
Quantum and Classical
Strong Direct Product Theorems
and Optimal Time-Space Tradeoffs

Robert Špalek
joint work with Ronald de Wolf

and Hartmut Klauck



Computing Many Copies of a Function

� Suppose the complexity of f is well understood,
e.g. we need T( f ) resources to compute f with small error

� Specify “compute” and “resources”
(circuit size, queries, communication, …)

� Fundamental question:

how hard is it to compute k independent instances f (x1), . . . , f (xk)?

2



Direct Product Theorems

� Relation between total resources T and overall success probability σ?

� Intuition: constant error on each instance ⇒ exponentially small σ

� Weak direct product theorem:

T ≤ αT( f ) ⇒ σ ≤ 2−γk

� Strong direct product theorem:

T ≤ αkT( f ) ⇒ σ ≤ 2−γk

3



Our Results

Strong direct product theorems for:

1. Classical query complexity of OR

2. Quantum query complexity of OR

3. Quantum communication complexity of Disj

Time-space tradeoffs for:

1. Quantum sorting

2. Classical and quantum Boolean matrix products

Communication-space tradeoffs for quantum matrix products

4



DPT 1: Classical Query Complexity

� Task: compute OR(k)
n using T queries

x = x1︸ ︷︷ ︸
n bits

x2︸ ︷︷ ︸
n bits

· · · · · · xk︸ ︷︷ ︸
n bits

� Strong direct product theorem:

Every classical algorithm with T ≤ αkn queries
has worst-case success probability σ ≤ 2−γk

T ≤ αkn ⇒ σ ≤ 2−γk

5



DPT 2: Quantum Query Complexity

� [Grover, 1996]
ORn with σ ≈ 1 in Θ(

√
n) queries

� [Buhrman, Newman, Röhrig & de Wolf, 2003]
OR(k)

n with σ ≈ 1 in O(k
√

n) queries, i.e. no log-factor needed!

� Direct product theorem:

#queries T ≤ αk
√

n ⇒ success σ ≤ 2−γk

6



DPT 3: Quantum Communication Complexity

Alice: Bob:
input x input y

message 1
message 2
message 3

…

-

�

-

?

output f (x, y)

� Disjointness problem: “distributed NOR”

Alice has n-bit input x, Bob has n-bit y
Question: x ∩ y = ∅ or not?

� Classical: Θ(n) bits of communication
Quantum: Θ(

√
n) qubits [BCW, AA, Razborov]

� We prove a DPT: communication C ≤ αk
√

n qubits ⇒ σ ≤ 2−γk

7



Time-space tradeoffs



Tradeoff: Sorting by a Quantum Circuit

� Input: x1, . . . , xN accessed by input gates X

� Output: Indices π of x sorted large to small, sent to output gates O

S

T

X

i

z z + xi

Oπ1 Oπ2 OπN

N

X

i

z z + xi

S � N log N

� [Klauck, 2003] T2S = O(N3 log3 N)

� [our paper] T2S = Ω(N3)

9



Slicing the Sorting Circuit

� Slice the circuit into T
α
√

SN
slices, each containing α

√
SN queries.

� Let each slice contain ≤ k output gates.

S

Tα
√

Sn

O

O

O

O

≤ k

� We show that k = O(S) due to the DPT.

� N ≤ # slices · k = O
(

T
√

S
α
√

N

)
, hence T2S = Ω(N3).

10



Each Slice Has Only Few Output Gates: k = O(S)

If k < S, then certainly k = O(S), so assume k ≥ S.

� Within slice, the circuit outputs πa+1, . . . , πa+k with probability ≥ 2/3.

• Plug x = (2a, z1, z2, . . . , zN/2, 0N/2−a) for given z ∈ {0, 1}N/2.

• |z| ≥ k ⇐⇒ ∀` = 1, . . . , k : xπa+` = 1.

• Bounded-error sorting can compute Thresholdk with one-sided error.

� Replace S-qubit starting state by completely mixed state; overlap with
correct state is 2−S ⇒ circuit for Thresholdk with probability σ ≥ 2

3 · 2
−S.

� However #queries T = α
√

SN ≤ α
√

kN, hence by DPT σ ≤ 2−γk.

Conclude that k = O(S).
11



Tradeoff: Boolean Matrix Products

� Input: vector b

� Output: Boolean product c = Ab for a fixed matrix A

ci =
N∨

`=1

Ai,` ∧ b`

� [Abrahamson, 1990] Classically, TS = Ω(N3/2)

� [our paper] Classically, TS = Ω(N2)
Quantumly, T2S = Ω(N3)

}
both tight

12



Communication-Space Tradeoffs

� Input: Alice has A and Bob has b.

� Output: Boolean product c = Ab.

� [Beame, Tompa & Yan, 1994] Tight bounds for GF(2) products.

