pt,0, . . . , pt,m that describes how the input register is dis-
tributed over the various subspaces. Crucially, only some
of the subspaces are “good”, meaning that the algorithm
will only work if most of the weight is concentrated in the
good subspaces at the end of the computation. At the start
of the computation, hardly any weight will be in the good
subspaces. If we can show that in each query, not too much
weight can move from the bad subspaces to the good sub-
spaces, then we again get a lower bound on T .

This idea was first introduced by Ambainis in [6] and used
there to reprove the “strong direct product theorem” for
the OR-function of [20] (we’ll explain this in a minute). In
this paper we extend it and use it to prove direct product
theorems for all symmetric functions.

1.2 Direct product theorems for symmetric
functions

Consider an algorithm that simultaneously needs to com-
pute k independent instances of a function f (denoted f (k)).
Direct product theorems deal with the optimal tradeoff be-
tween the resources and success probability of such algo-

rithms. Suppose we need t “resources” to compute a single
instance f(x) with bounded error probability. These re-
sources could for example be time, space, ink, queries, com-
munication, etc. A typical direct product theorem (DPT)
has the following form:

Every algorithm with T ≤ αkt resources for com-
puting f (k) has success probability σ ≤ 2−Ω(k)

(where α > 0 is some small constant).

This expresses our intuition that essentially the best way to
compute f (k) on k independent instances is to run separate
t-resource algorithms for each of the instances. Since each
of those will have success probability less than 1, we expect
that the probability of simultaneously getting all k instances
right goes down exponentially with k. DPT’s can be stated
for classical algorithms or quantum algorithms, and σ could
measure worst-case success probability or average-case suc-
cess probability under some input distribution. DPT’s are
generally hard to prove, and Shaltiel [28] even gives gen-
eral examples where they are just not true (with σ average
success probability), the above intuition notwithstanding.
Klauck, Špalek, and de Wolf [20] recently examined the case
where the resource is query complexity and f = OR, and
proved an optimal DPT both for classical algorithms and
for quantum algorithms (with σ worst-case success proba-
bility). This strengthened a slightly earlier result of Aaron-
son [2], who proved that the success probability goes down
exponentially with k if the number of queries is bounded by
α
√
kn rather than the αk

√
n of [20].

Here we generalize their results to the case where f can
be any symmetric function, i.e., a function depending only
on the Hamming weight |x| of its input. In the case of
classical algorithms the situation is quite simple. Every n-
bit symmetric function f has classical bounded-error query
complexity R2(f) = Θ(n) and block sensitivity bs(f) =
Θ(n), hence an optimal classical DPT follows immediately
from [20, Theorem 3]. Classically, all symmetric functions
essentially “cost the same” in terms of query complexity.
This is different in the quantum world. For instance, the
OR function has bounded-error quantum query complexity
Q2(OR) = Θ(

√
n) [17, 11], while Parity needs n/2 quantum

queries [8, 15]. If f is a t-threshold function (f(x) = 1 iff
|x| ≥ t, with t ≤ n/2), then Q2(f) = Θ(

√
tn) [8].

Our main result is an essentially optimal quantum DPT
for all symmetric functions:

There is a constant α > 0 such that for every
symmetric f and every positive integer k: Ev-
ery 2-sided error quantum algorithm with T ≤
αkQ2(f) queries for computing f (k) has success

probability σ ≤ 2−Ω(k).

Our new direct product theorem generalizes the polynomial-
based results of [20] (which strengthened the polynomial-
based [2]), but our current proof uses the above-mentioned
version of the adversary method.

We have not been able to prove this result using the
polynomial method. We can, however, use the polynomial
method to prove an incomparable DPT. This result is worse
than our main result in applying only to 1-sided error quan-
tum algorithms1 for threshold functions; but it’s better in

1The error is 1-sided if 1-bits in the k-bit output vector are
always correct.

giving a much stronger upper bound on the success proba-
bility:

There is a constant α > 0 such that for every t-
threshold function f and every positive integer k:
Every 1-sided error quantum algorithm with T ≤
αkQ2(f) queries for computing f (k) has success

probability σ ≤ 2−Ω(kt).

A similar theorem can be proven for the k-fold t-search prob-
lem, where in each of k inputs of n bits, we want to find at
least t ones. The different error bounds 2−Ω(kt) and 2−Ω(k)

for 1-sided and 2-sided error algorithms intuitively say that
imposing the 1-sided error constraint makes deciding each of
the k threshold problems as hard as actually finding t ones
in each of the k inputs.

1.3 Time-Space tradeoffs for evaluating solu-
tions to systems of linear inequalities

As an application we obtain near-optimal time-space trade-
offs for evaluating solutions to systems of linear equalities.
Such tradeoffs between the two main computational resources
are well known classically for problems like sorting, element
distinctness, hashing, etc. In the quantum world, essentially
optimal time-space tradeoffs were recently obtained for sort-
ing and for Boolean matrix multiplication [20], but little else
is known.

Let A be a fixed N × N matrix of nonnegative integers.
Our inputs are column vectors x = (x1, . . . , xN) and b =
(b1, . . . , bN) of nonnegative integers. We are interested in
the system

Ax ≥ b

of N linear inequalities, and want to find out which of these
inequalities hold (we could also mix ≥, =, and ≤, but omit
that for ease of notation).2 Note that the output is an N -bit
vector. We want to analyze the tradeoff between the time
T and space S needed to solve this problem. Lower bounds
on T will be in terms of query complexity. For simplicity we
omit polylog factors in the following discussion.

In the classical world, the optimal tradeoff is TS = N2,
independent of the values in b. This follows from [20, Sec-
tion 7]. The upper bounds are for deterministic algorithms
and the lower bounds are for 2-sided error algorithms. In
the quantum world the situation is more complex. Let us
put an upper bound max{bi} ≤ t. We have two regimes for
2-sided error quantum algorithms:

• Quantum regime. If S ≤ N/t then the optimal tradeoff
is T 2S = tN3 (better than classical).

• Classical regime. If S > N/t then the optimal tradeoff
is TS = N2 (same as classical).

Our lower bounds hold even for the constrained situation
where b is fixed to the all-t vector, A and x are Boolean,
and A is sparse in having only O(N/S) non-zero entries in
each row.

Since our DPT for 1-sided error algorithms is stronger by
an extra factor of t in the exponent, we obtain a stronger
lower bound for 1-sided error algorithms:

• If t ≤ S ≤ N/t2 then the optimal tradeoff for 1-sided
error algorithms is T 2S ≥ t2N3.

2Note that if A and x are Boolean and b = (t, . . . , t), this
gives N overlapping t-threshold functions.

• If S > N/t2 then the optimal tradeoff for 1-sided error
algorithms is TS = N2.

We do not know whether the lower bound in the first case
is optimal (probably it is not), but note that it is stronger
than the optimal bounds that we have for 2-sided error al-
gorithms. This is the first separation of 2-sided and 1-sided
error algorithms in the context of quantum time-space trade-
offs.3

Remarks:
1. Klauck et al. [20] gave direct product theorems not only

for quantum query complexity, but also for 2-party quantum
communication complexity, and derived some communication-
space tradeoffs in analogy to the time-space tradeoffs. This
was made possible by a translation of communication pro-
tocols to polynomials due to Razborov [26], and the fact
that the DPTs of [20] were polynomial-based. Some of the
results in this paper can similarly be ported to a communi-
cation setting, though only the ones that use the polynomial
method.

2. The time-space tradeoffs for 2-sided error algorithms
for Ax ≥ b similarly hold for a system of N equalities, Ax =
b. The upper bound clearly carries over, while the lower
holds for equalities as well, because our DPT holds even
under the promise that the input has weight t or t − 1.
In contrast, the stronger 1-sided error time-space tradeoff
does not automatically carry over to systems of equalities,
because we do not know how to prove the DPT with bound
2−Ω(kt) under this promise.

2. PRELIMINARIES
We assume familiarity with quantum computing [23] and

sketch the model of quantum query complexity, referring
to [13] for more details, also on the close relation between
query complexity and degrees of multivariate polynomials.
Suppose we want to compute some function f . For input
x ∈ {0, 1}N , a query gives us access to the input bits. It
corresponds to the unitary transformation

Ox : |i, b, z〉 7→ |i, b⊕ xi, z〉.

Here i ∈ [N] = {1, . . . , N} and b ∈ {0, 1}; the z-part cor-
responds to the workspace, which is not affected by the
query. We assume the input can be accessed only via such
queries. A T -query quantum algorithm has the form A =
UTOxUT−1 · · ·OxU1OxU0, where the Uk are fixed unitary
transformations, independent of x. This A depends on x
via the T applications of Ox. The algorithm starts in ini-
tial S-qubit state |0〉 and its output is the result of measur-
ing a dedicated part of the final state A|0〉. For a Boolean
function f , the output of A is obtained by observing the
leftmost qubit of the final superposition A|0〉, and its accep-
tance probability on input x is its probability of outputting
1. We mention some well known quantum algorithms that
we use as subroutines.

• Quantum search. Grover’s search algorithm [17, 10]
can find an index of a 1-bit in an n-bit input in ex-
pected number of O(

p
n/(|x|+ 1)) queries, where |x|

is the Hamming weight (number of ones) in the input.

3Strictly speaking, there’s a quadratic gap for OR, but space
logn suffices for the fastest 1-sided and 2-sided error algo-
rithms so there’s no real tradeoff in that case.

If |x| is known, the algorithm can be made to find

the index in exactly O(
p
n/(|x|+ 1)) queries, instead

of the expected number [11]. By repeated search, we
can find t ones in an n-bit input with |x| ≥ t, usingP|x|
i=|x|−t+1O(

p
n/(i+ 1)) = O(

√
tn) queries.

• Quantum counting [11, Theorem 13]. There is a
quantum algorithm that uses M queries to n-bit x to
compute an estimate w of |x| such that with probabil-
ity at least 8/π2

|w − |x|| ≤ 2π

p
|x|(n− |x|)

M
+ π2 n

M2
.

For investigating time-space tradeoffs we use the circuit model.
A circuit accesses its input via an oracle like a query al-
gorithm. Time corresponds to the number of gates in the
circuit. We will, however, usually consider the number of
queries to the input, which is obviously a lower bound on
time. A circuit uses space S if it works with S bits/qubits
only. We require that the outputs are made at predefined
gates in the circuit, by writing their value to some extra
bits/qubits that may not be used later on.

3. DIRECT PRODUCT THEOREM FOR
SYMMETRIC FUNCTIONS (2-SIDED)

The main result of this paper is the following theorem.

Theorem 1. There is a constant α > 0 such that for
every symmetric f and every positive integer k: Every 2-
sided error quantum algorithm with T ≤ αkQ2(f) queries

for computing f (k) has success probability σ ≤ 2−Ω(k).

Let us first say something about Q2(f) for a symmetric
function f : {0, 1}n → {0, 1}. Let t denote the smallest
nonnegative integer such that f is constant on the interval
|x| ∈ [t, n− t]. We call this value t the “implicit threshold”
of f . For instance, functions like OR and AND have t = 1,
while Parity and Majority have t = n/2. If f is the t-
threshold function, then the implicit threshold is just the
threshold. The implicit threshold is related to the parameter
Γ(f) introduced by Paturi [25] via t = n/2− Γ(f)/2± 1. It
characterizes the bounded-error quantum query complexity
of f : Q2(f) = Θ(

√
tn) [8]. Hence our resource bound in

the above theorem will be αk
√
tn for some small constant

α > 0.
We actually prove a stronger statement, applying to any

Boolean function f (total or partial) for which f(x) = 0 if
|x| = t−1 and f(x) = 1 if |x| = t. In this section we give an
outline of the proof. Most of the proofs of technical claims
are deferred to Appendix A.

