
Designing Efficient
Span Programs

Robert Špalek

joint work with Ben Reichardt
1

Designing span programs

• Def: A span program P is: [Karchmer & Wigderson ’93]

• A target vector t over C,

• Input vectors vj each associated with a conjunction of literals
from {x1, ¬x1, ..., xn, ¬xn}

• Span program P computes fP: {0,1}n→{0,1},
fP(x) = 1 ⇔ t lies in the span of { true vj }

• Given: a Boolean function f: {0,1}n→{0,1}

Task 1: design a span program P computing f

• Last talk: this gives a bounded-error quantum algorithm for f

[Reichardt & Š, STOC’08]

2

Efficiency of span programs

• Def: witness size of P on input x:

• S is a diagonal matrix of complexities of the inputs (we
typically consider all ones),

• A is the matrix of input vectors of P,

• Π is the projector onto true columns on input x

• The running time of our quantum alg. is O(maxx wsize P(x))

• Task 2: optimize the witness size of P by tuning its “free
coefficients”, ideally to match the lower bound for f

(we use adversary lower bounds for comparison [Ambainis’03])

wsizeSP (x) =

min|w〉:AΠ|w〉=|t〉 ‖S|w〉‖2 if fP (x) = 1
min|w′〉:〈t|w′〉=1

ΠA†|w′〉=0

‖SA†|w′〉‖2 if fP (x) = 0

length of the shortest vector
satisfying certain linear constraint

3

Span programs based on
formulas

4

Using DNF formulas

• Expand the function f as a DNF formula

Ex: Equaln(x1...xn)= (x1∧...∧xn) ∨ (¬x1∧...∧¬xn)

• Form a span program with 1 row of ones, and with
columns corresponding to the clauses, labeled by the
conjunctions of the input variables and their negations

• By definition, this span program evaluates f

• It may not be efficient, but one can optimize its weights.

This way, for example, one gets an optimal O(√n) algorithm
for {AND, OR} formulas of size n
[Ambainis, Childs, Reichardt, Š & Zhang, FOCS’07]

target x1...xn ¬x1...¬xn

1 1 1

5

• If the formula consists of more complicated sub-formulas, we
can use composition of their corresponding span programs

• Connect the output edge of one gadget with an input edge of
another one:

• The span program then looks like this:

Formulas that are not in DNF

output

inputs

MAJ3

MAJ3
a

b c

a
b c

a
b ca

b c

t x1 x2 1 x3 x4 x5

1 1 1 1 0 0 0
0 a b c 0 0 0
0 0 0 1 1 1 1
0 0 0 0 a b c

6

Running example: Majority of 3

• Maj3(x1,x2,x3) = (x1∧x2) ∨ ((x1 ∨ x2) ∧ x3)

• Since this is not in a DNF form, we need
to compose two span programs, one for
(x1∧x2) and one for ((x1 ∨ x2) ∧ x3).

• If we set the weights according to
[ACRŠZ’07], we get witness size √5.

• These weights would be optimal if the
formula was a read-once formula on 5
bits, i.e. (x1∧x2) ∨ ((x4 ∨ x5) ∧ x3).

However, we are promised that x4=x1
and x5=x2, so some inputs don’t appear.

• If we optimize the weights under this
promise, the witness size is √(3+√2) < √5.

OR

AND

X1 X2

AND

X3 OR

AND AND

x1 x2

x1x2 x3 x1 x2

1 a 0 0

0 1 b b

a =

√
1 +

√
2

2
b =

1
4
√

2

1 a

1

b b

7

Going beyond formulas
and respecting function symmetries

8

Symmetric span program for
Maj3

• Maj3 is a symmetric function: one can permute the input bits any
way and the function value stays the same. However, the span
program doesn’t treat the input bits symmetrically.

• Consider span program:

• If any two input bits are one, we get the same true column
vectors (1, 1), (1, ω), modulo a unitary transform. The
program is symmetric with respect to all minimal 1-inputs.

