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Time-Space Tradeoffs

• A relation between the running time and space complexity

The more memory is available,
the faster the algorithm can possibly run.

• Example: sorting of N numbers

TS = N2

Robert Špalek, CWI – Quantum Time-Space Tradeoffs for Deciding Systems of Linear Inequalities – p.2/17



Time-Space Tradeoffs

• A relation between the running time and space complexity

The more memory is available,
the faster the algorithm can possibly run.

• Example: sorting of N numbers

TS = N2
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Systems of Linear Inequalities

• Let A be a fixed N ×N Boolean matrix
Let x, b be integer input vectors of length N

• The task is to output for each row whether

Ax ≥ b

• We study the query complexity with bounded error
◦ Classically

TS = N2

◦ Quantumly

T 2S = N3t, S ≤ N/t
TS = N2, S > N/t

if numbers in b are at most t

• Omitting log-factors in the upper bounds
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Upper Bound
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Classical Algorithm

S

S

A x b

≥·

• Split the matrix into (N/S)2 blocks of size S × S

• Evaluate the output row-wise
◦ maintain S counters at the same time
◦ in each of the N/S blocks, read S inputs and update all

counters using the fixed matrix A

• The query complexity is

T =
N

S
·
(
N

S
· S
)

=
N2

S

when the space is S

TS ≤ N2
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Quantum Algorithm

A x b

≥·

S

N

• Split the matrix into N/S row blocks of height S

• Evaluate the output row-wise
◦ maintain S counters at the same time
◦ use quantum counting and Grover search

to find non-zero inputs
◦ the speedup is N →

√
NSt per row block

• The query complexity is

T =
N

S
·
√
NSt = N3/2

√
t

S

when the space is S

T 2S ≤ N3t
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Quantum Algorithm (cont.)

y vector of counters
U set of open rows with yi < bi

a column sum of A over
the rows from U

SU

A

x

∑
= aj

While p ≤ N and U 6= ∅, do
• Find by binary search some k such that

S ≤
p+k−1∑

j=p
ajxj ≤ 2S . . . quantum counting

• Find all positions j inside [p, p+ k − 1] such that
ajxj > 0 . . . quantum search

• Update the counters y, remove from U the rows that have
been closed in this iteration, and set p← p+ k
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Quantum Algorithm (cont.)

y vector of counters
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A

x

∑
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Complexity of the Algorithm

i : 1 2 3 4 5

In the i-th iteration of length ki,

• cost of quantum counting with
√
ki queries is negligible

• quantum search costs
√
kirit+

√
kisi, where

◦ ri is the number of closed rows
◦ si is the total number added to counters in this iteration

By Cauchy-Schwarz,

T =
∑

i

(√
kirit+

√
kisi

)

≤
√∑

ki

√
t
∑

ri +
√∑

ki

√∑
si

≤
√
NSt
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Lower Bound
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Direct Product Theorems

• Suppose we need T (f) queries to compute f with small
error. How hard is it to compute k independent instances
f(x1), . . . , f(xk)?

• Relation between total number of queries T and overall
success probability σ:

T ≤ αk · T (f)⇒ σ ≤ 2−γk

α, γ are small positive constants

• It is not known, whether the DPT holds in general!

[Shaltiel, 2001]
Counterexample for average-case complexity.
However, DPT plausible for worst-case complexity.
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Symmetric Functions

A function f is symmetric iff
it only depends on the Hamming weight of the input

• Implicit threshold is the minimal t such that f is constant on
[t, n− t]. Example:
◦ OR and AND have t = 1
◦ parity and majority have t = n

2

◦ a-threshold function with a ≤ n
2 has t = a

• Bounded-error quantum query complexity of a symmetric
function is

Q2(f) = Θ(
√
tn)
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Quantum Query DPT

• [Klauck, Š, de Wolf, FOCS 2004]
DPT for k instances of the OR function

T ≤ αk√n⇒ σ ≤ 2−γk

using the polynomial method

• [Ambainis, 2005]
Reproves [KŠW] using adversary arguments.