Let A be an algorithm that computes k instances of this
weight-(t − 1) versus weight-t problem. We recast A
into a different form, using a register that stores the in-
put x1, . . . , xk. Let HA be the Hilbert space on which A
operates. Let HI be an (

`
n
t−1

´
+
`
n
t

´
)k-dimensional Hilbert

space whose basis states correspond to inputs (x1, . . . , xk)
with Hamming weights |x1| ∈ {t− 1, t}, . . . , |xk| ∈ {t− 1, t}.
We transform A into a sequence of transformations on a
Hilbert space H = HA ⊗ HI . A non-query transformation
U on HA is replaced with U ⊗ I on H. A query is replaced
by a transformation O that is equal to Ox1,...,xk ⊗ I on the

subspace consisting of states of the form |s〉A ⊗ |x1 . . . xk〉I .

The starting state of the algorithm on Hilbert space H is
|ϕ0〉 = |ψstart〉A ⊗ |ψ0〉I where |ψstart〉 is the starting state
of A as an algorithm acting on HA and |ψ0〉 = |ψone〉⊗k is a
tensor product of k copies of the state |ψone〉 in which half
of the weight is on |x〉 with |x| = t, the other half is on |x〉
with |x| = t − 1, and any two states |x〉 with the same |x|
have equal amplitudes:

|ψone〉 =
1q
2
`
n
t

´ X
x:|x|=t

|x〉+
1q

2
`
n
t−1

´ X
x:|x|=t−1

|x〉.

Let |ϕd〉 be the state of the algorithm A, as a sequence of
transformations on H, after the d-th query. Let ρd be the
mixed state in HI obtained from |ϕd〉 by tracing out the HA

register.
We define two decompositions of HI into a direct sum

of subspaces. We have HI = (Hone)
⊗k where Hone is the

input Hilbert space for one instance, with basis states |x〉,
x ∈ {0, 1}n, |x| ∈ {t− 1, t}. Let

|ψ0
i1,...,ij 〉 =

1q`
n−j
t−1−j

´ X
x1,...,xn:

x1+···+xn=t−1,

xi1=···=xij
=1

|x1 . . . xn〉

and let |ψ1
i1,...,ij 〉 be a similar state with x1 + · · ·+xn = t in-

stead of x1+· · ·+xn = t−1. Let Tj,0 (resp. Tj,1) be the space
spanned by all states |ψ0

i1,...,ij 〉 (resp. |ψ1
i1,...,ij 〉) and let

Sj,a = Tj,a ∩T⊥j−1,a. For a subspace S, we use ΠS to denote

the projector onto S. Let |ψ̃ai1,...,ij 〉 = ΠT⊥j−1,a
|ψai1,...,ij 〉. For

j < t, let Sj,+ be the subspace spanned by the states

|ψ̃0
i1,...,ij 〉

‖ψ̃0
i1,...,ij

‖
+
|ψ̃1
i1,...,ij 〉

‖ψ̃1
i1,...,ij

‖

and Sj,− be the subspace spanned by

|ψ̃0
i1,...,ij 〉

‖ψ̃0
i1,...,ij

‖
−
|ψ̃1
i1,...,ij 〉

‖ψ̃1
i1,...,ij

‖

For j = t, we define St,− = St,1 and there is no subspace
St,+. Thus Hone =

Lt−1
j=0(Sj,+ ⊕Sj,−)⊕St,−. Let us try to

give some intuition. In the spaces Sj,+ and Sj,−, we may be
said to “know” the positions of j of the ones. In the Sj,−
subspaces we have distinguished the 0-inputs from 1-inputs
by the relative phase, while in the Sj,+ subspace we have not
distinguished them. Accordingly, the algorithm is doing well
on this one instance if most of the state sits in the “good”
subspaces Sj,−.

For the space HI (representing k independent inputs for
our function) and r1, . . . , rk ∈ {+,−}, we define

Sj1,...,jk,r1,...,rk = Sj1,r1 ⊗ Sj2,r2 ⊗ · · · ⊗ Sjk,rk .

Let Sm− be the direct sum of all Sj1,...,jk,r1,...,rk such that
exactly m of the signs r1, . . . , rk are equal to −. Then HI =L

m Sm−. This is the first decomposition.
The above intuition for one instance carries over to k

instances: the more minuses the better for the algorithm.
Conversely, if most of the input register sits in Sm− for low
m, then its success probability will be small. More precisely,
in Appendix A.1 we prove:

Lemma 2. Let ρ be the reduced density matrix of HI . If
the support of ρ is contained in S0−⊕S1−⊕· · ·⊕Sm−, then

the probability that measuring HA gives the correct answer

is at most

Pm
m′=0

`
k
m′

´
2k

.

Note that this probability is exponentially small in k for,
say, m = k/3. The following consequence of this lemma is
proven in Appendix A.2:

Corollary 3. Let ρ be the reduced density matrix of HI .
The probability that measuring HA gives the correct answer
is at mostPm

m′=0

`
k
m′

´
2k

+ 4
q

TrΠ(S0−⊕S1−⊕···⊕Sm−)⊥ρ.

To define the second decomposition, we express Hone =Lt/2
j=0Rj with Rj = Sj,+ for j < t/2 and

Rt/2 =
M
j≥t/2

Sj,+ ⊕
M
j≥0

Sj,−.

Intuitively, all subspaces except for Rt/2 are “bad” for the
algorithm, since they equal the “bad” Sj,+ subspaces. Let
R` be the direct sum of all Rj1 ⊗ · · · ⊗ Rjk satisfying j1 +

· · · + jk = `. Then HI =
Ltk/2

`=0 R`. This is the second
decomposition.

Intuitively, the algorithm can only have good success prob-
ability if for most of the k instances, most of the input regis-
ter sits in Rt/2. Aggregated over all k instances, this means
that the algorithm will only work well if most of the k-input
register sits in R` for ` large, meaning fairly close to kt/2.
Our goal below is to show that this cannot happen if the
number of queries is small.

Let R′
j =

Ltk/2
`=j R`. Note that Sm− ⊆ R′

tm/2 for ev-
ery m: Sm− is the direct sum of subspaces S = Sj1,r1 ⊗
· · · ⊗ Sjk,rk having m minuses among r1, . . . , rk; each such
minus-subspace sits in the corresponding Rt/2 and hence
S ⊆ R′

tm/2. This implies

(S0− ⊕ S1− ⊕ · · · ⊕ S(m−1)−)⊥ ⊆ R′
tm/2.

Accordingly, if we prove an upper bound on TrΠR′
tm/2

ρT ,

where T is the total number of queries, this bound together
with Corollary 3 implies an upper bound on the success
probability of A. To bound Tr ΠR′

tm/2
ρT , we consider the

following potential function

P (ρ) =

tk/2X
m=0

qm TrΠRmρ,

where q = 1 + 1
t
. Then for every d

TrΠR′
tm/2

ρd ≤ P (ρd)q
−tm/2 = P (ρd)e

−(1+o(1))m/2. (1)

P (ρ0) = 1, because the initial state |ψ0〉 is a tensor prod-
uct of the states |ψone〉 on each copy of Hone and |ψone〉
belongs to S0,+, hence |ψ0〉 belongs to R0. In Appendix A.4
we prove

Lemma 4. There is a constant C such that

P (ρj+1) ≤
„

1 +
C√
tn

(qt/2 − 1) +
C
√
t√
n

(q − 1)

«
P (ρj).

Since q = 1 + 1
t
, Lemma 4 means that P (ρj+1) ≤ (1 +

C
√
e√
tn

)P (ρj) and P (ρj) ≤ (1 + C
√
e√
tn

)j ≤ e2Cj/
√
tn. By equa-

tion (1), for the final state after T queries we have

TrΠR′
tm/2

ρT ≤ e2CT/
√
tn−(1+o(1))m/2.

We take m = k/3. Then if T ≤ m
√
tn/8C, this expression

is exponentially small in k. Together with Corollary 3, this
implies the theorem.

4. DIRECT PRODUCT THEOREM FOR
THRESHOLD FUNCTIONS (1-SIDED)

The previous section used the adversary method to prove
a direct product theorem for 2-sided error algorithms com-
puting k instances of some symmetric function. In this sec-
tion we use the polynomial method to obtain stronger direct
product theorems for 1-sided error algorithms for threshold
functions. An algorithm for f (k) has 1-sided error if the 1’s
in its k-bit output vector are always correct.

Our use of polynomials is a relatively small extension of
the argument in [20]. We use three results about polynomi-
als, also used in [12, 20]. The first is by Coppersmith and
Rivlin [14, p. 980] and gives a general bound for polynomials
bounded by 1 at integer points:

Theorem 5 (Coppersmith & Rivlin [14]). Every poly-
nomial p of degree d ≤ n that has absolute value

|p(i)| ≤ 1 for all integers i ∈ [0, n],

satisfies

|p(x)| < aebd
2/n for all real x ∈ [0, n],

where a, b > 0 are universal constants (no explicit values for
a and b are given in [14]).

The other two results concern the Chebyshev polynomials
Td, defined as in [27]:

Td(x) =
1

2

„“
x+

p
x2 − 1

”d
+
“
x−

p
x2 − 1

”d«
.

Td has degree d and its absolute value |Td(x)| is bounded by
1 if x ∈ [−1, 1]. On the interval [1,∞), Td exceeds all others
polynomials with those two properties ([27, p.108] and [25,
Fact 2]):

Theorem 6. If q is a polynomial of degree d such that
|q(x)| ≤ 1 for all x ∈ [−1, 1] then |q(x)| ≤ |Td(x)| for all
x ≥ 1.

Lemma 7 (Paturi [25]). Td(1+µ) ≤ e2d
√

2µ+µ2
for all

µ ≥ 0.

Proof. For x = 1 + µ: Td(x) ≤ (x +
p
x2 − 1)d = (1 +

µ+
p

2µ+ µ2)d ≤ (1 + 2
p

2µ+ µ2)d ≤ e2d
√

2µ+µ2
.

The following lemma is key. It analyzes polynomials that
are 0 on the first m integer points, and that significantly
“jump” a bit later.

Lemma 8. Suppose E,N,m are integers satisfying 10 ≤
E ≤ N

2m
, and let p be a degree-D polynomial such that

p(i) = 0 for all i ∈ {0, . . . ,m− 1},
p(8m) = σ,

p(i) ∈ [0, 1] for all i ∈ {0, . . . , N}.

Then σ ≤ 2O(D2/N+D
√
Em/N−m logE).

Proof. Divide p by
Qm−1
j=0 (x− j) to obtain

p(x) = q(x)

m−1Y
j=0

(x− j),

where d = deg(q) = D−m. This implies the following about
the values of the polynomial q:

|q(8m)| ≥ σ/(8m)m,

|q(i)| ≤ 1/((E − 1)m)m for i ∈ {Em, . . . , N}.
Theorem 5 implies that there are constants a, b > 0 such
that

|q(x)| ≤ a

((E − 1)m)m
ebd

2/(N−Em) = B

for all real x ∈ [Em,N].

We now divide q by B to normalize it, and rescale the in-
terval [Em,N] to [1,−1] to get a degree-d polynomial t sat-
isfying

|t(x)| ≤ 1 for all x ∈ [−1, 1],

t(1 + µ) = q(8m)/B for µ = 2(E − 8)m/(N − Em).

Since t cannot grow faster than the degree-d Chebyshev
polynomial, Theorem 6 and Lemma 7 imply

t(1 + µ) ≤ e2d
√

2µ+µ2
.

Combining our upper and lower bounds on t(1 + µ) gives

σ

(8m)m
· ((E − 1)m)m

aeO(d2/N)
≤ eO(d

√
Em/N),

which implies the lemma.

Theorem 9. There exists α > 0 such that for every thresh-
old function Tt and positive integer k: Every 1-sided error
quantum algorithm with T ≤ αkQ2(Tt) queries for comput-

ing T
(k)
t has success probability σ ≤ 2−Ω(kt).

