Polynomial Identity Testing and Circuit Lower Bounds

Robert Špalek, CWI
based on papers by
Nisan \& Wigderson, 1994
Kabanets \& Impagliazzo, 2003

Randomised algorithms

- For some problems (polynomial identity testing) we know an efficient randomised algorithm, but not a deterministic one.

■ However nobody proved $P \subsetneq B P P$ yet.
It is possible that $P=B P P$.
\square There is a connection between hardness and randomness: if we have a hard function, we can use it to derandomize BPP.

■ Until recently, it was not known whether the converse holds. Kabanets \& Impagliazzo showed that it does.

- This is bad, since non-trivial circuit lower-bounds are a long-standing open problem.

Pseudo-random generators

$G:\{0,1\}^{\ell(n)} \rightarrow\{0,1\}^{n}$ is a pseudo-random generator iff for any circuit C of size n :

$$
|P[C(r)=1]-P[C(G(x))=1]|<\frac{1}{n^{\prime}}
$$

where x, r are chosen uniformly.
Having a pseudo-random generator, we can derandomize BPP:
■ instead of n random bits, plug a pseudo-random sequence (acceptance prob. changed only slightly)

- check all $2^{\ell(n)}$ random seeds

Hard functions

$f_{n}:\{0,1\}^{n} \rightarrow\{0,1\}$ has hardness h
iff for any circuit C of size h :

$$
\left|P[C(x)=f(x)]-\frac{1}{2}\right|<\frac{1}{2 h^{\prime}},
$$

where x is chosen uniformly.
Hard functions can be used to build pseudo-random generators:

- take $\ell(n)$ truly random bits

■ evaluate f on n subsets of them
■ if these subsets have small intersection, then the results are hardly correlated

Nearly disjoint sets

System of sets $\left\{S_{1}, \ldots, S_{n}\right\}$, where $S_{i} \subset\{1, \ldots, \ell\}$ is a (k, m)-design if:

- $\left|S_{i}\right|=m$
- $\left|S_{i} \cap S_{j}\right| \leq k$

For every $m \in\{\log n, \ldots, n\}$, there exists an $n \times \ell$ matrix which is a $(\log n, m)$-design, where $\ell=\mathrm{O}\left(m^{2}\right)$. (If $m=\mathrm{O}(\log n)$, then even $\ell=\mathrm{O}(m)$ is enough.)

Assume m is a prime power. Take $S_{q}=\{\langle x, q(x)\rangle \mid x \in G F(m)\}$, where q has degree at most $\log n$. Can be computed in log-space.

Nisan \& Wigderson, 1994

Let f have hardness $\geq n^{2}$ and S be a $(\log n, m)$-design. Then
$G:\{0,1\}^{\ell} \rightarrow\{0,1\}^{n}$ given by $G(x)=f_{S}(x)$ is a pseudo-random generator.

1. Assume a circuit C distinguishes random r and $y=G(x)$ w.p. $>\frac{1}{n}$. Let $p_{i}=P[C(z)=1]$, where $z=y_{1} \ldots y_{i} r_{i+1} \ldots r_{n}$.
There must be i such that $p_{i-1}-p_{i}>\frac{1}{n^{2}}$.
2. Build a circuit D that predicts y_{i} from $y_{1} \ldots y_{i-1}$ w.p. $\geq \frac{1}{2}+\frac{1}{n^{2}}$ D evaluates $C\left(y_{1} \ldots y_{i-1}, r_{i} \ldots r_{n}\right)$ and returns r_{i} iff $C=1$.
3. Assume w.l.o.g. $S_{i}=\{1, \ldots, m\}$, then $y_{i}=f\left(x_{1} \ldots x_{m}\right)$. Since y_{i} does not depend on other bits, there exists some assignment of $x_{m+1} \ldots x_{\ell}$ preserving the prediction prob.
4. After fixing, every $y_{1} \ldots y_{i-1}$ depends only on $\log n$ variables, hence can be computed from x as a CNF of size $\mathrm{O}(n)$.
5. Plug computed $y_{1} \ldots y_{i-1}$ into D and obtain a circuit predicting y_{i} from x w.p. $\geq \frac{1}{2}+\frac{1}{n^{2}}$.

This contradicts that f has hardness $\geq n^{2}$.

