All Quantum Adversaries Are Equivalent

Quantum query complexity

Want to compute Boolean function *f*

Input queried by oracle calls $O_x|i, b, z\rangle = |i, b \oplus x_i, z\rangle$ Allow arbitrary unitary operations between

Length of computation *t* is the number of oracle calls Final state $|\varphi_x^t\rangle = U_t O_x U_{t-1} \dots U_1 O_x U_0 |0\rangle$ Measure the leftmost qubit $|q_x\rangle$ of $|\varphi_x^t\rangle$ to get the outcome Bounded-error $\iff Pr[q_x = f(x)] \ge \frac{2}{3}$

quantum query complexity $Q_2(f)$

is the minimal length of computation of a bounded-error algorithm

Adversary lower bounds

- [Bennett, Bernstein, Brassard & Vazirani, 1997] Hybrid method
 - computation starts at a fixed state $|\varphi_x^0\rangle = |\varphi_y^0\rangle$
 - inner product $\langle \varphi_x^k | \varphi_y^k \rangle$ changes little after one query
 - output states $|\varphi_x^t\rangle$ and $|\varphi_y^t\rangle$ almost orthogonal if $f(x) \neq f(y)$
 - \implies number of queries must be big

[Ambainis, 2000]

Quantum adversary

examine average over many input pairs

Example lower bound for parity

[Ambainis, 2000] Unweighted quantum adversary

Let
$$A = f^{-1}(0)$$
 and $B = f^{-1}(1)$. Pick $R \subseteq A \times B$.

Compute
$$m = \min_{x \in A} |\{y : (x, y) \in R\}|, m' = \min_{y \in B} |\{x : (x, y) \in R\}|, \ell = \max_{x \in A, i \in [n]} |\{y : (x, y) \in R \& x_i \neq y_i\}|, \ell' = \max_{y \in B, i \in [n]} |\{x : (x, y) \in R \& x_i \neq y_i\}|.$$

Then $Q_2(f) = \Omega(\sqrt{\frac{mm'}{\ell\ell'}})$

For parity:

$$R = \{(x, y) : |x| = \frac{n}{2}, |y| = \frac{n}{2} + 1, |y - x| = 1\}$$
$$m = \frac{n}{2}, m' = \frac{n}{2} + 1, \ \ell = \ell' = 1. \text{ Hence } Q_2(\text{parity}) = \Omega(n)$$

Weighted adversary lower bounds

[Høyer, Neerbek & Shi, 2001]

- used spectral norm of weighted adversary matrix
- specialized for binary search and sorting
- [Barnum, Saks & Szegedy, 2003]

Spectral method

- general bound in terms of spectral norms
- one weighted adversary matrix

[Ambainis, 2003]

Weighted quantum adversary

• weight scheme: n + 1 adversary matrices

Dual adversary lower bounds

[Laplante & Magniez, 2003]

Kolmogorov complexity bound

- general lower bound in terms of K(x|y)
 [conditional prefix-free Kolmogorov complexity K(x|y) is the *length of the* shortest program P taken from a prefix-free set such that P(y) = x]
- subsumes all known adversary bounds
- [Laplante & Magniez, 2003]

"MiniMax" bound

• combinatorial version of the Kolmogorov complexity bound

Our results

Equality of bounds:

- spectral [BSS03]
 weighted [Ambainis, 2003]
 "strong" weighted [Zhang, 2004]
 Kolmogorov [LM03]
 MiniMax [LM03]
- Limitations of the method:
 - $\min(\sqrt{C_0(f)n}, \sqrt{C_1(f)n})$ for partial f
 - $\sqrt{C_0(f)C_1(f)}$ for total f

Some of them were known for some of the methods.

Inclusion of adversary lower bounds

Primal versus dual bounds

[BSS03] Spectral Adversary $SA(f) = \max_{\Gamma} \frac{\lambda(\Gamma)}{\max_i \lambda(\Gamma_i)}$ $\Gamma \ge 0 \text{ symmetric with } \Gamma[x, y] = 0 \text{ when } f(x) = f(y)$ $\Gamma_i[x, y] = \Gamma[x, y] \text{ when } x_i \neq y_i, \text{ otherwise } 0$ $\lambda(\Gamma) \text{ spectral norm of } \Gamma$ [LM03] MiniMax $MM(f) = \min_{p_x} \max_{\substack{x,y \\ f(x) \neq f(y)}} \frac{1}{\sum_{i:x_i \neq y_i} \sqrt{p_x(i)p_y(i)}}$

 p_x probability distribution on n bits

• [our paper] SA(f) = MM(f)

- follows from duality in semidefinite programming
- two non-trivial transformations needed

Reduce MiniMax to spectral 1/2

1.
$$MM(f) = 1/\mu_{\max} = 1 / \max_{\substack{p_x \ f(x) \neq f(y)}} \min_{\substack{x,y \ f(x) \neq f(y)}} \sum_{i:x_i \neq y_i} \sqrt{p_x(i)p_y(i)}$$

2. Define $R_i[x, y] = \sqrt{p_x(i)p_y(i)}$ and rewrite it as

maximize μ subject to $\forall i : R_i$ is non-negative symmetric rank-1, $\sum_i R_i \circ I = I$, $\sum_i R_i \circ D_i \ge \mu F$.