Proof. We assume without loss of generality that t ≤
n/20, the other cases can easily be reduced to this. We know
that Q2(Tt) = Θ(

√
tn) [8]. Consider a quantum algorithm

A with T ≤ αk
√
tn queries that computes f (k) with success

probability σ. Roughly speaking, we use A to solve one big
threshold problem on the total input, and then invoke the
polynomial lemma to upper bound the success probability.

Define a new quantum algorithm B on an input x of N =
kn bits, as follows: B runs A on a random permutation π(x),
and then outputs 1 iff the k-bit output vector has at least
k/2 ones.

Let m = kt/2. Note that if |x| < m, then B always
outputs 0 because the 1-sided error output vector must have
fewer than k/2 ones. Now suppose |x| = 8m = 4kt. Call an
n-bit input block “full” if π(x) contains at least t ones in that
block. Let F be the random variable counting how many of
the k blocks are full. We claim that Pr[F ≥ k/2] ≥ 1/9.
To prove this, observe that the number B of ones in one
fixed block is a random variable distributed according to

a hypergeometric distribution (4kt balls into N boxes, n
of which count as success) with expectation µ = 4t and
variance V ≤ 4t. Using Chebyshev’s inequality we bound
the probability that this block is not full:

Pr[B < t] ≤ Pr[|B − µ| > 3t] ≤ Pr[|B − µ| > (3
√
t/2)

√
V]

<
1

(3
√
t/2)2

≤ 4

9
.

Hence the probability that the block is full (B ≥ t) is at
least 5/9. This is true for each of the k blocks, so using
linearity of expectation we have

5k

9
≤ Exp[F] ≤ Pr[F ≥ k/2] · k + (1− Pr[F ≥ k/2]) · k

2
.

This implies Pr[F ≥ k/2] ≥ 1/9, as claimed. But then on
all inputs with |x| = 8m, B outputs 1 with probability at
least σ/9.

Algorithm B uses αk
√
tn queries. By [8] and symmetriza-

tion, B’s acceptance probability is a single-variate polyno-
mial p of degree D ≤ 2αk

√
tn such that

p(i) = 0 for all i ∈ {0, . . . ,m− 1},
p(8m) ≥ σ/9,

p(i) ∈ [0, 1] for all i ∈ {0, . . . , N}.

The result now follows by applying Lemma 8 with N =
kn, m = kt/2, E = 10, and α a sufficiently small positive
constant.

5. TIME-SPACE TRADEOFF FOR
SYSTEMS OF LINEAR INEQUALITIES

Let A be a fixed N × N matrix of nonnegative integers
and let x, b be two input vectors of N nonnegative integers
smaller or equal to t. A matrix-vector product with upper
bound, denoted by y = (Ax)≤b, is a vector y such that
yi = min((Ax)[i], bi). An evaluation of a system of linear
inequalities Ax ≥ b is the N -bit vector of the truth values
of the individual inequalities. Here we present a quantum
algorithm for matrix-vector product with upper bound that
satisfies time-space tradeoff T 2S = O(tN3(logN)5). We
then use our direct product theorems to show this is close
to optimal.

5.1 Upper bound
It is easy to prove that matrix-vector products with up-

per bound t can be computed by a classical algorithm with
TS = O(N2 log t), as follows. Let S′ = S/ log t and divide
the matrix A into (N/S′)2 blocks of size S′ × S′ each. The
output vector is evaluated row-wise as follows: (1) Clear
S′ counters, one for each row, and read bi. (2) For each
block, read S′ input variables, multiply them by the corre-
sponding submatrix of A, and update the counters, but do
not let them grow larger than bi. (3) Output the counters.
The space used is O(S′ log t) = O(S) and the total query
complexity is T = O(N

S′ ·
N
S′ · S

′) = O(N2 log t/S).
The quantum algorithm Bounded Matrix Product works

in a similar way and it is outlined in Table 1. We compute
the matrix product in groups of S′ = S/ logN rows, read
input variables, and update the counters accordingly. The
advantage over the classical algorithm is that we use the
faster quantum search and quantum counting for finding
non-zero entries.

Bounded Matrix Product (fixed matrix AN×N , thresh-
old t, input vectors x and b of length N)
returns output vector y = (Ax)≤b:

• For i = 1, 2, . . . , N
S′ , where S′ = S/ logN :

1. Run Small Matrix Product on the i-th block
of S′ rows of A.

2. Output the S′ obtained results for those rows.

Small Matrix Product (fixed AS′×N , input xN×1 and
bS′×1) returns yS′×1 = (Ax)≤b:

1. Initialize y := (0, 0, . . . , 0), p := 1, U := {1, . . . , S′},
and read b. Let a1×N denote an on-line computed row-
vector with aj = 1 if A[u, j] = 1 for some u ∈ U , and
aj = 0 otherwise.

2. While p ≤ N and U 6= ∅, do the following:

(a) Let c̃p,k denote an estimate of the scalar product

cp,k =

p+k−1X
j=p

ajxj .

Initialize k = S′. First, while p+ k − 1 < N and
c̃p,k < S′, double k. Second, find by binary search
the maximal ` ∈ [k

2
, k] such that p + ` − 1 ≤ N

and c̃p,` ≤ 2S′.

(b) Use quantum search to find the set J of all posi-
tions j ∈ [p, p+ `− 1] such that ajxj > 0.

(c) For all j ∈ J , read xj , and then do the following
for all u ∈ U :

• Increase yu by A[u, j]xj .

• If yu ≥ bu, set yu := bu and remove u from
U .

(d) Increase p by `.

3. Return y.

Table 1: Algorithm Bounded Matrix Product

The u-th row is called open if its counter hasn’t yet reached
bu. The subroutine Small Matrix Product maintains a
set of open rows U ⊆ {1, . . . , S′} and counters 0 ≤ yu ≤ bu
for all u ∈ U . We process the input x in blocks, each con-
taining between S′ − O(

√
S′) and 2S′ + O(

√
S′) non-zero

numbers at the positions j where A[u, j] 6= 0 for some u ∈ U .
The length ` of such a block is first found by iterated quan-
tum counting (with number of queries specified in the proof
below) and the non-zero input numbers are then found by a
Grover search. For each such number, we update all coun-
ters yu and close all rows that exceeded their threshold bu.

Theorem 10. Bounded Matrix Product has bounded
error probability, its space complexity is O(S), and its query

complexity is T = O(N3/2
√
t · (logN)5/2/

√
S).

Proof. The space complexity of Small Matrix Prod-
uct is O(S′ logN) = O(S), because it stores a subset U ⊆
{1, . . . , S′}, integer vectors y, b of length S′ with numbers at
most t ≤ N , the set J of size O(S′) with numbers at most
N , and a few counters. Let us compute its query complexity.

Consider the i-th block found by Small Matrix Prod-
uct; let pi be its left column, let `i be its length, and let
Ui be the set of open rows at the beginning of processing of
this block. The scalar product cpi,`i is estimated by quan-
tum counting with M =

√
`i queries. Finding a proper `i

requires O(log `i) iterations. Let ri be the number of rows
closed during processing of this block and let si be the total
number added to the counters for other (still open) rows in
this block. The numbers `i, ri, si are random variables. If
we instantiate them at the end of the quantum subroutine,
the following inequalities hold:X

i

`i ≤ N,
X
i

ri ≤ S′, and
X
i

si ≤ tS′.

The iterated Grover search finds ones for two purposes: clos-
ing rows and increasing counters. Since each bi ≤ t, the
total cost in the i-th block is at most

Prit
j=1O(

p
`i/j) +Psi

j=1O(
p
`i/j) = O(

√
`irit+

√
`isi). By a Cauchy-Schwarz

inequality, the total number of queries that Small Matrix
Product spends in the Grover searches is at most

#blocksX
i=1

(
√
`irit+

√
`isi) ≤

sX
i

`i

s
t
X
i

ri +

sX
i

`i

sX
i

si

≤
√
N
√
tS′ +

√
N
√
tS′ = O(

√
NS′t).

The error probability of the Grover searches can be made
polynomially small in a logarithmic overhead. It remains
to analyze the outcome and error probability of quantum
counting. Let ci = cpi,`i ∈ [S′, 2S′]. One quantum counting
call with M =

√
`i queries gives an estimate w such that

|w − ci| = O

 r
ci(`i − ci)

`i
+
`i
`i

!
= O(

√
ci) = O(

√
S′)

with probability at least 8/π2 ≈ 0.8. We do it O(logN)
times and take the median, hence we obtain an estimate c̃
of ci with accuracy O(

√
S′) with polynomially small error

probability. The result of quantum counting is compared
with the given threshold, that is with S′ or 2S′. Binary
search for ` ∈ [k

2
, k] costs another factor of log k ≤ logN .

By a Cauchy-Schwarz inequality, the total number of queries
spent in the quantum counting is at most (logN)2 timesX

i

√
`i ≤

sX
i

`i

sX
i

1 ≤
√
N
p

#blocks

≤
√
N
√
S′ + t ≤

√
NS′t,

because in every block the algorithm closes a row or adds
Θ(S′) in total to the counters. The number of closed rows is
at most S′ and the number S′ can be added at most t times.

The total query complexity of Small Matrix Product
is thus O(

√
NS′t · (logN)2) and the query complexity of

Bounded Matrix Product is N/S′-times bigger. The
overall error probability is at most the sum of the polyno-
mially small error probabilities of the different subroutines,
hence it can be kept below 1/3.

5.2 Lower bound
Here we use our direct product theorems to lower-bound

the quantity T 2S for T -query, S-space quantum algorithms
for systems of linear inequalities. The lower bound even
holds if we fix b to the all-t vector ~t and let A and x be
Boolean.

Theorem 11. Let S = min(O(N/t), o(N/ logN)). There
exists an N × N Boolean matrix A such that every 2-sided
error quantum algorithm that uses T queries and S qubits of
space to decide a system Ax ≥ ~t of N inequalities, satisfies
T 2S = Ω(tN3).

Proof. The proof is a modification of Theorem 22 of [20]
(quant-ph version). They use the probabilistic method to
establish the following

Fact: For every k = o(N/ logN), there exists an N × N
Boolean matrix A, such that all rows of A have weight N/2k,
and every set of k rows of A contains a set R of k/2 rows
with the following property: each row in R contains at least
n = N/6k ones that occur in no other row of R.

Fix a matrix A for k = cS, for some constant c to be cho-
sen later. Consider a quantum circuit with T queries and
space S that solves the problem with success probability
at least 2/3. We “slice” the quantum circuit into disjoint

consecutive slices, each containing Q = α
√
tNS queries,

where α is the constant from our direct product theorem
(Theorem 1). The total number of slices is L = T/Q. To-
gether, these disjoint slices contain all N output gates. Our
aim below is to show that with sufficiently small constant α
and sufficiently large constant c, no slice can produce more
than k outputs. This will imply that the number of slices is
L ≥ N/k, hence

T = LQ ≥ αN3/2
√
t

c
√
S

.

Now consider any slice. It starts with an S-qubit state
that is delivered by the previous slice and depends on the
input, then it makes Q queries and outputs some ` results
that are jointly correct with probability at least 2/3. Sup-
pose, by way of contradiction, that ` ≥ k. Then there ex-
ists a set of k rows of A such that our slice produces the
k corresponding results (t-threshold functions) with proba-
bility at least 2/3. By the above Fact, some set R of k/2
of those rows has the property that each row in R contains
a set of n = N/6k = Θ(N/S) ones that do not occur in
any of the k/2 − 1 other rows of R. By setting all other
N − kn/2 bits of x to 0, we naturally get that our slice,
with the appropriate S-qubit starting state, solves k/2 in-
dependent t-threshold functions Tt on n bits each. (Note
that we need t ≤ n/2 = O(N/S); this follows from our as-
sumption S = O(N/t) with appropriately small constant in
the O(·).) Now we replace the initial S-qubit state by the
completely mixed state, which has “overlap” 2−S with ev-
ery S-qubit state. This turns the slice into a stand-alone

algorithm solving T
(k/2)
t with success probability

σ ≥ 2

3
2−S .

