The Multiplicative Quantum Adversary

Quantum query complexity

Quantum query complexity

- Given a function f: $\left\{0, \mathrm{I}^{\mathrm{n}} \rightarrow\{0, \mathrm{I}\}^{m}\right.$

Quantum query $\underset{\substack{\text { honneagaple } \\ \text { Boolen ouptr }}}{ }$

- Given a function $\mathrm{f}:\{0, \mathrm{I}\}^{\mathrm{n}} \rightarrow\{0, \mathrm{I}\}^{\mathrm{m}}$

Quantum query complexity

- Given a function $f:\{0, I\}^{n} \rightarrow\{0, I\}^{m}$
- Task: compute $\mathrm{f}(\mathrm{x})$

Quantum query complexity

- Given a function $f:\{0, I\}^{n} \rightarrow\{0, I\}^{m}$
- Task: compute $f(x)$
- Query complexity $\mathrm{Q}_{\epsilon}(\mathrm{f})$ is the minimal T such that there exists a T-query quantum algorithm that computes $f(x)$ with error probability at most ϵ on each input \times

Quantum query complexity

- Given a function $f:\{0, I\}^{n} \rightarrow\{0, I\}^{m}$
- Task: compute $f(x)$
- Query complexity $\mathrm{Q}_{\epsilon}(\mathrm{f})$ is the minimal T such that there exists a T-query quantum algorithm that computes $f(x)$ with error probability at most ϵ on each input x
- Query is a unitary oracle operator mapping

$$
O:|x\rangle_{I}|i\rangle_{Q}|w\rangle_{W} \rightarrow(-1)^{x_{i}}|x\rangle|i\rangle|w\rangle
$$

Quantum query complexity

- Given a function $f:\{0, I\}^{n} \rightarrow\{0, I\}^{m}$
- Task: compute $f(x)$
- Query complexity $\mathrm{Q}_{\epsilon}(\mathrm{f})$ is the minimal T such that there exists a T-query quantum algorithm that computes $f(x)$ with error probability at most ϵ on each input x
- Query is a unitary oracle operator mapping

Quantum query complexity

- Given a function $f:\{0, I\}^{n} \rightarrow\{0, I\}^{m}$
- Task: compute $f(x)$
- Query complexity $\mathrm{Q}_{\epsilon}(\mathrm{f})$ is the minimal T such that there exists a T-query quantum algorithm that computes $f(x)$ with error probability at most ϵ on each input x
- Query is a unitary oracle operator mapping

Quantum query complexity

- Given a function $f:\{0, I\}^{n} \rightarrow\{0, I\}^{m}$
- Task: compute $f(x)$
- Query complexity $\mathrm{Q}_{\epsilon}(\mathrm{f})$ is the minimal T such that there exists a T-query quantum algorithm that computes $f(x)$ with error probability at most ϵ on each input x
- Query is a unitary oracle operator mapping

$$
O:|x\rangle_{I}|i\rangle_{Q}|w\rangle_{W} \rightarrow(-1)^{x_{i}}|x\rangle|i\rangle|w\rangle
$$

workspace register holding

Quantum query complexity

- Given a function $f:\{0, I\}^{n} \rightarrow\{0, I\}^{m}$
- Task: compute $f(x)$
- Query complexity $\mathrm{Q}_{\epsilon}(\mathrm{f})$ is the minimal T such that there exists a T-query quantum algorithm that computes $f(x)$ with error probability at most ϵ on each input x
- Query is a unitary oracle operator mapping

$$
O:|x\rangle_{I}|i\rangle_{Q}|w\rangle_{W} \rightarrow(-1)^{x_{i}}|x\rangle|i\rangle|w\rangle
$$

the value of the input

Quantum query complexity

- Given a function $f:\{0, I\}^{n} \rightarrow\{0, I\}^{m}$
- Task: compute $f(x)$
- Query complexity $\mathrm{Q}_{\epsilon}(\mathrm{f})$ is the minimal T such that there exists a T-query quantum algorithm that computes $f(x)$ with error probability at most ϵ on each input x
- Query is a unitary oracle operator mapping

$$
O:|x\rangle_{I}|i\rangle_{Q}|w\rangle_{W} \rightarrow(-1)^{x_{i}}|x\rangle|i\rangle|w\rangle
$$

- The algorithm can perform arbitrary unitary operations on its workspace and the query register for free

Quantum query complexity

- Given a function $f:\{0, I\}^{n} \rightarrow\{0, I\}^{m}$
- Task: compute $f(x)$
- Query complexity $\mathrm{Q}_{\epsilon}(\mathrm{f})$ is the minimal T such that there exists a T-query quantum algorithm that computes $f(x)$ with error probability at most ϵ on each input x
- Query is a unitary oracle operator mapping

$$
O:|x\rangle_{I}|i\rangle_{Q}|w\rangle_{W} \rightarrow(-1)^{x_{i}}|x\rangle|i\rangle|w\rangle
$$

- The algorithm can perform arbitrary unitary operations on its workspace and the query register for free
- At the end, it measures its workspace, outputs an outcome, and then we measure the input register and verify the outcome

Adversary bounds

lower-bound quantum query complexity

Adversary bounds

lower-bound quantum query complexity

- com utation starts in a fixed state $\left|\varphi_{x}^{0}\right\rangle=|\varphi\rangle$ independent of input x

