The Multiplicative
Quantum Adversary

- - 8 g » l
- A - g

Robert Spalek

0)816

Quantum query complexity

Quantum query complexity

® Given a function f: {0, }"— {0, }™

Quantum quety
Boolean output

® Given a function f: {0, 1}"—{0, | }™

Quantum query complexity

® Given a function f: {0, }"— {0, }™

® Task: compute f(x)

Quantum query complexity

® Given a function f: {0, }"— {0, }™
® Task: compute f(x)

® Query complexity Qe(f) is the minimal T such that there exists a
T-query quantum algorithm that computes f(x) with error
probability at most € on each input x

Quantum query complexity

Given a function f: {0, }"—{0, [}™
Task: compute f(x)

Query complexity Qe(f) is the minimal T such that there exists a
T-query quantum algorithm that computes f(x) with error
probability at most € on each input x

Query is a unitary oracle operator mapping

O :|z)rli)elwyw — (=1)|z)|i)[w)

Quantum query complexity

Given a function f: {0, }"—{0, [}™
Task: compute f(x)

Query complexity Qe(f) is the minimal T such that there exists a
T-query quantum algorithm that computes f(x) with error
probability at most € on each input x

Query is a unitary oracle operator mapping

O :|z)1li)qlw)yw — (=1)"[z)[3)|w)

Quantum query complexity

Given a function f: {0, }"—{0, [}™
Task: compute f(x)

Query complexity Qe(f) is the minimal T such that there exists a
T-query quantum algorithm that computes f(x) with error
probability at most € on each input x

Query is a unitary oracle operator mapping

O :|z)1li)qlw)yw — (=1)"[z)[3)|w)

Quantum query complexity

Given a function f: {0, }"—{0, [}™
Task: compute f(x)

Query complexity Qe(f) is the minimal T such that there exists a
T-query quantum algorithm that computes f(x) with error
probability at most € on each input x

Query is a unitary oracle operator mapping

O :|z)1li)qlw)yw — (=1)"[z)[3)|w)

Quantum query complexity

Given a function f: {0, }"—{0, [}™
Task: compute f(x)

Query complexity Qe(f) is the minimal T such that there exists a
T-query quantum algorithm that computes f(x) with error
probability at most € on each input x

Query is a unitary oracle operator mapping

O :|z)1li)qlw)w — (=1)"[z)[i)|w)

Quantum query complexity

Given a function f: {0, }"—{0, [}™
Task: compute f(x)

Query complexity Qe(f) is the minimal T such that there exists a
T-query quantum algorithm that computes f(x) with error
probability at most € on each input x

Query is a unitary oracle operator mapping
O : |z)rli)qlw)w — (=1)"[x)[i)|w)

The algorithm can perform arbitrary unitary operations on its
workspace and the query register for free

Quantum query complexity

Given a function f: {0, }"—{0, [}™
Task: compute f(x)

Query complexity Qe(f) is the minimal T such that there exists a
T-query quantum algorithm that computes f(x) with error
probability at most € on each input x

Query is a unitary oracle operator mapping

O :lz)1li)olwyw — (=1)%|z)|i)[w)
The algorithm can perform arbitrary unitary operations on its
workspace and the query register for free

At the end, it measures its workspace, outputs an outcome, and
then we measure the input register and verify the outcome

Adversary bounds

lower-bound quantum query complexity

Adversary bounds

lower-bound quantum query complexity

[©2) = |¢) independent of input x

O starting state

\

Adversary bounds

lower-bound quantum query complexity

® one4uery can only change

t| -t
<S%|80y> by a small amount,
on the average

Adversary bounds

lower-bound quantum query complexity

Idea:

computation starts in a fixed state
©?) = |) independent of input x

one query can only change
t) -t

<S%‘90y> by a small amount,

on the average

at the end, <903;\g05> must be small for
each input pair x, y with f(x)#f(y),
otherwise the algorithm cannot
distinguish x and y