• Simple computation shows that witness size of this span
program is 2, matching the adversary bound, and hence it is
optimal

target x1 x2 x3

1 1 1 1
0 1 ω ω2

ω = e2πi/3
1

!

!
2

9

Automorphisms of Maj3

• Automorphism = combination of a permutation and bit-flip of
some input bits, preserving the function value

Automorphism group = group of all automorphisms

• The automorphism group of Maj3 is S3.

• Since we are permuting bits which can only have one of two
values {0,1}, in each input string there will always exist two
bits of the same value (pigeonhole principle).

• We don’t care whether these two equal bits are swapped ⇒

we can apply an extra transposition to each permutation σ
from S3 to make σ even, with no effect to the input.

• Therefore the “symmetry group” of our interest isn’t S3, but
A3=Z3, i.e. one can get to any input string with the same
number of ones by using just rotation.

10

Using representation theory

• The optimal span program for Maj3 is

• Note that it consists of two representations of Z3,
1 and ωi, one in each row

• Q: Is this a coincidence or can we find a similar pattern for
more interesting functions?

target x1 x2 x3

1 1 1 1

0 1 ω ω2

11

Threshold 2 of 4

• Generalization of Maj3 to more input bits

• A natural span program is

• However, this span program is not symmetric, because the
sub-matrix corresponding to input 1100 is very different from
the sub-matrix for input 1010.

Indeed, its witness size is √8 > √6

• Need to go to higher dimensions to achieve symmetry

target x1 x2 x3 x4

1 1 1 1 1
0 1 i -1 -i

1-1

i

-i

12

Using different rings than C

• A complex number a+bi can be though of as a pair of real
numbers (a, b), or as a 2x2 matrix

This matrix representation preserves summation and
multiplication.

• One can represent a complex span program by a real one with
the same witness size. For example, for Maj3:

• Can we do the opposite, i.e. extend C? Yes.

a -b
b a

target x1 x2 x3

1 1 1 1
0 1 ω ω2

target x1 x1 x2 x2 x3 x3

1 1 1 1 1 1 1
0 1 0 -1/2 -√3/2 -1/2 √3/2
0 0 1 √3/2 -1/2 -√3/2 -1/2

13

Simplex with 4 vertices

• In 3 dimensions, we can take 4 vertices of the regular
tetrahedron. All its edges are symmetric to each other.

• How to embed such a simplex into a span program?

• We go from the ring C of complex numbers into an
extension ring of quaternions/unitary matrices.

• In this extension ring, the span program is

where v1, v2, v3, v4 are elements of the extension ring
corresponding to the vertices of the simplex.

target x1 x2 x3 x4

1 1 1 1 1

0 v1 v2 v3 v4

v2

v3

v4

v1

14

Constructing the extension ring

• The automorphism group of Thr2 of 4 is S4, and
we can again restrict our attention to A4, the
subgroup of even permutations

• This is the group of orientation-preserving
symmetries of tetrahedron. Its generators are:

• Define a clock-wise rotation “around” each
vertex, labeled by the fixed input bit.

• Represent the rotations in SO(3) ⊆ SU(2).

The elements v1..4 of the span program will be
the 2x2 representations of these rotations.

target x1 x1 x2 x2 x3 x3 x4 x4

1 1 1 1 1 1 1 1 1
0 1 1 1 -1 i -i i i
0 i -i i i 1 1 1 -1

2x2 unitary matrix

4

3

2

1

1001

0101

0011

1010

0110
1100

optimal wsize = √6

15

Threshold 2 of 5

target x1 x2 x3 x4 x5

1 1 1 1 1 1

0 v1 v2 v3 v4 v5

• Similarly to Thr2 of 4, one can use the vertices of a regular
5-simplex in 4 dimensions.

• They can also be represented by 2x2 complex matrices and
give an optimal span program with witness size √8, of the form

• The symmetry group of Thr2 of 5 is A5, which is the group of
orientation-preserving symmetries of the icosahedron. It can
also be embedded into SO(3) ⊆ SU(2).

• Q: Can we think of the 2x2 matrices corresponding to the 5
vertices of the simplex as generators of this group?

