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• Given a function f: {0,1}n→{0,1}m

• Task: compute f(x)

• Query complexity Qε(f) is the minimal T such that there exists a 
T-query quantum algorithm that computes f(x) with error 
probability at most ε on each input x

• Query is a unitary oracle operator mapping

• The algorithm can perform arbitrary unitary operations on its 
workspace and the query register for free

• At the end, it measures its workspace, outputs an outcome, and 
then we measure the input register and verify the outcome

Quantum query complexity

O : |x〉I |i〉Q|w〉W → (−1)xi |x〉|i〉|w〉
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lower-bound quantum query complexity

• computation starts in a fixed state
                  independent of input x

• one query can only change
             by a small amount,
on the average

• at the end,               must be small for 
each input pair x, y with f(x)≠f(y), 
otherwise the algorithm cannot 
distinguish x and y

Idea:

 ➡ T must be large

the bound on T depends 
on the average
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History of the adversary method
[Bennett, Bernstein, Brassard & Vazirani ’94] 
hybrid method

[Ambainis ’00] adversary method

[Høyer, Neerbek & Shi ’02]
early weighted method

[Barnum, Saks & Szegedy ’03]
spectral method

[Ambainis ’03]
weighted adversary method

[Høyer, Lee & S. ’07]
negative weights
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• Define a progress function in time t:

• ρIt is reduced density matrix of the input register at time t

• Γ is the adversary matrix for f:
Hermitian and Γx,y = 0 when f(x)=f(y)

• Run the computation on certain input superposition

• Upper-bound the difference Wt+1-Wt

➡ Leads to the bound

Spectral method

W t = 〈Γ, ρt
I〉

Advε(f) =
(

1
2
−

√
ε(1− ε)

)
max

Γ

‖Γ‖
maxi ‖Γi‖

spectral norm

sub-matrix of Γ with zeroes
when xi=yi
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Ω(√(kn)) queries are needed even for success 2-O(k)

reproving the result of [Klauck, S. & de Wolf ’04]
based on the polynomial method.

Pros:

tight bound not relying on polynomial approximation theory

Cons:

tailored to one specific problem

technical, complicated, non-modular proof without much intuition



Origin of our method



Origin of our method

[Ambainis ’05] new method based on analysis of eigenspaces of the 
reduced density matrix of the input register



Origin of our method

[Ambainis ’05] new method based on analysis of eigenspaces of the 
reduced density matrix of the input register

We improve his method as follows:

put it into the well-studied adversary framework

generalize it to all functions

provide additional intuition, modularize the proof, and
separate the quantum and combinatorial part



Origin of our method

[Ambainis ’05] new method based on analysis of eigenspaces of the 
reduced density matrix of the input register

We improve his method as follows:

put it into the well-studied adversary framework

generalize it to all functions

provide additional intuition, modularize the proof, and
separate the quantum and combinatorial part

However, the underlying combinatorial analysis stays the same and we 
cannot omit any single detail
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• adversary matrix Γ has different semantics then before

• We upper-bound the ratio  Wt+1/Wt, not difference

• The bound looks similar, however, it requires common block-
diagonalization of Γ and the input oracle Oi, and therefore is 
extremely hard to compute
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λmin(M) is the smallest
eigenvalue of M
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• Πbad is a projector onto the bad 

subspace, which is the direct sum of all 
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• It says that each vector (= superposition 
of inputs) from the bad subspace has short 
projection onto each Fz

• If the final state of the input register lies in 
the bad subspace, then the algorithm has 
success probability at most η regardless of 
the outcome it outputs.  Typically, η is the 
trivial success probability of a random 
choice. bad subspace
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• Consider algorithm A running in time T, 
computing function f with success 
probability at least η+ζ,
and multiplicative adversary (Γ,λ)

• We run A on input δ with Γδ=δ.  Then:

1. W0=1

2. each Wt+1/Wt ≤ maxi ||OiΓOi Γ-1||

3. WT ≥ λ ζ2/16

• Proof:

Evolution of the progress function

very simple:

Wt is average of scalar products of

Wt+1 is average of scalar products of

The unitaries cancel and the oracle 
calls can be absorbed into Γ, forming 
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• Consider algorithm A running in time T, 
computing function f with success 
probability at least η+ζ,
and multiplicative adversary (Γ,λ)

• We run A on input δ with Γδ=δ.  Then:

1. W0=1

2. each Wt+1/Wt ≤ maxi ||OiΓOi Γ-1||

3. WT ≥ λ ζ2/16

• Proof:

• We get lower bound T ≥ MAdvη,ζ(f) with
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• How to efficiently upper-bound
||OiΓOi · Γ-1|| ?

• The eigenspaces of the conjugated OiΓOi 
overlap different eigenspaces of Γ, and we 
want them to cancel as much as possible 
so that the norm above is small

• like here...

• we still need the condition on the bad 
subspace

• This makes the multiplicative adversary 
matrices hard to design
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• By block-diagonalizing Γ and Oi together, 
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• Since the eigenvalues in one block don’t 
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sub-matrix of Γ (k) with zeroes
when xi=yi
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• The final multiplicative adversary bound is

you pick the success probability η
of a random choice, and
additional success ζ
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• The final multiplicative adversary bound is

maximize over all
multiplicative adversaries
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log( 1
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λ is proportional to ||Γ||
and it has to cancel ζ2



Block-diagonalization of Γ and Oi

• The final multiplicative adversary bound is

MAdvη,ζ(f) ≥ max
Γ,λ

log( 1
16ζ2λ) · min

i,k

λmin(Γ(k))

2‖Γ(k)
i ‖

minimize over input bits i=1,...,n

and blocks on the diagonal



Block-diagonalization of Γ and Oi

• The final multiplicative adversary bound is

• You don’t have to use the finest block-diagonalization.

Any is good, including using the whole space as one block, but 
then the obtained lower bound need not be very strong.
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λmin(Γ(k))

2‖Γ(k)
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• MAdvexp(-O(k)),exp(-O(k))(Searchk,n) = Ω(√(kn))

• The multiplicative adversary matrix Γ is a combinatorial matrix, 
whose entries Γx,y only depends on |x∩y|.

• The k+1 eigenspaces can be indexed by “knowledge”, i.e. how many 
ones has the algorithm already found, with eigenvectors being 
superpositions of all strings consistent with some pattern of ones.

• Tedious combinatorial calculation done by [Ambainis ’05] 
and we can reuse it

• One can use Γ≈Δ-k, where Δ is the additive adversary matrix (much 
simpler).  Don’t know any other example where this holds.
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Open: element distinctness

• Given n number.  Task: are they distinct?

• The quantum query complexity is known to be θ(n2/3) 
[Ambainis ’04, Aaronson & Shi ’04], where the lower 
bound is proved using the polynomial method.

• Having an adversary bound of either type would make the 
bound composable and give bounds for other functions.

• Can one use the structure of the automorphism group of the 
function to design the structure of the eigenspaces?



Direct product theorem

• The multiplicative adversary bound satisfies an unconditional 
strong direct product theorem:

• Proof: take the tensor power Γ⊗k and λk/10.  Both η and ζ go 

down exponentially.

• For Search and the OR function our calculations are simple, 
hence we get a new and elementary proof of the time-space 
tradeoffs for matrix-vector multiplication and sorting from 
[Klauck, Š. & de Wolf ’04].

• Maybe our method is so hard to use precisely because it gives 
a free SDPT, which is usually very hard to prove.

MAdvηΩ(k),ζΩ(k)(f (k)) = Ω(k · MAdvη,ζ(f))



Summary

New variant of the adversary bound

Suitable for exponentially small success 
probabilities

Satisfies strong direct product theorem


