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Quantum query complexity

� Want to compute Boolean function f

� Input queried by oracle calls Ox|i, b, z〉 = |i, b⊕ xi, z〉
Allow arbitrary unitary operations between

� Length of computation t is the number of oracle calls
Final state |ϕt

x〉 = UtOxUt−1 . . . U1OxU0|0〉
Measure the leftmost qubit |qx〉 of |ϕt

x〉 to get the outcome
Bounded-error ⇐⇒ Pr[qx = f (x)] ≥ 2
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� quantum query complexity Q2( f )
is the minimal length of computation of a bounded-error algorithm
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Adversary lower bounds

� [Bennett, Bernstein, Brassard & Vazirani, 1997]
Hybrid method

• computation starts at a fixed state |ϕ0
x〉 = |ϕ0

y〉

• inner product 〈ϕk
x|ϕk

y〉 changes little after one query

• output states |ϕt
x〉 and |ϕt

y〉 almost orthogonal if f (x) 6= f (y)

=⇒ number of queries must be big

� [Ambainis, 2000]
Quantum adversary

• examine average over many input pairs
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Example lower bound for parity
[Ambainis, 2000] Unweighted quantum adversary

� Let A = f−1(0) and B = f−1(1). Pick R ⊆ A× B.

� Compute m = minx∈A |{y : (x, y) ∈ R}|, m′ = miny∈B |{x : (x, y) ∈ R}|,
` = maxx∈A,i∈[n] |{y : (x, y) ∈ R & xi 6= yi}|,
`′ = maxy∈B,i∈[n] |{x : (x, y) ∈ R & xi 6= yi}|.

� Then Q2( f ) = Ω(
√

mm′
``′ )

For parity:

� R = {(x, y) : |x| = n
2 , |y| = n

2 + 1, |y− x| = 1}

� m = n
2 , m′ = n

2 + 1, ` = `′ = 1. Hence Q2(parity) = Ω(n)
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Weighted adversary lower bounds

� [Høyer, Neerbek & Shi, 2001]
• used spectral norm of weighted adversary matrix

• specialized for binary search and sorting

� [Barnum, Saks & Szegedy, 2003]
Spectral method

• general bound in terms of spectral norms

• one weighted adversary matrix

� [Ambainis, 2003]
Weighted quantum adversary

• weight scheme: n + 1 adversary matrices
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Dual adversary lower bounds

� [Laplante & Magniez, 2003]
Kolmogorov complexity bound

• general lower bound in terms of K(x|y)

[conditional prefix-free Kolmogorov complexity K(x|y) is the length of the
shortest program P taken from a prefix-free set such that P(y) = x]

• subsumes all known adversary bounds

� [Laplante & Magniez, 2003]
“MiniMax” bound

• combinatorial version of the Kolmogorov complexity bound
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Our results

� Equality of bounds:
• spectral [BSS03]
• weighted [Ambainis, 2003]
• “strong” weighted [Zhang, 2004]

 primal

• Kolmogorov [LM03]
• MiniMax [LM03]

}
dual

� Limitations of the method:

• min(
√

C0( f )n,
√

C1( f )n) for partial f

•
√

C0( f )C1( f ) for total f

Some of them were known for some of the methods.
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Inclusion of adversary lower bounds

weighted

spectral

strong weighted

[we]
[LM03]

Kolmogorov MiniMax

[LM03]

[we]

primal dualunweighted
hybrid

HNS01
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Primal versus dual bounds

� [BSS03] Spectral Adversary SA( f ) = max
Γ

λ(Γ)
maxi λ(Γi)

Γ ≥ 0 symmetric with Γ[x, y] = 0 when f (x) = f (y)
Γi[x, y] = Γ[x, y] when xi 6= yi, otherwise 0
λ(Γ) spectral norm of Γ

� [LM03] MiniMax MM( f ) = min
px

max
x,y

f (x) 6= f (y)

1

∑i:xi 6=yi

√
px(i)py(i)

px probability distribution on n bits

� [our paper] SA( f ) = MM( f )

• follows from duality in semidefinite programming

• two non-trivial transformations needed
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Reduce MiniMax to spectral 1/2

1. MM( f ) = 1/µmax = 1

/
max

px
min

x,y
f (x) 6= f (y)

∑
i:xi 6=yi

√
px(i)py(i)

2. Define Ri[x, y] =
√

px(i)py(i) and rewrite it as

maximize µ
subject to ∀i : Ri is non-negative symmetric rank-1,

∑i Ri ◦ I = I,
∑i Ri ◦ Di ≥ µF.

3. Relax into ∀i : Ri � 0.

The best solution actually is rank-1.
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Reduce MiniMax to spectral 2/2

4. By duality of semidefinite programming, µmax = µmin
maximize µ
subject to (∀i) Ri � 0,

∑i Ri ◦ I = I,
∑i Ri ◦ Di ≥ µF.

 ⇐⇒


minimize µ = Tr∆
subject to ∆ is diagonal

Z ≥ 0
Z · F = 1

(∀i) ∆− Z ◦ Di � 0


5. (Simplified) With a little calculation, w.l.o.g. ∆ = I and

maximize Z · F
subject to Z ≥ 0

(∀i) I − Z ◦ Di � 0

which is exactly the spectral bound.
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Tight bounds on spectral norm

� [Mathias, 1990] λ(Γ) ≤ max
x,y

Γ[x,y]>0

rx(M)cy(N)

• Γ[x, y] = M[x, y] · N[x, y] symmetric, M, N ≥ 0
rx(M) the x-th row norm, cy(N) the y-th column norm

• The bound is tight, i.e. there always exist M, N s.t. equality is reached.