16

ThresholdM of N

• Span programs for M=2 and N≥5:

• Q: Can we analyze them in a closed form?

• Span programs for M=3 and N=5:

• Q: Can we get a symmetric span program of the form

where vi, wi are 2x2 unitary matrices? What would the pairs
of matrices correspond to on the icosahedron?

• Q: Can we solve in a closed form the general case?

• Q: Do we actually need the smaller “symmetry group” An
instead of Sn? It arises very naturally for Maj3.

target x1 x2 x3 x4 x5

1 1 1 1 1 1
0 v1 v2 v3 v4 v5

0 w1 w2 w3 w4 w5

17

Going beyond
permutation symmetry

Automorphism groups with flipping input bits

18

Ambainis function

• Def: A(x1,x2,x3,x4) is true iff the input bits are sorted, i.e.

 x1≤x2≤x3≤x4 or x1≥x2≥x3≥x4

• Its automorphism group is generated by

 A(x1,x2,x3,x4) = A(x2,x3,x4,¬x1)

i.e. one can rotate the whole string to the left while flipping
the new last bit

• Simplest non-monotone function with unknown witness size.

deg(A)=2, Adv(A)=2.5, Adv±(A)=2.51353

wsize(A)≤2.77394 using optimized weights for formula
(x1∧((x2∧x3)∨(¬x3∧¬x4))) ∨ (¬x1∧((¬x2∧¬x3)∨(x3∧x4)))

19

0- and 1- inputs of the Ambainis
function

• If we order both xi‘s and ¬xi‘s in
one line, then the “symmetry
group” of this function is Z8

• Idea: it may be worthy to look
at span programs consisting of
representations of Z8.

• If a span program is generated
this way, then it is sufficient to
verify just 2 input strings 0000
and 0010. All other inputs are
unitarily related due to the
rotational symmetry.

• Cannot make it work yet due to
some “little” details

x1 x2 x3 x4 ¬x1 ¬x2 ¬x3 ¬x4

0000 ✔ ✔ ✔ ✔
0001 ✔ ✔ ✔ ✔
0011 ✔ ✔ ✔ ✔
0111 ✔ ✔ ✔ ✔
1111 ✔ ✔ ✔ ✔
1110 ✔ ✔ ✔ ✔
1100 ✔ ✔ ✔ ✔
1000 ✔ ✔ ✔ ✔
0010 ✔ ✔ ✔ ✔
0101 ✔ ✔ ✔ ✔
1011 ✔ ✔ ✔ ✔
0110 ✔ ✔ ✔ ✔
1101 ✔ ✔ ✔ ✔
1010 ✔ ✔ ✔ ✔
0100 ✔ ✔ ✔ ✔
1001 ✔ ✔ ✔ ✔

20

Non-constant size span
programs

21

Examples of large span programs

• Ex: Undirected s-t connectivity

• G a graph with marked source and sink vertices

• |t〉 = |sink〉 - |source〉
|v(i,j)〉 = |i〉 - |j〉

· · ·

t e(1,2) e(2,3) e(3,4) e(4,5) e(1,3) e(1,4) · · ·
−1 −1 0 0 0 −1 −1
0 1 −1 0 0 0 0
0 0 1 −1 0 1 0
0 0 0 1 −1 0 1
1 0 0 0 1 0 0

s=1

2

3

4

t=5+

-

+

- +

-

+

-

Linear combinations of the edge
vectors correspond to paths in
the graph.

22

Large overhead of span programs

• On true inputs, the span program
has negligible overhead, because all
amplitude of 0-eigenvalue
eigenvectors is put on the true
inputs and on the output vertex

• Problem: On false inputs, the
span program puts amplitude also
on its constraint vertices, and hence
it decreases the overlap of the
eigenvector with the root vertex.

This is negligible for span
programs with O(1) constraints,
but may not be for larger ones.

