
Quantum Verification of Matrix Products

Robert Špalek

sr@cwi.nl

joint work with Harry Buhrman

Centre for Mathematics and Computer Science

Amsterdam, The Netherlands

Robert Špalek, CWI – Quantum Verification of Matrix Products – p.1/13

Matrix multiplication

Given n × n matrices A and B, compute C = AB.

• School algorithm: time O(n3)

Robert Špalek, CWI – Quantum Verification of Matrix Products – p.2/13

Matrix multiplication

Given n × n matrices A and B, compute C = AB.

• School algorithm: time O(n3)

• [Strassen, 1969]
Divide and conquer method: time O(n2.807)

• [Coppersmith & Winograd, 1987]
Arithmetic progression: time O(n2.376)

Robert Špalek, CWI – Quantum Verification of Matrix Products – p.2/13

Matrix multiplication

Given n × n matrices A and B, compute C = AB.

• School algorithm: time O(n3)

• [Strassen, 1969]
Divide and conquer method: time O(n2.807)

• [Coppersmith & Winograd, 1987]
Arithmetic progression: time O(n2.376)

• Best known lower bound is only Ω(n2)
The actual complexity is open

Robert Špalek, CWI – Quantum Verification of Matrix Products – p.2/13

Matrix verification

Given n × n matrices A, B, and C, decide whether C = AB.

Robert Špalek, CWI – Quantum Verification of Matrix Products – p.3/13

Matrix verification

Given n × n matrices A, B, and C, decide whether C = AB.
• [Freivalds, 1979]

Classical algorithm with time O(n2)

1. Pick a random vector x

2. Compute y = Cx and y′ = A(Bx)

3. Compare y with y′

• Matrix-vector products take time O(n2)

• Constant success probability

Robert Špalek, CWI – Quantum Verification of Matrix Products – p.3/13

Quantum computing

Computers based on laws of quantum physics
• quantum state is a superposition of classical states

|ψ〉 =
2n

−1
∑

x=0

αx|x〉, where αx ∈ C and
∑

x |αx|2 = 1

• computational step is defined by

|ψ〉 → U |ψ〉

for a unitary (i.e. norm-preserving) operator U

• outcome is observed by a measurement
the probability of seeing x is |αx|2

Pr[Ψ = x] = |αx|2

Robert Špalek, CWI – Quantum Verification of Matrix Products – p.4/13

Quantum algorithms for matrix verification

• [Grover, 1996]
Searching an unsorted database in time O(

√
n)

• [Ambainis, Buhrman, Høyer, Karpinski & Kurur, 2002]
Matrix verification in time O(n7/4) using Freivalds’s trick with
a random vector, and Grover’s search

Robert Špalek, CWI – Quantum Verification of Matrix Products – p.5/13

Quantum algorithms for matrix verification

• [Grover, 1996]
Searching an unsorted database in time O(

√
n)

• [Ambainis, Buhrman, Høyer, Karpinski & Kurur, 2002]
Matrix verification in time O(n7/4) using Freivalds’s trick with
a random vector, and Grover’s search

• [our paper]

Matrix verification in time O(n5/3)

using two random vectors
and quantum random walks

Robert Špalek, CWI – Quantum Verification of Matrix Products – p.5/13

Quantum random walks

Similar to classical random walks, but with quantum coin flips
instead of random coin flips.

Robert Špalek, CWI – Quantum Verification of Matrix Products – p.6/13

Quantum random walks

Similar to classical random walks, but with quantum coin flips
instead of random coin flips.

• [Ambainis, 2004] used quantum walks to solve
element distinctness (i.e. deciding whether all n input
numbers are distinct) in time O(n2/3)

Robert Špalek, CWI – Quantum Verification of Matrix Products – p.6/13

Quantum random walks

Similar to classical random walks, but with quantum coin flips
instead of random coin flips.

• [Ambainis, 2004] used quantum walks to solve
element distinctness (i.e. deciding whether all n input
numbers are distinct) in time O(n2/3)

• [Szegedy, 2004] generalized his technique to the problem of
finding a marked vertex in an undirected graph G in time

O

(

Tinit +
1√
δε

· (Ttest + Twalk)

)

,

◦ Tinit is time of picking a uniform superposition of vertices
◦ Ttest is time of testing whether a vertex is marked
◦ Twalk is time of walking one step over G

Robert Špalek, CWI – Quantum Verification of Matrix Products – p.6/13

Quantum random walks

Similar to classical random walks, but with quantum coin flips
instead of random coin flips.

