
Polynomial Identity Testing and

Circuit Lower Bounds

Robert Špalek, CWI

based on papers by

Nisan & Wigderson, 1994

Kabanets & Impagliazzo, 2003

1

Randomised algorithms

¥ For some problems (polynomial identity testing) we know an

efficient randomised algorithm, but not a deterministic one.

¥ However nobody proved P (BPP yet.

It is possible that P = BPP.

¥ There is a connection between hardness and randomness:

if we have a hard function, we can use it to derandomize BPP.

¥ Until recently, it was not known whether the converse holds.

Kabanets & Impagliazzo showed that it does.

¥ This is bad, since non-trivial circuit lower-bounds are a

long-standing open problem.

2

Pseudo-random generators

G : {0, 1}ℓ(n) → {0, 1}n is a pseudo-random generator

iff for any circuit C of size n:

|P[C(r) = 1] − P[C(G(x)) = 1]| <
1

n
,

where x, r are chosen uniformly.

Having a pseudo-random generator, we can derandomize BPP:

¥ instead of n random bits, plug a pseudo-random sequence

(acceptance prob. changed only slightly)

¥ check all 2ℓ(n) random seeds

3

Hard functions

fn : {0, 1}n → {0, 1} has hardness h

iff for any circuit C of size h:
∣

∣

∣

∣

P[C(x) = f (x)] −
1

2

∣

∣

∣

∣

<
1

2h
,

where x is chosen uniformly.

Hard functions can be used to build pseudo-random generators:

¥ take ℓ(n) truly random bits

¥ evaluate f on n subsets of them

¥ if these subsets have small intersection,

then the results are hardly correlated

4

Nearly disjoint sets

System of sets {S1, . . . , Sn}, where

Si ⊂ {1, . . . , ℓ} is a (k, m)-design if:

¥ |Si| = m

¥ |Si ∩ Sj| ≤ k

ℓ

n

m
m

≤ k

For every m ∈ {log n, . . . , n}, there exists an n × ℓ matrix

which is a (log n, m)-design, where ℓ = O(m2).

(If m = O(log n), then even ℓ = O(m) is enough.)

Assume m is a prime power. Take Sq = {〈x, q(x)〉| x ∈ GF(m)},

where q has degree at most log n. Can be computed in log-space.

5

Nisan & Wigderson, 1994

Let f have hardness ≥ n2 and S be a (log n, m)-design. Then

G : {0, 1}ℓ → {0, 1}n given by G(x) = fS(x) is a pseudo-random generator.

1. Assume a circuit C distinguishes random r and y = G(x) w.p. >
1
n.

Let pi = P[C(z) = 1], where z = y1 . . . yiri+1 . . . rn.

There must be i such that pi−1 − pi >
1

n2.

2. Build a circuit D that predicts yi from y1 . . . yi−1 w.p. ≥ 1
2 + 1

n2

D evaluates C(y1 . . . yi−1, ri . . . rn) and returns ri iff C = 1.

6

3. Assume w.l.o.g. Si = {1, . . . , m}, then yi = f (x1 . . . xm).

Since yi does not depend on other bits, there exists some

assignment of xm+1 . . . xℓ preserving the prediction prob.

4. After fixing, every y1 . . . yi−1 depends only on log n variables, hence

can be computed from x as a CNF of size O(n).

5. Plug computed y1 . . . yi−1 into D and obtain

a circuit predicting yi from x w.p. ≥ 1
2 + 1

n2.

This contradicts that f has hardness ≥ n2.

7

Hardness-randomness tradeoff

If there exists a function computable in E = DTIME(2O(n))

that cannot be approximated by

1. polynomial-size circuits, then

BPP ⊂
⋂

ε>0 DTIME(2nε

).

2. circuits of size 2nε

for some ε > 0, then

BPP ⊂ DTIME(2(log n)c
) for some constant c.

3. circuits of size 2εn for some ε > 0, then

BPP = P.

(We need to use (log n, m)-design with ℓ = O(m).)

8

Impagliazzo & Wigderson, 1997

If some function in E has circuit complexity 2Ω(n), then BPP = P.

¥ Similar claim as NW.3, but assuming hardness in the worst-case.

NW needed hardness on the average.

¥ Convert mildly hard function f to almost unpredictable function.

Yao’s XOR-Lemma: f (x1) ⊕ · · · ⊕ f (xk) is hard to predict,

when xi are independent.

¥ Use expanders to reduce the need for random bits.

9

Is circuit lower bound needed?

¥ f is in BPP, if there is a randomised algorithm

with error ≤ 1
3 on every input

¥ f is in promise-BPP, if there is a randomised algorithm

with error ≤ 1
3 on some subset of inputs, and

we do not care the acceptance prob. on other inputs

[Impagliazzo & Kabanets & Wigderson, 2002]

Promise-BPP = P implies NEXP 6⊂ P/poly (circuit lower bound!).

[Kabanets & Impagliazzo, 2003]
BPP = P implies super-polynomial arithmetical

circuit lower bound for NEXP.

10

Prerequisites of [KI03]

¥ [Valiant, 1979] Perm is #P-complete

• Perm(A) = ∑σ ∏
n
i=1 ai,σ(i)

• #P is a class counting the number of solutions

¥ [Toda, 1991] PH ⊂ P # P

¥ [Impagliazzo & Kabanets & Wigderson, 2002]

NEXP ⊂ P/poly =⇒ NEXP = MA

If NEXP ⊂ P/poly, then

1. NEXP = MA ⊂ PH ⊂ P # P =⇒ Perm is NEXP-hard

2. Perm ∈ EXP ⊂ NEXP =⇒ Perm is NEXP-complete

11

Polynomial identity testing

¥ is testing whether a given polynomial is identically zero

¥ is in co-RP: take a random point and evaluate the polynomial.

If the field is big enough, we get nonzero with high prob.

Can test whether a given arithmetical circuit pn computes Perm:

Input: pn on n × n variables, let pi be its restriction to i × i variables.

¥ test p1(x) = x (by the method above)

¥ for i ∈ {2, . . . , n}, test pi(X) = ∑
i
j=1 x1,jpi−1(Xj),

where Xj is the j-th minor

If all tests pass, then pn = Perm.

12

Circuit lower bounds from derandomization

¥ Suppose that polynomial identity testing is in P.

¥ If Perm is computable by polynomial-size arithmetic circuits,

then Perm ∈ NP:

1. guess the circuit for Perm

2. verify its validity

3. compute the result

¥ If NEXP ⊂ P/poly, then Perm is NEXP-complete.

Contradiction with nondeterministic time hierarchy theorem!

13

Main result of KI03

If BPP = P, or even BPP ⊂ NSUBEXP =
⋂

ε>0 NTIME(2nε

),

then

1. Perm does not have polynomial-size arithmetical circuits, or

2. NEXP 6⊂ P/poly

14

Summary

¥ [NW94] Average circuit lower bounds imply derandomization

¥ [IW97] Worst-case circuit lower bounds imply derandomization

¥ [KI03] Derandomization implies circuit lower bounds

15

