Quantum Time-Space Tradeoffs for Deciding Systems of Linear Inequalities

Robert Špalek

sr@cwi.nl

joint work with Andris Ambainis and Ronald de Wolf
quant-ph/0511200

Time-Space Tradeoffs

- A relation between the running time and space complexity

The more memory is available, the faster the algorithm can possibly run.

Time-Space Tradeoffs

- A relation between the running time and space complexity

The more memory is available, the faster the algorithm can possibly run.

- Example: sorting of N numbers

$$
T S=N^{2}
$$

Systems of Linear Inequalities

- Let A be a fixed $N \times N$ Boolean matrix Let x, b be integer input vectors of length N
- The task is to output for each row whether

$$
A x \geq b
$$

Systems of Linear Inequalities

- Let A be a fixed $N \times N$ Boolean matrix Let x, b be integer input vectors of length N
- The task is to output for each row whether

$$
A x \geq b
$$

- We study the query complexity with bounded error
- Classically

$$
T S=N^{2}
$$

Systems of Linear Inequalities

- Let A be a fixed $N \times N$ Boolean matrix Let x, b be integer input vectors of length N
- The task is to output for each row whether

$$
A x \geq b
$$

- We study the query complexity with bounded error
- Classically

$$
T S=N^{2}
$$

- Quantumly

$$
\begin{array}{ll}
T^{2} S=N^{3} t, & S \leq N / t \\
T S=N^{2}, & S>N / t
\end{array}
$$

if numbers in b are at most t

- Omitting log-factors in the upper bounds

Upper Bound

Classical Algorithm

- Split the matrix into $(N / S)^{2}$ blocks of size $S \times S$

Classical Algorithm

- Split the matrix into $(N / S)^{2}$ blocks of size $S \times S$
- Evaluate the output row-wise
- maintain S counters at the same time
- in each of the N / S blocks, read S inputs and update all counters using the fixed matrix A

Classical Algorithm

- Split the matrix into $(N / S)^{2}$ blocks of size $S \times S$
- Evaluate the output row-wise
- maintain S counters at the same time
- in each of the N / S blocks, read S inputs and update all counters using the fixed matrix A
- The query complexity is

$$
T=\frac{N}{S} \cdot\left(\frac{N}{S} \cdot S\right)=\frac{N^{2}}{S}
$$

when the space is S

Classical Algorithm

- Split the matrix into $(N / S)^{2}$ blocks of size $S \times S$
- Evaluate the output row-wise
- maintain S counters at the same time
- in each of the N / S blocks, read S inputs and update all counters using the fixed matrix A
- The query complexity is

$$
T=\frac{N}{S} \cdot\left(\frac{N}{S} \cdot S\right)=\frac{N^{2}}{S}
$$

when the space is S
$T S \leq N^{2}$

Quantum Algorithm

- Split the matrix into N / S row blocks of height S

Quantum Algorithm

- Split the matrix into N / S row blocks of height S
- Evaluate the output row-wise
- maintain S counters at the same time
- use quantum counting and Grover search to find non-zero inputs
- the speedup is $N \rightarrow \sqrt{N S t}$ per row block

Quantum Algorithm

- Split the matrix into N / S row blocks of height S
- Evaluate the output row-wise
- maintain S counters at the same time
- use quantum counting and Grover search to find non-zero inputs
- the speedup is $N \rightarrow \sqrt{N S t}$ per row block
- The query complexity is

$$
T=\frac{N}{S} \cdot \sqrt{N S t}=N^{3 / 2} \sqrt{\frac{t}{S}}
$$

when the space is S

Quantum Algorithm

- Split the matrix into N / S row blocks of height S
- Evaluate the output row-wise
- maintain S counters at the same time
- use quantum counting and Grover search to find non-zero inputs
- the speedup is $N \rightarrow \sqrt{N S t}$ per row block
- The query complexity is

$$
T=\frac{N}{S} \cdot \sqrt{N S t}=N^{3 / 2} \sqrt{\frac{t}{S}}
$$

when the space is S

$$
T^{2} S \leq N^{3} t
$$

Quantum Algorithm (cont.)

y vector of counters

U set of open rows with $y_{i}<b_{i}$
a column sum of A over
 the rows from U

Quantum Algorithm (cont.)

y vector of counters

U set of open rows with $y_{i}<b_{i}$
a column sum of A over
 the rows from U

Start at position $p \leftarrow 1$ and with $U \leftarrow[1, S]$.