• [Ambainis, 2004] used quantum walks to solve
element distinctness (i.e. deciding whether all n input
numbers are distinct) in time O(n2/3)

• [Szegedy, 2004] generalized his technique to the problem of
finding a marked vertex in an undirected graph G in time

O

(

Tinit +
1√
δε

· (Ttest + Twalk)

)

,

◦ δ is the spectral gap of G
◦ ε is the fraction of marked vertices

Robert Špalek, CWI – Quantum Verification of Matrix Products – p.6/13

Quantum random walks

Similar to classical random walks, but with quantum coin flips
instead of random coin flips.

• [Ambainis, 2004] used quantum walks to solve
element distinctness (i.e. deciding whether all n input
numbers are distinct) in time O(n2/3)

• [Szegedy, 2004] generalized his technique to the problem of
finding a marked vertex in an undirected graph G in time

O

(

Tinit +
1√
δε

· (Ttest + Twalk)

)

,

• Classical random walks converge in time proportional to

1

δε

Robert Špalek, CWI – Quantum Verification of Matrix Products – p.6/13

Quantum algorithm for
matrix verification

Robert Špalek, CWI – Quantum Verification of Matrix Products – p.7/13

Verification of matrix product AB = C

× =

A B C

S

T

1. Init a superposition of subsets S, T ⊆ [n] of size k = n2/3.
Read the rows of A and columns of B specified by S, T .

Robert Špalek, CWI – Quantum Verification of Matrix Products – p.8/13

Verification of matrix product AB = C

× =

A B C

S

T

1. Init a superposition of subsets S, T ⊆ [n] of size k = n2/3.
Read the rows of A and columns of B specified by S, T .

2. Repeat n/
√

k times the following:

Robert Špalek, CWI – Quantum Verification of Matrix Products – p.8/13

Verification of matrix product AB = C

× =

A B C

S

T

1. Init a superposition of subsets S, T ⊆ [n] of size k = n2/3.
Read the rows of A and columns of B specified by S, T .

2. Repeat n/
√

k times the following:
(a) Test the matrix product restricted to S × T ,

and flip the quantum phase if a wrong entry is found.

Robert Špalek, CWI – Quantum Verification of Matrix Products – p.8/13

Verification of matrix product AB = C

× =

A B C

S

T

1. Init a superposition of subsets S, T ⊆ [n] of size k = n2/3.
Read the rows of A and columns of B specified by S, T .

2. Repeat n/
√

k times the following:
(a) Test the matrix product restricted to S × T ,

and flip the quantum phase if a wrong entry is found.
(b) Walk with S, T by replacing one row and one column.

Robert Špalek, CWI – Quantum Verification of Matrix Products – p.8/13

Verification of matrix product AB = C

× =

A B C

S

T

1. Init a superposition of subsets S, T ⊆ [n] of size k = n2/3.
Read the rows of A and columns of B specified by S, T .

2. Repeat n/
√

k times the following:
(a) Test the matrix product restricted to S × T ,

and flip the quantum phase if a wrong entry is found.
(b) Walk with S, T by replacing one row and one column.

3. Measure S, T , and the submatrices,
and verify classically the restricted matrix product.

Robert Špalek, CWI – Quantum Verification of Matrix Products – p.8/13

Graph used in the algorithm

• Johnson graph J(n, k) has vertices
([n]

k

)

∪
([n]
k+1

)

and edges between sets that differ in exactly one item

subsets of size k + 1

subsets of size k

Robert Špalek, CWI – Quantum Verification of Matrix Products – p.9/13

Graph used in the algorithm

• Johnson graph J(n, k) has vertices
([n]

k

)

∪
([n]
k+1

)

and edges between sets that differ in exactly one item

subsets of size k + 1

subsets of size k

• The spectral gap of J(n, k) is δ = Θ(1
k)

Robert Špalek, CWI – Quantum Verification of Matrix Products – p.9/13

Graph used in the algorithm

• Johnson graph J(n, k) has vertices
([n]

k

)

∪
([n]
k+1

)

and edges between sets that differ in exactly one item

subsets of size k + 1

subsets of size k

• The spectral gap of J(n, k) is δ = Θ(1
k)

• Our algorithm walks on the strong product graph
J(n, k) × J(n, k), which has the same gap

Robert Špalek, CWI – Quantum Verification of Matrix Products – p.9/13

Query complexity of the algorithm

The fraction of subsets S, T containing a wrong entry is ε ≥ k2

n2 ;
the worst case is exactly one entry.