But this algorithm uses only Q = α
√
tNS = O(αk

√
tn)

queries, so our direct product theorem (Theorem 1) with
sufficiently small constant α implies

σ ≤ 2−Ω(k/2) = 2−Ω(cS/2).

Choosing c a sufficiently large constant (independent of this
specific slice), our upper and lower bounds on σ contradict.
Hence the slice must produce fewer than k outputs.

It is easy to see that the case S ≥ N/t (equivalently,
t ≥ N/S) is at least as hard as the S = N/t case, for which

we have the lower bound T 2S = Ω(tN3) = Ω(N4/S), hence
TS = Ω(N2). But that lower bound matches the classical
deterministic upper bound up to a logarithmic factor and
hence is essentially tight also for quantum. We thus have
two different regimes for space: for small space, a quantum
computer is faster than a classical one in solving systems of
linear inequalities, while for large space it is not.

A similar slicing proof using Theorem 9 (with each slice

of Q = α
√
NS queries producing at most S/t outputs) gives

the following lower bound on time-space tradeoffs for 1-sided
error algorithms.

Theorem 12. Let t ≤ S ≤ min(O(N/t2), o(N/ logN)).
There exists an N × N Boolean matrix A such that every
1-sided error quantum algorithm that uses T queries and S
qubits of space to decide a system Ax ≥ ~t of N inequalities,
satisfies T 2S = Ω(t2N3).

Note that our lower bound Ω(t2N3) for 1-sided error algo-
rithms is higher by a factor of t than the best upper bounds
for 2-sided error algorithms. This lower bound is proba-
bly not optimal. If S > N/t2 then the essentially optimal
classical tradeoff TS = Ω(N2) takes over.

6. SUMMARY
In this paper we described a new version of the adversary

method for quantum query lower bounds, based on analyz-
ing the eigenspace structure of the problem we want to lower
bound. We proved two new quantum direct product theo-
rems, the first using the new adversary method, the second
using the polynomial method:

• For every symmetric function f , every 2-sided error
quantum algorithm for f (k) using fewer than αkQ2(f)

queries has success probability at most 2−Ω(k).

• For every t-threshold function f , every 1-sided error
quantum algorithm for f (k) using fewer than αkQ2(f)

queries has success probability at most 2−Ω(kt).

Both results are tight up to constant factors. From these re-
sults we derived the following time-space tradeoffs for quan-
tum algorithms that decide a system Ax ≥ b of N linear
inequalities (where A is a fixed N × N matrix of nonnega-
tive integers, x, b are variable, and bi ≤ t for all i):

• Every T -query, S-space 2-sided error quantum algo-
rithm for evaluating Ax ≥ b satisfies T 2S = Ω(tN3)
if S ≤ N/t, and satisfies TS = Ω(N2) if S > N/t.
We gave an algorithm matching these bounds up to
polylog factors.

• Every T -query, S-space 1-sided error quantum algo-
rithm for evaluating Ax ≥ b satisfies T 2S = Ω(t2N3) if
t ≤ S ≤ N/t2, and satisfies TS = Ω(N2) if S > N/t2.
We do not have a matching algorithm in the first case
and conjecture that this bound is not tight.

7. REFERENCES
[1] S. Aaronson and Y. Shi. Quantum lower bounds for

the collision and the element distinctness problems
Journal of the ACM, 51(4):595–605, 2004

[2] S. Aaronson. Limitations of quantum advice and
one-way communication. In Proc. of 19th Conference
on Computational Complexity, p. 320–332, 2004.

[3] A. Ambainis. Quantum lower bounds by quantum
arguments. In Proc. of 32nd STOC, p. 636–643, 2000.

[4] A. Ambainis. Polynomial degree vs quantum query
complexity. In Proc. of 44th FOCS, p. 30–239, 2003.

[5] A. Ambainis. Quantum walk algorithm for element
distinctness. In Proc. of 45st FOCS, p. 22–31, 2004.

[6] A. Ambainis. A new quantum lower bound method,
with an application to strong direct product theorem
for quantum search. quant-ph/0508200, 26 Aug 2005.

[7] H. Barnum, M. Saks, and M. Szegedy. Quantum query
complexity and semi-definite programming. In Proc. of
18th Conference on Computational Complexity,
p. 179–193, 2003.

[8] R. Beals, H. Buhrman, R. Cleve, M. Mosca, and R. de
Wolf. Quantum lower bounds by polynomials. Journal
of the ACM, 48(4):778–797, 2001.

[9] E. Bernstein and U. Vazirani. Quantum complexity
theory. SIAM Journal on Computing,
26(5):1411–1473, 1997.

[10] M. Boyer, G. Brassard, P. Høyer, and A. Tapp. Tight
bounds on quantum searching. Fortschritte der
Physik, 46(4–5):493–505, 1998.

[11] G. Brassard, P. Høyer, M. Mosca, and A. Tapp.
Quantum amplitude amplification and estimation. In
Quantum Computation and Quantum Information: A
Millennium Volume, volume 305 of AMS
Contemporary Mathematics Series, p. 53–74. 2002.

[12] H. Buhrman, R. Cleve, R. de Wolf, and C. Zalka.
Bounds for small-error and zero-error quantum
algorithms. In Proc. of 40th FOCS, p. 358–368, 1999.

[13] H. Buhrman and R. de Wolf. Complexity measures
and decision tree complexity: A survey. Theoretical
Computer Science, 288(1):21–43, 2002.

[14] D. Coppersmith and T. J. Rivlin. The growth of
polynomials bounded at equally spaced points. SIAM
Journal on Mathematical Analysis, 23(4):970–983,
1992.

[15] E. Farhi, J. Goldstone, S. Gutmann, and M. Sipser. A
limit on the speed of quantum computation in
determining parity. Physical Review Letters,
81:5442–5444, 1998.

[16] R. L. Graham, D. E. Knuth, and O. Patashnik.
Concrete Mathematics: A Foundation for Computer
Science. Addison-Wesley, second edition, 1994.

[17] L. K. Grover. A fast quantum mechanical algorithm
for database search. In Proc. of 28th STOC,
p. 212–219, 1996.

[18] P. Høyer, M. Mosca, and R. de Wolf. Quantum search
on bounded-error inputs. In Proc. of 30th ICALP’03,
volume 2719 of LNCS, p. 291–299. Springer, 2003.

[19] P. Høyer, J. Neerbek, and Y. Shi. Quantum
complexities of ordered searching, sorting, and element
distinctness. Algorithmica, 34(4):429–448, 2002.

[20] H. Klauck, R. Špalek, and R. de Wolf. Quantum and
classical strong direct product theorems and optimal
time-space tradeoffs. In Proc. of 45th FOCS, p. 12–21,
2004.

[21] S. Laplante and F. Magniez. Lower bounds for
randomized and quantum query complexity using
Kolmogorov arguments. In Proc. of 19th Conference
on Computational Complexity, p. 294–304, 2004.

[22] F. Magniez, M. Santha, and M. Szegedy. Quantum
algorithms for the triangle problem. In Proc. of 16th
SODA, p. 1109–1117, 2005.

[23] M. A. Nielsen and I. L. Chuang. Quantum
Computation and Quantum Information. Cambridge
University Press, 2000.

[24] N. Nisan and M. Szegedy. On the degree of Boolean
functions as real polynomials. Computational
Complexity, 4(4):301–313, 1994.

[25] R. Paturi. On the degree of polynomials that
approximate symmetric Boolean functions. In Proc. of
24th STOC, p. 468–474, 1992.

[26] A. Razborov. Quantum communication complexity of
symmetric predicates. Izvestiya of the Russian
Academy of Science, mathematics, 67(1):159–176,
2003.

[27] T. J. Rivlin. Chebyshev Polynomials: From
Approximation Theory to Algebra and Number
Theory. Wiley-Interscience, second edition, 1990.

[28] R. Shaltiel. Towards proving strong direct product
theorems. In Proc. of 16th Conference on
Computational Complexity, p. 107–119, 2001.

[29] R. Špalek and M. Szegedy. All quantum adversary
methods are equivalent. Theory of Computing,
2(1):1–18, 2006.

[30] S. Zhang. On the power of Ambainis’s lower bounds.
Theoretical Computer Science,339(2–3):241–256,2005.

APPENDIX
A. PROOFS FROM SECTION 3

A.1 Proof of Lemma 2
The measurement of HA decomposes the state in the HI

register as follows:

ρ =
X

a1,...,ak∈{0,1}

pa1,...,akσa1,...,ak ,

with pa1,...,ak being the probability of the measurement giv-
ing the answer (a1, . . . , ak) (where aj = 1 means the algo-
rithm outputs—not necessarily correctly—that |xj | = t and
aj = 0 means |xj | = t − 1) and σa1,...,ak being the density
matrix of HI , conditional on this outcome of the measure-
ment. Since the support of ρ is contained in S0−⊕· · ·⊕Sm−,
the support of the states σa1,...,ak is also contained in S0−⊕
· · · ⊕ Sm−. The probability that the answer (a1, . . . , ak) is
correct is equal to

TrΠ
⊗k

j=1⊕
t−1+aj
l=0 Sl,aj

σa1,...,ak . (2)

We show that, for any σa1,...,ak with support contained in

S0− ⊕ · · · ⊕ Sm−, (2) is at most
Pm

m′=0 (k
m′)

2k .
For brevity, we now write σ instead of σa1,...,ak . A mea-

surement w.r.t. ⊗kj=1⊕lSl,aj and its orthogonal complement
commutes with a measurement w.r.t. the collection of sub-
spaces

⊗kj=1(Slj ,0 ⊕ Slj ,1),

where l1, . . . , lk range over {0, . . . , t}. Therefore

TrΠ⊗k
j=1⊕lSl,aj

σ =
X

l1,...,lk

TrΠ⊗k
j=1⊕lSl,aj

Π⊗k
j=1(Slj ,0⊕Slj ,1)σ.

|ψai1,...,ij 〉 uniform superposition of states with |x| = t− 1 + a and with j fixed bits set to 1

Tj,a spanned by |ψai1,...,ij 〉 for all j-tuples i

Sj,a = Tj,a ∩ T⊥j−1,a that is, we remove the lower-dimensional subspace

|ψ̃ai1,...,ij 〉 projection of |ψai1,...,ij 〉 onto Sj,a

Sj,± spanned by |ψ̃0〉
‖ψ̃0‖ ±

|ψ̃1〉
‖ψ̃1‖

Rj = Sj,+ for j < t
2

. . . bad subspaces
Rt/2 direct sum of Sj,+ for j ≥ t/2, and all Sj,− . . . good subspaces

Sm− =
L

|r|=m
j

kN
i=1

Sji,ri where |r| is the number of minuses in r = r1, . . . , rk

Rm =
L

|j|1=m

kN
i=1

Rji where |j|1 is the sum of all entries in j = j1, . . . , jk

R′
j =

L
m≥j

Rm

|ψa,bi1,...,ij 〉 uniform superposition of states with |x| = t− 1 + a, with j fixed bits set to 1, and x1 = b

Tj,a,b spanned by |ψa,bi1,...,ij 〉 for all j-tuples i

Sj,a,b = Tj,a,b ∩ T⊥j−1,a,b that is, we remove the lower-dimensional subspace

|ψ̃a,bi1,...,ij 〉 projection of |ψa,bi1,...,ij 〉 into Sj,a,b

Sα,βj,a spanned by α |ψ̃a,0〉
‖ψ̃a,0‖ + β |ψ̃a,1〉

‖ψ̃a,1‖

Table 2: States and subspaces used in the proof

Hence to bound (2) it suffices to prove the same bound with

σ′ = Π⊗k
j=1(Slj ,0⊕Slj ,1)σ.

instead of σ. Since“
⊗kj=1(Slj ,0 ⊕ Slj ,1)

”
∩
“
⊗kj=1(⊕lSl,aj)

”
= ⊗kj=1Slj ,aj ,

we have

TrΠ⊗k
j=1(⊕lSl,aj

)σ
′ = Tr Π⊗k

j=1Slj ,aj
σ′. (3)

We prove this bound for the case when σ′ is a pure state:
σ′ = |ψ〉〈ψ|. Then equation (3) is equal to

‖Π⊗k
j=1Slj ,aj

ψ‖2. (4)

The bound for mixed states σ′ follows by decomposing σ′ as
a mixture of pure states |ψ〉, bounding (4) for each of those
states and then summing up the bounds.