Quantum Algorithm (cont.)

y vector of counters
U set of open rows with $y_{i}<b_{i}$
a column sum of A over the rows from U

While $p \leq N$ and $U \neq \emptyset$, do

- Find by binary search some k such that

$$
S \leq \sum_{j=p}^{p+k-1} a_{j} x_{j} \leq 2 S
$$

...quantum counting

Quantum Algorithm (cont.)

y vector of counters
U set of open rows with $y_{i}<b_{i}$
a column sum of A over the rows from U

While $p \leq N$ and $U \neq \emptyset$, do

- Find by binary search some k such that

$$
S \leq \sum_{j=p}^{p+k-1} a_{j} x_{j} \leq 2 S
$$

...quantum counting

- Find all positions j inside $[p, p+k-1]$ such that

$$
a_{j} x_{j}>0
$$

... quantum search

Quantum Algorithm (cont.)

y vector of counters
U set of open rows with $y_{i}<b_{i}$
a column sum of A over
 the rows from U

While $p \leq N$ and $U \neq \emptyset$, do

- Find by binary search some k such that

$$
S \leq \sum_{j=p}^{p+k-1} a_{j} x_{j} \leq 2 S
$$

...quantum counting

- Find all positions j inside $[p, p+k-1]$ such that

$$
a_{j} x_{j}>0
$$

...quantum search

- Update the counters y, remove from U the rows that have been closed in this iteration, and set $p \leftarrow p+k$

Complexity of the Algorithm

In the i-th iteration of length k_{i},

- cost of quantum counting with $\sqrt{k_{i}}$ queries is negligible
- quantum search costs $\sqrt{k_{i} r_{i} t}+\sqrt{k_{i} s_{i}}$, where
- r_{i} is the number of closed rows
${ }^{\circ} s_{i}$ is the total number added to counters in this iteration

Complexity of the Algorithm

$i:$| 1 | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- |

In the i-th iteration of length k_{i},

- cost of quantum counting with $\sqrt{k_{i}}$ queries is negligible
- quantum search costs $\sqrt{k_{i} r_{i} t}+\sqrt{k_{i} s_{i}}$, where
- r_{i} is the number of closed rows
- s_{i} is the total number added to counters in this iteration

By Cauchy-Schwarz,

$$
\begin{aligned}
T & =\sum_{i}\left(\sqrt{k_{i} r_{i} t}+\sqrt{k_{i} s_{i}}\right) \\
& \leq \sqrt{\sum k_{i}} \sqrt{t \sum r_{i}}+\sqrt{\sum k_{i}} \sqrt{\sum s_{i}} \\
& \leq \sqrt{N S t}
\end{aligned}
$$

Lower Bound

Direct Product Theorems

- Suppose we need $T(f)$ queries to compute f with small error. How hard is it to compute k independent instances $f\left(x_{1}\right), \ldots, f\left(x_{k}\right)$?

Direct Product Theorems

- Suppose we need $T(f)$ queries to compute f with small error. How hard is it to compute k independent instances $f\left(x_{1}\right), \ldots, f\left(x_{k}\right)$?
- Relation between total number of queries T and overall success probability σ :

$$
T \leq \alpha k \cdot T(f) \Rightarrow \sigma \leq 2^{-\gamma k}
$$

α, γ are small positive constants

Direct Product Theorems

- Suppose we need $T(f)$ queries to compute f with small error. How hard is it to compute k independent instances $f\left(x_{1}\right), \ldots, f\left(x_{k}\right)$?
- Relation between total number of queries T and overall success probability σ :

$$
T \leq \alpha k \cdot T(f) \Rightarrow \sigma \leq 2^{-\gamma k}
$$

α, γ are small positive constants

- It is not known, whether the DPT holds in general!
[Shaltiel, 2001]
Counterexample for average-case complexity. However, DPT plausible for worst-case complexity.