? starting state
Y

distance has
changed little

Adversary bounds

lower-bound quantum query complexity

Idea:

® computation starts in a fixed state
[©2) = |©) independent of input x

f(x)
° Onte qlilel”)' SCRY* " the bound on T depends
<90x |90y> by a s on the average
on the average

at the end, <¢£‘¢5> must be small for changed little
each input pair x, y with f(x)#f(y),
otherwise the algorithm cannot
distinguish x and y

distance has

-
O distance must be large

= T must be large

Historg of the ad\/ersarg method

Historg of the ad\/ersarg method

+ [Bennett, Bernstein, Brassard & Vazirani ’94]
hgbricl method

Historg of the aclversarg method

+ [Bennett, Bernstein, Brassard & Vazirani ’94]
hgbricl method

+ [Ambainis *00] aclversarg method

Historg of the aclversarg method

+ [Bennett, Bernstein, Brassard & Vazirani ’94]
hgbrid method

+ [Ambainis ’00] aclversarg method

* [H@ger, Neerbek & Shi’02]
earlg Weightecl method

Historg of the aol\/ersarg method

[Bennett, Bernstein, Brassard & Vazirani ’94]
hgbricl method

[Ambainis '00] acl\/ersarg method

[H@ger, Neerbek & Shi’02]
ear|9 weightec] method

Bill, SALES!

[Barnum, Saks & Szegeclg G|

Miller Dr.!
sl:)ectral metlﬂocl (|5

n YM(e o))
[Ambainis 03] & (’EJ

: = <=
welghtecl adversarg method G)2 2)
(s) (508
(B © €Y

(E @ &)

Historg of the ad\/ersarg method

[Bennett, Bernstein, Brassard & Vazirani ’94]
hgbricl method

[Ambainis '00] aclversarg method

[Hgger, Neerbek & Shi’02]
ear|9 weightec] method

[Barnum, Saks & Szegedg 03]
sl:)ectral method

[Ambainis 03]
weighted adversar9 method

Histor9 of the aclvcrsarg method

[Bennett, Bernstein, Brassard & Vazirani 94
hgbrid method

[Ambainis '00] aclversarg method

[Hgger) Neerbek & Shi’02]
earlg weightec] method

[Barnum, Saks & Szegecly 03]
spectral method

[Ambainis 03]
Weighted adversarg method

[Hoyer, Lee & S.°07]
negative wcights

Spectral method

Spectral method

® Define a progress function in time t:
W' = (T, pp)

Spectral method

® Define a progress function in time t:
W' = (T, pp)

® pi*is reduced density matrix of the input register at time t

Spectral method

weighted average of the
® Define a progress function in time t: scalar products

W' = (T, p7)

® pi*is reduced density matrix of the input register at time t

® [is the adversary matrix for f:
Hermitian and [, = 0 when f(x)=f(y)

Spectral method

® Define a progress function in time t:
W' = (T, pp)

® pi*is reduced density matrix of the input register at time t

® [is the adversary matrix for f:
Hermitian and [, = 0 when f(x)=f(y)

® Run the computation on certain input superposition

Spectral method

® Define a progress function in time t:
W' = (T, pp)

® pi*is reduced density matrix of the input register at time t

® [is the adversary matrix for f:

Hermitian and [, = 0 whez
. therefore we call it
® Run the computation o additive adversary

® Upper-bound the difference W !-W¢

Spectral method

® Define a progress function in time t:
W' = (T, pp)

® pi*is reduced density matrix of the input register at time t

® [is the adversary matrix for f:
Hermitian and [, = 0 when f(x)=f(y)

® Run the computation on certain input superposition

® Upper-bound the difference W !-W¢

= | eads to the bound

I

Adve(f) = (5 = VelT— 9) mp

r max; |||

Spectral method

® Define a progress function in time t:
W' = (T, pp)