[our paper] We add conditioning on Γ[x, y] > 0, which was not there

� On the other hand, λ(Γ) ≥ δTΓδ for every |δ| = 1

� [our paper] (Strong) weighted adversary is the spectral adversary with
bounds on λ(Γ) and λ(Γi) expanded using the inequalities above.
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Spectral versus (strong) weighted adversary

[BSS03] Spectral Adversary SA( f ) = max
Γ

λ(Γ)
maxi λ(Γi)

[Amb03, Zha04] Strong Weighted Adversary
w like Γ, wi ≥ 0 with wi[x, y] = 0 when f (x) = f (y) or xi = yi
and wi[x, y]wi[y, x] ≥ w[x, y]2 for xi 6= yi

SWA( f ) = max
w,wi

min
x,y,i

w[x,y]>0, xi 6=yi

√
∑y∗ w[x, y∗] ∑x∗ w[y, x∗]

∑y∗ wi[x, y∗] ∑x∗ wi[y, x∗]

� Γ → w: w[x, y] := Γ[x, y]δ[x]δ[y] for δ = principal eigen-vector of Γ

� w → Γ: Γ[x, y] := w[x,y]√
wt(x)wt(y)

for wt(x) = ∑y∗ w[x, y∗]
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Limitation of all adversary methods
Easy to prove in the dual formulation! Let f be total.

� MM( f ) = 1

/
max

px
min

x,y
f (x) 6= f (y)

∑
i:xi 6=yi

√
px(i)py(i)

� Let C f (x) be some minimal certificate for f (x).
Define px(i) = 1/|C f (x)| if i ∈ C f (x), otherwise 0.

� For every f (x) 6= f (y), there is j ∈ C f (x) ∩ C f (y) with xj 6= yj

∑
i:xi 6=yi

√
px(i)py(i) ≥

√
px(j)py(j) =

1√
C f (x)C f (y)

≥ 1√
C0( f )C1( f )

Hence MM( f ) ≤
√

C0( f )C1( f ).
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Consequences of the limitation

Cannot prove good lower bounds on problems with small certificates:

� element distinctness: C0 = 2, C1 = n, hence limited by O(
√

n)
tight bound Θ(n2/3) proved by the polynomial method [AS04]

� triangle finding: C0 = n2, C1 = 3, hence limited by O(n)

� verification of matrix multiplication: C0 = 2n, C1 = n2, limited by O(n3/2)

� binary And-Or trees: C0 = C1 =
√

n, hence limited by O(
√

n)

The complexities of the last 3 problems are open.
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Conclusion

� Linear algebraic proof of equivalence of:

• spectral

• weighted

• strong weighted

� Using semidefinite programming, equivalence with MiniMax

� With [LM03], Kolmogorov bound also fits there

� Simple proof of limitations of all bounds
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Proof of spectral adversary

� Decompose the quantum state |ϕx〉 = ∑i |i〉|ϕx,i〉.
Then 〈ϕx|ϕy〉 = ∑i〈ϕx,i|ϕy,i〉.

� After one query |ϕ′x〉 = ∑i(−1)xi|i〉|ϕx,i〉.
Then 〈ϕ′x|ϕ′y〉 = ∑i(−1)xi+yi〈ϕx,i|ϕy,i〉.
Hence 〈ϕ′x|ϕ′y〉 − 〈ϕx|ϕy〉 = 2 ∑i:xi 6=yi

〈ϕx,i|ϕy,i〉.

� Define progress function Ψt = ∑x,y Γ[x, y]δxδy · 〈ϕt
x|ϕt

y〉,
where δ is the principial eigen-vector of Γ with |δ| = 1.

� Ψ0 = ∑x,y Γ[x, y]δxδy · 1 = λ(Γ), ΨT is constant times smaller.

But Ψt+1 −Ψt ≤ maxi λ(Γi), hence T ≥ λ(Γ)
maxi λ(Γi)

.
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Recall Ψt = ∑x,y Γ[x, y]δxδy · 〈ϕt
x|ϕt

y〉
and 〈ϕt+1

x |ϕt+1
y 〉 − 〈ϕt

x|ϕt
y〉 = 2 ∑i:xi 6=yi

〈ϕx,i|ϕy,i〉.

Define column vector ai[x] = δx|ϕx,i|

Ψt+1 −Ψt = 2 ∑
x,y

∑
i:xi 6=yi

Γ[x, y]δxδy〈ϕx,i|ϕy,i〉

≤ 2 ∑
x,y

∑
i

Γi[x, y]δxδy · |ϕx,i| · |ϕy,i|

= 2 ∑
i

aT
i Γiai ≤ 2 ∑

i
λ(Γi)|ai|2

≤ 2 max
i

λ(Γi) ∑
i
|ai|2 = 2 max

i
λ(Γi) ∑

i
∑
x

δ2
x|ϕx,i|2

= 2 max
i

λ(Γi) ∑
x

δ2
x ∑

i
|ϕx,i|2 = 2 max

i
λ(Γi)


