Quantum and Classical Strong Direct Product Theorems and Optimal Time-Space Tradeoffs

Computing Many Copies of a Function

- Suppose the complexity of f is well understood, e.g. we need T(f) resources to compute f with small error
- Specify "compute" and "resources" (circuit size, queries, communication, …)
 - Fundamental question:

how hard is it to compute k independent instances $f(x^1), \ldots, f(x^k)$?

Direct Product Theorems

Relation between total resources *T* and overall success probability *σ*?
Intuition: constant error on each instance ⇒ exponentially small *σ Weak* direct product theorem:

$$T \le \alpha T(f) \Rightarrow \sigma \le 2^{-\gamma k}$$

Strong direct product theorem:

$$T \le \alpha k T(f) \Rightarrow \sigma \le 2^{-\gamma k}$$

Our Results

Strong direct product theorems for:

- 1. Classical query complexity of OR
- 2. Quantum query complexity of OR
- 3. Quantum communication complexity of Disj

Time-space tradeoffs for:

- 1. Quantum sorting
- 2. Classical and quantum Boolean matrix products

Communication-space tradeoffs for quantum matrix products

DPT 1: Classical Query Complexity

Task: compute $OR_n^{(k)}$ using *T* queries

$$x = \underbrace{x^1}_{n \text{ bits}} \underbrace{x^2}_{n \text{ bits}} \cdots \underbrace{x^k}_{n \text{ bits}}$$

Strong direct product theorem:

Every classical algorithm with $T \le \alpha kn$ queries has worst-case success probability $\sigma \le 2^{-\gamma k}$

$$T \leq \alpha kn \Rightarrow \sigma \leq 2^{-\gamma k}$$

DPT 2: Quantum Query Complexity

[Grover, 1996]

 OR_n with $\sigma \approx 1$ in $\Theta(\sqrt{n})$ queries

Buhrman, Newman, Röhrig & de Wolf, 2003 OR^(k) with $\sigma \approx 1$ in $O(k\sqrt{n})$ queries, i.e. no log-factor needed!

Direct product theorem:

#queries
$$T \le \alpha k \sqrt{n} \Rightarrow$$
 success $\sigma \le 2^{-\gamma k}$

DPT 3: Quantum Communication Complexity

Disjointness problem: "distributed NOR"

Alice has *n*-bit input *x*, Bob has *n*-bit *y* Question: $x \cap y = \emptyset$ or not?

Classical: $\Theta(n)$ bits of communication Quantum: $\Theta(\sqrt{n})$ qubits [BCW, AA, Razborov]

We prove a DPT: communication $C \le \alpha k \sqrt{n}$ qubits $\Rightarrow \sigma \le 2^{-\gamma k}$

Time-space tradeoffs

Tradeoff: Sorting by a Quantum Circuit

- Input: x_1, \ldots, x_N accessed by input gates X
- Output: Indices π of x sorted large to small, sent to output gates O

Slicing the Sorting Circuit

Slice the circuit into $\frac{T}{\alpha\sqrt{SN}}$ slices, each containing $\alpha\sqrt{SN}$ queries.

Let each slice contain $\leq k$ output gates.

We show that k = O(S) due to the DPT.

•
$$N \leq \#$$
 slices $\cdot k = O\left(\frac{T\sqrt{S}}{\alpha\sqrt{N}}\right)$, hence $T^2S = \Omega(N^3)$.

Each Slice Has Only Few Output Gates: k = O(S)

If k < S, then certainly k = O(S), so assume $k \ge S$.

- Within slice, the circuit outputs $\pi_{a+1}, \ldots, \pi_{a+k}$ with probability $\geq 2/3$.
 - Plug $x = (2^a, z_1, z_2, \dots, z_{N/2}, 0^{N/2-a})$ for given $z \in \{0, 1\}^{N/2}$.

•
$$|z| \ge k \iff \forall \ell = 1, \dots, k : x_{\pi_{a+\ell}} = 1.$$

• Bounded-error sorting can compute Threshold_k with one-sided error.

Replace S-qubit starting state by completely mixed state; overlap with correct state is $2^{-S} \Rightarrow$ circuit for Threshold_k with probability $\sigma \ge \frac{2}{3} \cdot 2^{-S}$.

However #queries $T = \alpha \sqrt{SN} \le \alpha \sqrt{kN}$, hence by DPT $\sigma \le 2^{-\gamma k}$.

Conclude that k = O(S).

Tradeoff: Boolean Matrix Products

Input: vector b

[our paper]

Output: Boolean product c = Ab for a fixed matrix A

$$c_i = \bigvee_{\ell=1}^N A_{i,\ell} \wedge b_\ell$$

[Abrahamson, 1990] Classically, $TS = \Omega(N^{3/2})$

Classically, $TS = \Omega(N^2)$ Quantumly, $T^2S = \Omega(N^3)$ both tight

12

Communication-Space Tradeoffs

Input: Alice has A and Bob has b.

