
The Multiplicative
Quantum Adversary

Robert Špalek

Quantum query complexity

• Given a function f: {0,1}n→{0,1}m

Quantum query complexity

• Given a function f: {0,1}n→{0,1}m

Quantum query complexitynot necessarily
Boolean output

• Given a function f: {0,1}n→{0,1}m

• Task: compute f(x)

Quantum query complexity

• Given a function f: {0,1}n→{0,1}m

• Task: compute f(x)

• Query complexity Qε(f) is the minimal T such that there exists a
T-query quantum algorithm that computes f(x) with error
probability at most ε on each input x

Quantum query complexity

• Given a function f: {0,1}n→{0,1}m

• Task: compute f(x)

• Query complexity Qε(f) is the minimal T such that there exists a
T-query quantum algorithm that computes f(x) with error
probability at most ε on each input x

• Query is a unitary oracle operator mapping

Quantum query complexity

O : |x〉I |i〉Q|w〉W → (−1)xi |x〉|i〉|w〉

• Given a function f: {0,1}n→{0,1}m

• Task: compute f(x)

• Query complexity Qε(f) is the minimal T such that there exists a
T-query quantum algorithm that computes f(x) with error
probability at most ε on each input x

• Query is a unitary oracle operator mapping

Quantum query complexity

O : |x〉I |i〉Q|w〉W → (−1)xi |x〉|i〉|w〉

input register holding

x ∈ {0,1}n

• Given a function f: {0,1}n→{0,1}m

• Task: compute f(x)

• Query complexity Qε(f) is the minimal T such that there exists a
T-query quantum algorithm that computes f(x) with error
probability at most ε on each input x

• Query is a unitary oracle operator mapping

Quantum query complexity

O : |x〉I |i〉Q|w〉W → (−1)xi |x〉|i〉|w〉

query register holding

i ∈ {0,1,..., n}

• Given a function f: {0,1}n→{0,1}m

• Task: compute f(x)

• Query complexity Qε(f) is the minimal T such that there exists a
T-query quantum algorithm that computes f(x) with error
probability at most ε on each input x

• Query is a unitary oracle operator mapping

Quantum query complexity

O : |x〉I |i〉Q|w〉W → (−1)xi |x〉|i〉|w〉

workspace register holding

arbitrary algorithm data

• Given a function f: {0,1}n→{0,1}m

• Task: compute f(x)

• Query complexity Qε(f) is the minimal T such that there exists a
T-query quantum algorithm that computes f(x) with error
probability at most ε on each input x

• Query is a unitary oracle operator mapping

Quantum query complexity

O : |x〉I |i〉Q|w〉W → (−1)xi |x〉|i〉|w〉

the value of the input

is stored in the phase

• Given a function f: {0,1}n→{0,1}m

• Task: compute f(x)

• Query complexity Qε(f) is the minimal T such that there exists a
T-query quantum algorithm that computes f(x) with error
probability at most ε on each input x

• Query is a unitary oracle operator mapping

• The algorithm can perform arbitrary unitary operations on its
workspace and the query register for free

Quantum query complexity

O : |x〉I |i〉Q|w〉W → (−1)xi |x〉|i〉|w〉

• Given a function f: {0,1}n→{0,1}m

• Task: compute f(x)

• Query complexity Qε(f) is the minimal T such that there exists a
T-query quantum algorithm that computes f(x) with error
probability at most ε on each input x

• Query is a unitary oracle operator mapping

• The algorithm can perform arbitrary unitary operations on its
workspace and the query register for free

• At the end, it measures its workspace, outputs an outcome, and
then we measure the input register and verify the outcome

Quantum query complexity

O : |x〉I |i〉Q|w〉W → (−1)xi |x〉|i〉|w〉

Adversary bounds
lower-bound quantum query complexity

Adversary bounds

|ϕ0
x〉 = |ϕ〉

lower-bound quantum query complexity

• computation starts in a fixed state
 independent of input x

Idea:
stat

e of co
mputatio

n on

input x at t
ime 0

Adversary bounds

|ϕ0
x〉 = |ϕ〉

〈ϕt
x|ϕt

y〉

lower-bound quantum query complexity

• computation starts in a fixed state
 independent of input x

• one query can only change
 by a small amount,
on the average

Idea:

scal
ar p

roduct o
f the

stat
es on inputs x

 and y

Adversary bounds

|ϕ0
x〉 = |ϕ〉

〈ϕt
x|ϕt

y〉

〈ϕT
x |ϕT

y 〉

lower-bound quantum query complexity

• computation starts in a fixed state
 independent of input x

• one query can only change
 by a small amount,
on the average

• at the end, must be small for
each input pair x, y with f(x)≠f(y),
otherwise the algorithm cannot
distinguish x and y

Idea:

Adversary bounds

|ϕ0
x〉 = |ϕ〉

〈ϕt
x|ϕt

y〉

〈ϕT
x |ϕT

y 〉

lower-bound quantum query complexity

• computation starts in a fixed state
 independent of input x

• one query can only change
 by a small amount,
on the average

• at the end, must be small for
each input pair x, y with f(x)≠f(y),
otherwise the algorithm cannot
distinguish x and y

Idea:

 ➡ T must be large

the bound on T depends
on the average

History of the adversary method

History of the adversary method
[Bennett, Bernstein, Brassard & Vazirani ’94]
hybrid method

History of the adversary method
[Bennett, Bernstein, Brassard & Vazirani ’94]
hybrid method

[Ambainis ’00] adversary method

History of the adversary method
[Bennett, Bernstein, Brassard & Vazirani ’94]
hybrid method

[Ambainis ’00] adversary method

[Høyer, Neerbek & Shi ’02]
early weighted method

History of the adversary method
[Bennett, Bernstein, Brassard & Vazirani ’94]
hybrid method

[Ambainis ’00] adversary method

[Høyer, Neerbek & Shi ’02]
early weighted method

[Barnum, Saks & Szegedy ’03]
spectral method

[Ambainis ’03]
weighted adversary method

History of the adversary method
[Bennett, Bernstein, Brassard & Vazirani ’94]
hybrid method

[Ambainis ’00] adversary method

[Høyer, Neerbek & Shi ’02]
early weighted method

[Barnum, Saks & Szegedy ’03]
spectral method

[Ambainis ’03]
weighted adversary method

History of the adversary method
[Bennett, Bernstein, Brassard & Vazirani ’94]
hybrid method

[Ambainis ’00] adversary method

[Høyer, Neerbek & Shi ’02]
early weighted method

[Barnum, Saks & Szegedy ’03]
spectral method

[Ambainis ’03]
weighted adversary method

[Høyer, Lee & S. ’07]
negative weights

Spectral method

• Define a progress function in time t:

Spectral method

W t = 〈Γ, ρt
I〉

• Define a progress function in time t:

• ρIt is reduced density matrix of the input register at time t

Spectral method

W t = 〈Γ, ρt
I〉

• Define a progress function in time t:

• ρIt is reduced density matrix of the input register at time t

• Γ is the adversary matrix for f:
Hermitian and Γx,y = 0 when f(x)=f(y)

Spectral method

W t = 〈Γ, ρt
I〉

weighted average of the
scalar products

• Define a progress function in time t:

• ρIt is reduced density matrix of the input register at time t

• Γ is the adversary matrix for f:
Hermitian and Γx,y = 0 when f(x)=f(y)

• Run the computation on certain input superposition

Spectral method

W t = 〈Γ, ρt
I〉

• Define a progress function in time t:

• ρIt is reduced density matrix of the input register at time t

• Γ is the adversary matrix for f:
Hermitian and Γx,y = 0 when f(x)=f(y)

• Run the computation on certain input superposition

• Upper-bound the difference Wt+1-Wt

Spectral method

W t = 〈Γ, ρt
I〉

therefore we call it
additive adversary

• Define a progress function in time t:

• ρIt is reduced density matrix of the input register at time t

• Γ is the adversary matrix for f:
Hermitian and Γx,y = 0 when f(x)=f(y)

• Run the computation on certain input superposition

• Upper-bound the difference Wt+1-Wt

➡ Leads to the bound

Spectral method

W t = 〈Γ, ρt
I〉

Advε(f) =
(

1
2
−

√
ε(1− ε)

)
max

Γ

‖Γ‖
maxi ‖Γi‖

• Define a progress function in time t:

• ρIt is reduced density matrix of the input register at time t

• Γ is the adversary matrix for f:
Hermitian and Γx,y = 0 when f(x)=f(y)

• Run the computation on certain input superposition

• Upper-bound the difference Wt+1-Wt

➡ Leads to the bound

Spectral method

W t = 〈Γ, ρt
I〉

Advε(f) =
(

1
2
−

√
ε(1− ε)

)
max

Γ

‖Γ‖
maxi ‖Γi‖

spectral norm

sub-matrix of Γ with zeroes
when xi=yi

Pros and cons of additive adversary

Pros and cons of additive adversary

•Pros:

• universal method:
works for all functions

• often gives optimal
bounds (e.g., search,
sorting, graph problems)

• Γ, δ are intuitive:
hard distribution on
input pairs and inputs

• easy to compute

• composes optimally with
respect to function
composition

Pros and cons of additive adversary

•Pros:

• universal method:
works for all functions

• often gives optimal
bounds (e.g., search,
sorting, graph problems)

• Γ, δ are intuitive:
hard distribution on
input pairs and inputs

• easy to compute

• composes optimally with
respect to function
composition

•Cons:

• gives trivial bound for
low success probability

• no direct product
theorem

Pros and cons of additive adversary

•Pros:

• universal method:
works for all functions

• often gives optimal
bounds (e.g., search,
sorting, graph problems)

• Γ, δ are intuitive:
hard distribution on
input pairs and inputs

• easy to compute

• composes optimally with
respect to function
composition

•Cons:

• gives trivial bound for
low success probability

• no direct product
theorem

we overcome the cons

Pros and cons of additive adversary

•Pros:

• universal method:
works for all functions

• often gives optimal
bounds (e.g., search,
sorting, graph problems)

• Γ, δ are intuitive:
hard distribution on
input pairs and inputs

• easy to compute

• composes optimally with
respect to function
composition

•Cons:

• gives trivial bound for
low success probability

• no direct product
theorem

and lose these pros

Pros and cons of additive adversary

•Pros:

• universal method:
works for all functions

• often gives optimal
bounds (e.g., search,
sorting, graph problems)

• Γ, δ are intuitive:
hard distribution on
input pairs and inputs

• easy to compute

• composes optimally with
respect to function
composition

•Cons:

• gives trivial bound for
low success probability

• no direct product
theorem

Origin of our method

Origin of our method
Problem: search k ones in an n-bit input.

Origin of our method
Problem: search k ones in an n-bit input.

[Ambainis ’05] new method based on analysis of eigenspaces of the
reduced density matrix of the input register

Ω(√(kn)) queries are needed even for success 2-O(k)

reproving the result of [Klauck, S. & de Wolf ’04]
based on the polynomial method.

Origin of our method
Problem: search k ones in an n-bit input.

[Ambainis ’05] new method based on analysis of eigenspaces of the
reduced density matrix of the input register

Ω(√(kn)) queries are needed even for success 2-O(k)

reproving the result of [Klauck, S. & de Wolf ’04]
based on the polynomial method.

Pros:

tight bound not relying on polynomial approximation theory

Origin of our method
Problem: search k ones in an n-bit input.

[Ambainis ’05] new method based on analysis of eigenspaces of the
reduced density matrix of the input register

Ω(√(kn)) queries are needed even for success 2-O(k)

reproving the result of [Klauck, S. & de Wolf ’04]
based on the polynomial method.

Pros:

tight bound not relying on polynomial approximation theory

Cons:

tailored to one specific problem

technical, complicated, non-modular proof without much intuition

Origin of our method

Origin of our method

[Ambainis ’05] new method based on analysis of eigenspaces of the
reduced density matrix of the input register

Origin of our method

[Ambainis ’05] new method based on analysis of eigenspaces of the
reduced density matrix of the input register

We improve his method as follows:

put it into the well-studied adversary framework

generalize it to all functions

provide additional intuition, modularize the proof, and
separate the quantum and combinatorial part

Origin of our method

[Ambainis ’05] new method based on analysis of eigenspaces of the
reduced density matrix of the input register

We improve his method as follows:

put it into the well-studied adversary framework

generalize it to all functions

provide additional intuition, modularize the proof, and
separate the quantum and combinatorial part

However, the underlying combinatorial analysis stays the same and we
cannot omit any single detail

Multiplicative adversaryNew type of

• Differences:

• adversary matrix Γ has different semantics then before

• We upper-bound the ratio Wt+1/Wt, not difference

Multiplicative adversaryNew type of

• Differences:

• adversary matrix Γ has different semantics then before

• We upper-bound the ratio Wt+1/Wt, not difference

Multiplicative adversary

now, guess the name of
our method

New type of

• Differences:

• adversary matrix Γ has different semantics then before

• We upper-bound the ratio Wt+1/Wt, not difference

Multiplicative adversary

• Differences:

• adversary matrix Γ has different semantics then before

• We upper-bound the ratio Wt+1/Wt, not difference

• The bound looks similar, however, it requires common block-
diagonalization of Γ and the input oracle Oi, and therefore is
extremely hard to compute

Multiplicative adversary

• Differences:

• adversary matrix Γ has different semantics then before

• We upper-bound the ratio Wt+1/Wt, not difference

• The bound looks similar, however, it requires common block-
diagonalization of Γ and the input oracle Oi, and therefore is
extremely hard to compute

‖Γ‖ · min
i

1
‖Γi‖

log(‖Γ‖) · min
i,k

λmin(Γk)
‖Γk

i ‖

additive:

mutliplicative:

Multiplicative adversary

• Differences:

• adversary matrix Γ has different semantics then before

• We upper-bound the ratio Wt+1/Wt, not difference

• The bound looks similar, however, it requires common block-
diagonalization of Γ and the input oracle Oi, and therefore is
extremely hard to compute