Adversary bounds

lower-bound quantum query complexity

- onequery can only change $\left\langle\varphi_{x}^{t} \mid \varphi_{y}^{t}\right\rangle$ by a small amount, on the average

Adversary bounds

lower-bound quantum query complexity

Idea:

- computation starts in a fixed state $\left|\varphi_{x}^{0}\right\rangle=|\varphi\rangle$ independent of input x
- one query can only change $\left\langle\varphi_{x}^{t} \mid \varphi_{y}^{t}\right\rangle$ by a small amount, on the average
- at the end, $\left\langle\varphi_{x}^{T} \mid \varphi_{y}^{T}\right\rangle$ must be small for each input pair x, y with $f(x) \neq f(y)$, otherwise the algorithm cannot distinguish x and y

Adversary bounds

lower-bound quantum query complexity

Idea:

- computation starts in a fixed state $\left|\varphi_{x}^{0}\right\rangle=|\varphi\rangle$ independent of input x
- one query can only the boind on T depends $\left\langle\varphi_{x}^{t} \mid \varphi_{y}^{t}\right\rangle$ by a small amoointhe average on the average
- at the end, $\left\langle\varphi_{x}^{T} \mid \varphi_{y}^{T}\right\rangle$ must be small for each input pair x, y with $f(x) \neq f(y)$, otherwise the algorithm cannot distinguish x and y
\Rightarrow T must be large

History of the adversary method

History of the adversary method

- [Bennett, Bernsteín, Brassard \& Vazíraní '94] hybrid method

History of the adversary method

- [Bennett, Bernsteín, Brassard \& Vazíraní '94] hybrid method
- [Ambainis 'OO] adversary method

History of the adversary method

- [Bennett, Bernsteín, Brassard \& Vazíraní '94] hybrid method
- [Ambaínis 'OO] adversary method
- [Høyer, Neerbek \& Shi'O2] early weighted method

History of the adversary method

- [Bennett, Bernsteín, Brassard \& Vazíraní '94] hybrid method
- [Ambaínis 'OO] adversary method
- [Høyer, Neerbek \& Shi'O2] early weighted method
- [Barnum, Saks \& Szegedy '03] spectral method
[Ambainis '03]
weighted adversary method

History of the adversary method

- [Bennett, Bernsteín, Brassard \& Vazíraní '94] hybrid method
- [Ambaínis 'OO] adversary method
- [Høyer, Neerbek \& Shi'O2] early weighted method
- [Barnum, Saks \& Szegedy '03] spectral method
[Ambainis '03]
weighted adversary method

History of the adversary method

- [Bennett, Bernsteín, Brassard \& Vazíraní '94] hybrid method
- [Ambaínis 'OO] adversary method
- [Høyer, Neerbek \& Shi'O2] early weighted method
- [Barnum, Saks \& Szegedy '03] spectral method
[Ambainis '03]
weighted adversary method
- [Høyer, Lee \& S. 'O7] negative weights

Spectral method

Spectral method

- Define a progress function in time t :

$$
W^{t}=\left\langle\Gamma, \rho_{I}^{t}\right\rangle
$$

Spectral method

- Define a progress function in time t :

$$
W^{t}=\left\langle\Gamma, \rho_{I}^{t}\right\rangle
$$

- $\rho \mathrm{t}^{\mathrm{t}}$ is reduced density matrix of the input register at time t

Spectral method

- Define a progress function in time t :

$$
W^{t}=\left\langle\Gamma, \rho_{I}^{t}\right\rangle
$$

- $\rho \mathrm{t}^{\mathrm{t}}$ is reduced density matrix of the input register at time t
- 「 is the adversary matrix for $\mathrm{f}:$

Hermitian and $\Gamma_{x, y}=0$ when $f(x)=f(y)$

Spectral method

- Define a progress function in time t :

$$
W^{t}=\left\langle\Gamma, \rho_{I}^{t}\right\rangle
$$

- $\rho_{l^{t}}{ }^{t}$ is reduced density matrix of the input register at time t
- 「 is the adversary matrix for $\mathrm{f}:$

Hermitian and $\Gamma_{x, y}=0$ when $f(x)=f(y)$

- Run the computation on certain input superposition

Spectral method

- Define a progress function in time t :

$$
W^{t}=\left\langle\Gamma, \rho_{I}^{t}\right\rangle
$$

- $\rho \mathrm{t}^{\mathrm{t}}$ is reduced density matrix of the input register at time t
- 「 is the adversary matrix for $\mathrm{f}:$

Hermitian and $\Gamma_{x, y}=0$ when f

- Run the computation on ceradditive adversary
- Upper-bound the difference $W^{t+1}-W^{t}$

Spectral method

- Define a progress function in time t :

$$
W^{t}=\left\langle\Gamma, \rho_{I}^{t}\right\rangle
$$

- $\rho_{l^{t}}{ }^{t}$ is reduced density matrix of the input register at time t
- Γ is the adversary matrix for $\mathrm{f}:$

Hermitian and $\Gamma_{x, y}=0$ when $f(x)=f(y)$

- Run the computation on certain input superposition
- Upper-bound the difference $W^{t+1}-W^{t}$
\Rightarrow Leads to the bound

$$
\operatorname{Adv}_{\epsilon}(f)=\left(\frac{1}{2}-\sqrt{\epsilon(1-\epsilon)}\right) \max _{\Gamma} \frac{\|\Gamma\|}{\max _{i}\left\|\Gamma_{i}\right\|}
$$

