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Classical computation

B deterministic
B computer in 1 state at each moment

B parallel computation modelled by circuits:

X1 X2 X3 X4
B elementary gates: Not, And, Or

B polynomial size, bounded fan-in, unbounded fan-out



Reversible circuits

B constant number of bits
B ancilla bits initialised to 0O

B eclementary reversible gates: Not, Toffoli

B can simulate classical comp. with small overhead



Probabilistic computation

can flip random coins

state is a prob. distribution on classical states g:

on_1
X= Z)piei, 0<pi<1 and } pi=1
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evolution is a stochastic process
result is sampled from the prob. distribution

allow small error (one-sided, two-sided)
or zero-error comp. of small expected time



Quantum physics

Nature obeys quantum laws:
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B product state 0+D) o [0+]1) Versus
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B quantum superposition

entangled state (EPR-pair) ‘00\72‘13

B unitary evolution (reversible and norm-preserving)

Irreversible processes possible due to interaction with environment,
i.e. energy dissipation, we call them

B quantum measurement.
They collapse the quantum state!



Quantum circuits

B are like reversible circuits, but with quantum gates:

1 (1 1
e Hadamard gateH_ﬁ(l _1)

e phase shift Ry (a) = ( é e'%‘ )

e controlled-not maps cnot:|X)|y) — [X)|X®Y)

B state is a superposition of classical states |x):
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B measurement at the end gives prob. px= |0(x|2



Elementary quantum gates

B are universal for quantum computation
(every unitary operation can be efficiently approximated)

B Hadamard gate is like a random coin flip, but it is reversible:
0) +1)
V2

2
1/1 1 1/2 0 : :
2 - _ = —
He = 2(1 1) 2<0 2) | (identity)

B phase shift changes the relative phase of |0) and |1)

H|0) =



Visualisation of one qubit

Bloch sphere

B is mapping between states of
one qubit and points on a sphere.
M Let 6 (0, and ¢ € (0,2m).
Then |p) = cos3|0) +€9sind|1).
B 2 real parameters instead of 4, since
e the norm must be 1,
e global phase is unobservable.
B 1-qubit operations rotate the sphere.




Toffoli (And) gate from elementary gates

1. Implement controlled one-qubit gate (skipped).

2. Take two non-commuting one-qubit operations U, V:
U =Ru(J), V=Ry(m. Note: UVUTVT =X (Not).

X) ® ® X)
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If x=y=1, then X is applied.
If x=1& y=0, then UUT =1 is applied.
Nothing happens if x=y=0.




Turning around the controlled-not

I — j because
—H a H—
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a)b)  — e e
= (|00) + (—~1)?|10) + (~1)P|01) + (—1)3"P|11)) /2
00) + (—1)3/11) + (—1)P|01) + (—1)2P|10)) /2
= (|00) + (~1)?"P|10) + (~1)P|0L) + (—1) @ P)FP|11)) /2
= H%a+b)b) —pe2 |atb)|b).
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Parity and fan-out
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Def. fan-out is controlled-not-not-. .. -not.
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Recall that:
B Hadamard gates change the direction of cnot.
B Two applications of H cancel each other, i.e. H2 =1

Classically, we need logarithmic depth!




Constant-depth circuits with fan-out

B any commuting gates can be applied in parallel,
if we can efficiently change into their diagonal basis

B [Moore, 1999] mod[qg] exactly in constant depth
B [Hgyer & Spalek, 2003] constant-depth approximations
with polynomially small error:
e And, Or, exact[q], threshold[t], counting,
e arithmetics, sorting,
e quantum Fourier transform.
Classically, we need logarithmic depth even with parity, except for:
or and and can be approximated with error % in depth O(loglogn).
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Exponential speedup

[Shor, 1994] factoring and discrete-log in polynomial time.
Uses modular exponentiation and quantum Fourier transform.

Further results:

B [Cleve & Watrous, 2000] quantum circuit of logarithmic depth
+ classical poly-time randomised algorithm

B [Hgyer & Spalek, 2003] constant-depth quantum circuit
with fan-out 4 classical poly-time randomised algorithm

B generalised to hidden subgroup problem for some groups
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Quantum search

[G rover, 1996] searching n unsorted records in time O(y/n).

Further results:
B finding minimum in the same time

B amplitude amplification (compare with probability amplification):
e assume a subroutine with success prob. €

e can amplify the prob. to ©(1) in O(y/1) iterations

M=

e Classically we need O(%) iterations

B can do it exactly
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