‖Γ‖ · min
i

1
‖Γi‖

log(‖Γ‖) · min
i,k

λmin(Γk)
‖Γk

i ‖

additive:

mutliplicative:

Multiplicative adversary

sub-matrix of Γ with zeroes
when xi=yi

• Differences:

• adversary matrix Γ has different semantics then before

• We upper-bound the ratio Wt+1/Wt, not difference

• The bound looks similar, however, it requires common block-
diagonalization of Γ and the input oracle Oi, and therefore is
extremely hard to compute

‖Γ‖ · min
i

1
‖Γi‖

log(‖Γ‖) · min
i,k

λmin(Γk)
‖Γk

i ‖

additive:

mutliplicative:

Multiplicative adversary

Γk is the k-th blockon the diagonal

• Differences:

• adversary matrix Γ has different semantics then before

• We upper-bound the ratio Wt+1/Wt, not difference

• The bound looks similar, however, it requires common block-
diagonalization of Γ and the input oracle Oi, and therefore is
extremely hard to compute

‖Γ‖ · min
i

1
‖Γi‖

log(‖Γ‖) · min
i,k

λmin(Γk)
‖Γk

i ‖

additive:

mutliplicative:

Multiplicative adversary

λmin(M) is the smallest
eigenvalue of M

Multiplicative adversary matrix

• Consider a function f: {0,1}n→{0,1}m, a
positive definite matrix Γ with minimal
eigenvalue 1, and 1 < λ ≤ ||Γ||:

Multiplicative adversary matrix

• Consider a function f: {0,1}n→{0,1}m, a
positive definite matrix Γ with minimal
eigenvalue 1, and 1 < λ ≤ ||Γ||:

0

2.5

5.0

7.5

10.0

0 1 2 ... k

Eigenvalues of Γ

||Γ||

1

Multiplicative adversary matrix

λ

• Consider a function f: {0,1}n→{0,1}m, a
positive definite matrix Γ with minimal
eigenvalue 1, and 1 < λ ≤ ||Γ||:
• Πbad is a projector onto the bad

subspace, which is the direct sum of all
eigenspaces corresponding to eigenvalues
smaller than λ

bad subspace

0

2.5

5.0

7.5

10.0

0 1 2 ... k

Eigenvalues of Γ

||Γ||

1

Multiplicative adversary matrix

λ

• Consider a function f: {0,1}n→{0,1}m, a
positive definite matrix Γ with minimal
eigenvalue 1, and 1 < λ ≤ ||Γ||:
• Πbad is a projector onto the bad

subspace, which is the direct sum of all
eigenspaces corresponding to eigenvalues
smaller than λ

• Fz is a diagonal projector onto inputs
evaluating to z

bad subspace

0

2.5

5.0

7.5

10.0

0 1 2 ... k

Eigenvalues of Γ

||Γ||

1

Multiplicative adversary matrix

λ

• Consider a function f: {0,1}n→{0,1}m, a
positive definite matrix Γ with minimal
eigenvalue 1, and 1 < λ ≤ ||Γ||:
• Πbad is a projector onto the bad

subspace, which is the direct sum of all
eigenspaces corresponding to eigenvalues
smaller than λ

• Fz is a diagonal projector onto inputs
evaluating to z

• (Γ,λ) is a multiplicative adversary for success
probability η iff bad subspace

0

2.5

5.0

7.5

10.0

0 1 2 ... k

Eigenvalues of Γ

||Γ||

1

Multiplicative adversary matrix

λ

for every z ∈ {0,1}m, ||Fz Πbad|| ≤ η

bad subspace

0

2.5

5.0

7.5

10.0

0 1 2 ... k

Eigenvalues of Γ

||Γ||

1

Multiplicative adversary matrix

λ

for every z ∈ {0,1}m, ||Fz Πbad|| ≤ η

• It says that each vector (= superposition
of inputs) from the bad subspace has short
projection onto each Fz

bad subspace

0

2.5

5.0

7.5

10.0

0 1 2 ... k

Eigenvalues of Γ

||Γ||

1

Multiplicative adversary matrix

λ

for every z ∈ {0,1}m, ||Fz Πbad|| ≤ η

• It says that each vector (= superposition
of inputs) from the bad subspace has short
projection onto each Fz

• If the final state of the input register lies in
the bad subspace, then the algorithm has
success probability at most η regardless of
the outcome it outputs. Typically, η is the
trivial success probability of a random
choice. bad subspace

0

2.5

5.0

7.5

10.0

0 1 2 ... k

Eigenvalues of Γ

||Γ||

1

Multiplicative adversary matrix

λ

for every z ∈ {0,1}m, ||Fz Πbad|| ≤ η

Evolution of the progress function

• Consider algorithm A running in time T,
computing function f with success
probability at least η+ζ,
and multiplicative adversary (Γ,λ)