Spectral method

- Define a progress function in time t :

$$
W^{t}=\left\langle\Gamma, \rho_{I}^{t}\right\rangle
$$

- $\rho_{1}{ }^{t}$ is reduced density matrix of the input register at time t
- Γ is the adversary matrix for f :

Hermitian and $\Gamma_{x, y}=0$ when $f(x)=f(y)$

- Run the computation on certain input superposition
- Upper-bound the difference $W^{t+1}-W^{t}$
\Rightarrow Leads to the bound

$$
\operatorname{Adv}_{\epsilon}(f)=\left(\frac{1}{2}-\sqrt{\epsilon(1-\epsilon)}\right) \max _{\Gamma} \frac{\|\Gamma\|}{\max _{i}\left\|\Gamma_{i}\right\|}
$$

Pros and cons of additive adversary

Pros and cons of additive adversary

- Pros:
- universal method: works for all functions
- often gives optimal bounds (e.g., search, sorting, graph problems)
- Г, δ are intuitive: hard distribution on input pairs and inputs
- easy to compute
- composes optimally with respect to function composition

Pros and cons of additive adversary

- Pros:
- universal method: works for all functions
- often gives optimal bounds (e.g., search, sorting, graph problems)
- Γ, δ are intuitive: hard distribution on input pairs and inputs
- easy to compute
- composes optimally with respect to function composition
- Cons:
- gives trivial bound for low success probability
- no direct product theorem

Pros and cons of additi

- Pros:
- universal method: works for all functions
- often gives optimal bounds (e.g., search, sorting, graph problems)
- Г, δ are intuitive: hard distribution on input pairs and inputs
- easy to compute
- composes optimally with respect to function composition
- gives trivial bound for low success probability
- no direct product theorem

Pros and cons of additive adversary

- Pros:
- universal method: works for all functions
- often gives optimal bounds (e.g., search, sorting, graph problems)
- Cons:
- gives trivial bound for low success probability
- no direct product theorem
- Г, δ are intuitive: hard distribution on input pairs and inputs

- easy to compute
- composes optimally with respect to function composition

Pros and cons of additive adversary

- Pros:
- universal method: works for all functions
- often gives optimal bounds (e.g., search, sorting, graph problems)
- Γ, δ are intuitive: hard distribution on input pairs and inputs
- easy to compute
- composes optimally with respect to function composition
- Cons:
- gives trivial bound for low success probability
- no direct product theorem

Origin of our method

Origin of our method

- Problem: search k ones ín an n-bit ínput.

Origin of our method

- Problem: search k ones ín an n-bit ínput.
- [Ambainis '05] new method based on analysis of eigenspaces of the reduced density matrix of the input register
- $\Omega(v(k n))$ queries are needed even for success 2-O(k)
- reproving the result of [Klauck, S. \& de Wolf'04] based on the polynomial method.

Origin of our method

- Problem: search k ones in an n-bit input.
- [Ambainis '05] new method based on analysis of eigenspaces of the reduced density matrix of the input register
- $\Omega(\mathcal{l}(k n))$ queries are needed even for success $2^{-O(k)}$
- reproving the result of [Klauck, S. \& de Wolf 'O4] based on the polynomial method.
- Pros:
- tight bound not relying on polynomial approximation theory

Origin of our method

- Problem: search k ones in an n-bit input.
- [Ambainis '05] new method based on analysis of eigenspaces of the reduced density matrix of the input register
- $\Omega(\sqrt{ }(k n))$ queries are needed even for success $2^{-O(k)}$
- reproving the result of [Klauck, S. \& de Wolf 'O4] based on the polynomial method.
- Pros:
- tight bound not relying on polynomial approximation theory
- Cons:
- tailored to one specific problem
- technical, complicated, non-modular proof without much intuition

Origin of our method

Origin of our method

- [Ambainis '05] new method based on analysis of eigenspaces of the reduced density matrix of the input register

Origin of our method

- [Ambainis '05] new method based on analysis of eigenspaces of the reduced density matrix of the input register
- We improve his method as follows:
- put it into the well-studied adversary framework
- generalize it to all functions
- provide additional intuition, modularize the proof, and separate the quantum and combinatorial part

Origin of our method

- [Ambainis '05] new method based on analysis of eigenspaces of the reduced density matrix of the input register
- We improve his method as follows:
- put it into the well-studied adversary framework
- generalize ít to all functions
- provide additional intuítion, modularize the proof, and separate the quantum and combinatorial part
- However, the underlying combinatorial analysis stays the same and we cannot omit any síngle detail

New type of adversary

New type of adversary

- Differences:
- adversary matrix Γ has different semantics then before
- We upper-bound the ratio W^{t+1} / W^{t}, not difference

New type of adversary

- Differences:
- adversary matrix Γ has differen
- We upper-bound the ratio W^{t+1} / W^{t}, not difference

Multiplicative adversary

- Differences:
- adversary matrix Γ has different semantics then before
- We upper-bound the ratio W^{t+1} / W^{t}, not difference

Multiplicative adversary

- Differences:
- adversary matrix Γ has different semantics then before
- We upper-bound the ratio $\mathrm{W}^{t+1} / \mathrm{W}^{t}$, not difference
- The bound looks similar, however, it requires common blockdiagonalization of Γ and the input oracle O_{i}, and therefore is extremely hard to compute