Robert Špalek, CWI – Quantum Verification of Matrix Products – p.10/13

Query complexity of the algorithm

The fraction of subsets S, T containing a wrong entry is ε ≥ k2

n2 ;
the worst case is exactly one entry. Hence we need

1√
δε

≤ 1
√

1
k · k2

n2

=
n√
k

iterations of the quantum walk of [Szegedy, 2004]

Robert Špalek, CWI – Quantum Verification of Matrix Products – p.10/13

Query complexity of the algorithm

The fraction of subsets S, T containing a wrong entry is ε ≥ k2

n2 ;
the worst case is exactly one entry. Hence we need

1√
δε

≤ 1
√

1
k · k2

n2

=
n√
k

iterations of the quantum walk of [Szegedy, 2004]

• Init: 2kn + k2

Robert Špalek, CWI – Quantum Verification of Matrix Products – p.10/13

Query complexity of the algorithm

The fraction of subsets S, T containing a wrong entry is ε ≥ k2

n2 ;
the worst case is exactly one entry. Hence we need

1√
δε

≤ 1
√

1
k · k2

n2

=
n√
k

iterations of the quantum walk of [Szegedy, 2004]

• Init: 2kn + k2

• Repeat n/
√

k times:

Robert Špalek, CWI – Quantum Verification of Matrix Products – p.10/13

Query complexity of the algorithm

The fraction of subsets S, T containing a wrong entry is ε ≥ k2

n2 ;
the worst case is exactly one entry. Hence we need

1√
δε

≤ 1
√

1
k · k2

n2

=
n√
k

iterations of the quantum walk of [Szegedy, 2004]

• Init: 2kn + k2

• Repeat n/
√

k times:
◦ Test: 0

Robert Špalek, CWI – Quantum Verification of Matrix Products – p.10/13

Query complexity of the algorithm

The fraction of subsets S, T containing a wrong entry is ε ≥ k2

n2 ;
the worst case is exactly one entry. Hence we need

1√
δε

≤ 1
√

1
k · k2

n2

=
n√
k

iterations of the quantum walk of [Szegedy, 2004]

• Init: 2kn + k2

• Repeat n/
√

k times:
◦ Test: 0
◦ Walk: 2n + 2k

Robert Špalek, CWI – Quantum Verification of Matrix Products – p.10/13

Query complexity of the algorithm

The fraction of subsets S, T containing a wrong entry is ε ≥ k2

n2 ;
the worst case is exactly one entry. Hence we need

1√
δε

≤ 1
√

1
k · k2

n2

=
n√
k

iterations of the quantum walk of [Szegedy, 2004]

• Init: 2kn + k2

• Repeat n/
√

k times:
◦ Test: 0
◦ Walk: 2n + 2k

• Verify: 0

Robert Špalek, CWI – Quantum Verification of Matrix Products – p.10/13

Query complexity of the algorithm

The fraction of subsets S, T containing a wrong entry is ε ≥ k2

n2 ;
the worst case is exactly one entry. Hence we need

1√
δε

≤ 1
√

1
k · k2

n2

=
n√
k

iterations of the quantum walk of [Szegedy, 2004]

• Init: 2kn + k2

• Repeat n/
√

k times:
◦ Test: 0
◦ Walk: 2n + 2k

• Verify: 0

Since k ≤ n, the query
complexity is

Q = O(kn + n2/
√

k)

Robert Špalek, CWI – Quantum Verification of Matrix Products – p.10/13

Query complexity of the algorithm

The fraction of subsets S, T containing a wrong entry is ε ≥ k2

n2 ;
the worst case is exactly one entry. Hence we need

1√
δε

≤ 1
√

1
k · k2

n2

=
n√
k

iterations of the quantum walk of [Szegedy, 2004]

• Init: 2kn + k2

• Repeat n/
√

k times:
◦ Test: 0
◦ Walk: 2n + 2k

• Verify: 0

Since k ≤ n, the query
complexity is

Q = O(kn + n2/
√

k)

Q is minimal for k = n2/3, and then it is O(n5/3)

Robert Špalek, CWI – Quantum Verification of Matrix Products – p.10/13

Improving the running time

The original running time is higher than the number of queries
due to multiplications of submatrices.

Robert Špalek, CWI – Quantum Verification of Matrix Products – p.11/13

Improving the running time

The original running time is higher than the number of queries
due to multiplications of submatrices. To fix it,

• We multiply both sides of the equation AB = C by random
vectors p, q from left and right. We thus verify pABq = pCq.

Robert Špalek, CWI – Quantum Verification of Matrix Products – p.11/13

Improving the running time

The original running time is higher than the number of queries
due to multiplications of submatrices. To fix it,

• We multiply both sides of the equation AB = C by random
vectors p, q from left and right. We thus verify pABq = pCq.