Evolution of the progress function

• Consider algorithm A running in time T,
computing function f with success
probability at least η+ζ,
and multiplicative adversary (Γ,λ)

• We run A on input δ with Γδ=δ. Then:

1. W0=1

2. each Wt+1/Wt ≤ maxi ||OiΓOi Γ-1||

3. WT ≥ λ ζ2/16

Evolution of the progress function

• Consider algorithm A running in time T,
computing function f with success
probability at least η+ζ,
and multiplicative adversary (Γ,λ)

• We run A on input δ with Γδ=δ. Then:

1. W0=1

2. each Wt+1/Wt ≤ maxi ||OiΓOi Γ-1||

3. WT ≥ λ ζ2/16

• Proof:

Evolution of the progress function

trivial

• Consider algorithm A running in time T,
computing function f with success
probability at least η+ζ,
and multiplicative adversary (Γ,λ)

• We run A on input δ with Γδ=δ. Then:

1. W0=1

2. each Wt+1/Wt ≤ maxi ||OiΓOi Γ-1||

3. WT ≥ λ ζ2/16

• Proof:

Evolution of the progress function

very simple:

Wt is average of scalar products of

Wt+1 is average of scalar products of

The unitaries cancel and the oracle
calls can be absorbed into Γ, forming
OiΓOi, where

|ϕt
x〉

Ut+1O|ϕt
x〉

Oi : |x〉 → (−1)xi |x〉

• Consider algorithm A running in time T,
computing function f with success
probability at least η+ζ,
and multiplicative adversary (Γ,λ)

• We run A on input δ with Γδ=δ. Then:

1. W0=1

2. each Wt+1/Wt ≤ maxi ||OiΓOi Γ-1||

3. WT ≥ λ ζ2/16

• Proof:

Evolution of the progress function

0

2.5

5.0

7.5

10.0

0 1 2 ... k

Eigenvalues of Γ

||Γ||

1

λ

0
0.125
0.250
0.375
0.500

0 1 2 ... k

Prob. dist. of ρT
I

• Consider algorithm A running in time T,
computing function f with success
probability at least η+ζ,
and multiplicative adversary (Γ,λ)

• We run A on input δ with Γδ=δ. Then:

1. W0=1

2. each Wt+1/Wt ≤ maxi ||OiΓOi Γ-1||

3. WT ≥ λ ζ2/16

• Proof:
goodbad subspace

Evolution of the progress function

0

2.5

5.0

7.5

10.0

0 1 2 ... k

Eigenvalues of Γ

||Γ||

1

λ

0
0.125
0.250
0.375
0.500

0 1 2 ... k

Prob. dist. of ρT
I

• Consider algorithm A running in time T,
computing function f with success
probability at least η+ζ,
and multiplicative adversary (Γ,λ)

• We run A on input δ with Γδ=δ. Then:

1. W0=1

2. each Wt+1/Wt ≤ maxi ||OiΓOi Γ-1||

3. WT ≥ λ ζ2/16

• Proof:
goodbad subspace

Evolution of the progress function

0

2.5

5.0

7.5

10.0

0 1 2 ... k

Eigenvalues of Γ

||Γ||

1

λ

Lower-bound area under curve

In the bad subspace, the success
probability is at most η, in the
good subspace it is at most 1. By
[Bernstein & Vazirani ’93],
A can succeed w.p. at most

〈Γ, ρT
I 〉 ≥ λ · P [good]

η + 4
√

P [good]

P[good]

0
0.125
0.250
0.375
0.500

0 1 2 ... k

Prob. dist. of ρT
I

• Consider algorithm A running in time T,
computing function f with success
probability at least η+ζ,
and multiplicative adversary (Γ,λ)

• We run A on input δ with Γδ=δ. Then:

1. W0=1

2. each Wt+1/Wt ≤ maxi ||OiΓOi Γ-1||

3. WT ≥ λ ζ2/16

• Proof:
goodbad subspace

Evolution of the progress function

0

2.5

5.0

7.5

10.0

0 1 2 ... k

Eigenvalues of Γ

||Γ||

1

λ

q.e.d.

P[good]

0
0.125
0.250
0.375
0.500

0 1 2 ... k

Prob. dist. of ρT
I

• Consider algorithm A running in time T,
computing function f with success
probability at least η+ζ,
and multiplicative adversary (Γ,λ)

• We run A on input δ with Γδ=δ. Then:

1. W0=1

2. each Wt+1/Wt ≤ maxi ||OiΓOi Γ-1||

3. WT ≥ λ ζ2/16

• Proof:

• We get lower bound T ≥ MAdvη,ζ(f) with

goodbad subspace

Evolution of the progress function

0

2.5

5.0

7.5

10.0

0 1 2 ... k

Eigenvalues of Γ

||Γ||

1

λ

MAdvη,ζ(f) = max
(Γ,λ)

log(λζ2/16)
log(maxi ‖OiΓOiΓ−1‖)

q.e.d.