® pi*is reduced density matrix of the input register at time t

® [is the adversary matrix for f:
Hermitian and [, = 0 when f(x)=f(y)

® Run the computation on certain input superposition

® Upper-bound the difference W !-W¢

= | eads to the bound -
spectral norm

Adv.(f) = (5 = VelT= 9) max 1

r max; |||

sub-matrix of [with zeroes
when x;=y;

Pros and cons of additive adversary

Pros and cons of additive adversary

® Pros:

® universal method:
works for all functions

often gives optimal
bounds (e.g., search,
sorting, graph problems)

[, ® are intuitive:
hard distribution on
input pairs and inputs

easy to compute

composes optimally with
respect to function
composition

Pros and cons of additive adversary

® Pros: ® Cons:

® universal method: ® gives trivial bound for
works for all functions low success probability

often gives optimal ® no direct product
bounds (e.g., search, theorem
sorting, graph problems)

[, ® are intuitive:
hard distribution on
input pairs and inputs

easy to compute

composes optimally with
respect to function
composition

Pros and cons of add

® Pros: ® Cons:

® universal method: ® gives trivial bound for
works for all functions low success probability

often gives optimal ® no direct product
bounds (e.g., search, theorem
sorting, graph problems)

[, ® are intuitive:
hard distribution on
input pairs and inputs

easy to compute

composes optimally with
respect to function
composition

Pros and cons of additive adversary

® Pros: ® Cons:

universal method: ® gives trivial bound for
works for all functions low success probability

often gives optimal ® no direct product
bounds (e.g., search, theorem
sorting, graph problems)

[, ® are intuitive:

hard distribution on
input pairs and inputs and |ose these pros

easy to compute

composes optimally with
respect to function
composition

Pros and cons of additive adversary

® Pros: ® Cons:

® universal method: ® gives trivial bound for
works for all functions low success probability

often gives optimal ® no direct product
bounds (e.g., search, theorem
sorting, graph problems)

[, ® are intuitive:
hard distribution on
input pairs and inputs

easy to compute

composes optimally with
respect to function
composition

Origin of ourr

Origin of ourr

* Problem: search k ones in an n-bit input.

Origin of our method

* Problem: search k ones in an n-bit inPut.

+ [Ambainis ’05] new method based on analgsis of eigenspaces of the
reduced clensity matrix of the inPut regis’ter

* W (kn)) queries are needed even for success 2-0K

* rel:)roving the result of [Klauck, S. & de Wolf 04]
based on the Polgnomial method.

Origin of our method

* Problem: search k ones in an n-bit inPut.

> [Ambainis ’05] new method based on analgsis of eigenspaces of the
reduced clensity matrix of the inPut regis’cer

* W (kn)) queries are needed even for success 2-0K

* rel:)roving the result of [Klauck, S. & de Wolf 04]
based on the Polgnomial method.

& oS

* tight bound not relging on Polgnomial aPProximation theorg

Origin of our method

Problem: search k ones in an n-bit inPut.

[Ambainis ’05] new method based on analgsis of eigenspaces of the
reduced clensity matrix of the inPut regis’cer

* W (kn)) queries are needed even for success 2-0K

* rel:)roving the result of [Klauck, S. & de Wolf 04]
based on the Polgnomial method.

Pros:

* tight bound not relging on Polgnomial aPProximation theorg

Cons:
+ tailored to one sPeciﬁc Problem

* technical, complicated, non-modular ProcmC without much intuition

Origin of ourr

Origin of our method

> [Ambainis ’05] new method based on analgsis of eigenspaces of the
reduced densit9 matrix of the inl:)ut register

Origin of our method

> [Ambainis ’05] new method based on analgsis of eigensl:)aces of the
reduced clensitg matrix of the inl:)ut register

* We imProve his method as follows:
* Put it into the well-studied adversary framework
* generalize it to all functions