Symmetric Functions

> A function f is symmetric iff
> it only depends on the Hamming weight of the input

Symmetric Functions

A function f is symmetric iff it only depends on the Hamming weight of the input

- Implicit threshold is the minimal t such that f is constant on $[t, n-t]$. Example:
- OR and AND have $t=1$
- parity and majority have $t=\frac{n}{2}$
- a-threshold function with $a \leq \frac{n}{2}$ has $t=a$

Symmetric Functions

A function f is symmetric iff it only depends on the Hamming weight of the input

- Implicit threshold is the minimal t such that f is constant on $[t, n-t]$. Example:
- OR and AND have $t=1$
- parity and majority have $t=\frac{n}{2}$
- a-threshold function with $a \leq \frac{n}{2}$ has $t=a$
- Bounded-error quantum query complexity of a symmetric function is

$$
Q_{2}(f)=\Theta(\sqrt{t n})
$$

Quantum Query DPT

- [Klauck, Š, de Wolf, FOCS 2004] DPT for k instances of the OR function

$$
T \leq \alpha k \sqrt{n} \Rightarrow \sigma \leq 2^{-\gamma k}
$$

using the polynomial method

Quantum Query DPT

- [Klauck, Š, de Wolf, FOCS 2004] DPT for k instances of the OR function

$$
T \leq \alpha k \sqrt{n} \Rightarrow \sigma \leq 2^{-\gamma k}
$$

using the polynomial method

- [Ambainis, 2005]

Reproves [KŠW] using adversary arguments.

Quantum Query DPT

- [Klauck, Š, de Wolf, FOCS 2004] DPT for k instances of the OR function

$$
T \leq \alpha k \sqrt{n} \Rightarrow \sigma \leq 2^{-\gamma k}
$$

using the polynomial method

- [Ambainis, 2005]

Reproves [KŠW] using adversary arguments.

- [Ambainis, Š, de Wolf, 2005] Generalize [KŠW, Amb] to all symmetric functions f.

$$
T \leq \alpha k \sqrt{t n} \Rightarrow \sigma \leq 2^{-\gamma k}
$$

t is the implicit threshold of f

Constructing a Hard Matrix

[Klauck, Š, de Wolf, 2004] Using probabilistic method,

- For every $k=o(N / \log N)$,

Constructing a Hard Matrix

[Klauck, Š, de Wolf, 2004] Using probabilistic method,

- For every $k=o(N / \log N)$,
- there is an $N \times N$ Boolean matrix A such that all rows of A have weight $N / 2 k$,

Constructing a Hard Matrix

[Klauck, Š, de Wolf, 2004] Using probabilistic method,

- For every $k=o(N / \log N)$,
- there is an $N \times N$ Boolean matrix A such that all rows of A have weight $N / 2 k$,
- and every set of k rows of A

Constructing a Hard Matrix

[Klauck, Š, de Wolf, 2004] Using probabilistic method,

- For every $k=o(N / \log N)$,
- there is an $N \times N$ Boolean
 matrix A such that all rows of A have weight $N / 2 k$,
- and every set of k rows of A
- contains a set R of $k / 2$ rows with the following property:

Constructing a Hard Matrix

[Klauck, Š, de Wolf, 2004] Using probabilistic method,

- For every $k=o(N / \log N)$,
- there is an $N \times N$ Boolean matrix A such that all rows of A have weight $N / 2 k$,
- and every set of k rows of A
- contains a set R of $k / 2$ rows with the following property:
- each row in R contains at least $N / 6 k$ ones that occur in no other row of R.

Constructing a Hard Matrix

[Klauck, Š, de Wolf, 2004] Using probabilistic method,

- For every $k=o(N / \log N)$,
- there is an $N \times N$ Boolean
 matrix A such that all rows of A have weight $N / 2 k$,
- and every set of k rows of A
- contains a set R of $k / 2$ rows with the following property:
- each row in R contains at least $N / 6 k$ ones that occur in no other row of R.

Proof: pick $N / 2 k$ ones at random in each row.

