Quantum and Classical
Strong Direct Product Theorems and Optimal Time-Space Tradeoffs

Robert Špalek

and Hartmut Klauck

UNIVERSITY OF
CALCARY

Computing Many Copies of a Function

■ Suppose the complexity of f is well understood, e.g. we need $T(f)$ resources to compute f with small error

- Specify "compute" and "resources" (circuit size, queries, communication, ...)
- Fundamental question:
how hard is it to compute k independent instances $f\left(x^{1}\right), \ldots, f\left(x^{k}\right)$?

Direct Product Theorems

- Relation between total resources T and overall success probability σ ?
- Intuition: constant error on each instance \Rightarrow exponentially small σ
- Weak direct product theorem:

$$
T \leq \alpha T(f) \Rightarrow \sigma \leq 2^{-\gamma k}
$$

- Strong direct product theorem:

$$
T \leq \alpha k T(f) \Rightarrow \sigma \leq 2^{-\gamma k}
$$

Our Results

Strong direct product theorems for:

1. Classical query complexity of OR
2. Quantum query complexity of $O R$
3. Quantum communication complexity of Disj

Time-space tradeoffs for:

1. Quantum sorting
2. Classical and quantum Boolean matrix products

Communication-space tradeoffs for quantum matrix products

DPT 1: Classical Query Complexity

■ Task: compute $\mathrm{OR}_{n}^{(k)}$ using T queries

$$
x=\underbrace{x^{1}}_{n \text { bits }} \underbrace{x^{2}}_{n \text { bits }} \cdots \cdots \cdot \underbrace{x^{k}}_{n \text { bits }}
$$

■ Strong direct product theorem:
Every classical algorithm with $T \leq \alpha k n$ queries has worst-case success probability $\sigma \leq 2^{-\gamma k}$

$$
T \leq \alpha k n \Rightarrow \sigma \leq 2^{-\gamma k}
$$

DPT 2: Quantum Query Complexity

- [Grover, 1996]
OR_{n} with $\sigma \approx 1$ in $\Theta(\sqrt{n})$ queries
- [Buhrman, Newman, Röhrig \& de Wolf, 2003]
$\mathrm{OR}_{n}^{(k)}$ with $\sigma \approx 1$ in $O(k \sqrt{n})$ queries, i.e. no log-factor needed!
■ Direct product theorem:

$$
\text { \#queries } T \leq \alpha k \sqrt{n} \Rightarrow \text { success } \sigma \leq 2^{-\gamma k}
$$

DPT 3: Quantum Communication Complexity

■ Disjointness problem: "distributed NOR"
Alice has n-bit input x, Bob has n-bit y Question: $x \cap y=\varnothing$ or not?

■ Classical: $\Theta(n)$ bits of communication Quantum: $\Theta(\sqrt{n})$ qubits [BCW, AA, Razborov]

- We prove a DPT: communication $C \leq \alpha k \sqrt{n}$ qubits $\Rightarrow \sigma \leq 2^{-\gamma k}$

Time-space tradeoffs

Tradeoff: Sorting by a Quantum Circuit

\square Input: x_{1}, \ldots, x_{N} accessed by input gates X
■ Output: Indices π of x sorted large to small, sent to output gates O

Slicing the Sorting Circuit

\square Slice the circuit into $\frac{T}{\alpha \sqrt{S N}}$ slices, each containing $\alpha \sqrt{S N}$ queries.
■ Let each slice contain $\leq k$ output gates.

\square We show that $k=O(S)$ due to the DPT.
$\square N \leq \#$ slices $\cdot k=O\left(\frac{T \sqrt{S}}{\alpha \sqrt{N}}\right)$, hence $T^{2} S=\Omega\left(N^{3}\right)$.

Each Slice Has Only Few Output Gates: $k=O(S)$

If $k<S$, then certainly $k=O(S)$, so assume $k \geq S$.