* Provicle additional inturtion, modularize the Prooﬂ and

seParate the quantum and combinatorial Par‘c

Origin of our method

[Ambainis ’05] new method based on analgsis of eigensl:)aces of the
reduced clensitg matrix of the inl:)ut register

We imProve his method as follows:
* Put it into the well-studied aclversarg framework
* generalize it to all functions

* Provicle additional inturtion, modularize the ProoF, and

seParate the quantum and combinatorial Part

However, the underlging combinatorial analgsis stays the same and we

cannot omit any single detall

New type of adversary

New type of adversary

® Differences:
® adversary matrix [has different semantics then before

® We upper-bound the ratio W®!/W¢, not difference

New type of adversary

® Differences:
now, guess the name of

® adversary matrix [has differerng our method

® We upper-bound the ratio W®!/W¢, not difference

Multiplicative adversary

® Differences:
® adversary matrix [has different semantics then before

® We upper-bound the ratio W®!/W¢, not difference

Multiplicative adversary

® Differences:
® adversary matrix [has different semantics then before
® We upper-bound the ratio W®!/W¢, not difference

® The bound looks similar, however, it requires common block-
diagonalization of [and the input oracle O;, and therefore is
extremely hard to compute

Multiplicative adversary

® Differences:
® adversary matrix [has different semantics then before
® We upper-bound the ratio W®!/W¢, not difference

® The bound looks similar, however, it requires common block-
diagonalization of [and the input oracle O;, and therefore is
extremely hard to compute

. . e 1
additive: IT']| - min T

.)\min (Fk)

mutliplicative: log(|[I'[}) - min ITF]

Multiplicative adversary

® Differences:
® adversary matrix [has different semantics then before
® We upper-bound the ratio W®!/W¢, not difference

® The bound Ig H owever, it requires common block-
diagonalizatio ' inpu oracle O;, and therefore is
1
extremely hard to When Xi:y'th Ze

additive: 1T -

.)\min Fk
mutliplicative: log([|I'l]) - min HFS-“H)

Multiplicative adversary

® Differences:
® adversary matrix [has different semantics then before
® We upper-bound the ratio W®!/W¢, not difference

® The bound looks similar, however, it requires common block-
diagonalization of [a mmiacracle O;, and therefore is
extremely hard to co

Multiplicative adversary

® Differences:
® adversary matrix [has different semantics then before
® We upper-bound the ratio W®!/W¢, not difference

® The bound looks similar, however, it requires common block-
diagonalization g
extremely hard 1%

.)\min Fk
mutliplicative: log([|I'l]) - min HFS-“H)

Multiplicative adversary matrix

Multiplicative adversary matrix

® Consider a function f: {0,1}"—{0,1}™, a
positive definite matrix [with minimal
eigenvalue l,and | <A < ||[|:

Multiplicative adversary matrix

® Consider a function f: {0,1}"—{0,1}™, a W Eigenvalues of T
positive definite matrix [with minimal
eigenvalue l,and | <A < ||[|:

Multiplicative adversary matrix

® Consider a function f: {0,1}"—{0,1}™, a B Eigenvalues of I

positive definite matrix [with minimal
eigenvalue l,and | <A < ||[|:

® [lbad is a projector onto the bad
subspace, which is the direct sum of all
eigenspaces corresponding to eigenvalues
smaller than A

0o I 2
bad subspace

Multiplicative adversary matrix

® Consider a function f: {0,1}"—{0,1}™, a B Eigenvalues of I

positive definite matrix [with minimal
eigenvalue l,and | <A < ||[|:

® [lbad is a projector onto the bad
subspace, which is the direct sum of all
eigenspaces corresponding to eigenvalues
smaller than A

Fz is a diagonal projector onto inputs
evaluating to z

0o I 2
bad subspace

Multiplicative adversary matrix

® Consider a function f: {0,1}"—{0,1}™, a B Eigenvalues of I

positive definite matrix [with minimal
eigenvalue l,and | <A < ||[|:

® [lbad is a projector onto the bad
subspace, which is the direct sum of all
eigenspaces corresponding to eigenvalues
smaller than A

Fz is a diagonal projector onto inputs
evaluating to z

® (I',A) is a multiplicative adversary for success 0 1 2
probability n iff bad subspace

for every z € {0,1}™, ||Fz Npad|| £ N

Multiplicative adversary matrix

B Eigenvalues of I’

| 2
bad subspace

for every z € {0, 1}™, ||Fz [ad|| £ N

Multiplicative adversary matrix

B Eigenvalues of I’

for every z € {0, 1}, ||F;: Mpad|| = N

® |t says that each vector (= supérposition
of inputs) from the bad subspace has short
projection onto each F;

0o I 2
bad subspace

Multiplicative adversary matrix

B Eigenvalues of I’

for every z € {0, 1}, ||F;: Mpad|| = N

® |t says that each vector (= superposition
of inputs) from the bad subspace has short
projection onto each F;

If the final state of the input register lies in >0

the bad subspace, then the algorithm has

success probability at most N regardless of

the outcome it outputs. Typically, n is the

trivial success probability of a random 0 1 -
choice. bad subspace

Evolution of the progress function

Evolution of the progress function

® Consider algorithm A running in time T,
computing function f with success
probability at least N+C,
and multiplicative adversary (I',\)

Evolution of the progress function

Consider algorithm A running in time T,
computing function f with success

probability at least N+C,
and multiplicative adversary (I',\)

® We run A on input O with [0=0. Then:
. WO=]|
2. each W*!/Wt < max; ||[OilOi]|
3. WT2 A T%16

Evolution of the progress function

Consider algorithm A running in time T,
computing function f with success
probability at least N+,

and multiplicative adversary (I',\)
* We rmput 0 with [0=0. Then:

. WO=]|
2. each W*!/Wt < max; ||[OilOi]|
3.WT=> A\ T%16

* Proof:

Evolution of the progress function

very simple:
Consider algorithm A running in time A

computing function f with success [Tl Re] Rle Il olgels Tea el
probability at least N+C, ©3)

t+l
and multiplicative adversary (I',\) W is a"e'”agg of SOCﬁ';‘>PI’0ducts of
t+1 i

® We run A on input R B Re =t Ny The unitaries cancel and the oracle
calls can be absorbed into [, forming

| WO=| Oil O;, where
2. each WtH/Wt < maxX; ||OiFOi F'|| O; : |x) — (=1)%|x)

3. WT2 A TY16
e Proof:

Evolution of the progress function

B Eigenvalues of I’

Consider algorithm A running in time T,
computing function f with success

probability at least N+C,
and multiplicative adversary (I',\)

® We run A on input 0 with [0=0. Then:
. WO=]
2. each W*!/Wt < max; ||[OilOi]|
3. WT2)\ T%16

e Proof:
B Prob. dist. of pt
0.500 7
0.375
0.250
0125 1
0 1 2 k

Evolution of the progress function

B Eigenvalues of I’

Consider algorithm A running in time T,
computing function f with success

probability at least N+C,
and multiplicative adversary (I',\)

® We run A on input 0 with [0=0. Then:
|. WO=]|
2. each WH!/Wt < max; ||OiO:i ||

3.WTZ>\C2/|6 0O I 2 k
bad subspace good

. o
Proof: | .
' Prob.dist. of p;

Evolution of the progress function

B Eigenvalues of I’

® Consider algorithm A running in time T,
computing functj
probability at lez
and multiplicativ

Lower-bound area under curve
(T, p7) = X - Plgood]

M |n the bad subspace, the success
® We run A on inf probability is atpmost N, in the
| WO=]| good subspace it is at most |. By
[Bernstein & Vazirani ’93],
2. each W1/ \ NP W.p. at most

3. WT2 A TY16 1+ 4v/ Plgood] 01 2 . Kk
bad subspace good

. ()
Proof: | .
' Prob.dist. of p;