3. Relax into $\forall i : R_i \succeq 0$.

The best solution actually is rank-1.

Reduce MiniMax to spectral 2/2

4. By duality of semidefinite programming, $\mu_{max} = \mu_{min}$

 $\begin{bmatrix} \text{maximize } \mu \\ \text{subject to} & (\forall i) \quad R_i \succeq 0, \\ \sum_i R_i \circ I = I, \\ \sum_i R_i \circ D_i \ge \mu F. \end{bmatrix} \iff \begin{bmatrix} \text{minimize } \mu = \text{Tr}\Delta \\ \text{subject to} & \Delta \text{ is diagonal} \\ Z \ge 0 \\ Z \cdot F = 1 \\ (\forall i) \ \Delta - Z \circ D_i \succeq 0 \end{bmatrix}$

5. (Simplified) With a little calculation, w.l.o.g. $\Delta = I$ and

 $\begin{array}{ll} \text{maximize } Z \cdot F \\ \text{subject to} & Z \geq 0 \\ (\forall i) \ I - Z \circ D_i \succeq 0 \end{array}$

which is exactly the *spectral bound*.

Tight bounds on spectral norm

- $\blacksquare \text{ [Mathias, 1990]} \quad \lambda(\Gamma) \leq \max_{\substack{x,y\\ \Gamma[x,y]>0}} r_x(M)c_y(N)$
 - $\Gamma[x,y] = M[x,y] \cdot N[x,y]$ symmetric, $M, N \ge 0$ $r_x(M)$ the *x*-th row norm, $c_y(N)$ the *y*-th column norm
 - The bound is tight, i.e. there always exist M, N s.t. equality is reached. [Our paper] We add conditioning on $\Gamma[x, y] > 0$, which was not there
- On the other hand, $\lambda(\Gamma) \geq \delta^T \Gamma \delta$ for every $|\delta| = 1$

[OUR paper] (Strong) weighted adversary is the spectral adversary with bounds on $\lambda(\Gamma)$ and $\lambda(\Gamma_i)$ expanded using the inequalities above.

Spectral versus (strong) weighted adversary

[BSS03] Spectral Adversary

$$SA(f) = \max_{\Gamma} \frac{\lambda(\Gamma)}{\max_{i} \lambda(\Gamma_{i})}$$
[Amb03, Zha04] Strong Weighted Adversary
w like Γ , $w_{i} \ge 0$ with $w_{i}[x, y] = 0$ when $f(x) = f(y)$ or $x_{i} = y_{i}$
and $w_{i}[x, y]w_{i}[y, x] \ge w[x, y]^{2}$ for $x_{i} \ne y_{i}$

$$\sum_{u \ne w} w[x, u^{*}] \sum_{v \ne w} w[y, x^{*}]$$

$$SWA(f) = \max_{w,w_i} \min_{\substack{x,y,i \\ w[x,y]>0, \ x_i \neq y_i}} \sqrt{\frac{\sum_{y^*} w[x,y^*] \sum_{x^*} w[y,x^*]}{\sum_{y^*} w_i[x,y^*] \sum_{x^*} w_i[y,x^*]}}$$

□ $\Gamma \to w$: $w[x,y] := \Gamma[x,y]\delta[x]\delta[y]$ for δ = principal eigen-vector of Γ

•
$$w \to \Gamma$$
: $\Gamma[x, y] := \frac{w[x, y]}{\sqrt{wt(x)wt(y)}}$ for $wt(x) = \sum_{y^*} w[x, y^*]$

13

Limitation of all adversary methods

Easy to prove in the dual formulation! Let f be total.

$$MM(f) = 1 / \max_{p_x} \min_{\substack{x,y \ f(x) \neq f(y)}} \sum_{i:x_i \neq y_i} \sqrt{p_x(i)p_y(i)}$$

Let $C_f(x)$ be some *minimal certificate for* f(x). Define $p_x(i) = 1/|C_f(x)|$ if $i \in C_f(x)$, otherwise 0.

