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Quantum query complexity

B Want to compute Boolean function f

B Input queried by oracle calls Oy|i,b,z) = |i,b & x;,z)
Allow arbitrary unitary operations between

B Length of computation ¢ is the number of oracle calls
Final state |¢!) = U;OxU;_q ... U0 Up|0)
Measure the leftmost qubit |g,) of |¢t) to get the outcome

Bounded-error <= Pr(qy = f(x)] > 3

B quantum query complexity Q> (f)
IS the minimal length of computation of a bounded-error algorithm



Adversary lower bounds

B [Bennett, Bernstein, Brassard & Vazirani, 1997]
Hybrid method

e computation starts at a fixed state |¢}) = [¢})
o inner product (¢%|@y) changes little after one query
e output states |¢}) and |;,) almost orthogonal if f(x) # f(y)
—> number of queries must be big
B [Ambainis, 2000]
Quantum adversary

e examine average over many input pairs



Example lower bound for parity

[Ambainis, 2000] Unweighted quantum adversary
M letA=/f"10)and B=f"1(1). Pick R C A x B.
B Compute m = min,c [{y : (x,y) € R}|, m" = minyep[{x: (x,y) € R}/,

U =maXycaicin {Y : (0 Y) € R & x; # i}l
(" = max,cp je[n) \{x (x,y) € R & x; # yj}.
B Then Qy(f) = Q(\/ %)

For parity:

BR={(xy:|x|=7y=5+1Ly—x]=1}
Bm=75m=%54+1¢=1{=1. Hence Qy(parity) = Q(n)



Weighted adversary lower bounds

B [Hayer, Neerbek & Shi, 2001]
e used spectral norm of weighted adversary matrix
e specialized for binary search and sorting

B [Barnum, Saks & Szegedy, 2003]

Spectral method
e general bound in terms of spectral norms
e one weighted adversary matrix

B [Ambainis, 2003]
Weighted quantum adversary
e weight scheme: n + 1 adversary matrices



Dual adversary lower bounds

B [Laplante & Magniez, 2003]
Kolmogorov complexity bound

e general lower bound in terms of K(x|y)

[conditional prefix-free Kolmogorov complexity K(x|y) is the length of the
shortest program P taken from a prefix-free set such that P(y) = x]

e subsumes all known adversary bounds

B [Laplante & Magniez, 2003]
“MiniMax” bound

e combinatorial version of the Kolmogorov complexity bound



Our results

B Equality of bounds:

e spectral [BSS03]

e weighted [Ambainis, 2003] primal
e “strong” weighted [Zhang, 2004]

e Kolmogorov [LMO3] dual

e MiniMax [LMO3] .

B Limitations of the method:

e min( \/CO n,+/Cq(f)n) for partial f
o /Co(f)Cy(f) for total f

Some of them were known for some of the methods.




Inclusion of adversary lower bounds

hybrid

weighted

spectral

strong weighted




Primal versus dual bounds

B [BSSO03] Spectral Adversary SA(f) = max A(T)

r max; A(T;)
I' > 0 symmetric with I'[x, y] = 0 when f(x) = f(y)
I';[x,y] = T'[x,y] when x; # y;, otherwise 0
A(T") spectral norm of T
1

B [LMO3] MiniMax MM(f) = min max
Px XY : ' '
FEF(y) Ly, \/ px(i)py (i)
px probability distribution on n bits
B [our paper] SA(f) = MM(f)
e follows from duality in semidefinite programming
e two non-trivial transformations needed



Reduce MiniMax to spectral 1/2

1. MM(f) = 1/pmax = 1/“%“ min B \/Px(i)Py(i)
YA Af(y) BXiAYi

2. Define R;[x,y] = \/px(i)py(i) and rewrite it as

maximize u
subjectto Vi: R;is non-negative symmetric rank-1,
YiRjol =1,
Zi Ri O Di > “I/tF

3. Relax into Vi : R; = 0.

The best solution actually is rank-1.
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Reduce MiniMax to spectral 2/2

4. By duality of semidefinite programming, max = “min

[ maximize u
subject to

(Vi) R; =0,
I =1,

[ minimize u = TrA
subject to
Z >0

Z-F=1

(VZ) A—ZODZ'EO

9. (Simplified) With a little calculation, w.l.o.g. A = I and

maximize Z - F

subject to

Z >0
(Vi) —ZoD; =0

which is exactly the spectral bound.

