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Computing Many Copies of a Function

B Suppose the complexity of f is well understood,
e.g. we need T(f) resources to compute f with small error

B Specify “compute” and “resources”
(circuit size, queries, communication, ...)

B Fundamental question:

how hard is it to compute k independent instances f(x1),..., f(x%)?
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Direct Product Theorems

B Relation between total resources T and overall success probability o?
B Intuition: constant error on each instance = exponentially small ¢
B Weak direct product theorem:
T<aT(f) =0 <2k
B Strong direct product theorem:

T < akT(f) = o <27k



Our Results

Strong direct product theorems for:

1. Classical query complexity of OR

2. Quantum query complexity of OR

3. Quantum communication complexity of Disj
Time-space tradeoffs for:

1. Quantum sorting

2. Classical and guantum Boolean matrix products

Communication-space tradeoffs for qguantum matrix products



DPT 1: Classical Query Complexity

B Task: compute ORglk) using T queries

X = xl xz ...... xk

n bits n bits n bits
B Strong direct product theorem:

Every classical algorithm with T < akn queries
has worst-case success probability ¢ < 27k

T < akn = (7§2_’Yk



DPT 2: Quantum Query Complexity

B [Grover, 1996]
OR;, with ¢ &~ 1 in ©(y/n) queries

B [Buhrman, Newman, Rohrig & de Wolf, 2003]
OR,Sk) with o =~ 1 in O(k+/n) queries, i.e. no log-factor needed!

B Direct product theorem:

#queries T < ak\/n = success o < 27k



DPT 3: Quantum Communication Complexity

message 1
Alice: |- message 2 Bob:
input x messade3 | input y

output f(x,y)
B Disjointness problem: “distributed NOR”

Alice has n-bit input x, Bob has n-bit y
Question: x Ny = @ or not?

B Classical: ©(n) bits of communication
Quantum: ®(y/n) qubits [BCW, AA, Razborov]

B We prove a DPT: communication C < ak+/7 qubits = o < 277K
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Tradeoff: Sorting by a Quantum Circuit

B Input: xq,...,x) accessed by input gates X

B Output: Indices 7t of x sorted large to small, sent to output gates O

’ % | % S < NlogN
o] "o

T ) 7TN
haN »L = |
I ™ |

B [Klauck, 2003] 725 = O(N31og® N)

B [our paper] T?S=Q(N°)



Slicing the Sorting Circuit

T
avV SN

B Slice the circuit into slices, each containing av/SN queries.

B Let each slice contain < k output gates.
av/Sn T

B We show that k = O(S) due to the DPT.

B N <#slices- k=0 (g\/\%) hence T2S = Q(N?).
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Each Slice Has Only Few Output Gates: k = O(S)

If k < S, then certainly k = O(S), so assume k > S.

B Within slice, the circuit outputs 77, 1,..., 77, With probability > 2/3.
o Plugx = (2% z1,2,...,2x/0, ON/27%)for given z € {0,1}N/2,
o z| >2k<=Vi=1,...k: xg, ,=1

e Bounded-error sorting can compute Threshold, with one-sided error.

B Replace S-qubit starting state by completely mixed state; overlap with
correct state is 2~ = circuit for Threshold; with probability ¢ > 525,

B However #queries T = «/SN < avVkN, hence by DPT ¢ < 2k,
Conclude that k = O(S).
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Tradeoff: Boolean Matrix Products

B Input: vector b
B Output: Boolean product ¢ = Ab for a fixed matrix A

N
C; = \/ Ai,f A by
=1

B [Abrahamson, 1990] Classically, TS = Q(N3/2)

Classically, TS = Q(N?)

® [our paper] Quantumly, T2S = Q(N3)

} both tight
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Communication-Space Tradeoffs

B Input: Alice has A and Bob has b.

B Output: Boolean product ¢ = Ab.

B [Beame, Tompa & Yan, 1994] Tight bounds for GF(2) products.