We have

(S0−⊕· · ·⊕Sm−)∩(

kO
j=1

(Slj ,0⊕Slj ,1)) =
M

r1,...,rk∈{+,−},
|{i:ri=−}|≤m

kO
j=1

Slj ,rj .

We express

|ψ〉 =
X

r1,...,rk∈{+,−},
|{i:ri=−}|≤m

αr1,...,rk |ψr1,...,rk 〉,

with |ψr1,...,rk 〉 ∈ ⊗
k
j=1Slj ,rj . Therefore

‖Π⊗k
j=1Slj ,aj

ψ‖2 ≤

0@ X
r1,...,rk

|αr1,...,rk |‖Π⊗k
j=1Slj ,aj

ψr1,...,rk‖

1A2

≤
X

r1,...,rk

‖Π⊗k
j=1Slj ,aj

ψr1,...,rk‖
2, (5)

where the second inequality uses Cauchy-Schwarz and

‖ψ‖2 =
X

r1,...,rk

|αr1,...,rk |
2 = 1.

Claim 13. ‖Π⊗k
j=1Slj ,aj

ψr1,...,rk‖
2 ≤ 1

2k
.

Proof. Let |ϕj,0i 〉, i ∈ [dimSlj ,0] form a basis for the sub-

space Slj ,0. Define a map Uj : Slj ,0 → Slj ,1 by Uj |ψ̃0
i1,...,ilj

〉 =

|ψ̃1
i1,...,ilj

〉. Then Uj is a multiple of a unitary transforma-

tion: Uj = cjU
′
j for some unitary U ′j and a constant cj .

(This follows from Claim 16 in Appendix A.4.)
Let |ϕj,1i 〉 = U ′j |ϕj,0i 〉. Since U ′j is a unitary transforma-

tion, the states |ϕj,1i 〉 form a basis for Slj ,1. Therefore

kO
j=1

|ϕj,aj

ij
〉 (6)

is a basis for ⊗kj=1Slj ,aj . Moreover, the states

|ϕj,+i 〉 =
1√
2
|ϕj,0i 〉+ 1√

2
|ϕj,1i 〉, |ϕj,−i 〉 =

1√
2
|ϕj,0i 〉− 1√

2
|ϕj,1i 〉

are a basis for Slj ,+ and Slj ,−, respectively. Therefore

|ψr1,...,rk 〉 =
X

i1,...,ik

αi1,...,ik

kO
j=1

|ϕj,rj

ij
〉. (7)

The inner product between ⊗ki=1|ϕ
j,aj

i′j
〉 and ⊗kj=1|ϕ

j,rj

ij
〉 is

kY
j=1

〈ϕj,rj

ij
|ϕj,aj

i′j
〉.

Note that rj ∈ {+,−} and aj ∈ {0, 1}. The terms in this
product are ± 1√

2
if i′j = ij and 0 otherwise. This means that

⊗kj=1|ϕ
j,rj

ij
〉 has inner product ± 1

2k/2 with ⊗ki=1|ϕ
j,aj

ij
〉 and

inner product 0 with all other basis states (6). Therefore,

Π⊗k
j=1Slj ,aj

⊗kj=1 |ϕ
j,rj

ij
〉 = ± 1

2k/2
⊗ki=1 |ϕ

j,aj

ij
〉.

Together with equation (7), this means that

‖Π⊗k
j=1Slj ,aj

ψr1,...,rk‖ ≤
1

2k/2
‖ψr1,...,rk‖ =

1

2k/2
.

Squaring both sides completes the proof of the claim.

Since there are
`
k
m′

´
tuples (r1, . . . , rk) with r1, . . . , rk ∈

{+,−} and |{i : ri = −}| = m′, Claim 13 together with
equation (5) implies

‖Π⊗k
j=1Slj ,aj

ψ‖2 ≤
Pm
m′=0

`
k
m′

´
2k

.

A.2 Proof of Corollary 3
Let |ψ〉 be a purification of ρ in HA ⊗HI . Let

|ψ〉 =
√

1− δ|ψ′〉+
√
δ|ψ′′〉

where |ψ′〉 is in the subspace HA⊗ (S0−⊕S1−⊕ · · ·⊕Sm−)
and |ψ′′〉 is in the subspace HA⊗ (S0−⊕S1−⊕· · ·⊕Sm−)⊥.
Then δ = Tr Π(S0−⊕···⊕Sm−)⊥ρ.

The success probability of A is the probability that, if we
measure both the register HA containing the result of the
computation and HI , then we get a1, . . . , ak and x1, . . . , xk

such that xj contains t−1+aj ones for every j ∈ {1, . . . , k}.
Consider the probability of getting a1, . . . , ak ∈ {0, 1} and

x1, . . . , xk ∈ {0, 1}n with this property, when measuring |ψ′〉
(instead of |ψ〉). By Lemma 2, this probability is at mostPm

m′=0 (k
m′)

2k . We have

‖ψ − ψ′‖ ≤ (1−
√

1− δ)‖ψ′‖+
√
δ‖ψ′′‖

= (1−
√

1− δ) +
√
δ ≤ 2

√
δ.

We now apply

Lemma 14 ([9]). For any states |ψ〉 and |ψ′〉 and any
measurement M , the variational distance between the prob-
ability distributions obtained by applying M to |ψ〉 and |ψ′〉
is at most 2‖ψ − ψ′‖.

Hence the success probability of A is at mostPm
m′=0

`
k
m′

´
2k

+4
√
δ =

Pm
m′=0

`
k
m′

´
2k

+4
q

TrΠ(S0−⊕···⊕Sm−)⊥ρ.

A.3 Structure of the subspaces when asking
one query

Let |ψd〉 be the state of HA ⊗HI after d queries. Write

|ψd〉 =

knX
i=0

ai|ψd,i〉,

with |ψd,i〉 being the part in which the query register con-
tains |i〉. Let ρd,i = TrHA |ψd,i〉〈ψd,i|. Then

ρd =

knX
i=0

a2
i ρd,i. (8)

Because of

TrΠRmρd =

knX
i=0

a2
i TrΠRmρd,i,

we have P (ρd) =
Pkn
i=0 a

2
iP (ρd,i). Let ρ′d be the state after

the d-th query and let ρ′d =
Pkn
i=0 a

2
i ρ
′
d,i be a decomposition

similar to equation (8). Lemma 4 follows by showing

P (ρ′d,i) ≤
„

1 +
C√
tn

(qt/2 − 1) +
C
√
t√
n

(q − 1)

«
P (ρd,i) (9)

for each i. For i = 0, the query does not change the state
if the query register contains |i〉. Therefore, ρ′d,0 = ρd,0 and
P (ρ′d,0) = P (ρd,0). This means that equation (9) is true for
i = 0. To prove the i ∈ {1, . . . , kn} case, it suffices to prove
the i = 1 case (because of symmetry).

Let |ψa,bi1,...,ij 〉 (with a, b ∈ {0, 1} and i1, . . . , ij ∈ {2, . . . , n})
be the uniform superposition over basis states |b, x2, . . . , xn〉
(of Hone) with b + x2 + · · · + xn = t − 1 + a and xi1 =
· · · = xij = 1. Let Tj,a,b be the space spanned by all states

|ψa,bi1,...,ij 〉 and let Sj,a,b = Tj,a,b ∩ T⊥j−1,a,b. Let |ψ̃a,bi1,...,ij 〉 =

ΠT⊥
j−1,a,b

|ψa,bi1,...,ij 〉.

Let Sα,βj,a be the subspace spanned by all states

α
|ψ̃a,0i1,...,ij 〉

‖ψ̃a,0i1,...,ij‖
+ β

|ψ̃a,1i1,...,ij 〉

‖ψ̃a,1i1,...,ij‖
. (10)

Claim 15. Let αa =
q

n−(t−1+a)
n−j ‖ψ̃a,0i1,...,ij‖ and βa =q

(t−1+a)−j
n−j ‖ψ̃a,1i1,...,ij‖. Then (i) Sαa,βa

j,a ⊆ Sj,a and (ii)

Sβa,−αa
j,a ⊆ Sj+1,a.

Proof. For part (i), consider the states |ψai1,...,ij 〉 in Tj,a,

for 1 6∈ {i1, . . . , ij}. We have

|ψai1,...,ij 〉 =

s
n− (t− 1 + a)

n− j
|ψa,0i1,...,ij 〉

+

s
(t− 1 + a)− j

n− j
|ψa,1i1,...,ij 〉 (11)

because among the states |x1 . . . xn〉 with |x| = t − 1 + a

and xi1 = · · · = xij = 1, a n−(t−1+a)
n−j fraction have x1 = 0

and the rest have x1 = 1. The projections of these states to
T⊥j−1,a,0 ∩ T⊥j−1,a,1 ares

n− (t− 1 + a)

n− j
|ψ̃a,0i1,...,ij 〉+

s
(t− 1 + a)− j

n− j
|ψ̃a,1i1,...,ij 〉

which, by equation (10) are exactly the states spanning

Sαa,βa
j,a . Furthermore, we claim that

Tj−1,a ⊆ Tj−1,a,0 ⊕ Tj−1,a,1 ⊆ Tj,a. (12)

The first containment is true because Tj−1,a is spanned by
the states |ψai1,...,ij−1〉 which either belong to Tj−2,a,1 ⊆
Tj−1,a,1 (if 1 ∈ {i1, . . . , ij−1}) or are a linear combination of
states |ψa,0i1,...,ij−1

〉 and |ψa,1i1,...,ij−1
〉 (by equation (11)), which

belong to Tj−1,a,0 and Tj−1,a,1. The second containment fol-
lows because the states |ψa,1i1,...,ij−1

〉 spanning Tj−1,a,1 are the

same as the states |ψa1,i1,...,ij−1〉 which belong to Tj,a, and

the states |ψa,0i1,...,ij−1
〉 spanning Tj−1,a,0 can be expressed as

linear combinations of |ψai1,...,ij−1〉 and |ψa1,i1,...,ij−1〉 which
both belong to Tj,a.

The first part of (12) now implies

Sαa,βa
j,a ⊆ T⊥j−1,a,0 ∩ T⊥j−1,a,1 ⊆ T⊥j−1,a.

Also, Sαa,βa
j,a ⊆ Tj,a, because Sαa,βa

j,a is spanned by the states

ΠT⊥j−1,a,0∩T
⊥
j−1,a,1

|ψai1,...,ij 〉

= |ψai1,...,ij 〉 −ΠTj−1,a,0⊕Tj−1,a,1 |ψ
a
i1,...,ij 〉

and |ψai1,...,ij 〉 belongs to Tj,a by the definition of Tj,a and

ΠTj−1,a,0⊕Tj−1,a,1 |ψai1,...,ij 〉 belongs to Tj,a because of the

second part of (12). Therefore, Sαa,βa
j,a ⊆ Tj,a∩T⊥j−1,a = Sj,a.