Multiplicative adversary

- Differences:
- adversary matrix Γ has different semantics then before
- We upper-bound the ratio W^{t+1} / W^{t}, not difference
- The bound looks similar, however, it requires common blockdiagonalization of Γ and the input oracle O_{i}, and therefore is extremely hard to compute

$$
\begin{gathered}
\text { additive: } \quad\|\Gamma\| \cdot \min _{i} \frac{1}{\left\|\Gamma_{i}\right\|} \\
\text { mutliplicative: } \log (\|\Gamma\|) \cdot \min _{i, k} \frac{\lambda_{\min }\left(\Gamma^{k}\right)}{\left\|\Gamma_{i}^{K}\right\|}
\end{gathered}
$$

Multiplicative adversary

- Differences:
- adversary matrix Γ has different semantics then before
- We upper-bound the ratio W^{t+1} / W^{t}, not difference
- The bound lyoks subilar however, it requires common blockdiagonalizatio of 1 amatrix of $/$ with $_{\text {rach }} \mathrm{O}_{\mathrm{i}}$, and therefore is extremely hard to com when $x_{i=1}$ with zeroes
additive:
mutliplicative: $\log (\|\Gamma\|) \cdot \min _{i, k} \frac{\lambda_{\min }\left(\Gamma^{k}\right)}{\left\|\Gamma_{i}^{k}\right\|}$

Multiplicative adversary

- Differences:
- adversary matrix Γ has different semantics then before
- We upper-bound the ratio W^{t+1} / W^{t}, not difference
- The bound looks similar, however, it requires common blockdiagonalization of Γ and the Γ_{k} it oracle O_{i}, and therefore is extremely hard to comp
additive:

mutliplicative: $\log (\|\Gamma\|) \cdot \min _{i, k} \frac{\lambda_{\min }\left(\Gamma^{k}\right)}{\left\|\Gamma_{i}^{k}\right\|}$

Multiplicative adversary

- Differences:
- adversary matrix Γ has different semantics then before
- We upper-bound the ratio W^{t+1} / W^{t}, not difference
- The bound looks similar, however, it requires common blockdiagonalization of Γ and the input oracle O_{i}, and therefore is extremely hard

Multiplicative adversary matrix

Multiplicative adversary matrix

- Consider a function $\mathrm{f}:\{0, \mathrm{I}\}^{\mathrm{n}} \rightarrow\{0, \mathrm{I}\}^{m}$, a positive definite matrix Γ with minimal eigenvalue I, and I $<\lambda \leq\|\Gamma\|$:

Multiplicative adversary matrix

- Consider a function $\mathrm{f}:\{0, \mathrm{I}\}^{\mathrm{n}} \rightarrow\{0, \mathrm{I}\}^{m}$, a positive definite matrix \lceil with minimal eigenvalue I, and I $<\lambda \leq\|\Gamma\|$:

Multiplicative adversary matrix

- Consider a function $\mathrm{f}:\{0, \mathrm{I}\}^{\mathrm{n}} \rightarrow\{0, \mathrm{I}\}^{m}$, a positive definite matrix Γ with minimal eigenvalue I, and I < \quad s $\|\Gamma\|$:
- $\Pi_{\text {bad }}$ is a projector onto the bad subspace, which is the direct sum of all eigenspaces corresponding to eigenvalues smaller than λ

Multiplicative adversary matrix

- Consider a function $\mathrm{f}:\{0, \mathrm{I}\}^{\mathrm{n}} \rightarrow\{0, \mathrm{I}\}^{m}$, a positive definite matrix Γ with minimal eigenvalue I, and I< $<\lambda \leq\|\Gamma\|$:
- $\Pi_{\text {bad }}$ is a projector onto the bad subspace, which is the direct sum of all eigenspaces corresponding to eigenvalues smaller than λ
- F_{z} is a diagonal projector onto inputs evaluating to \mathbf{z}

Eigenvalues of Γ

Multiplicative adversary matrix

- Consider a function $\mathrm{f}:\{0, \mathrm{I}\}^{\mathrm{n}} \rightarrow\{0, \mathrm{I}\}^{m}$, a positive definite matrix Γ with minimal eigenvalue I, and I $<\lambda \leq\|\Gamma\|$:
- $\Pi_{\text {bad }}$ is a projector onto the bad subspace, which is the direct sum of all eigenspaces corresponding to eigenvalues smaller than λ
- F_{z} is a diagonal projector onto inputs evaluating to \mathbf{z}
- (Γ, λ) is a multiplicative adversary for success probability η iff

Eigenvalues of Γ

for every $z \in\{0, I\}^{m},\left\|F_{z} \Pi_{\text {bad }}\right\| \leq \eta$

Multiplicative adversary matrix

\square Eigenvalues of Γ

for every $z \in\{0, I\}^{m},\left\|F_{z} \Pi_{\text {bad }}\right\| \leq \eta$

Multiplicative adversary matrix

Eigenvalues of Γ
for every $z \in\{0, I\}^{m},\left\|F_{z} \Pi_{\text {bad }}\right\| \leq \eta$

- It says that each vector (= superposition of inputs) from the bad subspace has short projection onto each F_{z}

