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Quantum query complexity

Given a function f: {0, }"—{0, [ }™
Task: compute f(x)

Query complexity Qe(f) is the minimal T such that there exists a
T-query quantum algorithm that computes f(x) with error
probability at most € on each input x

Query is a unitary oracle operator mapping

O :lz)1li)olwyw — (=1)%|z)|i)[w)
The algorithm can perform arbitrary unitary operations on its
workspace and the query register for free

At the end, it measures its workspace, outputs an outcome, and
then we measure the input register and verify the outcome
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Adversary bounds

lower-bound quantum query complexity

Idea:

® computation starts in a fixed state
[©2) = |©) independent of input x

f(x)
° Onte qlilel”)' SCRY* " the bound on T depends
<90x |90y> by a s on the average
on the average

at the end, <¢£‘¢5> must be small for changed little
each input pair x, y with f(x)#f(y),
otherwise the algorithm cannot
distinguish x and y

distance has

-
O distance must be large

= T must be large
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Spectral method

® Define a progress function in time t:
W' = (T, pp)

® pi*is reduced density matrix of the input register at time t

® [ is the adversary matrix for f:
Hermitian and [, = 0 when f(x)=f(y)

® Run the computation on certain input superposition

® Upper-bound the difference W !-W¢

= | eads to the bound -
spectral norm

Adv.(f) = (5 = VelT= 9 ) max 1

r max; |||

sub-matrix of [ with zeroes
when x;=y;
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Origin of our method

Problem: search k ones in an n-bit inPut.

[ Ambainis ’05] new method based on analgsis of eigenspaces of the
reduced clensity matrix of the inPut regis’cer

* W (kn)) queries are needed even for success 2-0K

* rel:)roving the result of [Klauck, S. & de Wolf 04 ]
based on the Polgnomial method.

Pros:

* tight bound not relging on Polgnomial aPProximation theorg

Cons:
+ tailored to one sPeciﬁc Problem

* technical, complicated, non-modular ProcmC without much intuition
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Origin of our method

[Ambainis ’05] new method based on analgsis of eigensl:)aces of the
reduced clensitg matrix of the inl:)ut register

We imProve his method as follows:
* Put it into the well-studied aclversarg framework
* generalize it to all functions

* Provicle additional inturtion, modularize the ProoF, and

seParate the quantum and combinatorial Part

However, the underlging combinatorial analgsis stays the same and we

cannot omit any single detall
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Multiplicative adversary matrix

B Eigenvalues of I’

for every z € {0, 1}, ||F;: Mpad|| = N

® |t says that each vector (= superposition
of inputs) from the bad subspace has short
projection onto each F;

If the final state of the input register lies in >0

the bad subspace, then the algorithm has

success probability at most N regardless of

the outcome it outputs. Typically, n is the

trivial success probability of a random 0 1 -
choice. bad subspace
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very simple:
Consider algorithm A running in time A

computing function f with success [Tl Re ] Rle Il olgels Tea el
probability at least N+C, ©3)

t+l
and multiplicative adversary (I',\) W is a"e'”agg of SOCﬁ';‘>PI’0ducts of
t+1 i

® We run A on input R B Re =t Ny The unitaries cancel and the oracle
calls can be absorbed into [, forming

| WO=| Oil O;, where
2. each WtH/Wt < maxX; ||OiFOi F'|| O; : |x) — (=1)%|x)

3. WT2 A TY16
e Proof:
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B Eigenvalues of I’

® Consider algorithm A running in time T,
computing functj
probability at lez
and multiplicativ

Lower-bound area under curve
(T, p7) = X - Plgood]

M |n the bad subspace, the success
® We run A on inf probability is atpmost N, in the
| WO=]| good subspace it is at most |. By
[Bernstein & Vazirani ’93],
2. each W1/ \ NP W.p. at most