B [our paper] Quantumly, Boolean products C2S = Q(N3)
(tight up to polylog factors).
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DPT Sounds Plausible, but not Always True

B [Shaltiel, 2001] uniform input distribution and

f(x1,.--,xn) =x1V(x2&---Bxyp)

With %n gueries, success probability is 3/4: SUCan(f) — 3/4.
3

B But on average, ~ k/2 instances can be solved with only 1 query. The
saved queries can be used to answer the other ~ k/2 instances:

Succ%kn(f(k)) —1 -2 Q0 (3/4)k.

B DPT plausible for “hard on average” f
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The Polynomial Method

[Beals, Buhrman, Cleve, Mosca & de Wolf, 1998]

B Final state of T-query algorithm on input x € {0, 1}N
) az(x)]z)
Z

B «,(x)is degree-T polynomial =

acceptance prob is degree-2T polynomial

B Query lower bounds from polynomial degree lower bounds

16



Lower Bound for k-Threshold (lite)

B Consider degree-d polynomial p (N = kn)

1

LN /N

0

\/

How big can o = p(k) be?

VAN
012\/§/—1k

N

B [Aaronson, 2004] d < avkn = o <277k

B [our paper]

d < akyn = o <27k

(x) = 0; x=0,...,k—1
P c[0,1; x=k...,N
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Lower Bound for k-Threshold (cont)

i

B Factorpas T

o

W g(k)

— — 1 1
kl k ok 2k + 1

q(i)] < k~* for integers i € {2k,...,N}

B [Coppersmith & Rivlin, 1992]
g(x)| < k=ke®*/N for all real x € [2k, N]
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Lower Bound for k-Threshold (cont)

B Rescalegto [—1,1] x [-1,1], )
upper bound it by degree-d )]
Yeobnmmes (Chebyshev) polynomial T;: ]

B Ty p) < SV /\ f/q

1 0.5 A 0.5\ | [b
B Combining everything gives (d = ak+/n) / \\ : \/

o< (7 +4a—1)k

Choose a sufficiently small

B We have proven degree d < ak\/n = success o < 2~k
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Reduction: Quantum DPT for OR (lite)

B k-threshold: for kn-bit input, decide whether |x| > k

o [BBCMW98] Acceptance probability of a T-query algorithm is a
degree-2T polynomial

e key lemma = one-sided error algorithms with ak+/n queries have
o exponentially small
B k independent search problems
e can solve k/2-threshold with good probability using k-search
e apply random permutation of input bits

B k independent OR problems
e can solve k-search by binary search using k-OR
e verify the 1 at the end to make it one-sided

— lower bound for k-OR
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DPT for Search

N :ka bits
X = xl x2 ...... xk
n bits n bits n bits

Suppose we have algorithm A for Search(k),
with T = ak+/n queries and success prob ¢.

Use A to solve k/2-threshold:

1. Randomly permute x € {0,1}V.
With prob > 2—k/2: all k/2 ones in separate blocks

2. Run A, check its k outputs, return 1 iff > k/2 ones found
This solves k/2-threshold with prob > ¢2 /2

= 0 < 27 for small «
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DPT for OR

Suppose we have algorithm A for OR,(qk),
with T = ak+/n queries and success prob o.

Use A to solve Search(/):

1. Do s = 2log(1/a) rounds of binary search on the k blocks using A

n
2. Run exact Grover on each 5 block

3. For each block, return 1 if found a one

Thisuses ST +kvn/2° =~ 2alog(1/a)ky/n queries,
step 1 Step 2
and has success probability > ¢°

— ¢ < 277 for small «
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Summary

B Strong direct product theorem:
resources for f}) < k x resources for f
= success probability o < 27k,
B We prove this for f =OR in 3 settings:
1. Classical query complexity
2. Quantum query complexity
3. Quantum communication complexity

B Implies strong time-space tradeoffs (sorting, Boolean matrix products)
and communication-space tradeoffs (Boolean matrix products)
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