Multiplicative adversary matrix

Eigenvalues of Γ
for every $z \in\{0, I\}^{m},\left\|F_{z} \Pi_{\text {bad }}\right\| \leq \eta$

Evolution of the progress function

Evolution of the progress function

- Consider algorithm A running in time T, computing function f with success probability at least $\eta+\zeta$, and multiplicative adversary (Γ, λ)

Evolution of the progress function

- Consider algorithm A running in time T, computing function f with success probability at least $\eta+\zeta$, and multiplicative adversary (Γ, λ)
- We run A on input δ with $\Gamma \delta=\delta$. Then:
I. $W^{0}=1$

2. each $W^{t+1} / W^{t} \leq \max _{i}\left\|O_{i} \Gamma O_{i} \Gamma^{-1}\right\|$
3. $W^{\top} \geq \lambda \zeta^{2} / 16$

Evolution of the progress function

- Consider algorithm A running in time T, computing function f with success probability at least $\eta+\zeta$, and multiplicative adversary (Γ, λ)
- We rus trivial input δ with $\Gamma \delta=\delta$. Then:
I. $W^{0}=1$

2. each $W^{t+1} / W^{t} \leq \max _{i}\left\|O_{i} \Gamma \mathrm{O}_{\mathrm{i}} \Gamma^{-1}\right\|$
3. $W^{\top} \geq \lambda \zeta^{2} / 16$

- Proof:

Evolution of the progress function

- Consider algorithm A running in time computing function f with success probability at least $\eta+\zeta$, and multiplicative adversary (Γ, λ)
- We run A on input δ with $\Gamma \delta=\delta$. The The unitaries cancel and the oracle
I. $W^{0}=1$
very simple:
W^{t} is average of scalar products of
$\mathrm{W}^{\mathrm{t}+1}$ is average of scalar products of $U_{t+1} O\left|\varphi_{x}^{t}\right\rangle$ calls can be absorbed into Γ, forming $\mathrm{O}_{\mathrm{i}}{ }^{-} \mathrm{O}_{\mathrm{i}}$, where

2. each $W^{t+1} / W^{t} \leq \max _{i}\left\|\mathrm{O}_{\mathrm{i}} \Gamma \mathrm{O}_{\mathrm{i}} \Gamma^{-1}\right\|$

$$
O_{i}:|x\rangle \rightarrow(-1)^{x_{i}}|x\rangle
$$

3. $W^{\top} \geq \lambda \zeta^{2} / 16$

- Proof:

Evolution of the progress function

Eigenvalues of Γ

- Consider algorithm A running in time T, computing function f with success probability at least $\eta+\zeta$, and multiplicative adversary (Γ, λ)
- We run A on input δ with $\Gamma \delta=\delta$. Then:
I. $W^{0}=1$

2. each $W^{t+1} / W^{t} \leq \max _{i}\left\|O_{i} \Gamma \mathrm{O}_{\mathrm{i}} \Gamma^{-1}\right\|$
3. $W^{\top} \geq \lambda \zeta^{2} / 16$

- Proof:

Prob. dist. of ρ_{I}^{T}

Evolution of the progress function

\square Eigenvalues of Γ

- Consider algorithm A running in time T, computing function f with success probability at least $\eta+\zeta$, and multiplicative adversary (Γ, λ)
- We run A on input δ with $\Gamma \delta=\delta$. Then:
I. $W^{0}=1$

2. each $W^{t+1} / W^{t} \leq \max _{i}\left\|O_{i} \Gamma \mathrm{O}_{\mathrm{i}} \Gamma^{-1}\right\|$
3. $W^{\top} \geq \lambda \zeta^{2} / 16$

- Proof:

Evolution of the progress function

Eigenvalues of Γ

- Consider algorithm A running in time T, computing function with syccess Lower-bound area under curve probability at lea and multiplicativ
- We run A on inp
I. $W^{0}=1$

2. each W^{t+1} / y

In the bad subspace, the success probability is at most η, in the good subspace it is at most I. By [Bernstein \& Vazirani '93], A can succeed w.p. at most
3. $W^{\top} \geq \lambda \zeta^{2} / 16$

- Proof:

Evolution of the progress function

Eigenvalues of Γ

- Consider algorithm A running in time T, computing function f with success probability at least $\eta+\zeta$, and multiplicative adversary (Γ, λ)
- We run A on input δ with $\Gamma \delta=\delta$. Then:
I. $W^{0}=1$

2. each $W^{t+1} / W^{t} \leq \max _{i}\left\|O_{i} \Gamma O_{i} \Gamma^{-1}\right\|$
3. $W^{\top} \geq \lambda \zeta^{2} / 16$

- Proof:
q.e.d.

Evolution of the progress function

Eigenvalues of Γ

- Consider algorithm A running in time T, computing function f with success probability at least $\eta+\zeta$, and multiplicative adversary (Γ, λ)
- We run A on input δ with $\Gamma \delta=\delta$. Then:
I. $W^{0}=1$

2. each $W^{t+1} / W^{t} \leq \max _{i}\left\|O_{i} \Gamma O_{i} \Gamma^{-1}\right\|$
3. $W^{\top} \geq \lambda \zeta^{2} / 16$

- Proof:
- We get lower bound $T \geq \operatorname{MAdv}_{n, \zeta(f)}$ with

$$
\operatorname{MAdv}_{\eta, \zeta}(f)=\max _{(\Gamma, \lambda)} \frac{\log \left(\lambda \zeta^{2} / 16\right)}{\log \left(\max _{i}\left\|O_{i} \Gamma O_{i} \Gamma^{-1}\right\|\right)}
$$

Block-diagonalization of Γ and O_{i}

Block-diagonalization of Γ and O_{i}

- How to efficiently upper-bound $\| \mathrm{O}_{\mathrm{i}} \Gamma \mathrm{O}_{\mathrm{i}} \cdot \Gamma^{-1}| |$?