For every $f(x) \neq f(y)$, there is $j \in C_f(x) \cap C_f(y)$ with $x_j \neq y_j$

$$\sum_{i:x_i \neq y_i} \sqrt{p_x(i)p_y(i)} \ge \sqrt{p_x(j)p_y(j)} = \frac{1}{\sqrt{\mathcal{C}_f(x)\mathcal{C}_f(y)}} \ge \frac{1}{\sqrt{\mathcal{C}_0(f)\mathcal{C}_1(f)}}$$

Hence $MM(f) \leq \sqrt{C_0(f)C_1(f)}$.

Consequences of the limitation

Cannot prove good lower bounds on problems with small certificates:

element distinctness: $C_0 = 2$, $C_1 = n$, hence limited by $O(\sqrt{n})$ tight bound $\Theta(n^{2/3})$ proved by the polynomial method [AS04]

triangle finding: $C_0 = n^2$, $C_1 = 3$, hence limited by O(n)

verification of matrix multiplication: $C_0 = 2n$, $C_1 = n^2$, limited by $O(n^{3/2})$

binary And-Or trees: $C_0 = C_1 = \sqrt{n}$, hence limited by $O(\sqrt{n})$

The complexities of the last 3 problems are open.

Conclusion

Linear algebraic proof of equivalence of:

- spectral
- weighted
- strong weighted
- Using semidefinite programming, equivalence with MiniMax
- With [LM03], Kolmogorov bound also fits there
- Simple proof of limitations of all bounds

Proof of spectral adversary

- Decompose the quantum state $|\varphi_x\rangle = \sum_i |i\rangle |\varphi_{x,i}\rangle$. Then $\langle \varphi_x | \varphi_y \rangle = \sum_i \langle \varphi_{x,i} | \varphi_{y,i} \rangle$.
- After one query $|\varphi'_{x}\rangle = \sum_{i}(-1)^{x_{i}}|i\rangle|\varphi_{x,i}\rangle$. Then $\langle \varphi'_{x}|\varphi'_{y}\rangle = \sum_{i}(-1)^{x_{i}+y_{i}}\langle \varphi_{x,i}|\varphi_{y,i}\rangle$. Hence $\langle \varphi'_{x}|\varphi'_{y}\rangle - \langle \varphi_{x}|\varphi_{y}\rangle = 2\sum_{i:x_{i}\neq y_{i}}\langle \varphi_{x,i}|\varphi_{y,i}\rangle$.
- Define progress function $\Psi^t = \sum_{x,y} \Gamma[x, y] \delta_x \delta_y \cdot \langle \varphi_x^t | \varphi_y^t \rangle$, where δ is the principial eigen-vector of Γ with $|\delta| = 1$.
- $\Psi^{0} = \sum_{x,y} \Gamma[x,y] \delta_{x} \delta_{y} \cdot 1 = \lambda(\Gamma), \qquad \Psi^{T} \text{ is constant times smaller.}$ But $\Psi^{t+1} - \Psi^{t} \leq \max_{i} \lambda(\Gamma_{i})$, hence $T \geq \frac{\lambda(\Gamma)}{\max_{i} \lambda(\Gamma_{i})}$.

Recall $\Psi^t = \sum_{x,y} \Gamma[x,y] \delta_x \delta_y \cdot \langle \varphi_x^t | \varphi_y^t \rangle$ and $\langle \varphi_x^{t+1} | \varphi_y^{t+1} \rangle - \langle \varphi_x^t | \varphi_y^t \rangle = 2 \sum_{i:x_i \neq y_i} \langle \varphi_{x,i} | \varphi_{y,i} \rangle$. Define column vector $a_i[x] = \delta_x | \varphi_{x,i}|$

$$\begin{split} \Psi^{t+1} - \Psi^t &= 2\sum_{x,y} \sum_{i:x_i \neq y_i} \Gamma[x,y] \delta_x \delta_y \langle \varphi_{x,i} | \varphi_{y,i} \rangle \\ &\leq 2\sum_{x,y} \sum_i \Gamma_i[x,y] \delta_x \delta_y \cdot |\varphi_{x,i}| \cdot |\varphi_{y,i}| \\ &= 2\sum_i a_i^T \Gamma_i a_i \leq 2\sum_i \lambda(\Gamma_i) |a_i|^2 \\ &\leq 2\max_i \lambda(\Gamma_i) \sum_i |a_i|^2 = 2\max_i \lambda(\Gamma_i) \sum_i \sum_x \delta_x^2 |\varphi_{x,i}|^2 \\ &= 2\max_i \lambda(\Gamma_i) \sum_x \delta_x^2 \sum_i |\varphi_{x,i}|^2 = 2\max_i \lambda(\Gamma_i) \end{split}$$