Quantum Verification of Matrix Products

Robert Spalek

sr@w . nl

joint work with Harry Buhrman
Centre for Mathematics and Computer Science

Amsterdam, The Netherlands

|
Robert Spalek, CWI — Quantum Verification of Matrix Products — p.1/13

Matrix multiplication

Given n x n matrices A and B, compute C' = AB.

* School algorithm: time O(n?)

|
Robert Spalek, CWI — Quantum Verification of Matrix Products — p.2/13

Matrix multiplication

Given n x n matrices A and B, compute C' = AB.
* School algorithm: time O(n?)

* [Strassen, 1969]
Divide and conquer method: time O(n?807)

* [Coppersmith & Winograd, 1987]
Arithmetic progression: time O(n?37°)

|
Robert Spalek, CWI — Quantum Verification of Matrix Products — p.2/13

Matrix multiplication

Given n x n matrices A and B, compute C' = AB.
* School algorithm: time O(n?)

* [Strassen, 1969]
Divide and conquer method: time O(n?807)

* [Coppersmith & Winograd, 1987]
Arithmetic progression: time O(n?37°)

* Best known lower bound is only Q(n?)
The actual complexity is open

|
Robert Spalek, CWI — Quantum Verification of Matrix Products — p.2/13

Matrix verification

Given n x n matrices A, B, and C, decide whether C = AB.

|
Robert Spalek, CWI — Quantum Verification of Matrix Products — p.3/13

Matrix verification

Given n x n matrices A, B, and C, decide whether C = AB.

* [Freivalds, 1979]
Classical algorithm with time O(n?)

1. Pick a random vector x
2. Compute y = Cz and vy = A(Bx)
3. Compare y with ¢/
* Matrix-vector products take time O(n?)
* Constant success probability

|
Robert Spalek, CWI — Quantum Verification of Matrix Products — p.3/13

Quantum computing

Computers based on laws of quantum physics
* quantum state is a superposition of classical states

[¥) = Z az|z), wherea, e Cand Y |a,|* =1
=0

* computational step is defined by

[4) = Uly)

for a unitary (i.e. norm-preserving) operator U

® outcome is observed by a measurement
the probability of seeing z is |a,|?

Pr[U = z] = |ay|?

|
Robert Spalek, CWI — Quantum Verification of Matrix Products — p.4/13

Quantum algorithms for matrix verification

* [Grover, 1996]
Searching an unsorted database in time O(y/n)

* [Ambainis, Buhrman, Hagyer, Karpinski & Kurur, 2002]

Matrix verification in time O(n"/4) using Freivalds’s trick with
a random vector, and Grover’s search

|
Robert Spalek, CWI — Quantum Verification of Matrix Products — p.5/13

Quantum algorithms for matrix verification

* [Grover, 1996]
Searching an unsorted database in time O(y/n)

* [Ambainis, Buhrman, Hagyer, Karpinski & Kurur, 2002]

Matrix verification in time O(n"/4) using Freivalds’s trick with
a random vector, and Grover’s search

* [our paper]
Matrix verification in time O(n?/3)

using two random vectors
and quantum random walks

|
Robert Spalek, CWI — Quantum Verification of Matrix Products — p.5/13

Quantum random walks

Similar to classical random walks, but with quantum coin flips
Instead of random coin flips.

|
Robert Spalek, CWI — Quantum Verification of Matrix Products — p.6/13

Quantum random walks

Similar to classical random walks, but with quantum coin flips
Instead of random coin flips.

* [Ambainis, 2004] used quantum walks to solve
element distinctness (i.e. deciding whether all n input

numbers are distinct) in time O(n?/3)

|
Robert Spalek, CWI — Quantum Verification of Matrix Products — p.6/13

Quantum random walks

Similar to classical random walks, but with quantum coin flips
Instead of random coin flips.

* [Ambainis, 2004] used quantum walks to solve
element distinctness (i.e. deciding whether all n input
numbers are distinct) in time O(n?/3)

* [Szegedy, 2004] generalized his technique to the problem of
finding a marked vertex in an undirected graph G in time

1
O (Tinit + \/—5—5 : (Ttest + TW&]k)) ’
° Tinit 1S time of picking a uniform superposition of vertices
° Tiest IS time of testing whether a vertex is marked

° Twalk 1S time of walking one step over G

Robert Spalek, CWI — Quantum Verification of Matrix Products — p.6/13

Quantum random walks

Similar to classical random walks, but with quantum coin flips
Instead of random coin flips.