Evolution of the progress function

B Eigenvalues of I’

Consider algorithm A running in time T,
computing function f with success

probability at least N+C,
and multiplicative adversary (I',\)

® We run A on input 0 with [0=0. Then:
|. WO=]|
2. each WH!/Wt < max; ||OiO:i ||

3.WTZ>\C,2/|6 0O I 2 k
bad subspace good

e Proof: q.e.d. |
| Prob.dist. of p;

Evolution of the progress function

B Eigenvalues of I’

Consider algorithm A running in time T,
computing function f with success

probability at least N+C,
and multiplicative adversary (I',\)

® We run A on input 0 with [0=0. Then:
|. WO=]|
2. each WH!/Wt < max; ||OiO:i ||

3.WTZ>\C2/|6 0O I 2 k
bad subspace good

¢ Proof: g.e.d.
® We get lower bound T 2 MAdvn¢(f) with

log(A(?/16)
MAd =
Vn’C(f> ?%,8;\})(log(maxz- HOZFOZF_l ||)

" Prob. dist. of p}r

Block-diagonalization of [and O;

Block-diagonalization of [and O;

® How to efficiently upper-bound
||OiFOi F'|| 4

Block-diagonalization of [and O;

® How to efficiently upper-bound
||OiFOi F'|| 4

® The eigenspaces of the conjugated Oil O,
overlap different eigenspaces of [, and we
want them to cancel as much as possible
so that the norm above is small

Block-diagonalization of [and O;

B Eigenvalues of I

® How to efficiently upper-bound 10.0
||OiFOi . F'|| !

® The eigenspaces of the conjugated Ol O; 75
overlap different eigenspaces of [, and we
want them to cancel as much as possible
so that the norm above is small

Block-diagonalization of [and O;

B Eigenvalues of I

® How to efficiently upper-bound 108
|OTO; -] 2 |

® The eigenspaces of the conjugated O/l O; 75¢
overlap different eigenspaces of [, and we
want them to cancel as much as possible 5.9
so that the norm above is small

235

0o

Eigenvalues of Qil Oi

Block-diagonalization of [and O;

® How to efficiently upper-bound | 40
|IOITOi - T ?

® The eigenspaces of the conjugated Oil O; 1.05
overlap different eigenspaces of [, and we) \
want them to cancel as much as possible 070 FEERERERNEE &
so that the norm above is small J K

® |ike here...

Block-diagonalization of [and O;

® How to efficiently upper-bound
IO O - T-1] ?
® The eigenspaces of the conjugated Oil O,

overlap different eigenspaces of [, and we
want them to cancel as much as possible
so that the norm above is small

® |ike here...

® we still need the condition on the bad
subspace

Block-diagonalization of [and O;

® How to efficiently upper-bound
||OiFOi . F'|| !
® The eigenspaces of the conjugated Oil O,

overlap different eigenspaces of [, and we
want them to cancel as much as possible
so that the norm above is small

® |ike here...

® we still need the condition on the bad
subspace

® This makes the multiplicative adversary
matrices hard to design

Block-diagonalization of [and O;

Block-diagonalization of [and O;

® By block-diagonalizing [and O; together,
we can bound each block separately

Block-diagonalization of [and O;

® By block-diagonalizing [and O; together,
we can bound each block separately

® Since the eigenvalues in one block don’t
differ so much like in the whole matrix,
we can use some bounds, such as

>\min(M) <A< [IM]],

and don’t lose too much

Block-diagonalization of [and O;

® By block-diagonalizing [and O; together,
we can bound each block separately

® Since the eigenvalues in one block don’t
differ so much like in the whole matrix,
we can use some bounds, such as

>\min(M) <A< [IM]],

and don’t lose too much

® This gives the bound

(k)
TO. .71 1%
|OTO; - I < 1+ 2max WNING)

Block-diagonalization of [and O;