Hardness-randomness tradeoff

If there exists a function computable in $E=\operatorname{DTIME}\left(2^{\mathrm{O}}(n)\right)$ that cannot be approximated by

1. polynomial-size circuits, then
$\operatorname{BPP} \subset \bigcap_{\varepsilon>0} \operatorname{DTIME}\left(2^{n^{\varepsilon}}\right)$.
2. circuits of size $2^{n^{\varepsilon}}$ for some $\varepsilon>0$, then $\operatorname{BPP} \subset \operatorname{DTIME}\left(2^{(\log n)^{c}}\right)$ for some constant c.
3. circuits of size $2^{\varepsilon n}$ for some $\varepsilon>0$, then $B P P=P$. (We need to use $(\log n, m)$-design with $\ell=\mathrm{O}(m)$.)

Impagliazzo \& Wigderson, 1997

If some function in E has circuit complexity $2^{\Omega(n)}$, then $B P P=P$.

- Similar claim as NW.3, but assuming hardness in the worst-case. NW needed hardness on the average.
- Convert mildly hard function f to almost unpredictable function.

Yao's XOR-Lemma: $f\left(x_{1}\right) \oplus \cdots \oplus f\left(x_{k}\right)$ is hard to predict, when x_{i} are independent.

- Use expanders to reduce the need for random bits.

Is circuit lower bound needed?

- f is in BPP, if there is a randomised algorithm with error $\leq \frac{1}{3}$ on every input

■ f is in promise-BPP, if there is a randomised algorithm with error $\leq \frac{1}{3}$ on some subset of inputs, and we do not care the acceptance prob. on other inputs

[Impagliazzo \& Kabanets \& Wigderson, 2002]

Promise-BPP $=P$ implies NEXP $\not \subset P /$ poly (circuit lower bound!).
[Kabanets \& Impagliazzo, 2003]
$B P P=P$ implies super-polynomial arithmetical circuit lower bound for NEXP.

Prerequisites of [KIO3]

■ [Valiant, 1979] Perm is \#P-complete

- $\operatorname{Perm}(\mathbf{A})=\sum_{\sigma} \prod_{i=1}^{n} a_{i, \sigma(i)}$
- \#P is a class counting the number of solutions

■ [Toda, 1991] PH $\subset \mathrm{P}^{\# \mathrm{P}}$
■ [Impagliazzo \& Kabanets \& Wigderson, 2002] NEXP $\subset P /$ poly \Longrightarrow NEXP $=$ MA

If NEXP $\subset P /$ poly, then

1. $N E X P=M A \subset P H \subset P^{\# P} \Longrightarrow$ Perm is NEXP-hard
2. Perm $\in E X P \subset N E X P \Longrightarrow$ Perm is NEXP-complete

Polynomial identity testing

■ is testing whether a given polynomial is identically zero
■ is in co-RP: take a random point and evaluate the polynomial. If the field is big enough, we get nonzero with high prob.

Can test whether a given arithmetical circuit p_{n} computes Perm: Input: p_{n} on $n \times n$ variables, let p_{i} be its restriction to $i \times i$ variables.
\square test $p_{1}(x)=x$ (by the method above)
\square for $i \in\{2, \ldots, n\}$, test $p_{i}(X)=\sum_{j=1}^{i} x_{1, j} p_{i-1}\left(X_{j}\right)$, where X_{j} is the j-th minor

If all tests pass, then $p_{n}=$ Perm.

Circuit lower bounds from derandomization

\square Suppose that polynomial identity testing is in P.
■ If Perm is computable by polynomial-size arithmetic circuits, then Perm $\in N P$:

1. guess the circuit for Perm
2. verify its validity
3. compute the result
\square If $N E X P \subset P /$ poly, then Perm is NEXP-complete.

Contradiction with nondeterministic time hierarchy theorem!

Main result of KIO3

If $B P P=P$, or even $B P P \subset \operatorname{NSUBEXP}=\bigcap_{\varepsilon>0} \operatorname{NTIME}\left(2^{n^{\varepsilon}}\right)$, then

1. Perm does not have polynomial-size arithmetical circuits, or
2. NEXP $\not \subset \mathrm{P} /$ poly

Summary

■ [NW94] Average circuit lower bounds imply derandomization
■ [IW97] Worst-case circuit lower bounds imply derandomization
■ [KIO3] Derandomization implies circuit lower bounds