* [Ambainis, 2004] used quantum walks to solve
element distinctness (i.e. deciding whether all n input

numbers are distinct) in time O(n?/3)

* [Szegedy, 2004] generalized his technique to the problem of
finding a marked vertex in an undirected graph G in time

1
O (ﬂnjt - \/—(5_5 : (Ttest + TW&H()) ’

° ¢ Is the spectral gap of G
° ¢ 1Is the fraction of marked vertices

|
Robert Spalek, CWI — Quantum Verification of Matrix Products — p.6/13

Quantum random walks

Similar to classical random walks, but with quantum coin flips
Instead of random coin flips.

* [Ambainis, 2004] used quantum walks to solve
element distinctness (i.e. deciding whether all n input

numbers are distinct) in time O(n?/3)

* [Szegedy, 2004] generalized his technique to the problem of
finding a marked vertex in an undirected graph G in time

1
O (ﬂnjt - \/—5—5 : (Ttest + Tvvalk)) ’

* Classical random walks converge in time proportional to

1

de

|
Robert Spalek, CWI — Quantum Verification of Matrix Products — p.6/13

Quantum algorithm for
matrix verification

Robert Spalek, CWI — Quantum Verification of Matrix Products — p.7/13

Verification of matrix product AB = C

A B

w 7
T

1. Init a superposition of subsets S, T C [n] of size k = n?/3.
Read the rows of A and columns of B specified by S, T'.

|
Robert Spalek, CWI — Quantum Verification of Matrix Products — p.8/13

Verification of matrix product AB = C

A B

w 7
T

1. Init a superposition of subsets S, T C [n] of size k = n?/3.
Read the rows of A and columns of B specified by S, T'.

2. Repeat n/Vk times the following:

|
Robert Spalek, CWI — Quantum Verification of Matrix Products — p.8/13

Verification of matrix product AB = C

A B

x
T
1. Init a superposition of subsets S, T C [n] of size k = n?/3.
Read the rows of A and columns of B specified by S, T'.

2. Repeat n/Vk times the following:

(a) Test the matrix product restricted to S x T,
and flip the quantum phase if a wrong entry is found.

|
Robert Spalek, CWI — Quantum Verification of Matrix Products — p.8/13

Verification of matrix product AB = C

A B

w 7
T

1. Init a superposition of subsets S, T C [n] of size k = n?/3.
Read the rows of A and columns of B specified by S, T'.

2. Repeat n/Vk times the following:

(a) Test the matrix product restricted to S x T,
and flip the quantum phase if a wrong entry is found.

(b) Walk with S, T by replacing one row and one column.

|
Robert Spalek, CWI — Quantum Verification of Matrix Products — p.8/13

Verification of matrix product AB = C

A B

w 7
T

1. Init a superposition of subsets S, T C [n] of size k = n?/3.
Read the rows of A and columns of B specified by S, T'.

2. Repeat n/Vk times the following:

(a) Test the matrix product restricted to S x T,
and flip the quantum phase if a wrong entry is found.

(b) Walk with S, T by replacing one row and one column.

3. Measure S,T’, and the submatrices,

and verify classically the restricted matrix product.
|

|
Robert Spalek, CWI — Quantum Verification of Matrix Products — p.8/13

Graph used in the algorithm

 Johnson graph J(n, k) has vertices ([Z]) U (k[:f]l)

and edges between sets that differ in exactly one item

subsets of size k + 1

subsets of size k

|
Robert Spalek, CWI — Quantum Verification of Matrix Products — p.9/13

Graph used in the algorithm

 Johnson graph J(n, k) has vertices ([Z]) U (k[fﬂl)

and edges between sets that differ in exactly one item

subsets of size k + 1

subsets of size k

* The spectral gap of J(n, k) is é = O(z%)

=

|
Robert Spalek, CWI — Quantum Verification of Matrix Products — p.9/13

Graph used in the algorithm

 Johnson graph J(n, k) has vertices ([Z]) U (k[fﬂl)

and edges between sets that differ in exactly one item

subsets of size k + 1

subsets of size k

* The spectral gap of J(n, k) is d = @(%)

* Our algorithm walks on the strong product graph
J(n, k) x J(n, k), which has the same gap

|
Robert Spalek, CWI — Quantum Verification of Matrix Products — p.9/13

Query complexity of the algorithm

The fraction of subsets S, T containing a wrong entry is € > ﬁ—z;
the worst case Is exactly one entry.