A i1s diagonal
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Tight bounds on spectral norm

B [Mathias, 1990] A(I) < max rx(M)cy(N)
I'[x,y]>0
e I'lx,y] = M|x,y|- N|[x,y| symmetric, M,N >0
rx(M) the x-th row norm, ¢, (N) the y-th column norm

e The bound is tight, i.e. there always exist M, N s.t. equality is reached.

[our paper] We add conditioning on I'[x, y] > 0, which was not there

B On the other hand, A(T') > §'T4 for every |5| = 1

B [our paper] (Strong) weighted adversary is the spectral adversary with
bounds on A(T") and A(T';) expanded using the inequalities above.
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Spectral versus (strong) weighted adversary

) A(T)
IBSSO03] Spectral Adversary SA(f) = mrax max; A(T;)

[AmbO03, Zha04] Strong Weighted Adversary
w like T, w; > 0 with w;[x, y| = 0when f(x) = f(y) or x; = y;
and w;[x, y]w;[y, x| > w(x,y]? for x; # y;

SWA(f) = max min

w,w; X,Y,1
wlx,y]>0, x;7#y;

\/zy*w[x,yﬂ L [y, %]
Ty 0% 5] e iy, 1]

BT — w wxy|:=T|x,y]éx]d|y] for 6 = principal eigen-vector of I

Bw—-T: Txy]:= \/wztu([;:),fjt(y) for wt(x) = Y, wlx, y*]
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Limitation of all adversary methods

Easy to prove in the dual formulation! Let f be total.

B MM(f) = 1/max mm Z \/px(i)py(i)

B Let C¢(x) be some minimal certificate for f(x).
Define px(i) = 1/[C¢(x)[ ifi € C¢(x), otherwise 0.

W Forevery f(x) # f(y), thereis j € C¢(x) ﬂCf( ) with x; # y;

\/Px 1)py(i) \/Px 1py(j)

1

i2x; #yz \/Cf 6 W) ¢CO
Hence MM(f) < /Co(f)C1(f)
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Consequences of the limitation

Cannot prove good lower bounds on problems with small certificates:

B element distinctness: Cy = 2, C; = n, hence limited by O(\/n)
tight bound ®(12/3) proved by the polynomial method [AS04]

B triangle finding: Cy = n?, C; = 3, hence limited by O(#)
B verification of matrix multiplication: Cy = 2n, C; = 12, limited by O(13/2)
B binary And-Or trees: Cy = C; = /1, hence limited by O(/n)

The complexities of the last 3 problems are open.
15



Conclusion

B Linear algebraic proof of equivalence of:
e spectral
e Weighted

e strong weighted
B Using semidefinite programming, equivalence with MiniMax
B With [LMO3], Kolmogorov bound also fits there

B Simple proof of limitations of all bounds
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Proof of spectral adversary

B Decompose the quantum state [¢x) = ); 1)@y ;).
Then (px|py) = Li{@x,il@y,i)-

W After one query |¢}) = Xi(—1)%]i)| gy ).
Then <§0;C‘§0/y> = Zi(_l)xi+yi<¢x,i|§0y,i>-
Hence (@x|@y) — (x| Py) = 2 Vix 2y (@il Py i)-

B Define progress function ¥/ = Yoy L%, y]oxdy - <g0§\g0f/>,
where ¢ is the principial eigen-vector of I' with |§| = 1.

m Y= Y oxy T2, y]0x0y -1 = A(T), ¥T is constant times smaller.

t+1 t , , A(T)
But '™ —¥Y" <max; A(I';), hence T > max; A(T7)"
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Recall ¥/ = Y, T[x, y]0xdy - (@ 9y)

and < t—I—l‘(Pt—l-1>

Define column vector a;[x] =

\Ft—i—l

_ wyt

(@5l @y) = 2 Xix, 2y, (P il 0y i)

2Y ) T[x,y]éxdy(

VY ixi#Y;

i)

, '|§0y,i
XY 1

ZZaTFZaZ < ZZA T;)|a;|?

ZmaX/\ Z\al\z—ZmaxA
1

2max A(T 252
l

= ZmaX/\(F )



