All Quantum Adversaries

 Are EquivalentRobert Špalek CWI joint work with Mario Szegedy $\underline{\text { RUTGERS }}$

Quantum query complexity

- Want to compute Boolean function f

■ Input queried by oracle calls $O_{x}|i, b, z\rangle=\left|i, b \oplus x_{i}, z\right\rangle$
Allow arbitrary unitary operations between

- Length of computation t is the number of oracle calls

Final state $\left|\varphi_{x}^{t}\right\rangle=U_{t} O_{x} U_{t-1} \ldots U_{1} O_{x} U_{0}|0\rangle$
Measure the leftmost qubit $\left|q_{x}\right\rangle$ of $\left|\varphi_{x}^{t}\right\rangle$ to get the outcome Bounded-error $\Longleftrightarrow \operatorname{Pr}\left[q_{x}=f(x)\right] \geq \frac{2}{3}$

- quantum query complexity $Q_{2}(f)$ is the minimal length of computation of a bounded-error algorithm

Adversary lower bounds

■ [Bennett, Bernstein, Brassard \& Vazirani, 1997]
Hybrid method

- computation starts at a fixed state $\left|\varphi_{x}^{0}\right\rangle=\left|\varphi_{y}^{0}\right\rangle$
- inner product $\left\langle\varphi_{x}^{k} \mid \varphi_{y}^{k}\right\rangle$ changes little after one query
- output states $\left|\varphi_{x}^{t}\right\rangle$ and $\left|\varphi_{y}^{t}\right\rangle$ almost orthogonal if $f(x) \neq f(y)$
\Longrightarrow number of queries must be big
■ [Ambainis, 2000]
Quantum adversary
- examine average over many input pairs

Example lower bound for parity

[Ambainis, 2000] Unweighted quantum adversary
\square Let $A=f^{-1}(0)$ and $B=f^{-1}(1)$. Pick $R \subseteq A \times B$.
■ Compute $m=\min _{x \in A}|\{y:(x, y) \in R\}|, m^{\prime}=\min _{y \in B}|\{x:(x, y) \in R\}|$, $\ell=\max _{x \in A, i \in[n]}\left|\left\{y:(x, y) \in R \& x_{i} \neq y_{i}\right\}\right|$, $\ell^{\prime}=\max _{y \in B, i \in[n]}\left|\left\{x:(x, y) \in R \& x_{i} \neq y_{i}\right\}\right|$.

- Then $Q_{2}(f)=\Omega\left(\sqrt{\frac{m m m^{\prime}}{\ell l^{\prime}}}\right)$

For parity:
■ $R=\left\{(x, y):|x|=\frac{n}{2},|y|=\frac{n}{2}+1,|y-x|=1\right\}$

- $m=\frac{n}{2}, m^{\prime}=\frac{n}{2}+1, \ell=\ell^{\prime}=1$. Hence $Q_{2}($ parity $)=\Omega(n)$

Weighted adversary lower bounds

■ [Høyer, Neerbek \& Shi, 2001]

- used spectral norm of weighted adversary matrix
- specialized for binary search and sorting

■ [Barnum, Saks \& Szegedy, 2003]

Spectral method

- general bound in terms of spectral norms
- one weighted adversary matrix
- [Ambainis, 2003]

Weighted quantum adversary

- weight scheme: $n+1$ adversary matrices

Dual adversary lower bounds

- [Laplante \& Magniez, 2003]

Kolmogorov complexity bound

- general lower bound in terms of $K(x \mid y)$
[conditional prefix-free Kolmogorov complexity $K(x \mid y)$ is the length of the shortest program P taken from a prefix-free set such that $P(y)=x$]
- subsumes all known adversary bounds

■ [Laplante \& Magniez, 2003]
"MiniMax" bound

- combinatorial version of the Kolmogorov complexity bound

Our results

■ Equality of bounds:

- spectral
- weighted
- "strong" weighted
- Kolmogorov
- MiniMax
[BSS03] [Ambainis, 2003] primal [Zhang, 2004]

\square Limitations of the method:
- $\min \left(\sqrt{C_{0}(f) n}, \sqrt{C_{1}(f) n}\right)$ for partial f
- $\sqrt{C_{0}(f) C_{1}(f)}$ for total f

Some of them were known for some of the methods.