|
Robert Spalek, CWI — Quantum Verification of Matrix Products — p.10/13

Query complexity of the algorithm

The fraction of subsets S, 7" containing a wrong entry is € > fl—z;
the worst case Is exactly one entry. Hence we need

1 1 n
_S —

Voe L. k2 vk

n2

iterations of the quantum walk of [Szegedy, 2004]

|
Robert Spalek, CWI — Quantum Verification of Matrix Products — p.10/13

Query complexity of the algorithm

The fraction of subsets S, 7" containing a wrong entry is € > fl—z;
the worst case Is exactly one entry. Hence we need

1 1 n
_S —

Voe L. k2 vk

n2

iterations of the quantum walk of [Szegedy, 2004]
° |nit: 2kn + k?

|
Robert Spalek, CWI — Quantum Verification of Matrix Products — p.10/13

Query complexity of the algorithm

The fraction of subsets S, 7" containing a wrong entry is € > fl—z;
the worst case Is exactly one entry. Hence we need

1 1 n
_S —

Voe L. k2 vk

n2

iterations of the quantum walk of [Szegedy, 2004]

° |nit: 2kn + k?
* Repeat n/vk times:

|
Robert Spalek, CWI — Quantum Verification of Matrix Products — p.10/13

Query complexity of the algorithm

The fraction of subsets S, 7" containing a wrong entry is € > fl—z;
the worst case Is exactly one entry. Hence we need

1 1 n
_S —

Voe L. k2 vk

n2

iterations of the quantum walk of [Szegedy, 2004]

° |nit: 2kn + k2

* Repeat n/vk times:
° Test: 0

|
Robert Spalek, CWI — Quantum Verification of Matrix Products — p.10/13

Query complexity of the algorithm

The fraction of subsets S, 7" containing a wrong entry is € > fl—z;
the worst case Is exactly one entry. Hence we need

1 1 n
_S —

Voe L. k2 vk

n2

iterations of the quantum walk of [Szegedy, 2004]

° |nit: 2kn + k2

* Repeat n/vk times:
° Test: 0
° Walk: 2n + 2k

|
Robert Spalek, CWI — Quantum Verification of Matrix Products — p.10/13

Query complexity of the algorithm

The fraction of subsets S, 7" containing a wrong entry is € > fl—z;
the worst case Is exactly one entry. Hence we need

1 1 n
_S —

Voe L. k2 vk

n2

iterations of the quantum walk of [Szegedy, 2004]

° Init: 2kn + k2

* Repeat n/vk times:
° Test: 0
o Walk: 2n + 2k

* Verify: 0

|
Robert Spalek, CWI — Quantum Verification of Matrix Products — p.10/13

Query complexity of the algorithm

The fraction of subsets S, T containing a wrong entry Is € > ,fj—i;

the worst case Is exactly one entry. Hence we need

B S
Vioe L & vk
iterations of the quantum walk of [Szegedy, 2004]
° |nit: 2kn + k?)
° Repeat n/vk times: Since k < n, the query
° Test: 0 0 complexity is
° Walk: 2n + 2k Q = O(kn +n?/Vk)
* Verify: 0)

Robert Spalek, CWI — Quantum Verification of Matrix Products — p.10/13

Query complexity of the algorithm

The fraction of subsets S, T containing a wrong entry Is € > 5;—2;

the worst case Is exactly one entry. Hence we need

B S
Vioe L & vk
iterations of the quantum walk of [Szegedy, 2004]
° |nit: 2kn + k?)
° Repeat n/vk times: Since k < n, the query
° Test: 0 0 complexity is
° Walk: 2n + 2k Q = O(kn +n?/Vk)
* Verify: 0)

Q is minimal for k = n?/3, and then it is O(n®/3)

Robert Spalek, CWI — Quantum Verification of Matrix Products — p.10/13

Improving the running time

The original running time is higher than the number of queries
due to multiplications of submatrices.

|
Robert Spalek, CWI — Quantum Verification of Matrix Products — p.11/13

Improving the running time

The original running time is higher than the number of queries
due to multiplications of submatrices. To fix it,

* We multiply both sides of the equation AB = C' by random
vectors p, g from left and right. We thus verify pABq = pCy.

|
Robert Spalek, CWI — Quantum Verification of Matrix Products — p.11/13

Improving the running time

The original running time is higher than the number of queries
due to multiplications of submatrices. To fix it,

* We multiply both sides of the equation AB = C' by random
vectors p, g from left and right. We thus verify pABq = pCy.

