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Quantum circuits

resemble classical reversible circuits:

H

X H

H

tim e

¥ Number of (qu)bits stays constant during the

computation.

¥ Reversible gates are ordered into layers and

applied in the corresponding order.

Differences:

¥ State of computation is a unit vector instead of value 0,1, . . . ,2n−1.

¥ Gate is a unitary mapping on some subspace instead of

a permutation of the values.
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Quantum fan-out

Motivation: small decoherence time.

¥ We want to minimise the depth of the circuit:

1. Gates on different qubits can be applied in parallel.

2. Commuting gates can be applied on the same qubits in parallel.

¥ We allow unbounded quantum fan-out gate:

• It behaves like a controlled-not-not-. . . -not gate:

|x〉|y1〉 . . . |yn〉 → |x〉|y1⊕x〉 . . . |yn⊕x〉.

• This is not quantum cloning!
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Physical implementation

¥ Interaction between more than two qubits in principle possible in

ion-trap and NMR models.

¥ [Fenner, 2003] Fan-out implemented by a Hamiltonian with number

of terms quadratic in n.
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[Moore, 1999] Parity in constant depth

Parity and fan-out can simulate each other.
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¥ Hadamard gates change the direction of controlled-not.

¥ Two applications of H =
1√
2

(

1 1
1 −1

)

cancel, i.e. H2 = I .
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Parameters of the circuit model

We investigate operators computed by uniform families of circuits:

¥ depth bounded by d(n), mostly constant,

¥ polynomial size,

¥ fixed basis of one-qubit gates:

• Hadamard gate H,

• Rz(ϕ) for ϕ irrational multiple of π,

and unbounded fan-out gate,

¥ described by a log-space Turing machine.
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Parallelisation method

Gates can be applied on the same qubits in parallel whenever:

1. they commute, and

2. we know the basis in which they all are diagonal

(there is always such a basis), and

3. we can efficiently change into this basis.

Advantages: Disadvantages:

smaller depth needs ancilla qubits
gates can be controlled needs basis change
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1. Changing the basis

. . .
n

k . . .T†

V1

U1 TT T†

V2

U2 T T†

Vn

Un T T†

¥ Put TT† = I between Uk and Uk+1.

¥ Take Vk = T†UkT as new operators.

They are diagonal in the computational basis.
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2. Parallelising diagonal operators

n

k

n

. . .

. . .

V1

V2

Vn

|0〉

|0〉

|0〉

|0〉

T†T

¥ Fan-out creates/destroys n entangled copies of target qubits.

¥ Vk are diagonal, so they just impose phase shifts.

¥ These phase shifts multiply and thus can be applied in parallel.
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[Moore, 1999] mod[k] in constant depth

¥ The number |x|modk can be computed in this way:

• Initialise ancilla counter y to 0, this is ⌈logk⌉ qubits.

• Each input bit xk controls one increment of y modulo k.

• At the end: y = |x|modk.

¥ The increment gates commute, so can be parallelised.

k is fixed, hence the basis change and the increments can be

computed exactly in constant depth.
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Rotation by Hamming weight

Define:

Rz(ϕ) :=

(

1 0
0 eiϕ

)

|µw
ϕ〉 :=

1+eiϕw

2
|0〉+ 1−eiϕw

2
|1〉

H Rz(ϕ)

Rz(ϕ)

Rz(ϕ)

H

. . .

. . .

|x0〉
|x1〉
|xn−1〉

|0〉

|0〉

|0〉

|µ|x|ϕ 〉

ancillas

|x0〉
|x1〉
|xn−1〉

The circuit maps |0〉 to H

(

|0〉+eiϕ|x||1〉√
2

)

= |µ|x|ϕ 〉

in depth 5 and linear size.
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Approximate circuit for Or

|µ|x|2π
m0
〉

|µ|x|2π
m1
〉

|µ|x|2π
m (m−1)

〉

. . .

|µ|y|2π
m
〉

|z〉
|x1 . . .xn〉

|00. . .0〉

|00. . .0〉

|y〉

After the first set of rotations, either |y| = 0 or |y| ≈ m
2 .

