Polynomial Identity Testing and Circuit Lower Bounds

Robert Špalek, CWI

based on papers by

Nisan & Wigderson, 1994 Kabanets & Impagliazzo, 2003

Randomised algorithms

- For some problems (polynomial identity testing) we know an efficient randomised algorithm, but not a deterministic one.
- However nobody proved $P \subsetneq BPP$ yet. It is possible that P = BPP.
- There is a connection between *hardness* and *randomness*: if we have a hard function, we can use it to *derandomize* BPP.
- Until recently, it was not known whether the converse holds. Kabanets & Impagliazzo showed that it does.
- This is bad, since non-trivial circuit lower-bounds are a long-standing open problem.

Pseudo-random generators

 $G: \{0,1\}^{\ell(n)} \rightarrow \{0,1\}^n$ is a *pseudo-random generator* iff for any circuit *C* of size *n*:

$$|P[C(r) = 1] - P[C(G(x)) = 1]| < \frac{1}{n'}$$

where x, r are chosen uniformly.

Having a pseudo-random generator, we can *derandomize* BPP:

- instead of n random bits, plug a pseudo-random sequence (acceptance prob. changed only slightly)
- check all $2^{\ell(n)}$ random seeds

Hard functions

 $f_n: \{0,1\}^n \to \{0,1\}$ has hardness h iff for any circuit C of size h:

$$P[C(x) = f(x)] - \frac{1}{2} < \frac{1}{2h},$$

where x is chosen uniformly.

Hard functions can be used to build pseudo-random generators:

take $\ell(n)$ truly random bits

evaluate f on n subsets of them

if these subsets have small intersection, then the results are hardly correlated

Nearly disjoint sets

System of sets $\{S_1, \ldots, S_n\}$, where $S_i \subset \{1, \ldots, \ell\}$ is a (k, m)-design if: $|S_i| = m$ $|S_i \cap S_j| \le k$

For every $m \in \{\log n, ..., n\}$, there exists an $n \times \ell$ matrix which is a $(\log n, m)$ -design, where $\ell = O(m^2)$. (If $m = O(\log n)$, then even $\ell = O(m)$ is enough.)

Assume *m* is a prime power. Take $S_q = \{\langle x, q(x) \rangle | x \in GF(m)\}$, where *q* has degree at most log *n*. Can be computed in log-space.

Nisan & Wigderson, 1994

Let f have hardness $\ge n^2$ and S be a $(\log n, m)$ -design. Then $G: \{0,1\}^{\ell} \to \{0,1\}^n$ given by $G(x) = f_S(x)$ is a pseudo-random generator.

- **1.** Assume a circuit *C* distinguishes random *r* and y = G(x) w.p. $> \frac{1}{n}$. Let $p_i = P[C(z) = 1]$, where $z = y_1 \dots y_i r_{i+1} \dots r_n$. There must be *i* such that $p_{i-1} - p_i > \frac{1}{n^2}$.
- **2.** Build a circuit *D* that predicts y_i from $y_1 \dots y_{i-1}$ w.p. $\geq \frac{1}{2} + \frac{1}{n^2}$ *D* evaluates $C(y_1 \dots y_{i-1}, r_i \dots r_n)$ and returns r_i iff C = 1.

- **3.** Assume w.l.o.g. $S_i = \{1, ..., m\}$, then $y_i = f(x_1 ... x_m)$. Since y_i does not depend on other bits, there exists some *assignment of* $x_{m+1} ... x_{\ell}$ preserving the prediction prob.
- **4.** After *fixing*, every $y_1 \dots y_{i-1}$ depends only on $\log n$ variables, hence can be computed from x as a CNF of size O(n).
- **5.** Plug computed $y_1 \dots y_{i-1}$ into D and obtain a circuit predicting y_i from x w.p. $\geq \frac{1}{2} + \frac{1}{n^2}$.

This contradicts that f has hardness $\geq n^2$.