Lower Bound for the System of Linear Inequalities

- Slice the circuit into $\frac{T}{\alpha \sqrt{t S N}}$ slices, each containing $\alpha \sqrt{t S N}$ queries

Lower Bound for the System of Linear Inequalities

- Slice the circuit into $\frac{T}{\alpha \sqrt{t S N}}$ slices, each containing $\alpha \sqrt{t S N}$ queries
- Let k be the maximal number of output gates in a slice

Lower Bound for the System of Linear Inequalities

- Slice the circuit into $\frac{T}{\alpha \sqrt{t S N}}$ slices, each containing $\alpha \sqrt{t S N}$ queries
- Let k be the maximal number of output gates in a slice

- We show that $k=O(S)$ due to the DPT

Lower Bound for the System of Linear Inequalities

- Slice the circuit into $\frac{T}{\alpha \sqrt{t S N}}$ slices, each containing $\alpha \sqrt{t S N}$ queries
- Let k be the maximal number of output gates in a slice

- We show that $k=O(S)$ due to the DPT
- $N \leq$ \# slices $\cdot k=O\left(\frac{T \sqrt{S}}{\alpha \sqrt{t N}}\right)$, hence $T^{2} S=\Omega\left(N^{3} t\right)$

Each Slice Has Only Few Output Gates

If $k<S$, then certainly $k=O(S)$, so assume $k \geq S$

Each Slice Has Only Few Output Gates

If $k<S$, then certainly $k=O(S)$, so assume $k \geq S$

- Within the maximal slice, the circuit outputs whether $(A x)_{i} \geq b_{i}$ for k distinct rows i with overall probability $\geq 2 / 3$

Each Slice Has Only Few Output Gates

If $k<S$, then certainly $k=O(S)$, so assume $k \geq S$

- Within the maximal slice, the circuit outputs whether $(A x)_{i} \geq b_{i}$ for k distinct rows i with overall probability $\geq 2 / 3$
- Use the hard matrix A with many disjoint ones. The algorithm computes $k / 2$ independent t-threshold functions with $n=N / 6 k$ bits each.

Each Slice Has Only Few Output Gates

If $k<S$, then certainly $k=O(S)$, so assume $k \geq S$

- Within the maximal slice, the circuit outputs whether $(A x)_{i} \geq b_{i}$ for k distinct rows i with overall probability $\geq 2 / 3$
- Use the hard matrix A with many disjoint ones. The algorithm computes $k / 2$ independent t-threshold functions with $n=N / 6 k$ bits each.
- Replace S-qubit starting state by completely mixed state; overlap with correct state is 2^{-S}, hence we get a circuit for Threshold ${ }_{n, t}^{(k / 2)}$ with probability $\sigma \geq \frac{2}{3} \cdot 2^{-S}$

Each Slice Has Only Few Output Gates

If $k<S$, then certainly $k=O(S)$, so assume $k \geq S$

- Within the maximal slice, the circuit outputs whether $(A x)_{i} \geq b_{i}$ for k distinct rows i with overall probability $\geq 2 / 3$
- Use the hard matrix A with many disjoint ones. The algorithm computes $k / 2$ independent t-threshold functions with $n=N / 6 k$ bits each.
- Replace S-qubit starting state by completely mixed state; overlap with correct state is 2^{-S}, hence we get a circuit for Threshold ${ }_{n, t}^{(k / 2)}$ with probability $\sigma \geq \frac{2}{3} \cdot 2^{-S}$
- However the number of queries
$T=\alpha \sqrt{t S N} \leq \alpha \sqrt{t k N}=\alpha k \sqrt{t n}$, hence by DPT $\sigma \leq 2^{-\gamma k}$

Each Slice Has Only Few Output Gates

If $k<S$, then certainly $k=O(S)$, so assume $k \geq S$

- Within the maximal slice, the circuit outputs whether $(A x)_{i} \geq b_{i}$ for k distinct rows i with overall probability $\geq 2 / 3$
- Use the hard matrix A with many disjoint ones. The algorithm computes $k / 2$ independent t-threshold functions with $n=N / 6 k$ bits each.
- Replace S-qubit starting state by completely mixed state; overlap with correct state is 2^{-S}, hence we get a circuit for Threshold ${ }_{n, t}^{(k / 2)}$ with probability $\sigma \geq \frac{2}{3} \cdot 2^{-S}$
- However the number of queries
$T=\alpha \sqrt{t S N} \leq \alpha \sqrt{t k N}=\alpha k \sqrt{t n}$, hence by DPT $\sigma \leq 2^{-\gamma k}$
Conclude that $k=O(S)$

