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Classical computation

¥ deterministic

¥ computer in 1 state at each moment

¥ parallel computation modelled by circuits:
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¥ elementary gates: Not, And, Or

¥ polynomial size, bounded fan-in, unbounded fan-out
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Reversible circuits

¥ constant number of bits

¥ ancilla bits initialised to 0

¥ elementary reversible gates: Not, Toffoli
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¥ can simulate classical comp. with small overhead
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Probabilistic computation

¥ can flip random coins

¥ state is a prob. distribution on classical states ei:

x =
2n−1

∑
i=0

pi ei, 0≤ pi ≤ 1, and ∑ pi = 1

¥ evolution is a stochastic process

¥ result is sampled from the prob. distribution

¥ allow small error (one-sided, two-sided)

or zero-error comp. of small expected time
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Quantum physics

Nature obeys quantum laws:

¥ quantum superposition
|0〉+|1〉√

2

¥ product state
|0〉+|1〉√

2
⊗ |0〉+|1〉√

2
versus

entangled state (EPR-pair)
|00〉+|11〉√

2

¥ unitary evolution (reversible and norm-preserving)

Irreversible processes possible due to interaction with environment,

i.e. energy dissipation, we call them

¥ quantum measurement.

They collapse the quantum state!
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Quantum circuits

¥ are like reversible circuits, but with quantum gates:

• Hadamard gate H = 1√
2

(

1 1
1 −1

)

• phase shift Rz(α) =

(

1 0
0 eiα

)

• controlled-not maps cnot:|x〉|y〉 → |x〉|x⊕ y〉

¥ state is a superposition of classical states |x〉:

|ϕ〉 =
2n−1

∑
x=0

αx|x〉, αx ∈ C, and ∑ |αx|2 = 1

¥ measurement at the end gives prob. px = |αx|2
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Elementary quantum gates

¥ are universal for quantum computation

(every unitary operation can be efficiently approximated)

¥ Hadamard gate is like a random coin flip, but it is reversible:

H|0〉 =
|0〉+ |1〉√

2

H2 =
1
2

(

1 1
1 −1

)2
=

1
2

(

2 0
0 2

)

= I (identity)

¥ phase shift changes the relative phase of |0〉 and |1〉
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Visualisation of one qubit

Bloch sphere

¥ is mapping between states of

one qubit and points on a sphere.

¥ Let θ ∈ 〈0,π〉 and ϕ ∈ 〈0,2π).

Then |ψ〉 = cosθ
2 |0〉+ eiϕ sinθ

2 |1〉.
¥ 2 real parameters instead of 4, since

• the norm must be 1,

• global phase is unobservable.

¥ 1-qubit operations rotate the sphere.

ϕ

θ

|0〉

|1〉

|ψ〉

|0〉+|1〉√
2

|0〉+i|1〉√
2

|0〉−i|1〉√
2

|0〉−|1〉√
2

x y

z
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Toffoli (And) gate from elementary gates

1. Implement controlled one-qubit gate (skipped).

2. Take two non-commuting one-qubit operations U, V :

U = Rx(
π
2), V = Rz(π). Note: UVU†V † = X (Not).

U V U† V †

|x〉
|y〉
|0〉

|x〉
|y〉
|x&y〉

x y

z

|0〉

|1〉

Rx(
π
2)

Rz(π)

Rx(−π
2)

If x = y = 1, then X is applied.

If x = 1 & y = 0, then UU† = I is applied.

Nothing happens if x = y = 0.
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Turning around the controlled-not

H

H

H

H
= because

|a〉|b〉 →H⊗2
|0〉+(−1)a|1〉√

2
⊗ |0〉+(−1)b|1〉√

2
=

= (|00〉+(−1)a|10〉+(−1)b|01〉+(−1)a+b|11〉)/2

→cnot (|00〉+(−1)a|11〉+(−1)b|01〉+(−1)a+b|10〉)/2

= (|00〉+(−1)a+b|10〉+(−1)b|01〉+(−1)(a+b)+b|11〉)/2

= H⊗2|a+b〉|b〉 →H⊗2 |a+b〉|b〉.
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Parity and fan-out

Def. fan-out is controlled-not-not-. . . -not.

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

= = =

2

Recall that:

¥ Hadamard gates change the direction of cnot.

¥ Two applications of H cancel each other, i.e. H2 = I.

Classically, we need logarithmic depth!
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Constant-depth circuits with fan-out

¥ any commuting gates can be applied in parallel,

if we can efficiently change into their diagonal basis

¥ [Moore, 1999] mod[q] exactly in constant depth

¥ [Høyer & Špalek, 2003] constant-depth approximations

with polynomially small error:

• And, Or, exact[q], threshold[t], counting,

• arithmetics, sorting,

• quantum Fourier transform.

Classically, we need logarithmic depth even with parity, except for:

or and and can be approximated with error 1
n in depth O(log logn).
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Exponential speedup

[Shor, 1994] factoring and discrete-log in polynomial time.

Uses modular exponentiation and quantum Fourier transform.

Further results:

¥ [Cleve & Watrous, 2000] quantum circuit of logarithmic depth

+ classical poly-time randomised algorithm

¥ [Høyer & Špalek, 2003] constant-depth quantum circuit

with fan-out + classical poly-time randomised algorithm

¥ generalised to hidden subgroup problem for some groups
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Quantum search

[Grover, 1996] searching n unsorted records in time O(
√

n).

Further results:

¥ finding minimum in the same time

¥ amplitude amplification (compare with probability amplification):

• assume a subroutine with success prob. ε

• can amplify the prob. to Θ(1) in O(
√

1
ε) iterations

• classically we need O(1
ε) iterations

¥ can do it exactly
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