Output: **Boolean** product c = Ab.

[Beame, Tompa & Yan, 1994] Tight bounds for GF(2) products.

• [our paper] Quantumly, *Boolean* products $C^2S = \Omega(N^3)$ (tight up to polylog factors).

Proof of quantum DPT

DPT Sounds Plausible, but not Always True

[Shaltiel, 2001] Uniform input distribution and

$$f(x_1,\ldots,x_n)=x_1\vee(x_2\oplus\cdots\oplus x_n)$$

With $\frac{2}{3}n$ queries, success probability is 3/4: $\operatorname{Succ}_{\frac{2}{3}n}(f) = 3/4$.

But on average, $\approx k/2$ instances can be solved with only 1 query. The saved queries can be used to answer the other $\approx k/2$ instances:

$$\operatorname{Succ}_{\frac{2}{3}kn}(f^{(k)}) = 1 - 2^{-\Omega(k)} \gg (3/4)^k.$$

DPT plausible for "hard on average" f

The Polynomial Method

[Beals, Buhrman, Cleve, Mosca & de Wolf, 1998]

Final state of T-query algorithm on input $x \in \{0, 1\}^N$

 $\sum_{z} \alpha_{z}(x) |z\rangle$

 $\alpha_z(x)$ is degree-T polynomial \Rightarrow acceptance prob is degree-2T polynomial

Query lower bounds from polynomial degree lower bounds

Lower Bound for k-Threshold (lite)

 $|q(i)| \le k^{-k}$ for integers $i \in \{2k, \ldots, N\}$

■ [Coppersmith & Rivlin, 1992] $|q(x)| \le k^{-k}e^{d^2/N}$ for all real $x \in [2k, N]$

Lower Bound for *k*-Threshold (cont)

Rescale *q* to $[-1,1] \times [-1,1]$, upper bound it by degree-*d* <u>Чебышев (Chebyshev)</u> polynomial T_d :

$$T_d(1+\mu) \le e^{2d\sqrt{2\mu+\mu^2}}$$

Combining everything gives ($d = \alpha k \sqrt{n}$)

$$\sigma \le e^{(\alpha^2 + 4\alpha - 1)k}$$

0.5

Choose α sufficiently small

We have proven degree $d \le \alpha k \sqrt{n} \Rightarrow$ success $\sigma \le 2^{-\gamma k}$

0.5

Reduction: Quantum DPT for OR (lite)

- *k-threshold*: for *kn*-bit input, decide whether $|x| \ge k$
 - [BBCMW98] Acceptance probability of a *T*-query algorithm is a degree-2*T* polynomial
 - key lemma \implies one-sided error algorithms with $\alpha k \sqrt{n}$ queries have σ exponentially small
 - k independent search problems
 - can solve k/2-threshold with good probability using k-search
 - apply random permutation of input bits
 - k independent OR problems
 - can solve *k*-search by binary search using *k*-OR
 - verify the 1 at the end to make it one-sided
 - \implies lower bound for *k*-OR

DPT for Search

Suppose we have algorithm *A* for Search^(k), with $T = \alpha k \sqrt{n}$ queries and success prob σ .

Use A to solve k/2-threshold:

- 1. Randomly permute $x \in \{0,1\}^N$. With prob $\geq 2^{-k/2}$: all k/2 ones in separate blocks
- 2. Run *A*, check its *k* outputs, return 1 iff $\geq k/2$ ones found This solves k/2-threshold with prob $\geq \sigma 2^{-k/2}$

 $\Rightarrow \sigma \leq 2^{-\gamma k}$ for small α

DPT for OR

Suppose we have algorithm *A* for $OR_n^{(k)}$, with $T = \alpha k \sqrt{n}$ queries and success prob σ .

Use A to solve Search^(k):

1. Do $s = 2\log(1/\alpha)$ rounds of binary search on the *k* blocks using *A*

2. Run exact Grover on each
$$\frac{n}{2^s}$$
 block

3. For each block, return 1 if found a one

This uses $\underbrace{sT}_{\text{step 1}} + \underbrace{k\sqrt{n/2^s}}_{\text{step 2}} \approx 2\alpha \log(1/\alpha)k\sqrt{n}$ queries, and has success probability $\geq \sigma^s$

$$\Rightarrow \sigma \leq 2^{-\gamma k}$$
 for small α

Summary

- Strong direct product theorem: resources for $f^{(k)} \ll k * \text{resources for } f$ \Rightarrow success probability $\sigma \leq 2^{-\gamma k}$.
- We prove this for f = OR in 3 settings:
 - 1. Classical query complexity
 - 2. Quantum query complexity
 - 3. Quantum communication complexity
 - Implies strong *time-space tradeoffs* (sorting, Boolean matrix products) and *communication-space tradeoffs* (Boolean matrix products)