Span-program-based quantum algorithm for formula evaluation

> Ben Reichardt Caltech

Robert Špalek Google

Classical complexity of formula evaluation

Classical

Quantum

$x_1 x_2 \cdots x_N$	Θ(N)	Θ(√N) [Grover '96]		
Balanced AND-OR x_1 x_2 x_3 x_4 x_5 x_6 x_7 x_8				
AND AND AND OR OR OR OR	Θ(N ^{0.753}) (fan-in two) [Sʻ85, SWʻ86, Sʻ95]	Θ(√N) [Farhi & Goldstone & Gutmann '07, ACRŠZ '07]		
: Balanced MAJ ₃	Ω((7/3) ^d), Ο((2.6537…) ^d) [JKS '03]	Θ(2 ^d =N ^{log₃2}) [RŠ '07] <mark>:</mark>		

Two generalizations of [FGG '07] AND-OR algorithm:

Theorem ([FGG '07, CCJY '07]): A balanced binary AND-OR formula can be evaluated in time $N'/_{1}^{+o(1)}$.

 x_1

NAND

 x_3

NAND

NAND

 x_2

 x_4

NAND

 x_5

NAND

NAND

 $x_6 \ x_7$

NAND

 x_8

Unbalanced AND-OR [ACRŠZ, FOCS'07]

- Theorem:
 - An "approximately balanced" AND-OR formula can be evaluated with $O(\sqrt{N})$ queries (optimal for read-once!).
 - A general AND-OR formula can be evaluated with N^{1/2+o(1)} queries.

Balanced, more gates [RŠ, STOC'08]

 Theorem: A balanced ("adversarybound-balanced") formula φ over a gate set including all three-bit gates (and more...) can be evaluated in O(ADV(φ)) queries (optimal!).

Recursive 3-bit majority tree

- Best quantum lower bound is $\Omegaig(\mathrm{ADV}(arphi)=2^dig)$ [LLS'05]
- Expand majority into {AND, OR} gates: $MAJ_3(x_1, x_2, x_3)$ $= (x_1 \land x_2) \lor (x_3 \land (x_1 \lor x_2))$
- : {AND, OR} formula size is $\leq 5^{d}$
- : $O(\sqrt{5^d}) = O(2.24^d)$ -query algorithm [FGG,ACRŠZ '07]

New: O(2^d)-query quantum algorithm

[RŠ '07] algorithm

Theorem: A balanced ("adversary bound-balanced") formula φ over a gate set including all three-bit gates (and more...) can be evaluated in O(ADV(φ)) queries (optimal!).

Converting formula into a tree

(with appropriate edge weights)

• Main Theorem:

- $\phi(x)=I \Rightarrow A_G$ has $\lambda=0$ eigenvector with $\Omega(I)$ support on the root.
- $\varphi(x)=0 \Rightarrow A_G$ has no eigenvectors overlapping the root with $|\lambda| < I/O(ADV(\varphi))$.

• Main Theorem:

- $\phi(x)=I \Rightarrow A_G$ has $\lambda=0$ eigenvector with $\Omega(I)$ support on the root.
- $\phi(x \to A_G) \Rightarrow A_G$ has no eigenvectors over pping the root with $|\lambda| < 1/O(ADV(\phi))$.

quantitative bounds needed to analyze the running time

• Main Theorem:

- $\varphi(x)=I \Rightarrow A_G$ has $\lambda=0$ eigenvector with $\Omega(I)$ support on the root.
- $\phi(x)=0 \Rightarrow A_G$ has no eigenvectors overlapping the root with $|\lambda| < 1/O(ADV(\phi))$.

 $\lambda \pm \delta$

Running time

is $O(ADV(\phi))$

Fast Quantum Algorithm:

- Start at the root
- Apply phase estimation to the quantum walk with precision $I/Q(ADV(\phi))$

 $|\lambda\rangle$

If measured phase is 0, output "φ(x)=1." Otherwise, output "φ(x)=0."

Precision- δ phase estimation on a unitary U, starting at an e-state, returns the e-value to precision δ , except w/ prob. I/4. It uses O(I/ δ) calls to c-U. Computation of formula

x=

Input dependence

 Substitutions define G(0^N); to define graph G(x), delete edges to all leaves evaluating to x_i=1.

> **d:** What is an eigenvalue-0 eigenvector of a graph?

A: Assignment of coefficients to each vertex, such that sum of neighboring coefficients adds up to 0.