Inclusion of adversary lower bounds

Primal versus dual bounds

■ [BSS03] Spectral Adversary

$$
S A(f)=\max _{\Gamma} \frac{\lambda(\Gamma)}{\max _{i} \lambda\left(\Gamma_{i}\right)}
$$

$\Gamma \geq 0$ symmetric with $\Gamma[x, y]=0$ when $f(x)=f(y)$
$\Gamma_{i}[x, y]=\Gamma[x, y]$ when $x_{i} \neq y_{i}$, otherwise 0
$\lambda(\Gamma)$ spectral norm of Γ
■ [LM03] MiniMax

$$
M M(f)=\min _{p_{x}} \max _{\substack{x, y \\ f(x) \neq f(y)}} \frac{1}{\sum_{i: x_{i} \neq y_{i}} \sqrt{p_{x}(i) p_{y}(i)}}
$$

p_{x} probability distribution on n bits
■ [our paper] $S A(f)=M M(f)$

- follows from duality in semidefinite programming
- two non-trivial transformations needed

Reduce MiniMax to spectral 1/2

1. $M M(f)=1 / \mu_{\max }=1 / \max _{p_{x}} \min _{\substack{x, y \\ f(x) \neq f(y)}} \sum_{i: x_{i} \neq y_{i}} \sqrt{p_{x}(i) p_{y}(i)}$
2. Define $R_{i}[x, y]=\sqrt{p_{x}(i) p_{y}(i)}$ and rewrite it as
maximize μ
subject to $\forall i: \quad R_{i}$ is non-negative symmetric rank-1,

$$
\sum_{i} R_{i} \circ I=I
$$

$$
\sum_{i} R_{i} \circ D_{i} \geq \mu F
$$

3. Relax into $\forall i: R_{i} \succeq 0$.

The best solution actually is rank-1.

Reduce MiniMax to spectral 2/2

4. By duality of semidefinite programming, $\mu_{\max }=\mu_{\min }$

$$
\left[\begin{array}{cc}
\text { maximize } \mu & \\
\text { subject to } & (\forall i) \quad R_{i} \succeq 0, \\
\sum_{i} R_{i} \circ I=I, \\
\sum_{i} R_{i} \circ D_{i} \geq \mu F .
\end{array}\right] \Longleftrightarrow\left[\begin{array}{rr}
\text { minimize } \mu=\operatorname{Tr} \Delta \\
\text { subject to } & \Delta \text { is diagonal } \\
Z \geq 0 \\
Z \cdot F=1 \\
(\forall i) \Delta-Z \circ D_{i} \succeq 0
\end{array}\right]
$$

5. (Simplified) With a little calculation, w.l.o.g. $\Delta=I$ and maximize $Z \cdot F$ subject to $\quad Z \geq 0$ ($\forall i) I-Z \circ D_{i} \succeq 0$
which is exactly the spectral bound.

Tight bounds on spectral norm

■ [Mathias, 1990] $\quad \lambda(\Gamma) \leq \max _{\Gamma \times y}^{x, y>0} r_{x}(M) c_{y}(N)$

- $\Gamma[x, y]=M[x, y] \cdot N[x, y]$ symmetric, $M, N \geq 0$ $r_{x}(M)$ the x-th row norm, $c_{y}(N)$ the y-th column norm
- The bound is tight, i.e. there always exist M, N s.t. equality is reached. [our paper] We add conditioning on $\Gamma[x, y]>0$, which was not there
\square On the other hand, $\lambda(\Gamma) \geq \delta^{T} \Gamma \delta$ for every $|\delta|=1$
■ [our paper] (Strong) weighted adversary is the spectral adversary with bounds on $\lambda(\Gamma)$ and $\lambda\left(\Gamma_{i}\right)$ expanded using the inequalities above.