Hardness-randomness tradeoff

If there exists a function computable in $E = \text{DTIME}(2^{O(n)})$ that cannot be approximated by

- **1.** polynomial-size circuits, then BPP $\subset \bigcap_{\varepsilon>0} \text{DTIME}(2^{n^{\varepsilon}}).$
- **2.** circuits of size $2^{n^{\epsilon}}$ for some $\epsilon > 0$, then BPP \subset DTIME $(2^{(\log n)^{c}})$ for some constant c.
- **3.** circuits of size $2^{\epsilon n}$ for some $\epsilon > 0$, then BPP = P. (We need to use $(\log n, m)$ -design with $\ell = O(m)$.)

Impagliazzo & Wigderson, 1997

- If some function in *E* has circuit complexity $2^{\Omega(n)}$, then BPP = P.
 - Similar claim as NW.3, but assuming hardness in the worst-case. NW needed hardness on the average.
 - Convert mildly hard function f to almost unpredictable function. Yao's XOR-Lemma: $f(x_1) \oplus \cdots \oplus f(x_k)$ is hard to predict, when x_i are independent.
 - Use expanders to reduce the need for random bits.

Is circuit lower bound needed?

- *f* is in BPP, if there is a randomised algorithm with error $\leq \frac{1}{3}$ on *every input*
- *f* is in promise-BPP, if there is a randomised algorithm with error $\leq \frac{1}{3}$ on *some subset of inputs*, and we do not care the acceptance prob. on other inputs

[Impagliazzo & Kabanets & Wigderson, 2002]

Promise-BPP = P implies NEXP $\not\subset$ P/poly (circuit lower bound!).

[Kabanets & Impagliazzo, 2003]

BPP = P implies super-polynomial *arithmetical* circuit lower bound for NEXP.

Prerequisites of [KI03]

■ [Valiant, 1979] Perm is **#**P-complete

• Perm(A) =
$$\sum_{\sigma} \prod_{i=1}^{n} a_{i,\sigma(i)}$$

• **#**P is a class counting the number of solutions

[Toda, 1991] $PH \subset P^{\#P}$

■ [Impagliazzo & Kabanets & Wigderson, 2002] NEXP \subset P/poly \implies NEXP = MA

If NEXP \subset P/poly, then

1. NEXP = MA \subset PH \subset P^{#P} \Longrightarrow Perm is NEXP-hard

2. Perm \in EXP \subset NEXP \implies Perm is NEXP-complete

Polynomial identity testing

- is testing whether a given polynomial is identically zero
- is in co-RP: take a random point and evaluate the polynomial. If the field is big enough, we get nonzero with high prob.

Can test whether a given *arithmetical circuit* p_n computes Perm: Input: p_n on $n \times n$ variables, let p_i be its restriction to $i \times i$ variables.

test
$$p_1(x) = x$$
 (by the method above)

for
$$i \in \{2, ..., n\}$$
, test $p_i(X) = \sum_{j=1}^i x_{1,j} p_{i-1}(X_j)$,
where X_j is the *j*-th minor

If all tests pass, then $p_n = \text{Perm.}$

Circuit lower bounds from derandomization

Suppose that *polynomial identity testing is in P*.

If Perm is computable by polynomial-size arithmetic circuits, then Perm ∈ NP:

- **1.** guess the circuit for Perm
- 2. verify its validity
- **3.** compute the result

If $NEXP \subset P/poly$, then Perm is NEXP-complete.

Contradiction with nondeterministic time hierarchy theorem!

Main result of KI03

If BPP = P, or even BPP \subset NSUBEXP = $\bigcap_{\epsilon>0}$ NTIME $(2^{n^{\epsilon}})$, then

1. Perm does not have polynomial-size arithmetical circuits, **or**

2. NEXP $\not\subset$ P/poly

Summary

- [NW94] Average circuit lower bounds imply derandomization
- [IW97] Worst-case circuit lower bounds imply derandomization
- [KI03] Derandomization implies circuit lower bounds