• This complicates analysis, because errors can cancel out,
e.g. in GF(2). However, this can be handled.

Robert Špalek, CWI – Quantum Verification of Matrix Products – p.11/13

Improving the running time

The original running time is higher than the number of queries
due to multiplications of submatrices. To fix it,

• We multiply both sides of the equation AB = C by random
vectors p, q from left and right. We thus verify pABq = pCq.

• This complicates analysis, because errors can cancel out,
e.g. in GF(2). However, this can be handled.

• Instead of keeping the submatrices of A and B in the
memory, we update matrix-vector products pA and Bq, and
the number pCq.

Robert Špalek, CWI – Quantum Verification of Matrix Products – p.11/13

Improving the running time

The original running time is higher than the number of queries
due to multiplications of submatrices. To fix it,

• We multiply both sides of the equation AB = C by random
vectors p, q from left and right. We thus verify pABq = pCq.

• This complicates analysis, because errors can cancel out,
e.g. in GF(2). However, this can be handled.

• Instead of keeping the submatrices of A and B in the
memory, we update matrix-vector products pA and Bq, and
the number pCq.

• This decreases both
1. running time of testing (pA)(Bq) = pCq

Robert Špalek, CWI – Quantum Verification of Matrix Products – p.11/13

Improving the running time

The original running time is higher than the number of queries
due to multiplications of submatrices. To fix it,

• We multiply both sides of the equation AB = C by random
vectors p, q from left and right. We thus verify pABq = pCq.

• This complicates analysis, because errors can cancel out,
e.g. in GF(2). However, this can be handled.

• Instead of keeping the submatrices of A and B in the
memory, we update matrix-vector products pA and Bq, and
the number pCq.

• This decreases both
1. running time of testing (pA)(Bq) = pCq

2. space complexity

Robert Špalek, CWI – Quantum Verification of Matrix Products – p.11/13

Matrix multiplication

• With 1 < w ≤ √
n wrong entries, the running time is faster

O(n5/3/w1/3).

Robert Špalek, CWI – Quantum Verification of Matrix Products – p.12/13

Matrix multiplication

• With 1 < w ≤ √
n wrong entries, the running time is faster

O(n5/3/w1/3).
• Let AB = C contain w non-zero entries.

Compute C as follows:
1. Set C to a zero matrix.
2. Run verification until it outputs “correct”,

recomputing wrong entries.

Robert Špalek, CWI – Quantum Verification of Matrix Products – p.12/13

Matrix multiplication

• With 1 < w ≤ √
n wrong entries, the running time is faster

O(n5/3/w1/3).
• Let AB = C contain w non-zero entries.

Compute C as follows:
1. Set C to a zero matrix.
2. Run verification until it outputs “correct”,

recomputing wrong entries.
• Total running time is

w
∑

ℓ=1

n5/3

ℓ1/3
= O(n5/3w2/3) = O(n2) for w ≤ √

n .

Robert Špalek, CWI – Quantum Verification of Matrix Products – p.12/13

Matrix multiplication

• With 1 < w ≤ √
n wrong entries, the running time is faster

O(n5/3/w1/3).
• Let AB = C contain w non-zero entries.

Compute C as follows:
1. Set C to a zero matrix.
2. Run verification until it outputs “correct”,

recomputing wrong entries.
• Total running time is

w
∑

ℓ=1

n5/3

ℓ1/3
= O(n5/3w2/3) = O(n2) for w ≤ √

n .

• However, for w >
√

n, the speedup of verification is smaller,
and the classical algorithm by [Indyk, 2005] with time
O(n2 + nw) takes over.

Robert Špalek, CWI – Quantum Verification of Matrix Products – p.12/13

Summary and open problems

• Matrix verification in O(n5/3) queries using quantum walks
• Improved running time and space complexity using two

random vectors
• Verification is faster with many wrong entries
• Fast matrix multiplication

Robert Špalek, CWI – Quantum Verification of Matrix Products – p.13/13

Summary and open problems

• Matrix verification in O(n5/3) queries using quantum walks
• Improved running time and space complexity using two

random vectors
• Verification is faster with many wrong entries
• Fast matrix multiplication

• Can we multiply dense matrices faster than classically?
• Matching lower bound?

Robert Špalek, CWI – Quantum Verification of Matrix Products – p.13/13

	Matrix multiplication
	Matrix verification
	Quantum computing
	Quantum algorithms for matrix verification
	Quantum random walks
	Huge Quantum algorithm for \ matrix verification
	Verification of matrix product $A B = C$
	Graph used in the algorithm
	Query complexity of the algorithm
	Improving the running time
	Matrix multiplication
	Summary and open problems