The circuit has constant depth and size O(mn) = O
(

n2 logn
)

.
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1st layer of the circuit for Or

¥ Let m= n logn. For all k∈ {0,1,2, . . . ,m−1},
compute in parallel |yk〉 = |µ|x|ϕk

〉 for angle ϕk = 2π
m ·k.

¥ If |yk〉 is measured, the expected value is

E[Yk] =

∣

∣

∣

∣

∣

1−eiϕk|x|

2

∣

∣

∣

∣

∣

2

=
1−cos(ϕk|x|)

2

and the expected Hamming weight of |y〉 = |ym−1 . . .y1y0〉 is

E[|Y|] = m
2
− 1

2

m−1

∑
k=0

cos

(

2πk
m

|x|
)

=

{

0 if |x| = 0,
m
2 if |x| 6= 0.

¥ Moreover, if |x| 6= 0, then P
[∣

∣|Y|− m
2

∣

∣ ≥ εm
]

≤ 1
2ε2m

.
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2nd layer of the circuit for Or

¥ The register |y〉 is not directly measured, but its Hamming weight

controls another rotation on a new ancilla qubit |z〉.

¥ Compute |z〉= |µ|y|2π/m〉. Let Z be the outcome after |z〉 is measured.

• If |x| = 0, then |y| = 0 and Z = 0 with certainty.

• It |x| 6= 0, then
∣

∣|y|− m
2

∣

∣ > m√
n

with probability < 1
2m/n = 1

2logn = 1
n.

• If
∣

∣|y|− m
2

∣

∣ ≤ m√
n
, then Z = 1 with high probability and

P[Z = 0] =

∣

∣

∣

∣

1+ei 2π
m |y|

2

∣

∣

∣

∣

2
≤

1−cos2π√
n

2 = O
(

1
n

)

.

¥ Hence P[Z = 0] =

{

1 if |x| = 0,

O
(

1
n

)

if |x| 6= 0.
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Remarks on the Or gate

¥ The error is bounded by 1
n and one-sided.

If we need small error 1
nc, we create c copies and compute the

exact Or of them. This can be done in logc = O(1) layers.

¥ The construction uses rotations Rz

(

π k
m

)

for arbitrary k,m.

We are only allowed to use a fixed set of one-qubits gates.

• Every rotation can be approximated with polynomially small

error by Rz

(√
2 π ·q

)

for a polynomially large q.

• q iterations can be done in parallel, so depth is preserved.
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Generalisation: exact[q] gate

¥ Or gate tests whether |x| = 0.
exact[q] gate tests whether |x| = q.

¥

H Rz(ϕ)

Rz(ϕ)

Rz(ϕ)

Rz(–ϕq)

H

. . .

. . .

|x0〉
|x1〉
|xn−1〉

|0〉

|0〉

|0〉

|0〉

|µ|x|−q
ϕ 〉

added

|x0〉
|x1〉
|xn−1〉

rotation

• Can be computed similarly to Or.

• Add rotation Rz(−ϕq) to the first layer

and obtain |µ|x|−q
ϕ 〉 instead of |µ|x|ϕ 〉.

• The second layer stays the same.

• Measure output qubit |z〉 and get

P[Z = 0] =

{

1 if |x| = q,

O
(

1
n

)

if |x| 6= q.

¥ exact[q] gates can be used for threshold[t] and counting gates.
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Arithmetics and sorting in constant depth

[Siu et al., 1993] The following functions are computed by constant

depth threshold circuits:

1. summation and multiplication of n integers,

2. division of two integers,

3. and sorting of n numbers.

The construction uses weighted threshold gates.

Quantum circuits with fan-out can approximate also the weighted

threshold gate in constant depth.
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Exact computation of Or and exact[q]

Exact reduction of Or on n qubits to Or on logn qubits:

¥ Let m= ⌈log(n+1)⌉. For all k∈ {1,2, . . . ,m},
compute in parallel |yk〉 = |µ|x|ϕk

〉 for angle ϕk = 2π
2k .