® By block-diagonalizing [and O; together,
we can bound each block separately

® Since the eigenvalues in one block don’t
differ so much like in the whole matrix,
we can use some bounds, such as

>\min(M) <A< [IM]],

Block-diagonalization of [and O;

® By block-diagonalizing [and O; together,
we can bound each block separately

® Since the eigenvalues in one block don’t
differ so much like in the whole matrix,
we can use some bounds, such as

B

. .. _1 .
|OTO; - I < 1+ 2max SWINC)

Block-diagonalization of [and O;

)\min(F(k))
MAdv, ¢(f) > maxlog(==¢*)) - min

Block-diagonalization of [and O;

® The final multiplicative adversary bound is

2
MAdvi¢(f) > maxlog(£5¢2))

Block-diagonalization of [and O;

min F(k)
C2)\).min)\ ((k))
vk 2fm]

Block-diagonalization of [and O;

2 . .
¢"A) - min

Block-diagonalization of [and O;

® The final m

 Amin (D)
k
20|

Block-diagonalization of [and O;

Block-diagonalization of [and O;

® The final multiplicative adversary bound is

)\min(r(k))
MAdv, ¢(f) > maxlog(==¢*)) - min

® You don’t have to use the finest block-diagonalization.

Any is good, including using the whole space as one block, but
then the obtained lower bound need not be very strong.

Example: Lower bound for search

Example: Lower bound for search

® Given an n-bit string with exactly
one |. Task: find it.

Example: Lower bound for search

® Given an n-bit string with exactly
one |. Task: find it.

MAdv i/ c(Searchy) = Q(CVn)

Example: Lower bound for search

® Given an n-bit string with exactly
one |. Task: find it.

MAdv i/ c(Searchy) = Q(CVn)

® Define v=(l,...,,I) of length n and
vi=(l,..., 1, I-n, |,...,1), normalized
to length |. Note that v_Lv..

Example: Lower bound for search

® Given an n-bit string with exactly
one |. Task: find it.

MAdv i/ c(Searchy) = Q(CVn)

® Define v=(l,...,,I) of length n and
vi=(l,..., 1, I-n, |,...,1), normalized
to length |. Note that v_Lv..

®let I'=(1—q)v){v]+ql
[v=vand[vi=qvi,i.e.
v and v; are eigenvectors. 000001

Let >\=|||_||= q-= 32/(_,2 000100

001000

010000

100000

Example: Lower bound for search

® Given an n-bit string with exactly =~ ® The success probability in the
one |. Task: find it. bad subspace (containing v) is

MAdV|/n’§(Searchn) = Q(CZ\/I”I) N= | /n.

® Define v=(l,...,,I) of length n and
vi=(l,..., 1, I-n, |,...,1), normalized
to length |. Note that v_Lv..

®let I'=(1—q)v){v]+ql
[v=vand[vi=qvi,i.e.
v and v; are eigenvectors. 000001

Let >\=|||_||= q-= 32/(_,2 000100

001000

010000

100000

Example: Lower bound for search

® Given an n-bit string with exactly =~ ® The success probability in the
one |. Task: find it. bad subspace (containing v) is

MAdV|/n,§(Searchn) = Q(CZ\/I”I) N= | /n.
® Use just one block. Then

® =(1,...,
Define v=(I,...,1) of length n and Amin(l) = | and ||Fi||<q/\/n.

vi=(l,..., 1, I-n, |,...,1), normalized
to length |. Note that v_Lv..

®let I'=(1—q)v){v]+ql
[v=vand[vi=qvi,i.e.
v and v; are eigenvectors. 000001

Let >\=|||_||= q-= 32/(_,2 000100

001000

010000

100000

Example: Lower bound for search

® Given an n-bit string with exactly =~ ® The success probability in the
one |. Task: find it. bad subspace (containing v) is

MAdV|/n,§(Searchn) = Q(CZ\/I”I) N= | /n.