� [our paper] Quantumly, Boolean products C2S = Ω(N3)
(tight up to polylog factors).

13



Proof of quantum DPT



DPT Sounds Plausible, but not Always True

� [Shaltiel, 2001] Uniform input distribution and

f (x1, . . . , xn) = x1 ∨ (x2 ⊕ · · · ⊕ xn)

With 2
3n queries, success probability is 3/4: Succ2

3n( f ) = 3/4.

� But on average, ≈ k/2 instances can be solved with only 1 query. The
saved queries can be used to answer the other ≈ k/2 instances:

Succ2
3kn( f (k)) = 1− 2−Ω(k) � (3/4)k.

� DPT plausible for “hard on average” f

15



The Polynomial Method

[Beals, Buhrman, Cleve, Mosca & de Wolf, 1998]

� Final state of T-query algorithm on input x ∈ {0, 1}N

∑
z

αz(x)|z〉

� αz(x) is degree-T polynomial ⇒

acceptance prob is degree-2T polynomial

� Query lower bounds from polynomial degree lower bounds

16



Lower Bound for k-Threshold (lite)

� Consider degree-d polynomial p (N = kn)

1 2 k − 1 k0 N

0

1

σ

p

p(x)
{

= 0; x = 0, . . . , k− 1
∈ [0, 1]; x = k, . . . , N

How big can σ = p(k) be?

� [Aaronson, 2004] d ≤ α
√

kn ⇒ σ ≤ 2−γk

� [our paper] d ≤ αk
√

n ⇒ σ ≤ 2−γk

17



Lower Bound for k-Threshold (cont)

� Factor p as

σ

k!

k−k

k 2k 2k + 1 N

q

p(x) = q(x)
k−1

∏
j=0

(x− j)

� q(k) =
σ

k!
|q(i)| ≤ k−k for integers i ∈ {2k, . . . , N}

� [Coppersmith & Rivlin, 1992]

|q(x)| ≤ k−ked2/N for all real x ∈ [2k, N]

18



Lower Bound for k-Threshold (cont)

� Rescale q to [−1, 1]× [−1, 1],
upper bound it by degree-d
Qebyxev (Chebyshev) polynomial Td:

x

3

1

1-0.5

2

0-1
0

-1

0.5

� Td(1 + µ) ≤ e2d
√

2µ+µ2

� Combining everything gives (d = αk
√

n)

σ ≤ e(α2+4α−1)k

Choose α sufficiently small

� We have proven degree d ≤ αk
√

n ⇒ success σ ≤ 2−γk

19



Reduction: Quantum DPT for OR (lite)
� k-threshold: for kn-bit input, decide whether |x| ≥ k

• [BBCMW98] Acceptance probability of a T-query algorithm is a
degree-2T polynomial

• key lemma =⇒ one-sided error algorithms with αk
√

n queries have
σ exponentially small

� k independent search problems

• can solve k/2-threshold with good probability using k-search

• apply random permutation of input bits

� k independent OR problems

• can solve k-search by binary search using k-OR

• verify the 1 at the end to make it one-sided

=⇒ lower bound for k-OR
20



DPT for Search

x =

N=kn bits︷ ︸︸ ︷
x1︸ ︷︷ ︸

n bits

x2︸ ︷︷ ︸
n bits

· · · · · · xk︸ ︷︷ ︸
n bits

Suppose we have algorithm A for Search(k),
with T = αk

√
n queries and success prob σ.

Use A to solve k/2-threshold:

1. Randomly permute x ∈ {0, 1}N.
With prob ≥ 2−k/2: all k/2 ones in separate blocks

2. Run A, check its k outputs, return 1 iff ≥ k/2 ones found

This solves k/2-threshold with prob ≥ σ2−k/2

⇒ σ ≤ 2−γk for small α

21



DPT for OR

Suppose we have algorithm A for OR(k)
n ,

with T = αk
√

n queries and success prob σ.

Use A to solve Search(k):

1. Do s = 2 log(1/α) rounds of binary search on the k blocks using A

2. Run exact Grover on each
n
2s block

3. For each block, return 1 if found a one

This uses sT︸︷︷︸
step 1

+ k
√

n/2s︸ ︷︷ ︸
step 2

≈ 2α log(1/α)k
√

n queries,

and has success probability ≥ σs

⇒ σ ≤ 2−γk for small α

22



Summary

� Strong direct product theorem:
resources for f (k) � k ∗ resources for f
⇒ success probability σ ≤ 2−γk.

� We prove this for f =OR in 3 settings:

1. Classical query complexity

2. Quantum query complexity

3. Quantum communication complexity

� Implies strong time-space tradeoffs (sorting, Boolean matrix products)
and communication-space tradeoffs (Boolean matrix products)

23