Each Slice Has Only Few Output Gates

If $k<S$, then certainly $k=O(S)$, so assume $k \geq S$

- Within the maximal slice, the circuit outputs whether $(A x)_{i} \geq b_{i}$ for k distinct rows i with overall probability $\geq 2 / 3$
- Use the hard matrix A with many disjoint ones. The algorithm computes $k / 2$ independent t-threshold functions with $n=N / 6 k$ bits each. \Longleftarrow we need $t \leq n / 2=O(N / S)$
- Replace S-qubit starting state by completely mixed state; overlap with correct state is 2^{-S}, hence we get a circuit for Threshold ${ }_{n, t}^{(k / 2)}$ with probability $\sigma \geq \frac{2}{3} \cdot 2^{-S}$
- However the number of queries
$T=\alpha \sqrt{t S N} \leq \alpha \sqrt{t k N}=\alpha k \sqrt{t n}$, hence by DPT $\sigma \leq 2^{-\gamma k}$
Conclude that $k=O(S)$

Lower bound for one-sided error

- Stronger direct product theorem for threshold functions for one-sided error algorithms that never say $|x| \geq t$ in any instance if it is not true

$$
T \leq \alpha k \sqrt{\operatorname{tn}} \Rightarrow \sigma \leq 2^{-\gamma k t}
$$

Lower bound for one-sided error

- Stronger direct product theorem for threshold functions for one-sided error algorithms that never say $|x| \geq t$ in any instance if it is not true

$$
T \leq \alpha k \sqrt{t n} \Rightarrow \sigma \leq 2^{-\gamma k t}
$$

(two-sided symmetric: $T \leq \alpha k \sqrt{t n} \Rightarrow \sigma \leq 2^{-\gamma k}$)

Lower bound for one-sided error

- Stronger direct product theorem for threshold functions for one-sided error algorithms that never say $|x| \geq t$ in any instance if it is not true

$$
\begin{aligned}
& T \leq \alpha k \sqrt{\operatorname{tn}} \Rightarrow \sigma \leq 2^{-\gamma k t} \\
(\text { two-sided symmetric: } & \left.T \leq \alpha k \sqrt{\operatorname{tn}} \Rightarrow \sigma \leq 2^{-\gamma k}\right)
\end{aligned}
$$

- The same slicing approach (with different slice-size) gives

$$
\begin{array}{ll}
T^{2} S \geq N^{3} t^{2}, & t \leq S \leq N / t^{2} \\
T S=N^{2}, & S>N / t^{2}
\end{array}
$$

Lower bound for one-sided error

- Stronger direct product theorem for threshold functions for one-sided error algorithms that never say $|x| \geq t$ in any instance if it is not true

$$
\begin{aligned}
& T \leq \alpha k \sqrt{t n} \Rightarrow \sigma \leq 2^{-\gamma k t} \\
\text { (two-sided symmetric: } & \left.T \leq \alpha k \sqrt{t n} \Rightarrow \sigma \leq 2^{-\gamma k}\right)
\end{aligned}
$$

- The same slicing approach (with different slice-size) gives

$$
\begin{aligned}
& T^{2} S \geq N^{3} t^{2}, \quad t \leq S \leq N / t^{2} \\
& T S=N^{2},
\end{aligned}
$$

- We do not have a matching upper bound, and we conjecture that the lower bound is not tight

Conclusion

- Quantum search speeds up the evaluation of a system of linear inequalities when the space is small

$$
T^{2} S \leq N^{3} t \text { for } S \leq N / t
$$

Conclusion

- Quantum search speeds up the evaluation of a system of linear inequalities when the space is small

$$
T^{2} S \leq N^{3} t \text { for } S \leq N / t
$$

- If space is big, then quantum computers offer no speedup over classical computers

$$
T S \leq N^{2} \text { for } S>N / t
$$

Conclusion

- Quantum search speeds up the evaluation of a system of linear inequalities when the space is small

$$
T^{2} S \leq N^{3} t \text { for } S \leq N / t
$$

- If space is big, then quantum computers offer no speedup over classical computers

$$
T S \leq N^{2} \text { for } S>N / t
$$

- A matching lower bound proved using direct product theorems

Conclusion

- Quantum search speeds up the evaluation of a system of linear inequalities when the space is small

$$
T^{2} S \leq N^{3} t \text { for } S \leq N / t
$$

- If space is big, then quantum computers offer no speedup over classical computers

$$
T S \leq N^{2} \text { for } S>N / t
$$

- A matching lower bound proved using direct product theorems
- For one-sided error algorithms the lower bound is stronger