For part (ii), we have

Sαa,βa
j,a ⊆ Sj,a,0 ⊕ Sj,a,1 ⊆ Tj,a,0 ⊕ Tj,a,1 ⊆ Tj+1,a,

where the first containment is true because Sαa,βa
j,a is spanned

by linear combinations of vectors |ψ̃a,0i1,...,ij 〉 (which belong

to Sj,a,0) and vectors |ψ̃a,1i1,...,ij 〉 (which belong to Sj,a,1) and

the last containment is true because of the second part of
equation (12). Now let

|ψ〉 = βa
|ψ̃a,0i1,...,ij 〉

‖ψ̃a,0i1,...,ij‖
− αa

|ψ̃a,1i1,...,ij 〉

‖ψ̃a,1i1,...,ij‖
(13)

be one of the vectors spanning Sβa,−αa
j,a . To prove that |ψ〉

is in Sj+1,a = Tj+1,a ∩ T⊥j,a, it remains to prove that |ψ〉 is
orthogonal to Tj,a. This is equivalent to proving that |ψ〉
is orthogonal to each of the vectors |ψai′1,...,i′j 〉 spanning Tj,a.

We distinguish two cases (note that 1 6∈ {i1, . . . , ij}):
Case 1. 1 ∈ {i′1, . . . , i′j}.

For simplicity, assume 1 = i′j . Then |ψai′1,...,i′j 〉 is the same

as |ψa,1
i′1,...,i

′
j−1

〉, which belongs to Tj−1,a,1. By definition,

the vector |ψ〉 belongs to T⊥j−1,a,0 ∩ T⊥j−1,a,1 and is therefore

orthogonal to |ψa,1
i′1,...,i

′
j−1

〉.
Case 2. 1 6∈ {i′1, . . . , i′j}.

We will prove this case by induction on ` = |{i′1, . . . , i′j}−
{i1, . . . , ij}|.

In the base step (` = 0), we have {i′1, . . . , i′j} = {i1, . . . , ij}.
Since |ψ〉 belongs to T⊥j−1,a,0 ∩ T⊥j−1,a,1, it suffices to prove

|ψ〉 is orthogonal to the projection of |ψai1,...,ij 〉 to T⊥j−1,a,0 ∩
T⊥j−1,a,1 which, by the discussion after equation (11), equals

αa
|ψ̃a,0i1,...,ij 〉

‖ψ̃a,0i1,...,ij‖
+ βa

|ψ̃a,1i1,...,ij 〉

‖ψ̃a,1i1,...,ij‖
. (14)

From equations (13) and (14), we see that the inner product
of the two states is αaβa − βaαa = 0.

For the inductive step (` ≥ 1), assume i′j 6∈ {i1, . . . , ij}.
Up to renormalization, we have

|ψai′1,...,i′j−1
〉 =

X
i′ /∈{i′1,...,i

′
j−1}

|ψai′1,...,i′j−1,i
′〉.

Because |ψai′1,...,i′j−1
〉 is in Tj−1,a,0 ⊕ Tj−1,a,1, we haveX

i′ /∈{i′1,...,i
′
j−1}

〈ψai′1,...,i′j−1,i
′ |ψ〉 = 〈ψai′1,...,i′j−1

|ψ〉 = 0. (15)

As proven in the previous case, 〈ψai′1,...,i′j−1,1
|ψ〉 = 0. More-

over, by the induction hypothesis we have 〈ψai′1,...,i′j−1,i
′ |ψ〉 =

0 whenever i′ ∈ {i1, . . . , ij}. Therefore equation (15) re-

duces to X
i′ /∈{i′1,...,i

′
j−1,i1,...,ij ,1}

〈ψai′1,...,i′j−1,i
′ |ψ〉 = 0. (16)

By symmetry, the inner products in this sum are the same
for every i′. Hence they are all 0, in particular for i′ = i′j .

A.4 Proof of Lemma 4

Claim 16. The maps U01 : Sj,0,0 → Sj,0,1, U10 : Sj,0,0 →
Sj,1,0 and U11 : Sj,0,0 → Sj,1,1 defined by Uab|ψ̃0,0

i1,...,ij
〉 =

|ψ̃a,bi1,...,ij 〉 are multiples of unitary transformations: Uab =

cabU
′
ab for some unitary U ′ab and some constant cab.

Proof. We define M : Tj,0,0 → Tj,0,1 by

M |0x2 . . . xn〉 =
X
`:x`=1

|1x2 . . . x`−10x`+1 . . . xn〉.

Note that M does not depend on j. We claim

M |ψ̃0,0
i1,...,ij

〉 = c|ψ̃0,1
i1,...,ij

〉, (17)

M†|ψ̃0,1
i1,...,ij

〉 = c′|ψ̃0,0
i1,...,ij

〉,

for some constants c and c′ that may depend on n, t and j
but not on i1, . . . , ij . To prove that, we need to prove two
things. First, we claim that

M |ψ0,0
i1,...,ij

〉 = c|ψ0,1
i1,...,ij

〉+ |ψ′〉, (18)

where |ψ′〉 ∈ Tj−1,0,1 (note that 1 6∈ {i1, . . . , ij}). Equa-
tion (18) follows by

M |ψ0,0
i1,...,ij

〉 =
1q`
n−j−1
t−1−j

´ X
x:|x|=t−1,x1=0

xi1=···=xij
=1,

M |x〉

=
1q`
n−j−1
t−1−j

´ X
x:|x|=t−1,x1=0

xi1=···=xij
=1

X
`:x`=1

|1x2 . . . x`−10x`+1 . . . xn〉

=
n− t+ 1q`

n−j−1
t−1−j

´ X
y:|y|=t−1,y1=1

yi1=···=yij
=1

|y〉

+
1q`
n−j−1
t−1−j

´ jX
`=1

X
y:|y|=t−1,y1=1,yi`

=0

yi1=···=yij
=1

|y〉

=
n− t− j + 1q`

n−j−1
t−1−j

´ X
y:|y|=t−1,y1=1

yi1=···=yij
=1

|y〉

+
1q`
n−j−1
t−1−j

´ jX
`=1

X
y:|y|=t−1,y1=1

yi1=···=yi`−1=1

yi`+1=···=yij
=1

|y〉

= (n− t− j + 1)

r
t− 1− j

n− t+ 1
|ψ0,1
i1,...,ij

〉

+

r
n− j

n− t+ 1

jX
`=1

|ψ0,1
i1,...,i`−1,i`+1,...,ij

〉.

This proves (18), with |ψ′〉 equal to the second term.

Second, for every j, M(Tj,0,0) ⊆ Tj,0,1 and M(T⊥j,0,0) ⊆
T⊥j,0,1. The first statement follows from equation (18), be-
cause the subspaces Tj,0,0, Tj,0,1 are spanned by the states
|ψ0,0
i1,...,ij

〉 and |ψ0,1
i1,...,ij

〉, respectively, and Tj−1,0,1 ⊆ Tj,0,1.

To prove the second statement, let |ψ〉 ∈ T⊥j,0,0, |ψ〉 =P
x ax|x〉. We would like to prove M |ψ〉 ∈ T⊥j,0,1. This is

equivalent to 〈ψ0,1
i1,...,ij

|M |ψ〉 = 0 for all i1, . . . , ij . We have

〈ψ0,1
i1,...,ij

|M |ψ〉 =
1q`
n−j−1
t−j−2

´ X
y:|y|=t−1,y1=1

yi1=···=yij
=1

〈y|M |ψ〉

=
1q`
n−j−1
t−j−2

´ X
x:|x|=t−1,x1=0

xi1=···=xij
=1

X
`:x`=1

`/∈{i1,...,ij}

ax

=
t− 1− jq`

n−j−1
t−j−2

´ X
x:|x|=t−1,x1=0

xi1=···=xij
=1

ax = 0.

The first equality follows by writing out 〈ψ0,1
i1,...,ij

|, the sec-

ond equality follows by writing out M . The third equality
follows because, for every x with |x| = t− 1 and xi1 = · · · =
xij = 1, there are t − 1 − j more ` ∈ [n] satisfying x` = 1.
The fourth equality follows because

P
x:|x|=t−1,x1=0
xi1

=···=xij
=1

ax is a

constant times 〈ψ0,0
i1,...,ij

|ψ〉, and 〈ψ0,0
i1,...,ij

|ψ〉 = 0 because

|ψ〉 ∈ T⊥j,0,0.
To deduce equation (17), we write

|ψ0,0
i1,...,ij

〉 = |ψ̃0,0
i1,...,ij

〉+ ΠTj−1,0,0 |ψ
0,0
i1,...,ij

〉.

Since M(Tj−1,0,0) ⊆ Tj−1,0,1 and M(T⊥j−1,0,0) ⊆ T⊥j−1,0,1,

M |ψ̃0,0
i1,...,ij

〉 = ΠT⊥j−1,0,1
M |ψ0,0

i1,...,ij
〉

= cΠT⊥j−1,0,1
|ψ0,1
i1,...,ij

〉 = c|ψ̃0,1
i1,...,ij

〉,

with the second equality following from (18) and |ψ′〉 ∈
Tj−1,0,1. This proves the first half of (17). The second half
follows similarly. Therefore

〈ψ̃0,0
i1,...,ij

|M†M |ψ̃0,0

i′1,...,i
′
j
〉 = c · c′〈ψ̃0,0

i1,...,ij
|ψ̃0,0

i′1,...,i
′
j
〉.

HenceM is a multiple of a unitary transformation. By equa-
tion (17), U01 = M/c and, therefore, U01 is also a multiple
of a unitary transformation.

Next, we define M by M |0x2 . . . xn〉 = |1x2 . . . xn〉. Then
M is a unitary transformation from the space spanned by
|0x2 . . . xn〉, x2 + · · · + x2 = t − 1, to the space spanned by
|1x2 . . . xn〉, 1 + x2 + · · ·+ xn = t. We claim that U11 = M .
To prove that, we first observe that

M |ψ0,0
i1,...,ij

〉 =
1q`
n−j−1
t−j−1

´ X
x2,...,xn:

xi1=···=xij
=1

M |0x2 . . . xn〉

=
1q`
n−j−1
t−j−1

´ X
x2,...,xn:

xi1=···=xij
=1

|1x2 . . . xn〉 = |ψ1,1
i1,...,ij

〉.

Since Tj,a,b is defined as the subspace spanned by all |ψa,bi1,...,ij 〉,
this means thatM(Tj,0,0) = Tj,1,1 and similarlyM(Tj−1,0,0) =
Tj−1,1,1. Since M is unitary, this implies M(T⊥j−1,0,0) =

T⊥j−1,1,1 and

M |ψ̃0,0
i1,...,ij

〉 = MΠT⊥j−1,0,0
|ψ0,0
i1,...,ij

〉

= ΠT⊥j−1,1,1
|ψ1,1
i1,...,ij

〉 = |ψ̃1,1
i1,...,ij

〉.

Finally, we have U10 = U ′′10U11, where U ′′10 is defined by
U ′′10|ψ̃1,1

i1,...,ij
〉 = |ψ̃1,0

i1,...,ij
〉. Since U11 is unitary, it suffices to

prove that U ′′10 is a multiple of a unitary transformation and
this follows similarly to U01 being a multiple of a unitary
transformation.

Let |ψ00〉 be an arbitrary state in Sj,0,0 for some j ∈
{0, . . . , t− 1}. Define |ψab〉 = U ′ab|ψ00〉 for ab ∈ {01, 10, 11}.
Let |ψ2〉, . . . , |ψk〉 be vectors from subspaces Rj2 , . . . , Rjk ,
for some j2, . . . , jk. We first analyze the case when ρd,1 be-
longs to the subspace H4 spanned by |ψab〉⊗|ψ2〉⊗· · ·⊗|ψk〉.

Claim 17. Let

α′a =
q

n−(t−1+a)
n−j ‖ψ̃a,0i1,...,ij‖, β

′
a =

q
(t−1+a)−j

n−j ‖ψ̃a,1i1,...,ij‖,

αa =
α′a√

(α′a)2+(β′a)2
, βa =

β′a√
(α′a)2+(β′a)2

. Then

1. |φ1〉 = α0|ψ00〉+β0|ψ01〉+α1|ψ10〉+β1|ψ11〉 belongs to
Sj,+;

2. |φ2〉 = β0|ψ00〉−α0|ψ01〉+β1|ψ10〉−α1|ψ11〉 belongs to
Sj+1,+;

3. Any linear combination of |ψ00〉, |ψ01〉, |ψ10〉 and |ψ11〉
which is orthogonal to |φ1〉 and |φ2〉 belongs to S− =Lt

j=0 Sj,−.