(each edge labeled by the evaluation of the NAND sub-formula above it)

Computation of formula

• At least two inputs φ_i must be true to satisfy both constraints nontrivially. $\sqrt{MAI_3}$

General graph gadgets

Span program definition

- Substitution rules defining G come from span programs.
- **Def:** A span program P is:
 - A target vector t in vector space V over C,
 - Input vectors v_j each associated with a literal from $\{x_1, \overline{x_1}, \dots, x_n, \overline{x_n}\}$

Span program P computes $f_P: \{0, I\}^n \rightarrow \{0, I\}$, $f_P(x) = I \Leftrightarrow t \text{ lies in the span of } \{ \text{ true } v_j \}$

• **Ex. I: P:**

$$x_1 \quad x_2 \quad x_3$$

 $t = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \quad \begin{pmatrix} 1 \\ a \end{pmatrix} \quad \begin{pmatrix} 1 \\ b \end{pmatrix} \quad \begin{pmatrix} 1 \\ c \end{pmatrix}$

with a,b,c distinct and nonzero.

$$\Rightarrow$$
 f_P = MAJ₃

[Karchmer, Wigderson '93]

Span program ⇔ Bipartite graph gadget

with t=(1,0,...,0)

E.g., MAJ₃:

$$t = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \begin{bmatrix} x_1 & x_2 & x_3 \\ 1 & 1 & 1 \\ a & b & c \end{bmatrix}$$

In general:

$$t = \left(\begin{array}{c} 1\\0\\\vdots\\0\end{array}\right)$$

Composing span programs

• Given span programs for g, h_1, \ldots, h_k , immediately get s.p. for

 $f = g \circ (h_1, \ldots, h_k)$

SP composition

• Ex.: $MAJ_3(x_1, x_2, MAJ_3(x_4, x_5, x_6))$:

<u>t</u>	x_1	x_2	1	x_3	x_4	x_5
$\overline{1}$	1	1	1	0	0	0
0	a	b	С	0	0	0
0	0	0	1	1	1	1
$\langle 0 \rangle$	0	0	0	a	b	c

Composing span programs

• Given span programs for g, h_1, \ldots, h_k , immediately get s.p. for

 $f = g \circ (h_1, \ldots, h_k)$

SP composition

Graph gadget composition

• Ex.: $MAJ_3(x_1, x_2, MAJ_3(x_4, x_5, x_6))$:

<u>t</u>	x_1	x_2	1	x_3	x_4	x_5
$\overline{1}$	1	1	1	0	0	0
0	a	b	С	0	0	0
0	0	0	1	1	1	1
$\langle 0 \rangle$	0	0	0	a	b	c

Eigenvalue-zero lemmas

- **Define:** G_P(x) by deleting edges to true input literals
- **Lemma:** $f_P(x)=1 \Leftrightarrow \exists \lambda=0$ eigenvector of $A_{G_P(x)}$ supported on a_0 .

Eigenvalue-zero lemmas

- **Define:** $G_P(x)$ by deleting edges to true input literals
- **Lemma:** $f_P(x)=1 \Leftrightarrow \exists \lambda=0$ eigenvector of $A_{G_P(x)}$ supported on a_0 .
- Lemma: Delete output edge (a₀, b₀). Then $f_P(x)=0 \Leftrightarrow \exists \lambda=0$ eigenvector supported on b₀.

Proof: $f_P(x)$ is false $\Leftrightarrow |t\rangle$ not in span of true columns of A

Eigenvalue-zero lemmas

- **Define:** $G_P(x)$ by deleting edges to true input literals
- **Lemma:** $f_P(x)=1 \Leftrightarrow \exists \lambda=0$ eigenvector of $A_{G_P(x)}$ supported on a_0 .
- Lemma: Delete output edge (a₀, b₀). Then $f_P(x)=0 \Leftrightarrow \exists \lambda=0$ eigenvector supported on b₀.

Proof: $f_P(x)$ is false $\Leftrightarrow |t\rangle$ not in span of true columns of A

 $\Leftrightarrow \exists |b\rangle$ with $\langle b|t\rangle = 1$, orthogonal to all true columns of A

- Assume that f(x)=1, and that for all true inputs i, we have constructed normalized λ=0 eigenvectors with squared support ≥ γ on a_i.
 Q: How large can we make |a₀|² in a normalized λ=0 eigenvector?
- **Answer:** Fix a₀=1 and try to minimize the eigenvector's norm. We want the shortest witness vector:

 $\min_{\substack{|w\rangle:\Pi|w\rangle=|w\rangle\\A|w\rangle=|t\rangle}} ||w\rangle|^{2} = ||(A\Pi)^{-}|t\rangle||^{2}$ $\lim_{w\to\infty} ||w\rangle|^{2} = ||w\rangle|^{2}$ $\lim_{w\to\infty} ||w\rangle|^{2} = ||(A\Pi)^{-}|t\rangle||^{2}$ $\lim_{w\to\infty} ||w\rangle|^{2} = ||w\rangle|^{2}$