P[good]

0
0.125
0.250
0.375
0.500

0 1 2 ... k

Prob. dist. of ρT
I

Block-diagonalization of Γ and Oi

Block-diagonalization of Γ and Oi

• How to efficiently upper-bound
||OiΓOi · Γ-1|| ?

Block-diagonalization of Γ and Oi

• How to efficiently upper-bound
||OiΓOi · Γ-1|| ?

• The eigenspaces of the conjugated OiΓOi
overlap different eigenspaces of Γ, and we
want them to cancel as much as possible
so that the norm above is small

Block-diagonalization of Γ and Oi

• How to efficiently upper-bound
||OiΓOi · Γ-1|| ?

• The eigenspaces of the conjugated OiΓOi
overlap different eigenspaces of Γ, and we
want them to cancel as much as possible
so that the norm above is small

0

2.5

5.0

7.5

10.0

0 1 2 ... k

Eigenvalues of Γ

Block-diagonalization of Γ and Oi

• How to efficiently upper-bound
||OiΓOi · Γ-1|| ?

• The eigenspaces of the conjugated OiΓOi
overlap different eigenspaces of Γ, and we
want them to cancel as much as possible
so that the norm above is small

0

2.5

5.0

7.5

10.0

0 1 2 ... k

Eigenvalues of Γ

0

2.5

5.0

7.5

10.0

0 1 2 ... k

Eigenvalues of OiΓOi

Block-diagonalization of Γ and Oi

• How to efficiently upper-bound
||OiΓOi · Γ-1|| ?

• The eigenspaces of the conjugated OiΓOi
overlap different eigenspaces of Γ, and we
want them to cancel as much as possible
so that the norm above is small

• like here...

0

0.35

0.70

1.05

1.40

0 1 2 ... 2k

Block-diagonalization of Γ and Oi

• How to efficiently upper-bound
||OiΓOi · Γ-1|| ?

• The eigenspaces of the conjugated OiΓOi
overlap different eigenspaces of Γ, and we
want them to cancel as much as possible
so that the norm above is small

• like here...

• we still need the condition on the bad
subspace 0

0.35

0.70

1.05

1.40

0 1 2 ... 2k

Block-diagonalization of Γ and Oi

• How to efficiently upper-bound
||OiΓOi · Γ-1|| ?

• The eigenspaces of the conjugated OiΓOi
overlap different eigenspaces of Γ, and we
want them to cancel as much as possible
so that the norm above is small

• like here...

• we still need the condition on the bad
subspace

• This makes the multiplicative adversary
matrices hard to design

0

0.35

0.70

1.05

1.40

0 1 2 ... 2k

Block-diagonalization of Γ and Oi

0

0.35

0.70

1.05

1.40

0 1 2 ... 2k

Block-diagonalization of Γ and Oi

• By block-diagonalizing Γ and Oi together,
we can bound each block separately

0

0.35

0.70

1.05

1.40

0 1 2 ... 2k

Block-diagonalization of Γ and Oi

• By block-diagonalizing Γ and Oi together,
we can bound each block separately

• Since the eigenvalues in one block don’t
differ so much like in the whole matrix,
we can use some bounds, such as

λmin(M) ≤ λ ≤ ||M||,

and don’t lose too much 0

0.35

0.70

1.05

1.40

0 1 2 ... 2k

Block-diagonalization of Γ and Oi

• By block-diagonalizing Γ and Oi together,
we can bound each block separately

• Since the eigenvalues in one block don’t
differ so much like in the whole matrix,
we can use some bounds, such as

λmin(M) ≤ λ ≤ ||M||,

and don’t lose too much

• This gives the bound
0

0.35

0.70

1.05

1.40

0 1 2 ... 2k

‖OiΓOi · Γ−1‖ ≤ 1 + 2 max
k

‖Γ(k)
i ‖

λmin(Γ(k))

Block-diagonalization of Γ and Oi

• By block-diagonalizing Γ and Oi together,
we can bound each block separately

• Since the eigenvalues in one block don’t
differ so much like in the whole matrix,
we can use some bounds, such as

λmin(M) ≤ λ ≤ ||M||,

and don’t lose too much

• This gives the bound
0

0.35

0.70

1.05

1.40

0 1 2 ... 2k

‖OiΓOi · Γ−1‖ ≤ 1 + 2 max
k

‖Γ(k)
i ‖

λmin(Γ(k))

Γ (k) is the k-th block
on the diagonal

Block-diagonalization of Γ and Oi

• By block-diagonalizing Γ and Oi together,
we can bound each block separately

• Since the eigenvalues in one block don’t
differ so much like in the whole matrix,
we can use some bounds, such as