* This complicates analysis, because errors can cancel out,
e.g. in GIF(2). However, this can be handled.

|
Robert Spalek, CWI — Quantum Verification of Matrix Products — p.11/13

Improving the running time

The original running time is higher than the number of queries
due to multiplications of submatrices. To fix it,

* We multiply both sides of the equation AB = C' by random
vectors p, g from left and right. We thus verify pABq = pCy.

* This complicates analysis, because errors can cancel out,
e.g. in GIF(2). However, this can be handled.

* |Instead of keeping the submatrices of A and B in the

memory, we update matrix-vector products pA and Bg, and
the number pCly.

|
Robert Spalek, CWI — Quantum Verification of Matrix Products — p.11/13

Improving the running time

The original running time is higher than the number of queries
due to multiplications of submatrices. To fix it,

* We multiply both sides of the equation AB = C' by random
vectors p, g from left and right. We thus verify pABq = pCy.

* This complicates analysis, because errors can cancel out,
e.g. in GIF(2). However, this can be handled.

* |Instead of keeping the submatrices of A and B in the

memory, we update matrix-vector products pA and Bg, and
the number pCly.

* This decreases both
1. running time of testing (pA)(Bq) = pCyq

|
Robert Spalek, CWI — Quantum Verification of Matrix Products — p.11/13

Improving the running time

The original running time is higher than the number of queries
due to multiplications of submatrices. To fix it,

* We multiply both sides of the equation AB = C' by random
vectors p, g from left and right. We thus verify pABq = pCy.

* This complicates analysis, because errors can cancel out,
e.g. in GIF(2). However, this can be handled.

* |Instead of keeping the submatrices of A and B in the

memory, we update matrix-vector products pA and Bg, and
the number pCly.

* This decreases both
1. running time of testing (pA)(Bq) = pCyq
2. space complexity

|
Robert Spalek, CWI — Quantum Verification of Matrix Products — p.11/13

Matrix multiplication

* With 1 < w < 4/n wrong entries, the running time is faster
O(nd/3 Jw'/3).

|
Robert Spalek, CWI — Quantum Verification of Matrix Products — p.12/13

Matrix multiplication

* With 1 < w < 4/n wrong entries, the running time is faster
O(nd/3 Jw'/3).

° Let AB = C contain w non-zero entries.
Compute C' as follows:
1. Set C to a zero matrix.

2. Run verification until it outputs “correct”,
recomputing wrong entries.

|
|
Robert Spalek, CWI — Quantum Verification of Matrix Products — p.12/13

Matrix multiplication

* With 1 < w < 4/n wrong entries, the running time is faster
O(nd/3 Jw'/3).

° Let AB = C contain w non-zero entries.
Compute C' as follows:
1. Set C to a zero matrix.

2. Run verification until it outputs “correct”,
recomputing wrong entries.

* Total running time is

S I = O i) = 0(n?) for w < i
/=1

|
|
Robert Spalek, CWI — Quantum Verification of Matrix Products — p.12/13

Matrix multiplication

* With 1 < w < 4/n wrong entries, the running time is faster
O(nd/3 Jw'/3).

* Let AB = C contain w non-zero entries.
Compute C' as follows:
1. Set C' to a zero matrix.

2. Run verification until it outputs “correct”,
recomputing wrong entries.

* Total running time is

/=1

* However, for w > +/n, the speedup of verification is smaller,
and the classical algorithm by [Indyk, 2005] with time
O(n? + nw) takes over.

|
Robert Spalek, CWI — Quantum Verification of Matrix Products — p.12/13

Summary and open problems

* Matrix verification in O(n®/3) queries using quantum walks

* Improved running time and space complexity using two
random vectors

* Verification is faster with many wrong entries
* Fast matrix multiplication

|
Robert Spalek, CWI — Quantum Verification of Matrix Products — p.13/13

Summary and open problems

* Matrix verification in O(n®/3) queries using quantum walks

* Improved running time and space complexity using two
random vectors

* Verification is faster with many wrong entries
* Fast matrix multiplication

* Can we multiply dense matrices faster than classically?
* Matching lower bound?

|
Robert Spalek, CWI — Quantum Verification of Matrix Products — p.13/13

	Matrix multiplication
	Matrix verification
	Quantum computing
	Quantum algorithms for matrix verification
	Quantum random walks
	Huge Quantum algorithm for \ matrix verification
	Verification of matrix product $A B = C$
	Graph used in the algorithm
	Query complexity of the algorithm
	Improving the running time
	Matrix multiplication
	Summary and open problems