Quantitative Eigenvalue-zero lemmas

- Assume: For all inputs i we have constructed normalized $\lambda=0$ eigenvectors with squared support $\geq \gamma$ on a_i or b_i .
- Lemma: $f(x)=1 \implies \exists$ unit-normalized $\lambda=0$ eigenvector with

$$a_O|^2 \ge \frac{\gamma}{\operatorname{wsize}(P, x)}$$
 $\operatorname{wsize}(P, x) := \min_{\substack{|w\rangle: \Pi|w\rangle = |w\rangle \\ A|w\rangle = |t\rangle}} \frac{\|w\rangle\|^2}{\|w\rangle\|^2}$

• Lemma: $f(x)=0 \implies \exists$ unit-normalized $\lambda=0$ eigenvector with

$$\geq \frac{\gamma}{\text{wsize}(P, x)} \qquad \text{wsize}(P, x) := \min_{\substack{|b\rangle: \frac{\langle t|b\rangle = 1}{\Pi A^{\dagger}|b\rangle} = |t\rangle}} \|A^{\dagger}\|b\rangle\|^{2}$$

e of P
wsize(P, x)

• **Def:** Witness size of P

wsize
$$(P) = \max_{x} wsize(P, x)$$

 $|b_{O}|^{2}$

Small $\lambda \neq 0$ analysis

Construct the eigenvectors starting at the leaves, and working down.
 Eigenvector equations are

$$\lambda b_C = A_{CJ} a_J$$
$$\lambda b_O = A_{OJ} a_J + a_O$$
$$\lambda a_J = A_{IJ}^{\dagger} b_I + A_{OJ}^{\dagger} b_O + A_{CJ}^{\dagger} b_C$$

• Induction assumption: Input ratios $r_i = a_i/b_i$ satisfy:

ifalse \Rightarrow $r_i \in (0, s_i \lambda)$

i true
$$\Rightarrow$$
 $r_i \in \left(-\infty, \frac{-1}{s_i \lambda}\right)$

- Solve equations for $r_0 = a_0/b_0$, apply Woodbury identity, expand the Taylor series in λ of the matrix inverse (on the range and its Schur complement separately), bound the higher-order terms, QED.
 - The first-order term is the same as the factor wsize(P, x) lost in the λ =0 analysis (not so surprisingly)

Framework for quantum algorithms based on span programs:

• Quantum algorithm for evaluating "span programs":

 Possible extensions: Interesting quantum algorithms based directly on asymptotically large span programs?

Summary of technical results

- Def: Let S' = { arbitrary two- or three-bit gates, O(1)-fan-in EQUAL gates} Let S = { O(1)-size {AND, OR, NOT, PARITY} formulas on inputs that are themselves possibly elements of S' }
- E.g., $MAJ_3(x_1, x_2, x_3) \land (x_4 \oplus x_5 \oplus \cdots \oplus (x_{k-1} \lor x_k))$
- (Idea: Gates other than AND, OR, PARITY need to have balanced inputs. AND, OR, PARITY gates can have constant-factor unbalanced inputs)

- Def: Read-once formula φ is "adversary-bound-balanced" if for each gate g, the adversary bounds for its input sub-formulas are all the same.
- Main Theorem: Any adversary-balanced formula φ over gate set S can be evaluated in O(ADV(φ)) queries.

Time complexity is the same, up to poly-log N factor, in coherent RAM model after preprocessing.

3-bit gates

Gate	Adversary lower bound
0	0
x_1	1
$x_1 \wedge x_2$	$\sqrt{2}$
$x_1\oplus x_2$	2
$x_1 \wedge x_2 \wedge x_3$	$\sqrt{3}$
$x_1 \oplus x_2 \oplus x_3$	3
$x_1 \oplus (x_2 \wedge x_3)$	$1 + \sqrt{2}$
$x_1 \lor (x_2 \land x_3)$	$\sqrt{3}$
$(x_1 \wedge x_2) \lor (\overline{x_1} \wedge x_3)$	2
$x_1 \lor (x_2 \land x_3) \lor (\overline{x_2} \land \overline{x_3})$	$\sqrt{5}$
$MAJ_3(x_1, x_2, x_3) = (x_1 \land x_2) \lor ((x_1 \lor x_2) \land x_3)$	2
$MAJ_3(x_1, x_2, x_3) \lor (\overline{x_1} \land \overline{x_2} \land \overline{x_3})$	$\sqrt{7}$
$EQUAL(x_1, x_2, x_3) = (x_1 \land x_2 \land x_3) \lor (\overline{x_1} \land \overline{x_2} \land \overline{x_3})$	$3/\sqrt{2}$
$(x_1 \land x_2 \land x_3) \lor (\overline{x_1} \land \overline{x_2})$	$\sqrt{3+\sqrt{3}}$

Fact: $A(f \oplus g) = A(f) + A(g), A(f \land g) = \sqrt{(A(f)^2 + A(g)^2)}$ if f, g have disjoint inputs.