• [Ambainis, Š, de Wolf, 2005]
Generalize [KŠW, Amb] to all symmetric functions f .

T ≤ αk
√
tn⇒ σ ≤ 2−γk

t is the implicit threshold of f
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Constructing a Hard Matrix

[Klauck, Š, de Wolf, 2004]
Using probabilistic method,

• For every k = o(N/ logN),

• there is an N ×N Boolean
matrix A such that all rows of A have weight N/2k,

• and every set of k rows of A
• contains a set R of k/2 rows with the following property:

• each row in R contains at least N/6k ones
that occur in no other row of R.

Proof: pick N/2k ones at random in each row.
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Lower Bound for the System of Linear Inequalities

• Slice the circuit into T
α
√

tSN
slices,

each containing α
√
tSN queries

• Let k be the maximal number of output gates in a slice

S

Tα
√

tSN

≤ k outputs

fixed output gates

• We show that k = O(S) due to the DPT

• N ≤ # slices · k = O
(

T
√

S
α
√

tN

)
, hence T 2S = Ω(N3t)
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Each Slice Has Only Few Output Gates

If k < S, then certainly k = O(S), so assume k ≥ S

• Within the maximal slice, the circuit outputs whether
(Ax)i ≥ bi for k distinct rows i with overall probability ≥ 2/3

• Use the hard matrix A with many disjoint ones. The
algorithm computes k/2 independent t-threshold functions
with n = N/6k bits each. ⇐= we need t ≤ n/2 = O(N/S)

• Replace S-qubit starting state by completely mixed state;
overlap with correct state is 2−S , hence we get a circuit for

Threshold(k/2)
n,t with probability σ ≥ 2

3 · 2−S

• However the number of queries

T = α
√
tSN ≤ α

√
tkN = αk

√
tn, hence by DPT σ ≤ 2−γk

Conclude that k = O(S)
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overlap with correct state is 2−S , hence we get a circuit for

Threshold(k/2)
n,t with probability σ ≥ 2

3 · 2−S

• However the number of queries

T = α
√
tSN ≤ α

√
tkN = αk

√
tn, hence by DPT σ ≤ 2−γk

Conclude that k = O(S)
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Lower bound for one-sided error

• Stronger direct product theorem for threshold functions for
one-sided error algorithms that never say |x| ≥ t in any
instance if it is not true

T ≤ αk
√
tn⇒ σ ≤ 2−γkt

t

(
two-sided symmetric: T ≤ αk

√
tn⇒ σ ≤ 2−γk

)

• The same slicing approach (with different slice-size) gives

T 2S ≥ N3t2, t ≤ S ≤ N/t2
TS = N2, S > N/t2

• We do not have a matching upper bound, and we
conjecture that the lower bound is not tight

Robert Špalek, CWI – Quantum Time-Space Tradeoffs for Deciding Systems of Linear Inequalities – p.16/17



Lower bound for one-sided error

• Stronger direct product theorem for threshold functions for
one-sided error algorithms that never say |x| ≥ t in any
instance if it is not true

T ≤ αk
√
tn⇒ σ ≤ 2−γkt

(
two-sided symmetric: T ≤ αk

√
tn⇒ σ ≤ 2−γk

)

• The same slicing approach (with different slice-size) gives

T 2S ≥ N3t2, t ≤ S ≤ N/t2
TS = N2, S > N/t2

• We do not have a matching upper bound, and we
conjecture that the lower bound is not tight
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Conclusion

• Quantum search speeds up the evaluation of a system of
linear inequalities when the space is small

T 2S ≤ N3t for S ≤ N/t

• If space is big, then quantum computers offer no speedup
over classical computers

TS ≤ N2 for S > N/t

• A matching lower bound proved using direct product
theorems

• For one-sided error algorithms the lower bound is stronger
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