Spectral versus (strong) weighted adversary

[BSS03] Spectral Adversary

$$
S A(f)=\max _{\Gamma} \frac{\lambda(\Gamma)}{\max _{i} \lambda\left(\Gamma_{i}\right)}
$$

[Amb03, Zha04] Strong Weighted Adversary
w like $\Gamma, \quad w_{i} \geq 0$ with $w_{i}[x, y]=0$ when $f(x)=f(y)$ or $x_{i}=y_{i}$ and $w_{i}[x, y] w_{i}[y, x] \geq w[x, y]^{2}$ for $x_{i} \neq y_{i}$

$$
S W A(f)=\max _{w, w_{i}} \min _{\substack{x, y, i \\ w[x, y]>0, x_{i} \neq y_{i}}} \sqrt{\frac{\sum_{y^{*}} w\left[x, y^{*}\right] \sum_{x^{*}} w\left[y, x^{*}\right]}{\sum_{y^{*}} w_{i}\left[x, y^{*}\right] \sum_{x^{*}} w_{i}\left[y, x^{*}\right]}}
$$

$\square \Gamma \rightarrow w: w[x, y]:=\Gamma[x, y] \delta[x] \delta[y]$ for $\delta=$ principal eigen-vector of Γ
$\square w \rightarrow \Gamma: \Gamma[x, y]:=\frac{w[x, y]}{\sqrt{w t(x) w t(y)}}$ for $w t(x)=\sum_{y^{*}} w\left[x, y^{*}\right]$

Limitation of all adversary methods

Easy to prove in the dual formulation! Let f be total.
$\square M M(f)=1 / \max _{p_{x}} \min _{\substack{x, y \\ f(x) \neq f(y)}} \sum_{i: x_{i} \neq y_{i}} \sqrt{p_{x}(i) p_{y}(i)}$
\square Let $\mathcal{C}_{f}(x)$ be some minimal certificate for $f(x)$.
Define $p_{x}(i)=1 /\left|\mathcal{C}_{f}(x)\right|$ if $i \in \mathcal{C}_{f}(x)$, otherwise 0.
\square For every $f(x) \neq f(y)$, there is $j \in \mathcal{C}_{f}(x) \cap \mathcal{C}_{f}(y)$ with $x_{j} \neq y_{j}$

$$
\sum_{i: x_{i} \neq y_{i}} \sqrt{p_{x}(i) p_{y}(i)} \geq \sqrt{p_{x}(j) p_{y}(j)}=\frac{1}{\sqrt{\mathcal{C}_{f}(x) \mathcal{C}_{f}(y)}} \geq \frac{1}{\sqrt{C_{0}(f) C_{1}(f)}}
$$

Hence $M M(f) \leq \sqrt{C_{0}(f) C_{1}(f)}$.

Consequences of the limitation

Cannot prove good lower bounds on problems with small certificates:
\square element distinctness: $C_{0}=2, C_{1}=n$, hence limited by $\mathrm{O}(\sqrt{n})$ tight bound $\Theta\left(n^{2 / 3}\right)$ proved by the polynomial method [ASO4]

- triangle finding: $C_{0}=n^{2}, C_{1}=3$, hence limited by $\mathrm{O}(n)$

■ verification of matrix multiplication: $C_{0}=2 n, C_{1}=n^{2}$, limited by $\mathrm{O}\left(n^{3 / 2}\right)$
\square binary And-Or trees: $C_{0}=C_{1}=\sqrt{n}$, hence limited by $\mathrm{O}(\sqrt{n})$
The complexities of the last 3 problems are open.