Proof. Let i1, . . . , ij be j distinct elements of {2, . . . , n}.
As shown in the beginning of the proof of Claim 15,

|ψ̃ai1,...,ij 〉 =

s
n− (t− 1 + a)

n− j
|ψ̃a,0i1,...,ij 〉

+

s
(t− 1 + a)− j

n− j
|ψ̃a,1i1,...,ij 〉

= α′a
|ψ̃a,0i1,...,ij 〉

‖ψ̃a,0i1,...,ij‖
+ β′a

|ψ̃a,1i1,...,ij 〉

‖ψ̃a,1i1,...,ij‖
.

This means that ‖ψ̃ai1,...,ij‖ =
p

(α′a)2 + (β′a)2 and

|ψ̃ai1,...,ij 〉
‖ψ̃ai1,...,ij‖

= αa
|ψ̃a,0i1,...,ij 〉

‖ψ̃a,0i1,...,ij‖
+ βa

|ψ̃a,1i1,...,ij 〉

‖ψ̃a,1i1,...,ij‖
.

Since the states |ψ̃0
i1,...,ij 〉 span Sj,0, the state |ψ00〉 is a

linear combination of states
|ψ̃0,0

i1,...,ij
〉

‖ψ̃0,0
i1,...,ij

‖
. By Claim 16, the

states |ψab〉 are linear combinations of
|ψ̃a,b

i1,...,ij
〉

‖ψ̃a,b
i1,...,ij

‖
with the

same coefficients. Therefore, |φ1〉 is a linear combination of

α0

|ψ̃0,0
i1,...,ij

〉

‖ψ̃0,0
i1,...,ij

‖
+β0

|ψ̃0,1
i1,...,ij

〉

‖ψ̃0,1
i1,...,ij

‖
+α1

|ψ̃1,0
i1,...,ij

〉

‖ψ̃1,0
i1,...,ij

‖
+β1

|ψ̃1,1
i1,...,ij

〉

‖ψ̃1,1
i1,...,ij

‖

=
|ψ̃0
i1,...,ij 〉

‖ψ̃0
i1,...,ij

‖
+
|ψ̃1
i1,...,ij 〉

‖ψ̃1
i1,...,ij

‖
,

each of which, by definition, belongs to Sj,+.

Let i1, . . . , ij be distinct elements of {2, . . . , n}. We claim

|ψ̃a1,i1,...,ij 〉
‖ψ̃a1,i1,...,ij‖

= βa
|ψ̃a,0i1,...,ij 〉

‖ψ̃a,0i1,...,ij‖
− αa

|ψ̃a,1i1,...,ij 〉

‖ψ̃a,1i1,...,ij‖
. (19)

By Claim 15, the right hand side of (19) belongs to Sj+1,a.

We need to show that it is equal to |ψ̃a1,i1,...,ij 〉. We have

|ψ̃a1,i1,...,ij 〉 = ΠT⊥j,a
|ψa1,i1,...,ij 〉 = ΠT⊥j,a

|ψa,1i1,...,ij 〉

= ΠT⊥j,a
ΠT⊥j−1,a,1

|ψa,1i1,...,ij 〉 = ΠT⊥j,a
|ψ̃a,1i1,...,ij 〉,

where the third equality follows from Tj−1,a,1 ⊆ Tj,a. This
is because the states |ψa,1i1,...,ij−1

〉 spanning Tj−1,a,1 are the

same as the states |ψa1,i1,...,ij−1〉 in Tj,a. Write

|ψ̃a,1i1,...,ij 〉 = c1|δ1〉+ c2|δ2〉

where

|δ1〉 = αa
|ψ̃a,0i1,...,ij 〉

‖ψ̃a,0i1,...,ij‖
+ βa

|ψ̃a,1i1,...,ij 〉

‖ψ̃a,1i1,...,ij‖
,

|δ2〉 = βa
|ψ̃a,0i1,...,ij 〉

‖ψ̃a,0i1,...,ij‖
− αa

|ψ̃a,1i1,...,ij 〉

‖ψ̃a,1i1,...,ij‖
.

By Claim 15, we have |δ1〉 ∈ Sj,a ⊆ Tj,a, |δ2〉 ∈ Sj+1,a ⊆
T⊥j,a. Therefore, ΠT⊥j,a

|ψ̃a,1i1,...,ij 〉 = c2|δ2〉 and

|ψ̃a1,i1,...,ij 〉
‖ψ̃a1,i1,...,ij‖

= |δ2〉 = βa
|ψ̃a,0i1,...,ij 〉

‖ ˜ψa,0i1,...,ij‖
− αa

|ψ̃a,1i1,...,ij 〉

‖ψ̃a,1i1,...,ij‖
,

proving (19).
Similarly to the argument for |φ1〉, equation (19) implies

that |φ2〉 is a linear combination of

β0

|ψ̃0,0
i1,...,ij

〉

‖ψ̃0,0
i1,...,ij

‖
−α0

|ψ̃0,1
i1,...,ij

〉

‖ψ̃0,1
i1,...,ij

‖
+β1

|ψ̃1,0
i1,...,ij

〉

‖ψ̃1,0
i1,...,ij

‖
−α1

|ψ̃1,1
i1,...,ij

〉

‖ψ̃1,1
i1,...,ij

‖

=
|ψ̃0

1,i1,...,ij 〉
‖ψ̃0

1,i1,...,ij
‖

+
|ψ̃1

1,i1,...,ij 〉
‖ψ̃1

1,i1,...,ij
‖

and each of those states belongs to Sj+1,+.
To prove the third part of Claim 17, we observe that any

vector orthogonal to |φ1〉 and |φ2〉 is a linear combination of

|φ3〉 = α0|ψ00〉+ β0|ψ01〉 − α1|ψ10〉 − β1|ψ11〉,

which, in turn, is a linear combination of vectors

|ψ̃0
i1,...,ij 〉

‖ψ̃0
i1,...,ij

‖
−
|ψ̃1
i1,...,ij 〉

‖ψ̃1
i1,...,ij

‖

and

|φ4〉 = β0|ψ00〉 − α0|ψ01〉 − β1|ψ10〉+ α1|ψ11〉

which is a linear combination of vectors

|ψ̃0
1,i1,...,ij 〉

‖ψ̃0
1,i1,...,ij

‖
−
|ψ̃1

1,i1,...,ij 〉
‖ψ̃1

1,i1,...,ij
‖
.

This means that we have |φ3〉 ∈ Sj,− and |φ4〉 ∈ Sj+1,−.

Claim 18. Let j < t/2 and xj = x(x− 1) · · · (x− j + 1).

1. ‖ψ̃a,bi1,...,ij‖ =

s
(n− t− a+ b)j

(n− j)j
.

2. ‖ψ̃a,0i1,...,ij‖ ≥
1√
2
‖ψ̃a,1i1,...,ij‖.

3.
‖ψ̃0,0

i1,...,ij
‖ · ‖ψ̃1,1

i1,...,ij
‖

‖ψ̃0,1
i1,...,ij

‖ · ‖ψ̃1,0
i1,...,ij

‖
= 1 +O

„
1

t

«
.

Proof. Define ta = t− 1 + a. We calculate the vector

|ψ̃a,bi1,...,ij 〉 = ΠT⊥
j−1,a,b

|ψa,bi1,...,ij 〉.

Both vector |ψa,bi1,...,ij 〉 and subspace Tj−1,a,b are fixed by

Uπ|x〉 = |xπ(1) . . . xπ(n)〉

for any permutation π that fixes 1 and maps {i1, . . . , ij}
to itself. Hence |ψ̃a,bi1,...,ij 〉 is fixed by any such Uπ as well.

Therefore, the amplitude of |x〉 with |x| = ta, x1 = b in

|ψ̃a,bi1,...,ij 〉 only depends on |{i1, . . . , ij} ∩ {i : xi = 1}|, so

|ψ̃a,bi1,...,ij 〉 is of the form

|υa,b〉 =

jX
m=0

κm
X

x:|x|=ta,x1=b

|{i1,...,ij}∩{i:xi=1}|=m

|x〉.

To simplify the following calculations, we multiply κ0, . . . , κj

by the same constant so that κj = 1/
q`

n−j−1
ta−j−b

´
. Then

|ψ̃a,bi1,...,ij 〉 remains a multiple of |υa,b〉 but may no longer be

equal to |υa,b〉.
κ0, . . . , κj−1 should be such that the state is orthogonal to

Tj−1,a,b and, in particular, orthogonal to the states |ψa,bi1,...,i`〉
for all ` ∈ {0, . . . , j − 1}. By writing out 〈υa,b|ψa,bi1,...,i`〉 = 0:

jX
m=`

κm

n− j − 1

ta −m− b

!
j − `

m− `

!
= 0. (20)

To show that, we first note that |ψa,bi1,...,i`〉 is a uniform super-

position of all |x〉 with |x| = ta, x1 = b, xi1 = · · · = xi` = 1.
If we want to choose x subject to those constraints and also
satisfying |{i1, . . . , ij} ∩ {i : xi = 1}| = m, then we have
to set xi = 1 for m − ` different i ∈ {i`+1, . . . , ij} and for
ta −m − b different i /∈ {1, i1, . . . , ij}. This can be done in`
j−`
m−`

´
and

`
n−j−1
ta−m−b

´
different ways, respectively.

By solving the system of equations (20), starting from
` = j − 1 and going down to ` = 0, we get that the only
solution is

κm = (−1)j−m
`
n−j−1
ta−j−b

´`
n−j−1
ta−m−b

´κj . (21)

Let |υ′a,b〉 =
|υa,b〉
‖υa,b‖

be the normalized version of |υa,b〉.
Then

|ψ̃a,bi1,...,ij 〉 = 〈υ′a,b|ψa,bi1,...,ij 〉|υ
′
a,b〉,

‖ψ̃a,bi1,...,ij‖ = 〈υ′a,b|ψa,bi1,...,ij 〉 =
〈υa,b|ψa,bi1,...,ij 〉

‖υa,b‖
. (22)

We have

〈υa,b|ψa,bi1,...,ij 〉 = 1,

because |ψa,bi1,...,ij 〉 consists of
`
n−j−1
ta−j−b

´
basis states |x〉, x1 =

b, xi1 = · · · = xij = 1, each having amplitude 1/
q`

n−j−1
ta−j−b

´
in both |υa,b〉 and |ψa,bi1,...,ij 〉. Furthermore,

‖υa,b‖2 =

jX
m=0

j

m

!
n− j − 1

ta −m− b

!
κ2
m

=

jX
m=0

j

m

!`
n−j−1
ta−j−b

´2`
n−j−1
ta−m−b

´ κ2
j

=

jX
m=0

j

m

! `
n−j−1
ta−j−b

´`
n−j−1
ta−m−b

´
=

jX
m=0

j

m

!
(ta −m− b)!(n− ta +m− j − 1 + b)!

(ta − j − b)!(n− ta − 1 + b)!

=

jX
m=0

j

m

!
(ta −m− b)j−m

(n− ta − 1 + b)j−m
. (23)

Here the first equality follows because there are
`
j
m

´`
n−j−1
ta−m−b

´
vectors x such that |x| = ta, x1 = b, xi = 1 for m different
i ∈ {i1, . . . , ij} and ta −m different i /∈ {1, i1, . . . , ij}, the
second equality follows from equation (21) and the third

equality follows from our choice κj = 1/
q`

n−j−1
ta−j−b

´
.

From equations (22) and (23), ‖ψ̃a,bi1,...,ij‖ = 1√
Aa,b

where

Aa,b =
P∞
m=0 Ca,b(m) and

Ca,b(m) =

j

m

!
(ta −m− b)j−m

(n− ta − 1 + b)j−m
.

The terms with m > j are zero because
`
j
m

´
= 0 for m > j.