3. WT2 A TY16 1+ 4v/ Plgood] 01 2 . Kk
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B Eigenvalues of I’

Consider algorithm A running in time T,
computing function f with success

probability at least N+C,
and multiplicative adversary (I',\)

® We run A on input 0 with [0=0. Then:
|. WO=]|
2. each WH!/Wt < max; ||OiO:i ||

3.WTZ>\C2/|6 0O I 2 k
bad subspace  good

¢ Proof: g.e.d.
® We get lower bound T 2 MAdvn¢(f) with

log(A(?/16)
MAd =
Vn’C(f> ?%,8;\})( log(maxz- HOZFOZF_l ||)

" Prob. dist. of p}r
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® How to efficiently upper-bound 108
|OTO; -] 2 |

® The eigenspaces of the conjugated O/l O;  75¢
overlap different eigenspaces of [, and we
want them to cancel as much as possible 5.9
so that the norm above is small
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Block-diagonalization of [ and O;

® How to efficiently upper-bound
||OiFOi . F'|| !
® The eigenspaces of the conjugated Oil O,

overlap different eigenspaces of [, and we
want them to cancel as much as possible
so that the norm above is small

® |ike here...

® we still need the condition on the bad
subspace

® This makes the multiplicative adversary
matrices hard to design
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® By block-diagonalizing [ and O; together,
we can bound each block separately

® Since the eigenvalues in one block don’t
differ so much like in the whole matrix,
we can use some bounds, such as

B

. .. _1 .
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® The final multiplicative adversary bound is

)\min(r(k))
MAdv, ¢(f) > maxlog(==¢*)) - min

® You don’t have to use the finest block-diagonalization.

Any is good, including using the whole space as one block, but
then the obtained lower bound need not be very strong.
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Example: Lower bound for search

® Given an n-bit string with exactly =~ ® The success probability in the
one |. Task: find it. bad subspace (containing v) is

MAdV|/n,§(Searchn) = Q(CZ\/I”I) N= | /n.

® Define v=(l,...,,l) of length n and ° ;\Js§ jrust_olne bc:oc#. '<I'h/e\/n
vi=(l,..., I, I-n, 1,...,1), normalized min(1) = 1 and [[i{|<q/Nn.

to length |. Note that v_Lyv.. ® The final bound is

®let I'=(1—q)lv)(v|+ql log(75¢*A) -
[v=vand[vi=qvi,i.e.
v and v; are eigenvectors. 000001
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® Given an n-bit string with k ones. Task: find them.
® MAdVexp(-0(k).exp-0()(Searchin) = Q(V(kn))

® The multiplicative adversary matrix [ is a combinatorial matrix,
whose entries [ xy only depends on |xNyl|.

® The k+1| eigenspaces can be indexed by “knowledge”, i.e. how many
ones has the algorithm already found, with eigenvectors being
superpositions of all strings consistent with some pattern of ones.

® Tedious combinatorial calculation done by [Ambainis '05]
and we can reuse it

® One can use [=AX, where A is the additive adversary matrix (much
simpler). Don’t know any other example where this holds.




Open: element distinctness

Given n number. Task: are they distinct?

The quantum query complexity is known to be 8(n?3)
[Ambainis ’04, Aaronson & Shi ’04], where the lower
bound is proved using the polynomial method.

Having an adversary bound of either type would make the
bound composable and give bounds for other functions.

Can one use the structure of the automorphism group of the
function to design the structure of the eigenspaces!?




Direct product theorem

® The multiplicative adversary bound satisfies an unconditional
strong direct product theorem:

MAAv, o) cam (f*) = Q(k - MAdv, ¢(f))
® Proof: take the tensor power [®k and A¥'!%, Both 1 and T go
down exponentially.

® For Search and the OR function our calculations are simple,
hence we get a new and elementary proof of the time-space
tradeoffs for matrix-vector multiplication and sorting from

[Klauck, S. & de Wolf *04].

® Maybe our method is so hard to use precisely because it gives
a free SDPT, which is usually very hard to prove.
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