. . .

aO

bO

a1
a2 a3

b1 b2 b3

am

bm

…

cCc1

TRUE TRUE

. . .
bO

FALSE FALSE

|b〉

constraint
vertices

23

The trouble of
unbalanced inputs

3-bit functions

24

Table 1: Binary gates on up to three bits. Up to equivalences—permutation of inputs, complementation of
some or all inputs or output—there are fourteen binary gates on three inputs x1, x2, x3. Adversary bounds
for all functions on up to four bits have been computed by [HLŠ06], and see [RŠ07].

Gate Adversary lower bound
0 0
x1 1

x1 ∧ x2

√
2

x1 ⊕ x2 2
x1 ∧ x2 ∧ x3

√
3

x1 ⊕ x2 ⊕ x3 3
x1 ⊕ (x2 ∧ x3) 1 +

√
2

x1 ∨ (x2 ∧ x3)
√

3
(x1 ∧ x2) ∨ (x1 ∧ x3) 2

x1 ∨ (x2 ∧ x3) ∨ (x2 ∧ x3)
√

5
MAJ3(x1, x2, x3) = (x1 ∧ x2) ∨ ((x1 ∨ x2) ∧ x3) 2

MAJ3(x1, x2, x3) ∨ (x1 ∧ x2 ∧ x3)
√

7
EQUAL(x1, x2, x3) = (x1 ∧ x2 ∧ x3) ∨ (x1 ∧ x2 ∧ x3) 3/

√
2

(x1 ∧ x2 ∧ x3) ∨ (x1 ∧ x2)
√

3 +
√

3

Definition 2.3 (Nonnegative-weight adversary bound A(f)). Let f : {0, 1}k → {0, 1}. Define

A(f) = max
Γ≥0
Γ "=0

‖Γ‖
maxi ‖Γ ◦Di‖

, (2.2)

where Γ ◦ Di denotes the entrywise matrix product between Γ and Di a zero-one-valued matrix defined by
〈x|Di|y〉 = 1 if and only if bitstrings x and y differ in the ith coordinate, for i ∈ {1, . . . , k}. The maximum
is over all 2k × 2k symmetric matrices Γ with nonnegative entries satisfying 〈x|Γ|y〉 = 0 if f(x) = f(y).

The motivation for this definition is that A(f) gives a lower bound on the number of queries to the
phase-flip input oracle Ox required to evaluate f on input x, i.e., a lower bound on the quantum query
complexity:

Definition 2.4 (Phase-flip input oracle). The phase-flip input oracle for an input string x is a unitary
operator

Ox : |c〉 ⊗ |i〉 -→
{

(−1)xi |c〉 ⊗ |i〉 if c = 1
|c〉 ⊗ |i〉 if c = 0

Theorem 2.5 ([Amb06a, BSS03]). The two-sided ε-bounded error quantum query complexity of function f ,

Qε(f), is at least 1−2
√

ε(1−ε)

2 A(f).

Therefore, to match the lower bound of Theorem 2.5, our goal will be to use O(A(ϕ)) queries to evaluate ϕ.

Remark 2.6. We have used the nonnegative weight adversary bound A instead of the more general adversary
bound ADV± of [HLŠ07] because for any g ∈ S, A(g) = ADV±(g). See the open problems in Section 13.

Example 2.7. The adversary bounds for all binary functions on up to three bits are given in Table 1. The
adversary bounds for all functions on up to four bits are listed at the webpage [RŠ07], taken from [HLŠ06];
the list also includes ADV±(f) and the minimum-size {AND, OR, NOT} formula for each f .