- Within slice, the circuit outputs $\pi_{a+1}, \ldots, \pi_{a+k}$ with probability $\geq 2 / 3$.
- Plug $x=\left(2^{a}, z_{1}, z_{2}, \ldots, z_{N / 2}, 0^{N / 2-a}\right)$ for given $z \in\{0,1\}^{N / 2}$.
- $|z| \geq k \Longleftrightarrow \forall \ell=1, \ldots, k: x_{\pi_{a+\ell}}=1$.
- Bounded-error sorting can compute Threshold ${ }_{k}$ with one-sided error.

■ Replace S-qubit starting state by completely mixed state; overlap with correct state is $2^{-S} \Rightarrow$ circuit for Threshold $_{k}$ with probability $\sigma \geq \frac{2}{3} \cdot 2^{-S}$.

■ However \#queries $T=\alpha \sqrt{S N} \leq \alpha \sqrt{k N}$, hence by DPT $\sigma \leq 2^{-\gamma k}$.
Conclude that $k=O(S)$.

Tradeoff: Boolean Matrix Products

- Input: vector b
- Output: Boolean product $c=A b$ for a fixed matrix A

$$
c_{i}=\bigvee_{\ell=1}^{N} A_{i, \ell} \wedge b_{\ell}
$$

- [Abrahamson, 1990] Classically, $T S=\Omega\left(N^{3 / 2}\right)$
\square [our paper] $\left.\quad \begin{array}{ll}\text { Classically, } & T S=\Omega\left(N^{2}\right) \\ \text { Quantumly, } & T^{2} S=\Omega\left(N^{3}\right)\end{array}\right\}$ both tight

Communication-Space Tradeoffs

- Input: Alice has A and Bob has b.
- Output: Boolean product $c=A b$.

■ [Beame, Tompa \& Yan, 1994] Tight bounds for GF(2) products.

- [our paper] Quantumly, Boolean products $C^{2} S=\Omega\left(N^{3}\right)$ (tight up to polylog factors).

Proof of quantum DPT

DPT Sounds Plausible, but not Always True

■ [Shaltiel, 2001] Uniform input distribution and

$$
f\left(x_{1}, \ldots, x_{n}\right)=x_{1} \vee\left(x_{2} \oplus \cdots \oplus x_{n}\right)
$$

With $\frac{2}{3} n$ queries, success probability is $3 / 4$: $\operatorname{Succ}_{\frac{2}{3} n}(f)=3 / 4$.
■ But on average, $\approx k / 2$ instances can be solved with only 1 query. The saved queries can be used to answer the other $\approx k / 2$ instances:

$$
\operatorname{Succ}_{\frac{2}{3} k n}\left(f^{(k)}\right)=1-2^{-\Omega(k)} \gg(3 / 4)^{k} .
$$

■ DPT plausible for "hard on average" f

The Polynomial Method

[Beals, Buhrman, Cleve, Mosca \& de Wolf, 1998]
■ Final state of T-query algorithm on input $x \in\{0,1\}^{N}$

$$
\sum_{z} \alpha_{z}(x)|z\rangle
$$

■ $\alpha_{z}(x)$ is degree-T polynomial \Rightarrow
acceptance prob is degree- $2 T$ polynomial

- Query lower bounds from polynomial degree lower bounds

Lower Bound for k-Threshold (lite)

■ Consider degree- d polynomial $p(N=k n)$

$p(x) \begin{cases}=0 ; & x=0, \ldots, k-1 \\ \in[0,1] ; & x=k, \ldots, N\end{cases}$
How big can $\sigma=p(k)$ be?