• If |x| = 0, then |yk〉 = |0〉 for each k.

• If |x| 6= 0, decompose it into |x| = 2a(2b+1) and

〈1|ya+1〉 =
1−eiϕa+1|x|

2
=

1−eiπ(2b+1)

2
=

1−eiπ

2
= 1.

¥ It follows that |x| = 0⇐⇒ |y| = 0.

The reduction is exact, the depth is O(1), and the size is O(nlogn).

After O(log∗n) iterations, the number of qubits is constant.
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Randomised vs quantum depth

Problem Randomised Quantum

Or and threshold[t] exactly Θ(logn) O(log∗n)
mod[k] exactly Θ(logn) Θ(1)

Or with error 1
n Θ(log logn) Θ(1)

threshold[t] with error 1
n Ω(log logn) Θ(1)

¥ Classical lower bounds are for the model with bounded fan-in of

Or and unbounded parity.

(Proven by the polynomial method and Yao’s principle.)

¥ Quantum upper bounds are for the model with bounded fan-in

and unbounded fan-out.

The exact algorithm for Or uses arbitrary one-qubit gates, though.
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Possible improvements?

1. We can reduce the size of circuit for Or from O
(

n2 logn
)

to O(n logn), O(n log log. . . logn), or even O(n log∗n)!

Can it be made linear?

2. Exact circuit for Or of constant depth?

3. Exact circuit for Or of sub-logarithmic depth with a fixed basis of

one-qubit gates?
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Quantum Fourier transform (QFT)

Performs Fourier transform on the amplitudes of the state:

F : |x〉 → |ψx〉 =
1√
2n

2n−1

∑
y=0

e2πixy/2n|y〉.

¥ [Shor, 1994] Compute QFT in depth O(n), size O
(

n2
)

,

without ancillas.

¥ [Cleve & Watrous, 2000] Approximate QFT with error ε
in depth O

(

logn+ log log1
ε

)

and size O
(

n logn
ε
)

.

¥ [Høyer & Špalek, 2002] Using fan-out, approximate QFT with

polynom. small error in constant depth and polynomial size.
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Shallow circuits for QFT

[Cleve & Watrous, 2000] QFT: |x〉 → |ψx〉 decomposed into

1. Fourier state construction: |x〉|0〉 . . . |0〉 → |x〉|ψx〉|0〉 . . . |0〉
2. Copying Fourier state: |x〉|ψx〉|0〉 . . . |0〉 → |x〉|ψx〉 . . . |ψx〉
3. Uncomputing phase estimation: |ψx〉 . . . |ψx〉|x〉 → |ψx〉 . . . |ψx〉|0〉
4. Uncopying Fourier state: |ψx〉 . . . |ψx〉|0〉 → |ψx〉|0〉 . . . |0〉

[CW, 00] Each step approximated in logarithmic depth.

[HŠ, 02] Each step approximated in constant depth with fan-out.
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Application of QFT

¥ Counting and threshold[t] in size O(n logn).

(Similar to mod[k] gate: parallelisation of n increments.

Increment is diagonal in the Fourier basis.)

¥ [CW, 00] Multiplication of n numbers and QFT suffice for factoring.

They both can be approximated in logarithmic depth.

Hence we can factor in polynomial time given oracle quantum

circuits of logarithmic depth (QNC1).

Assuming factoring is not in BPP, then QNC1 6⊆ BPP.

¥ [HŠ, 02] The same arguments hold also for quantum circuits with

fan-out of constant depth.
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Summary

¥ Quantum fan-out can be used for parallelisation of any commuting

operations (parity, mod[k])

¥ Or and exact[q] with bounded error in constant depth

¥ Implies arithmetics and sorting in constant depth

¥ Exact computation in log∗n depth

¥ Quantum Fourier transform approximated in constant depth
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