Block-diagonalization of Γ and O_{i}

- How to efficiently upper-bound $\left\|\mathrm{O}_{\mathrm{i}} \Gamma \mathrm{O}_{\mathrm{i}} \cdot \Gamma^{-1}\right\|$?
- The eigenspaces of the conjugated $\mathrm{O}_{\mathrm{i}} \Gamma \mathrm{O}_{\mathrm{i}}$ overlap different eigenspaces of Γ, and we want them to cancel as much as possible so that the norm above is small

Block-diagonalization of Γ and O_{i}

- How to efficiently upper-bound $\| \mathrm{O}_{\mathrm{i}} \Gamma \mathrm{O}_{\mathrm{i}} \cdot \Gamma^{-1}| |$?
- The eigenspaces of the conjugated $\mathrm{O}_{\mathrm{i}} \Gamma \mathrm{O}_{\mathrm{i}}$ overlap different eigenspaces of Γ, and we want them to cancel as much as possible so that the norm above is small

Block-diagonalization of Γ and O_{i}

- How to efficiently upper-bound $\| \mathrm{O}_{i} \Gamma \mathrm{O}_{\mathrm{i}} \cdot \Gamma^{-1}| |$?
- The eigenspaces of the conjugated $\mathrm{O}_{\mathrm{i}} \Gamma \mathrm{O}_{\mathrm{i}}$ overlap different eigenspaces of Γ, and we want them to cancel as much as possible so that the norm above is small

Block-diagonalization of Γ and O_{i}

- How to efficiently upper-bound $\left\|\mathrm{O}_{\mathrm{i}} \Gamma \mathrm{O}_{\mathrm{i}} \cdot \Gamma^{-1}\right\|$?
- The eigenspaces of the conjugated $\mathrm{O}_{\mathrm{i}} \Gamma \mathrm{O}_{\mathrm{i}}$ overlap different eigenspaces of Γ, and we want them to cancel as much as possible so that the norm above is small
- like here...

Block-diagonalization of Γ and O_{i}

- How to efficiently upper-bound $\left\|\mathrm{O}_{\mathrm{i}} \Gamma \mathrm{O}_{\mathrm{i}} \cdot \Gamma^{-1} \mid\right\|$?
- The eigenspaces of the conjugated $\mathrm{O}_{\mathrm{i}} \Gamma \mathrm{O}_{\mathrm{i}}$ overlap different eigenspaces of Γ, and we want them to cancel as much as possible so that the norm above is small
- like here...

- we still need the condition on the bad subspace

Block-diagonalization of Γ and O_{i}

- How to efficiently upper-bound $\left\|\mathrm{O}_{\mathrm{i}} \Gamma \mathrm{O}_{\mathrm{i}} \cdot \Gamma^{-1}\right\|$?
- The eigenspaces of the conjugated $\mathrm{O}_{\mathrm{i}} \Gamma \mathrm{O}_{\mathrm{i}}$ overlap different eigenspaces of Γ, and we want them to cancel as much as possible so that the norm above is small
- like here...

- This makes the multiplicative adversary matrices hard to design

Block-diagonalization of Γ and O_{i}

- This gives the bound

$$
\left\|O_{i} \Gamma O_{i} \cdot \Gamma^{-1}\right\| \leq 1+2 \max _{k} \frac{\left\|\Gamma_{i}^{(k)}\right\|}{\lambda_{\min }\left(\Gamma^{(k)}\right)}
$$

Block-diagonalization of Γ and O_{i}

Block-diagonalization of Γ and O_{i}

- By block-diagonalizing Γ and O_{i} together, we can bound each block separately
- Since the eigenvalues in one block don't differ so much like in the whole matrix, we can use some bounds, such as

Block-diagonalization of Γ and O_{i}

$$
\operatorname{MAdv}_{\eta, \zeta}(f) \geq \max _{\Gamma, \lambda} \log \left(\frac{1}{16} \zeta^{2} \lambda\right) \cdot \min _{i, k} \frac{\lambda_{\min }\left(\Gamma^{(k)}\right)}{2\left\|\Gamma_{i}^{(k)}\right\|}
$$

Block-diagonalization of Γ and O_{i}

- The final multiplicative adversary bound is

$$
\operatorname{MAdv}_{\eta, \zeta}(f) \geq \max _{\Gamma, \lambda} \log \left(\frac{1}{16} \zeta^{2} \lambda\right) \cdot \min _{i, k} \frac{\lambda_{\min }\left(\Gamma^{(k)}\right)}{2\left\|\Gamma_{i}^{(k)}\right\|}
$$