λmin(M) ≤ λ ≤ ||M||,

and don’t lose too much

• This gives the bound
0

0.35

0.70

1.05

1.40

0 1 2 ... 2k

‖OiΓOi · Γ−1‖ ≤ 1 + 2 max
k

‖Γ(k)
i ‖

λmin(Γ(k))

sub-matrix of Γ (k) with zeroes
when xi=yi

Block-diagonalization of Γ and Oi

MAdvη,ζ(f) ≥ max
Γ,λ

log(1
16ζ2λ) · min

i,k

λmin(Γ(k))

2‖Γ(k)
i ‖

Block-diagonalization of Γ and Oi

• The final multiplicative adversary bound is

MAdvη,ζ(f) ≥ max
Γ,λ

log(1
16ζ2λ) · min

i,k

λmin(Γ(k))

2‖Γ(k)
i ‖

Block-diagonalization of Γ and Oi

• The final multiplicative adversary bound is

you pick the success probability η
of a random choice, and
additional success ζ

MAdvη,ζ(f) ≥ max
Γ,λ

log(1
16ζ2λ) · min

i,k

λmin(Γ(k))

2‖Γ(k)
i ‖

Block-diagonalization of Γ and Oi

• The final multiplicative adversary bound is

maximize over all
multiplicative adversaries

MAdvη,ζ(f) ≥ max
Γ,λ

log(1
16ζ2λ) · min

i,k

λmin(Γ(k))

2‖Γ(k)
i ‖

Block-diagonalization of Γ and Oi

• The final multiplicative adversary bound is

MAdvη,ζ(f) ≥ max
Γ,λ

log(1
16ζ2λ) · min

i,k

λmin(Γ(k))

2‖Γ(k)
i ‖

λ is proportional to ||Γ||
and it has to cancel ζ2

Block-diagonalization of Γ and Oi

• The final multiplicative adversary bound is

MAdvη,ζ(f) ≥ max
Γ,λ

log(1
16ζ2λ) · min

i,k

λmin(Γ(k))

2‖Γ(k)
i ‖

minimize over input bits i=1,...,n

and blocks on the diagonal

Block-diagonalization of Γ and Oi

• The final multiplicative adversary bound is

• You don’t have to use the finest block-diagonalization.

Any is good, including using the whole space as one block, but
then the obtained lower bound need not be very strong.

MAdvη,ζ(f) ≥ max
Γ,λ

log(1
16ζ2λ) · min

i,k

λmin(Γ(k))

2‖Γ(k)
i ‖

Example: Lower bound for search

•Given an n-bit string with exactly
one 1. Task: find it.

Example: Lower bound for search

•Given an n-bit string with exactly
one 1. Task: find it.

MAdv1/n,ζ(Searchn) = Ω(ζ2√n)

Example: Lower bound for search

•Given an n-bit string with exactly
one 1. Task: find it.

MAdv1/n,ζ(Searchn) = Ω(ζ2√n)

•Define v=(1,...,1) of length n and
vi=(1,...,1, 1-n, 1,...,1), normalized
to length 1. Note that v⊥vi.

Example: Lower bound for search

•Given an n-bit string with exactly
one 1. Task: find it.

MAdv1/n,ζ(Searchn) = Ω(ζ2√n)

•Define v=(1,...,1) of length n and
vi=(1,...,1, 1-n, 1,...,1), normalized
to length 1. Note that v⊥vi.

• Let
Γv = v and Γvi = q vi , i.e.
v and vi are eigenvectors.

Let λ=||Γ||= q = 32/ζ2.

000001

000010

000100

001000

010000

100000

Example: Lower bound for search

Γ = (1 − q)|v〉〈v| + qI

•Given an n-bit string with exactly
one 1. Task: find it.

MAdv1/n,ζ(Searchn) = Ω(ζ2√n)

•Define v=(1,...,1) of length n and
vi=(1,...,1, 1-n, 1,...,1), normalized
to length 1. Note that v⊥vi.

• Let
Γv = v and Γvi = q vi , i.e.
v and vi are eigenvectors.

Let λ=||Γ||= q = 32/ζ2.

•The success probability in the
bad subspace (containing v) is
η=1/n.

000001

000010

000100

001000

010000

100000

Example: Lower bound for search

Γ = (1 − q)|v〉〈v| + qI

•Given an n-bit string with exactly
one 1. Task: find it.

MAdv1/n,ζ(Searchn) = Ω(ζ2√n)

•Define v=(1,...,1) of length n and
vi=(1,...,1, 1-n, 1,...,1), normalized
to length 1. Note that v⊥vi.

• Let
Γv = v and Γvi = q vi , i.e.
v and vi are eigenvectors.

Let λ=||Γ||= q = 32/ζ2.