® Define v=(l,...,,l) of length n and ° ;\Js§ jrust_olne bc:oc#. '<I'h/e\/n
vi=(l,..., I, I-n, 1,...,1), normalized min(1) = 1 and [[i{|<q/Nn.

to length |. Note that v_Lyv.. ® The final bound is

®let I'=(1—q)lv)(v|+ql log(75¢*A) -
[v=vand[vi=qvi,i.e.
v and v; are eigenvectors. 000001

Let A=||['||= q = 32/C%.

001000

010000

100000

| ower bound for k-search

| ower bound for k-search

® Given an n-bit string with k ones. Task: find them.

| ower bound for k-search

® Given an n-bit string with k ones. Task: find them.
® MAdVexp(-0(k).exp-0()(Searchin) = Q(V(kn))

| ower bound for k-search

® Given an n-bit string with k ones. Task: find them.
® MAdVexp(-0(k).exp-0()(Searchin) = Q(V(kn))

® The multiplicative adversary matrix [is a combinatorial matrix,
whose entries [xy only depends on |xNyl|.

| ower bound for k-search

® Given an n-bit string with k ones. Task: find them.
® MAdVexp(-0(k).exp-0()(Searchin) = Q(V(kn))

® The multiplicative adversary matrix [is a combinatorial matrix,
whose entries [xy only depends on |xNyl|.

® The k+1| eigenspaces can be indexed by “knowledge”, i.e. how many
ones has the algorithm already found, with eigenvectors being
superpositions of all strings consistent with some pattern of ones.

| ower bound for k-search

® Given an n-bit string with k ones. Task: find them.
® MAdVexp(-0(k).exp-0()(Searchin) = Q(V(kn))

® The multiplicative adversary matrix [is a combinatorial matrix,
whose entries [xy only depends on |xNyl|.

® The k+1| eigenspaces can be indexed by “knowledge”, i.e. how many
ones has the algorithm already found, with eigenvectors being
superpositions of all strings consistent with some pattern of ones.

® Tedious combinatorial calculation done by [Ambainis '05]
and we can reuse it

| ower bound for k-search

® Given an n-bit string with k ones. Task: find them.
® MAdVexp(-0(k).exp-0()(Searchin) = Q(V(kn))

® The multiplicative adversary matrix [is a combinatorial matrix,
whose entries [xy only depends on |xNyl|.

® The k+1| eigenspaces can be indexed by “knowledge”, i.e. how many
ones has the algorithm already found, with eigenvectors being
superpositions of all strings consistent with some pattern of ones.

® Tedious combinatorial calculation done by [Ambainis '05]
and we can reuse it

® One can use [=AX, where A is the additive adversary matrix (much
simpler). Don’t know any other example where this holds.

Open: element distinctness

Given n number. Task: are they distinct?

The quantum query complexity is known to be 8(n?3)
[Ambainis ’04, Aaronson & Shi ’04], where the lower
bound is proved using the polynomial method.

Having an adversary bound of either type would make the
bound composable and give bounds for other functions.

Can one use the structure of the automorphism group of the
function to design the structure of the eigenspaces!?

Direct product theorem

® The multiplicative adversary bound satisfies an unconditional
strong direct product theorem:

MAAv, o) cam (f*) = Q(k - MAdv, ¢(f))
® Proof: take the tensor power [®k and A¥'!%, Both 1 and T go
down exponentially.

® For Search and the OR function our calculations are simple,
hence we get a new and elementary proof of the time-space
tradeoffs for matrix-vector multiplication and sorting from

[Klauck, S. & de Wolf *04].

® Maybe our method is so hard to use precisely because it gives
a free SDPT, which is usually very hard to prove.

Summarg

* New varant OF thc—: aclversarg bouncl

* Suitable ‘FOT' CXPOﬂCﬂtiBHH sma” SUCCESS

Probabi lities

o Satisfies strong direct Procluct theorem