4

Fully solved for balanced inputs

The highlighted functions require span programs.
The rest follows from composition.

http://www.ucw.cz/~robert/papers/gadgets/

25

http://www.ucw.cz/~robert/papers/gadgets/
http://www.ucw.cz/~robert/papers/gadgets/

Partially unbalanced inputs

• Assume the input complexities of 2 inputs are equal and the
third one is arbitrary

Ex: Maj3(x1, x2, y1∨y2)

• Maj3 is relatively easy to compute and is optimal

• Equal3 needs to be solved separately in 3 intervals of β.
One gets 3 different expressions that smoothly connect.
The solution is optimal, too.

target x1 x2 x3

1 α α √(1/2+ βα2)
0 i -i 2α

β =
wsize(x3)
wsize(x1)

α =
1

2
√

2

√√
8 + β2 − β

wsize(P) =
1
2
(
√

8 + β2 + β)wsize(x1)

{β +
√

2− β2,

√
3
2
(2 + β2), 1 + β}

√
2/5 2

26

Partially unbalanced inputs

• Def: If-then-else: (x1∧x2) ∨ (¬x1∧x3)

• If wsize(x2)=wsize(x3), then there exists a natural optimal span
program with witness size wsize(x1) + wsize(x2)

• Otherwise one can easily prove obvious bounds on wsize

• upper bound wsize(x1) + max(wsize(x2), wsize(x3))

• lower bound wsize(x1) + min(wsize(x2), wsize(x3))

• For input complexities (1, 1, √2), we only know

min Adv Adv± wsize max

2 2.18398 2.20814 2.22833 2.41421<

27

Completely unbalanced inputs

• Ex: Maj3(x1, x2∨x3, x4⊕x5) or, more generally,

Maj3(x1, x2, x3) with input complexities (1, α, β)

• We don’t know their witness size

• The exact solution of the adversary bound leads to a cubic
polynomial.

• We don’t have a candidate solution of the span program yet.

28

Analyzing candidate
span programs

Software packages for computing the witness size and the
adversary bound

29

Adversary bound

• Matlab program using SeDuMi finds the optimal adversary
bound using semidefinite programming

http://www.ucw.cz/~robert/papers/adv/

• Works with non-Boolean inputs and promise functions

• Input: list of 0- and 1-inputs, and the input complexities

• Output: Adv and Adv±, and the adversary matrices

• Ex: Maj3

• X = [0, 0, 0; 0, 0, 1; 0, 1, 0; 1, 0, 0]
Y = [0, 1, 1; 1, 0, 1; 1, 1, 0; 1, 1, 1]
costs = [1, 2, 3]
[Gamma, D] = madv(X, Y, costs)
Gamma1 = Gamma .* mat(D(:,1))
norm(Gamma)/norm(Gamma1)

30

http://www.ucw.cz/~robert/papers/adv/
http://www.ucw.cz/~robert/papers/adv/

Witness size
• Mathematica module computes the witness size of a given

span program. It can also perform limited optimization of the
program.

• Input:
span program template

• target vector

• input vectors, possibly with
some coefficients as free
variables

• (conjunctions of) input bits
corresponding to the vectors

• Output:

• which function is computed by
this program

• the witness size for each input

• the best assignment of the
weights.
Both symbolical and numerical
optimization are available (the
latter being much faster).

31

Ex: Maj3 using NAND formula

n = 3;
inputs = {{y}, {x1, x2}, {x3}, {x1}, {x2}};
m = {{A, 1, w1, 0, 0},
 {0, 0, w2, w3, w3}};

rout = computeSolution[m, inputs];
evaluations = evaluateInputs[];
evaluations // MatrixForm

optimizeWeights[evaluations, {w1, w2, w3}]

Witness size

0 0 0 1 0 1 1 1

w22+2 I1+2 w12M w32

2 A2 Iw22+2 w32M
w22+4 w12 w32

2 A2 w22

1+w12

A2

A2 Iw22+w32M

w12 w32

1+w12

A2

A2 Iw22+w32M

w12 w32
2 A2

2 A2 Iw22+2 w32M

w22+2 I1+2 w12M w32

:: 3 + 2 , 2.101002989615459>, :w1 Ø -
1

2
J1 + 2 N , w2 Ø 1, w3 Ø

1

21ê4
>>

Function computed is 831

32

Summary

1. Span programs design

• based on formulas

• based on the “symmetry group”

• using extension rings

• using representation theory

• symmetry group with allowed bit flips

2. Non-constant size span programs

3. Trouble with unbalanced inputs

4. Our software packages

33

Q&A

34