Block-diagonalization of Γ and O_{i}

Block-diagonalization of Γ and O_{i}

Block-diagonalization of Γ and O_{i}

- The final murup it has to cancel to $/ / r / I / \times$ bound is

$$
\operatorname{MAdv}_{\eta, \zeta}(f) \geq \max _{\Gamma, \lambda} \log \left(\frac{1}{16} \zeta^{2} \lambda\right) \cdot \min _{i, k} \frac{\lambda_{\min }\left(\Gamma^{(k)}\right)}{2\left\|\Gamma_{i}^{(k)}\right\|}
$$

Block-diagonalization of Γ and O_{i}

- The final multiplica blocks on ont bits i=1, and is
$\operatorname{MAdv}_{\eta, \zeta}(f) \geq \max _{\Gamma, \lambda} \log \left(\frac{1}{16} \zeta^{2} \lambda\right) \cdot \min _{i, k} \frac{\lambda_{\min }\left(\Gamma^{(k)}\right)}{2\left\|\Gamma_{i}^{(k)}\right\|}$

Block-diagonalization of Γ and O_{i}

- The final multiplicative adversary bound is

$$
\operatorname{MAdv}_{\eta, \zeta}(f) \geq \max _{\Gamma, \lambda} \log \left(\frac{1}{16} \zeta^{2} \lambda\right) \cdot \min _{i, k} \frac{\lambda_{\min }\left(\Gamma^{(k)}\right)}{2\left\|\Gamma_{i}^{(k)}\right\|}
$$

- You don't have to use the finest block-diagonalization.

Any is good, including using the whole space as one block, but then the obtained lower bound need not be very strong.

Example: Lower bound for search

Example: Lower bound for search

- Given an n-bit string with exactly one I. Task: find it.

Example: Lower bound for search

- Given an n-bit string with exactly one I. Task: find it.
$\operatorname{MAdv}_{1 / n, \zeta}\left(\right.$ Search $\left._{n}\right)=\Omega\left(\zeta^{2} \sqrt{ }{ }_{n}\right)$

Example: Lower bound for search

- Given an n-bit string with exactly one I. Task: find it.
$\operatorname{MAdv}_{1 / n, \zeta}\left(\right.$ Search $\left._{n}\right)=\Omega\left(\zeta^{2} \sqrt{ }{ }_{n}\right)$
- Define $v=(I, \ldots, I)$ of length n and $v_{i}=(I, \ldots, I, I-n, I, \ldots, I)$, normalized to length I. Note that $\mathrm{v} \perp \mathrm{v}_{\mathrm{i}}$.

Example: Lower bound for search

- Given an n-bit string with exactly one I. Task: find it.
$\operatorname{MAdv}_{1 / n, \zeta}\left(\right.$ Search $\left._{n}\right)=\Omega\left(\zeta^{2} \sqrt{ }{ }_{n}\right)$
- Define $v=(I, \ldots, I)$ of length n and $v_{i}=(I, \ldots, I, I-n, I, \ldots, I)$, normalized to length I. Note that $v \perp v_{i}$.
- Let $\Gamma=(1-q)|v\rangle\langle v|+q I$ $\Gamma v=v$ and $\Gamma v_{i}=q v_{i}$, i.e. v and v_{i} are eigenvectors.
Let $\lambda=\||\Gamma| \mid=q=32 / \zeta^{2}$.

Example: Lower bound for search

- Given an n-bit string with exactly one I. Task: find it.
$\operatorname{MAdv}_{1 / n, \zeta}\left(\right.$ Search $\left._{n}\right)=\Omega\left(\zeta^{2} \sqrt{ }{ }_{n}\right)$
- Define $v=(I, \ldots, I)$ of length n and $v_{i}=(I, \ldots, I, I-n, I, \ldots, I)$, normalized to length I. Note that $v \perp v_{i}$.
- Let $\Gamma=(1-q)|v\rangle\langle v|+q I$ $\Gamma v=v$ and $\Gamma v_{i}=q v_{i}$, i.e. v and v_{i} are eigenvectors.
Let $\lambda=\||\Gamma| \mid=q=32 / \zeta^{2}$.
- The success probability in the bad subspace (containing v) is $\eta=1 / n$.

Example: Lower bound for search

- Given an n-bit string with exactly one I. Task: find it.
$\operatorname{MAdv}_{1 / n, \zeta}\left(\right.$ Search $\left._{n}\right)=\Omega\left(\zeta^{2} \sqrt{ }{ }_{n}\right)$
- Define $v=(I, \ldots, I)$ of length n and $v_{i}=(I, \ldots, I, I-n, I, \ldots, I)$, normalized to length I. Note that $v \perp v_{i}$.
- Let $\Gamma=(1-q)|v\rangle\langle v|+q I$ $\Gamma v=v$ and $\Gamma v_{i}=q v_{i}$, i.e. v and v_{i} are eigenvectors.
Let $\lambda=\||\Gamma| \mid=q=32 / \zeta^{2}$.
- The success probability in the bad subspace (containing v) is $\eta=1 / n$.
- Use just one block. Then $\lambda_{\text {min }}(\Gamma)=I$ and $\left\|\Gamma_{i}\right\|<q / \sqrt{ } n$.