Conclusion

- Linear algebraic proof of equivalence of:
- spectral
- weighted
- strong weighted
\square Using semidefinite programming, equivalence with MiniMax
- With [LM03], Kolmogorov bound also fits there
- Simple proof of limitations of all bounds

Proof of spectral adversary

■ Decompose the quantum state $\left|\varphi_{x}\right\rangle=\sum_{i}|i\rangle\left|\varphi_{x, i}\right\rangle$.
Then $\left\langle\varphi_{x} \mid \varphi_{y}\right\rangle=\sum_{i}\left\langle\varphi_{x, i} \mid \varphi_{y, i}\right\rangle$.
■ After one query $\left|\varphi_{x}^{\prime}\right\rangle=\sum_{i}(-1)^{x_{i}}|i\rangle\left|\varphi_{x, i}\right\rangle$.
Then $\left\langle\varphi_{x}^{\prime} \mid \varphi_{y}^{\prime}\right\rangle=\sum_{i}(-1)^{x_{i}+y_{i}}\left\langle\varphi_{x, i} \mid \varphi_{y, i}\right\rangle$.
Hence $\left\langle\varphi_{x}^{\prime} \mid \varphi_{y}^{\prime}\right\rangle-\left\langle\varphi_{x} \mid \varphi_{y}\right\rangle=2 \sum_{i: x_{i} \neq y_{i}}\left\langle\varphi_{x, i} \mid \varphi_{y, i}\right\rangle$.
■ Define progress function $\Psi^{t}=\sum_{x, y} \Gamma[x, y] \delta_{x} \delta_{y} \cdot\left\langle\varphi_{x}^{t} \mid \varphi_{y}^{t}\right\rangle$, where δ is the principial eigen-vector of Γ with $|\delta|=1$.
$\square \Psi^{0}=\sum_{x, y} \Gamma[x, y] \delta_{x} \delta_{y} \cdot 1=\lambda(\Gamma), \quad \Psi^{T}$ is constant times smaller.
But $\Psi^{t+1}-\Psi^{t} \leq \max _{i} \lambda\left(\Gamma_{i}\right)$, hence $T \geq \frac{\lambda(\Gamma)}{\max _{i} \lambda\left(\Gamma_{i}\right)}$.

Recall $\Psi^{t}=\sum_{x, y} \Gamma[x, y] \delta_{x} \delta_{y} \cdot\left\langle\varphi_{x}^{t} \mid \varphi_{y}^{t}\right\rangle$
and $\left\langle\varphi_{x}^{t+1} \mid \varphi_{y}^{t+1}\right\rangle-\left\langle\varphi_{x}^{t} \mid \varphi_{y}^{t}\right\rangle=2 \sum_{i: x_{i} \neq y_{i}}\left\langle\varphi_{x, i} \mid \varphi_{y, i}\right\rangle$.
Define column vector $a_{i}[x]=\delta_{x}\left|\varphi_{x, i}\right|$

$$
\begin{aligned}
\Psi^{t+1}-\Psi^{t} & =2 \sum_{x, y} \sum_{i: x_{i} \neq y_{i}} \Gamma[x, y] \delta_{x} \delta_{y}\left\langle\varphi_{x, i} \mid \varphi_{y, i}\right\rangle \\
& \leq 2 \sum_{x, y} \sum_{i} \Gamma_{i}[x, y] \delta_{x} \delta_{y} \cdot\left|\varphi_{x, i}\right| \cdot\left|\varphi_{y, i}\right| \\
& =2 \sum_{i} a_{i}^{T} \Gamma_{i} a_{i} \leq 2 \sum_{i} \lambda\left(\Gamma_{i}\right)\left|a_{i}\right|^{2} \\
& \leq 2 \max _{i} \lambda\left(\Gamma_{i}\right) \sum_{i}\left|a_{i}\right|^{2}=2 \max _{i} \lambda\left(\Gamma_{i}\right) \sum_{i} \sum_{x} \delta_{x}^{2}\left|\varphi_{x, i}\right|^{2} \\
& =2 \max _{i} \lambda\left(\Gamma_{i}\right) \sum_{x} \delta_{x}^{2} \sum_{i}\left|\varphi_{x, i}\right|^{2}=2 \max _{i} \lambda\left(\Gamma_{i}\right)
\end{aligned}
$$