•The success probability in the
bad subspace (containing v) is
η=1/n.

•Use just one block. Then
λmin(Γ) = 1 and ||Γi||<q/√n.

000001

000010

000100

001000

010000

100000

Example: Lower bound for search

Γ = (1 − q)|v〉〈v| + qI

000001

000010

000100

001000

010000

100000

!1

!1

•Given an n-bit string with exactly
one 1. Task: find it.

MAdv1/n,ζ(Searchn) = Ω(ζ2√n)

•Define v=(1,...,1) of length n and
vi=(1,...,1, 1-n, 1,...,1), normalized
to length 1. Note that v⊥vi.

• Let
Γv = v and Γvi = q vi , i.e.
v and vi are eigenvectors.

Let λ=||Γ||= q = 32/ζ2.

•The success probability in the
bad subspace (containing v) is
η=1/n.

•Use just one block. Then
λmin(Γ) = 1 and ||Γi||<q/√n.

•The final bound is

000001

000010

000100

001000

010000

100000

Example: Lower bound for search

Γ = (1 − q)|v〉〈v| + qI log(1
16ζ2λ) · min

i,k

λmin(Γ(k))

2‖Γ(k)
i ‖

>
log 2
64

ζ2√n

000001

000010

000100

001000

010000

100000

!1

!1

Lower bound for k-search

• Given an n-bit string with k ones. Task: find them.

Lower bound for k-search

• Given an n-bit string with k ones. Task: find them.

• MAdvexp(-O(k)),exp(-O(k))(Searchk,n) = Ω(√(kn))

Lower bound for k-search

• Given an n-bit string with k ones. Task: find them.

• MAdvexp(-O(k)),exp(-O(k))(Searchk,n) = Ω(√(kn))

• The multiplicative adversary matrix Γ is a combinatorial matrix,
whose entries Γx,y only depends on |x∩y|.

Lower bound for k-search

• Given an n-bit string with k ones. Task: find them.

• MAdvexp(-O(k)),exp(-O(k))(Searchk,n) = Ω(√(kn))

• The multiplicative adversary matrix Γ is a combinatorial matrix,
whose entries Γx,y only depends on |x∩y|.

• The k+1 eigenspaces can be indexed by “knowledge”, i.e. how many
ones has the algorithm already found, with eigenvectors being
superpositions of all strings consistent with some pattern of ones.

Lower bound for k-search

• Given an n-bit string with k ones. Task: find them.

• MAdvexp(-O(k)),exp(-O(k))(Searchk,n) = Ω(√(kn))

• The multiplicative adversary matrix Γ is a combinatorial matrix,
whose entries Γx,y only depends on |x∩y|.

• The k+1 eigenspaces can be indexed by “knowledge”, i.e. how many
ones has the algorithm already found, with eigenvectors being
superpositions of all strings consistent with some pattern of ones.

• Tedious combinatorial calculation done by [Ambainis ’05]
and we can reuse it

Lower bound for k-search

• Given an n-bit string with k ones. Task: find them.

• MAdvexp(-O(k)),exp(-O(k))(Searchk,n) = Ω(√(kn))

• The multiplicative adversary matrix Γ is a combinatorial matrix,
whose entries Γx,y only depends on |x∩y|.

• The k+1 eigenspaces can be indexed by “knowledge”, i.e. how many
ones has the algorithm already found, with eigenvectors being
superpositions of all strings consistent with some pattern of ones.

• Tedious combinatorial calculation done by [Ambainis ’05]
and we can reuse it

• One can use Γ≈Δ-k, where Δ is the additive adversary matrix (much
simpler). Don’t know any other example where this holds.

Lower bound for k-search

Open: element distinctness

• Given n number. Task: are they distinct?

• The quantum query complexity is known to be θ(n2/3)
[Ambainis ’04, Aaronson & Shi ’04], where the lower
bound is proved using the polynomial method.

• Having an adversary bound of either type would make the
bound composable and give bounds for other functions.

• Can one use the structure of the automorphism group of the
function to design the structure of the eigenspaces?

Direct product theorem

• The multiplicative adversary bound satisfies an unconditional
strong direct product theorem:

• Proof: take the tensor power Γ⊗k and λk/10. Both η and ζ go

down exponentially.

• For Search and the OR function our calculations are simple,
hence we get a new and elementary proof of the time-space
tradeoffs for matrix-vector multiplication and sorting from
[Klauck, Š. & de Wolf ’04].

• Maybe our method is so hard to use precisely because it gives
a free SDPT, which is usually very hard to prove.

MAdvηΩ(k),ζΩ(k)(f (k)) = Ω(k · MAdvη,ζ(f))

Summary

New variant of the adversary bound

Suitable for exponentially small success
probabilities

Satisfies strong direct product theorem