Example: Lower bound for search

- Given an n-bit string with exactly one I. Task: find it.
$\operatorname{MAdv}_{1 / n, \zeta}\left(\right.$ Search $\left._{n}\right)=\Omega\left(\zeta^{2} \sqrt{ }{ }_{n}\right)$
- Define $v=(I, \ldots, I)$ of length n and $v_{i}=(I, \ldots, I, I-n, I, \ldots, I)$, normalized to length I. Note that $v \perp v_{i}$.
- Let $\Gamma=(1-q)|v\rangle\langle v|+q I$ $\Gamma v=v$ and $\Gamma v_{i}=q v_{i}$, i.e. v and v_{i} are eigenvectors.
Let $\lambda=\||\Gamma| \mid=q=32 / \zeta^{2}$.
- The success probability in the bad subspace (containing v) is $\eta=1 / n$.
- Use just one block. Then $\lambda_{\text {min }}(\Gamma)=I$ and $\left\|\Gamma_{i}\right\|<q / \sqrt{ } n$.
- The final bound is

$$
\log \left(\frac{1}{16} \zeta^{2} \lambda\right) \cdot \min _{i, k} \frac{\lambda_{\min }\left(\Gamma^{(k)}\right)}{2\left\|\Gamma_{i}^{(k)}\right\|}>\frac{\log 2}{64} \zeta^{2} \sqrt{n}
$$

Lower bound for k-search

Lower bound for k-search

- Given an n-bit string with k ones. Task: find them.

Lower bound for k-search

- Given an n-bit string with k ones. Task: find them.
- $\operatorname{MAdv}_{\exp (-O(k)), \exp (-O(k))}\left(\right.$ Search $\left._{k, n}\right)=\Omega(\sqrt{ }(k n))$

Lower bound for k-search

- Given an n-bit string with k ones. Task: find them.
- $\operatorname{MAdv}_{\exp (-O(k)), \exp (-O(k))}\left(\right.$ Search $\left._{k, n}\right)=\Omega(\sqrt{ }(k n))$
- The multiplicative adversary matrix Γ is a combinatorial matrix, whose entries $\Gamma_{x, y}$ only depends on $|x \cap y|$.

Lower bound for k-search

- Given an n-bit string with k ones. Task: find them.
- $\operatorname{MAdv}_{\exp (-O(k)), \exp (-O(k))\left(\text { Search }_{k, n}\right)=\Omega(\sqrt{ }(k n)), ~(1)}$
- The multiplicative adversary matrix Γ is a combinatorial matrix, whose entries $\Gamma_{x, y}$ only depends on $|x \cap y|$.
- The $\mathrm{k}+\mathrm{l}$ eigenspaces can be indexed by "knowledge", i.e. how many ones has the algorithm already found, with eigenvectors being superpositions of all strings consistent with some pattern of ones.

Lower bound for k-search

- Given an n-bit string with k ones. Task: find them.
- $\operatorname{MAdv}_{\exp (-O(k)), \exp (-O(k))\left(\text { Search }_{k, n}\right)=\Omega(\sqrt{ }(k n)), ~(1)}$
- The multiplicative adversary matrix Γ is a combinatorial matrix, whose entries $\Gamma_{x, y}$ only depends on $|x \cap y|$.
- The $\mathrm{k}+\mathrm{l}$ eigenspaces can be indexed by "knowledge", i.e. how many ones has the algorithm already found, with eigenvectors being superpositions of all strings consistent with some pattern of ones.
- Tedious combinatorial calculation done by [Ambainis '05] and we can reuse it

Lower bound for k-search

- Given an n-bit string with k ones. Task: find them.
- $\operatorname{MAdv}_{\exp (-O(k)), \exp (-O(k))\left(\text { Search }_{k, n}\right)=\Omega(\sqrt{ }(k n)), ~(1)}$
- The multiplicative adversary matrix Γ is a combinatorial matrix, whose entries $\Gamma_{x, y}$ only depends on $|x \cap y|$.
- The $\mathrm{k}+\mathrm{l}$ eigenspaces can be indexed by "knowledge", i.e. how many ones has the algorithm already found, with eigenvectors being superpositions of all strings consistent with some pattern of ones.
- Tedious combinatorial calculation done by [Ambainis '05] and we can reuse it
- One can use $\Gamma \approx \Delta^{-k}$, where Δ is the additive adversary matrix (much simpler). Don't know any other example where this holds.

Open: element distinctness

- Given n number. Task: are they distinct?
- The quantum query complexity is known to be $\theta\left(n^{2 / 3}\right)$ [Ambainis '04, Aaronson \& Shi '04], where the lower bound is proved using the polynomial method.
- Having an adversary bound of either type would make the bound composable and give bounds for other functions.
- Can one use the structure of the automorphism group of the function to design the structure of the eigenspaces?

Direct product theorem

- The multiplicative adversary bound satisfies an unconditional strong direct product theorem:

$$
\operatorname{MAdv}_{\eta^{\Omega(k)}, \zeta^{\Omega(k)}}\left(f^{(k)}\right)=\Omega\left(k \cdot \operatorname{MAdv}_{\eta, \zeta}(f)\right)
$$

- Proof: take the tensor power $\Gamma^{\otimes k}$ and $\lambda^{k / 10}$. Both η and ζ go down exponentially.
- For Search and the OR function our calculations are simple, hence we get a new and elementary proof of the time-space tradeoffs for matrix-vector multiplication and sorting from [Klauck, Š. \& de Wolf '04].
- Maybe our method is so hard to use precisely because it gives a free SDPT, which is usually very hard to prove.

Summary

- New variant of the adversary bound
- Suitable for exponentially small success probabilities
- Satisfies strong dírect product theorem