We compute the combinatorial sum Aa,b using hypergeo-
metric series [16, Section 5.5]. Since

Ca,b(m+ 1)

Ca,b(m)
=

(m− j)(m+ n− ta − j + b)

(m+ 1)(m− ta + b)

is a rational function of m, Aa,b is a hypergeometric series
and its value is

Aa,b =

∞X
m=0

Ca,b(m) = Ca,b(0) · F
“−j, n− ta − j + b

−ta + b

˛̨̨
1
”
.

We apply Vandermonde’s convolution F (−j, x
y

|1) = (x −
y)j/(−y)j [16, Equation 5.93 on page 212], which holds for
every integer j ≥ 0, and obtain

Aa,b =
(ta − b)j

(n− ta − 1 + b)j
· (n− j)j

(ta − b)j
=

(n− j)j

(n− ta − 1 + b)j
.

This proves the first part of the claim, that ‖ψ̃a,bi1,...,ij‖ =p
(n− ta − 1 + b)j/(n− j)j .
The second part of the claim follows because

‖ψ̃a,0i1,...,ij‖

‖ψ̃a,1i1,...,ij‖
=

s
(n− ta − 1)j

(n− ta)
j

=

r
n− ta − j

n− ta

=

r
1− j

n− ta
≥

s
1− n/4

n/2
=

1√
2
,

because j ≤ ta/2, and ta ≤ n/2.

For the third part,

A1,0A0,1

A0,0A1,1
=

((n− t)j)2

(n− t+ 1)j(n− t− 1)j

=
(n− t)(n− t− j + 1)

(n− t+ 1)(n− t− j)

= 1 +
j

(n− t+ 1)(n− t− j)
,

which is 1 + Θ(j/n2) = 1 +O(1/t) for t ≤ n/2 and j ≤ t/2.
The expression in the third part of the claim is the square
root of this value, hence it is 1 +O(1/t).

Claim 19. If j < t/2, then βa ≤
q

2t
n

.

Proof. Define ta = t− 1+ a. By Claim 18, ‖ψ̃a,0i1,...,ij‖ ≥
1√
2
‖ψ̃a,1i1,...,ij‖. That implies

α′a =

√
n− ta√
n− j

‖ψ̃a,0i1,...,ij‖

≥ 1√
2

√
n− ta√
ta − j

√
ta − j√
n− j

‖ψ̃a,1i1,...,ij‖ =

√
n− tap

2(ta − j)
β′a

and hencep
(α′a)2 + (β′a)2 ≥ β′a

r
n− ta

2(ta − j)
+ 1 = β′a

√
n+ ta − 2jp
2(ta − j)

.

Then, using j ≤ ta
2

,

βa =
β′ap

(α′a)2 + (β′a)2
≤

p
2(ta − j)√
n+ ta − 2j

≤
r

2t

n
.

Claim 20. If j < t/2, then |α0β1 − α1β0| = O

„
1√
tn

«
.

Proof. We first estimate

α0β1

α1β0
=
α′0β

′
1

α′1β
′
0

=

p
(n− t+ 1)(t− j)p
(n− t)(t− 1− j)

·
‖ψ̃0,0

i1,...,ij
‖‖ψ̃1,1

i1,...,ij
‖

‖ψ̃1,0
i1,...,ij

‖‖ψ̃0,1
i1,...,ij

‖
.

By Claim 18, we have

α′0β
′
1

α′1β
′
0

=

„
1 +O

„
1

t

«« p
(n− t+ 1)(t− j)p
(n− t)(t− 1− j)

.

Since
√
t−j√
t−1−j =

q
1 + 1

t−1−j = 1 + O(1
t−1−j) = 1 + O(1

t
)

and, similarly,
√
n−t+1√
n−t = 1 + O(1

n−t) = 1 + O(1
t
), we have

shown that α0β1
α1β0

is of order 1 +O(1
t
). We thus have

|α0β1−β0α1| = O

„
1

t

«
|β0α1| = O

1

t
·
r
t

n

!
= O

„
1√
tn

«
,

thanks to Claim 19 and the fact that |α1| ≤ 1.

We pick an orthonormal basis for H4 that has |φ1〉 and
|φ2〉 as its first two vectors. Let |φ3〉 and |φ4〉 be the other
two basis vectors. We define

|χi〉 = |φi〉 ⊗ |ψ2〉 ⊗ · · · ⊗ |ψk〉. (24)

By Claim 17, |χ1〉 belongs to Sj,+⊗Rj2 ⊗· · ·⊗Rjk which is
contained in Rmin(j,t/2)+j2+···+jk . Similarly, |χ2〉 belongs to

Rmin(j+1,t/2)+j2+···+jk and |χ3〉, |χ4〉 belong toRt/2+j2+···+jk .
If j < t/2, this means that

P (ρd,1) = qj2+···+jk ·
“
qj〈χ1|ρd,1|χ1〉+ qj+1〈χ2|ρd,1|χ2〉

+q
t
2 〈χ3|ρd,1|χ3〉+ q

t
2 〈χ4|ρd,1|χ4〉

”
(25)

If j ≥ t/2, then |χ1〉, |χ2〉, |χ3〉, |χ4〉 are all inRt/2+j2+···+jk .

This means that P (ρd,1) = qt/2+j2+···+jk and it remains
unchanged by a query.

We define γ` = 〈χ`|ρd,1|χ`〉. Since the support of ρd,1 is
contained in the subspace spanned by |χ`〉, we have γ1 +
γ2 + γ3 + γ4 = Tr ρd,1 = 1. This means that equation (25)
can be rewritten as

P (ρd,1) = qj+j2+···+jkγ1 + qj+j2+···+jk+1γ2+

+ qt/2+j2+···+jk (γ3 + γ4)

= qt/2+j2+···+jk + qj2+···+jk (qj+1 − qt/2)(γ1 + γ2)+

+ qj2+···+jk (qj − qj+1)γ1 (26)

P (ρ′d,1) can be also expressed in a similar way, with γ′j =
〈χj |ρ′d,1|χj〉 instead of γj . By combining equations (26) for
P (ρd,1) and P (ρ′d,1), we get

P (ρ′d,1)− P (ρd,1) = qj+j2+···+jk (qt/2−j − q)

· (γ1 + γ2 − γ′1 − γ′2) + qj+j2+···+jk (q − 1)(γ1 − γ′1).

Therefore, it suffices to bound |γ1+γ2−γ′1−γ′2| and |γ1−γ′1|.
W.l.o.g. we can assume that ρd,1 is a pure state |ϕ〉〈ϕ|. Let

|ϕ〉 = (a|ψ00〉+ b|ψ01〉+ c|ψ10〉+ d|ψ11〉)⊗ |ψ2〉 ⊗ · · · ⊗ |ψk〉.

Then the state after a query is

|ϕ′〉 = (a|ψ00〉 − b|ψ01〉+ c|ψ10〉 − d|ψ11〉)⊗ |ψ2〉 ⊗ · · · ⊗ |ψk〉

and we have to bound

γ` − γ′` = |〈χ`|ϕ〉|2 − |〈χ`|ϕ′〉|2

for ` ∈ {1, 2}. For ` = 1, we have

〈χ1|ϕ〉 = aα0 + bβ0 + cα1 + dβ1.

The expression for ϕ′ is similar, with minus signs in front of
bβ0 and dβ1. Therefore,˛̨
|〈χ1|ϕ〉|2 − |〈χ1|ϕ′〉|2

˛̨
≤ 4|a||b|α0β0 + 4|c||d|α1β1 + 4|a||d|α0β1 + 4|b||c|α1β0.

(27)

Since |a|, |b|, |c|, |d| are all at most ‖ϕ‖ = 1 and α0, α1 are
less than 1, equation (27) is at most 8β0+8β1. By Claim 19,
we have

|γ1 − γ′1| ≤ 8β0 + 8β1 ≤ 16

r
2t

n
.

We also have˛̨
γ1 + γ2 − γ′1 − γ′2

˛̨
=
˛̨
|〈χ1|ϕ〉|2 + |〈χ2|ϕ〉|2 − |〈χ1|ϕ′〉|2 − |〈χ2|ϕ′〉|2

˛̨
≤ 4|a||d||α0β1 − α1β0|+ 4|b||c||α1β0 − α0β1|

≤ 8|α0β1 − α1β0| ≤
8C√
tn

where C is the big-O constant from Claim 20. By taking
into account that P (ρd,1) ≥ qj+j2+···+jk ,

P (|ϕ′〉〈ϕ′|)− P (|ϕ〉〈ϕ|)

≤
„

(qt/2−j − q)
8C√
tn

+ (q − 1)
16
√

2t√
n

«
P (|ϕ〉〈ϕ|)

≤
„

(qt/2 − 1)
8C√
tn

+ (q − 1)
16
√

2t√
n

«
P (|ϕ〉〈ϕ|). (28)

This proves Lemma 4 for the case when the support of ρd,1
is contained in H4. (If ρd,1 is a mixed state, we just express
it as a mixture of pure states |ϕ〉. The bound for ρd,1 follows
by summing equations (28) for every |ϕ〉.)

For the general case, we divide the entire state space HI

into 4-dimensional subspaces. To do that, we first subdivide
HI into subspaces

(Sj,0,0 ⊕ Sj,0,1 ⊕ Sj,1,0 ⊕ Sj,1,1)⊗Rj2 ⊗ · · · ⊗Rjk . (29)

Let states |ψ0,0
1,i 〉, i ∈ [dimSj,0,0] form a basis for Sj,0,0 and

let |ψa,b1,i 〉 = U ′ab|ψ0,0
1,i 〉 for (a, b) ∈ {(0, 1), (1, 0), (1, 1)}, where

the U ′ab are the unitaries from Claim 16. Then the |ψa,b1,i 〉
form a basis for Sj,a,b.

Let |ψl,i〉, i ∈ [dimRjl], form a basis forRjl , l ∈ {2, . . . , k}.
We subdivide (29) into 4-dimensional subspaces Hi1,...,ik
spanned by

|ψa,b1,i1
〉 ⊗ |ψ2,i2〉 ⊗ · · · ⊗ |ψk,ik 〉,

where a, b range over {0, 1}. Let Hall be the collection of
all Hi1,...,ik obtained by subdividing all subspaces (29). We
claim that

P (ρ) =
X

H∈Hall

P (ΠHρ). (30)

Equation (30) together with equation (28) implies Lemma 4.
Since P (ρ) is defined as a weighted sum of traces TrΠRmρ,
we can prove equation (30) by showing

TrΠRmρd,1 =
X

H∈Hall

TrΠRmΠHρd,1. (31)

To prove (31), we define a basis for HI by first decomposing
HI into subspaces H ∈ Hall, and then for each subspace,
taking the basis consisting of |χ1〉, |χ2〉, |χ3〉 and |χ4〉 defined
by equation (24). By Claim 17, each of the basis states
belongs to one of the subspaces Rm. This means that each
Rm is spanned by some subset of this basis.

The left hand side of (31) is equal to the sum of squared
projections of ρd,1 to basis states |χj〉 that belong to Rm.
Each of the terms TrΠRmΠHρd,1 on the right hand side is
equal to the sum of squared projections to basis states |χj〉
that belong to Rm ∩H. Summing over all H gives the sum
of squared projections of ρd,1 to all |χj〉 that belong to Rm.
Therefore, the two sides of (31) are equal.

	Introduction
	A new adversary method
	Direct product theorems for symmetric functions
	Time-Space tradeoffs for evaluating solutions to systems of linear inequalities

	Preliminaries
	Direct Product Theorem for Symmetric Functions (2-sided)
	Direct Product Theorem for Threshold Functions (1-sided)
	Time-Space Tradeoff for Systems of Linear Inequalities
	Upper bound
	Lower bound

	Summary
	References
	Proofs from Section 3
	Proof of Lemma 2
	Proof of Corollary 3
	Structure of the subspaces when asking one query
	Proof of Lemma 4