- [Aaronson, 2004] $d \leq \alpha \sqrt{k n} \Rightarrow \sigma \leq 2^{-\gamma k}$

■ [our paper] $d \leq \alpha k \sqrt{n} \Rightarrow \sigma \leq 2^{-\gamma k}$

Lower Bound for k-Threshold (cont)

- Factor p as
$p(x)=q(x) \prod_{j=0}^{k-1}(x-j)$
■ $q(k)=\frac{\sigma}{k!}$

$|q(i)| \leq k^{-k}$ for integers $i \in\{2 k, \ldots, N\}$
- [Coppersmith \& Rivlin, 1992]
$|q(x)| \leq k^{-k} e^{d^{2} / N}$ for all real $x \in[2 k, N]$

Lower Bound for k-Threshold (cont)

- Rescale q to $[-1,1] \times[-1,1]$, upper bound it by degree- d
Чебышев (Chebyshev) polynomial T_{d} :
■ $T_{d}(1+\mu) \leq e^{2 d \sqrt{2 \mu+\mu^{2}}}$
- Combining everything gives $(d=\alpha k \sqrt{n})$

$$
\sigma \leq e^{\left(\alpha^{2}+4 \alpha-1\right) k}
$$

Choose α sufficiently small
■ We have proven degree $d \leq \alpha k \sqrt{n} \Rightarrow$ success $\sigma \leq 2^{-\gamma k}$

Reduction: Quantum DPT for OR (lite)

- k-threshold: for $k n$-bit input, decide whether $|x| \geq k$
- [BBCMW98] Acceptance probability of a T-query algorithm is a degree-2T polynomial
- key lemma \Longrightarrow one-sided error algorithms with $\alpha k \sqrt{n}$ queries have σ exponentially small
■ k independent search problems
- can solve $k / 2$-threshold with good probability using k-search
- apply random permutation of input bits
- k independent OR problems
- can solve k-search by binary search using k-OR
- verify the 1 at the end to make it one-sided
\Longrightarrow lower bound for k-OR

DPT for Search

$$
x=\overbrace{\underbrace{x^{1}}_{n \text { bits }} \underbrace{x^{2}}_{n \text { bits }} \cdot \cdots \cdot \cdot \underbrace{x^{k}}_{n \text { bits }}}^{N=k n \text { bits }}
$$

Suppose we have algorithm A for Search ${ }^{(k)}$, with $T=\alpha k \sqrt{n}$ queries and success prob σ.

Use A to solve k /2-threshold:

1. Randomly permute $x \in\{0,1\}^{N}$. With prob $\geq 2^{-k / 2}$: all $k / 2$ ones in separate blocks
2. Run A, check its k outputs, return 1 iff $\geq k / 2$ ones found

This solves $k / 2$-threshold with prob $\geq \sigma 2^{-k / 2}$

$$
\Rightarrow \sigma \leq 2^{-\gamma k} \text { for small } \alpha
$$

DPT for OR

Suppose we have algorithm A for $\mathrm{OR}_{n}^{(k)}$, with $T=\alpha k \sqrt{n}$ queries and success prob σ. Use A to solve Search ${ }^{(k)}$:

1. Do $s=2 \log (1 / \alpha)$ rounds of binary search on the k blocks using A
2. Run exact Grover on each $\frac{n}{2^{s}}$ block
3. For each block, return 1 if found a one

This uses $\underbrace{s T}_{\text {step } 1}+\underbrace{k \sqrt{n / 2^{s}}}_{\text {step } 2} \approx 2 \alpha \log (1 / \alpha) k \sqrt{n}$ queries,
and has success probability $\geq \sigma^{s}$

$$
\Rightarrow \sigma \leq 2^{-\gamma k} \text { for small } \alpha
$$

Summary

■ Strong direct product theorem:
resources for $f^{(k)} \ll k *$ resources for f
\Rightarrow success probability $\sigma \leq 2^{-\gamma k}$.

- We prove this for $f=\mathrm{OR}$ in 3 settings:

1. Classical query complexity
2. Quantum query complexity
3. Quantum communication complexity

■ Implies strong time-space tradeoffs (sorting, Boolean matrix products) and communication-space tradeoffs (Boolean matrix products)

