Span-program-based quantum algorithm for formula evaluation

Def: Read-once formula φ on gate set S
$=$ Tree of nested gates from S, with each input appearing once

Ex: $S=\{A N D, O R\}:$

Problem: Evaluate $\varphi(\mathrm{x})$.

Def: Read-once formula φ on gate set S
$=$ Tree of nested gates from S, with each input appearing once

Ex: $S=\{A N D, O R\}:$

Problem: Evaluate $\varphi(\mathrm{x})$.

Classical complexity of formula evaluation

$\Theta(N)$
$\Theta\left(N^{0.753 \ldots}\right)$
(fan-in two)
[Snir ‘85, Saks \& Wigderson ‘86, Santha ‘95]

Balanced MA_{3}

$\Omega\left((7 / 3)^{\text {depth }}\right)=R_{2}(f)=O\left((2.6537 \ldots)^{\text {depth }}\right)$
[Jayram, Kumar, Sivakumar '03]

Classical

Two generalizations of [FGG '07] AND-OR algorithm:

- Theorem ([FGG ‘07, CCJY ‘07]):

A balanced binary AND-OR formula can be evaluated in time $\mathrm{N}^{1 / \bigwedge^{+0(1)} \text {. }}$

Unbalanced AND-OR [ACRŠZ, FOCS‘07]

- Theorem:
- An "approximately balanced" AND-OR formula can be evaluated with $\mathrm{O}(\sqrt{ } \mathrm{N})$ queries (optimal for read-once!).
- A general AND-OR formula can be evaluated with $\mathrm{N}^{1 / 2+o(1)}$ queries.

Recursive 3-bit majority tree

- Best quantum lower bound is

$$
\begin{equation*}
\Omega\left(\operatorname{ADV}(\varphi)=2^{d}\right) \tag{LLS‘05}
\end{equation*}
$$

- Expand majority into \{AND, OR\} gates:

$$
\begin{aligned}
& \operatorname{MAJ}_{3}\left(x_{1}, x_{2}, x_{3}\right) \\
& \quad=\left(x_{1} \wedge x_{2}\right) \vee\left(x_{3} \wedge\left(x_{1} \vee x_{2}\right)\right)
\end{aligned}
$$

$\therefore\{A N D, O R\}$ formula size is $\leq 5^{d}$
$\therefore O\left(\sqrt{ } 5^{d}\right)=O\left(2.24^{d}\right)$-query algorithm

[RŠ ‘07] algorithm

 [FGG,ACRŠZ '07]New: $\mathrm{O}\left(2^{\mathrm{d}}\right)$-query quantum algorithm

- Theorem: A balanced ("adversary= bound-balanced") formula φ over a gate set including all three-bit gates (and more...) can be evaluated in $\mathrm{O}(\mathrm{ADV}(\varphi))$ queries (optima!!).

Converting formula into a tree

- Main Theorem:

- $\varphi(x)=I \Rightarrow A_{G}$ has $\lambda=0$ eigenvector with $\Omega(I)$ support on the root.
- $\varphi(x)=0 \Rightarrow A_{G}$ has no eigenvectors overlapping the root with $|\lambda|<1 / O(\operatorname{ADV}(\varphi))$.

- Main Theorem:

- $\varphi(x)=I \Rightarrow A_{G}$ has $\lambda=0$ eigenvector with $\Omega(I)$ support on the root.
- $\varphi(x) \rho \Rightarrow A_{G}$ has no eigenvectors oveIn pping the root with $|\lambda|<1 / O(\operatorname{ADV}(\varphi))$.

quantitative bounds needed to analyze the running time
- Main Theorem:
- $\varphi(x)=I \Rightarrow A_{G}$ has $\lambda=0$ eigenvector with $\Omega(I)$ support on the root.
- $\varphi(x)=0 \Rightarrow A_{G}$ has no eigenvectors overlapping the root with $|\lambda|<1 / O(\operatorname{ADV}(\varphi))$.

Fast Quantum Algorithm:

- Start at the root
- Apply phase estimation to the quantum walk with precision I/O(ADV($\varphi)$)
- If measured phase is 0 , output " $\varphi(\mathrm{x})=\mathrm{I}$."

Otherwise, output " $\varphi(\mathrm{x})=0$."

Precision- δ phase estimation on a unitary U, starting at an e-state, returns the e-value to precision δ, except w/ prob. I/4. It uses $\mathrm{O}(\mathrm{I} / \delta)$ calls to $\mathrm{c}-\mathrm{U}$.

Computation of formula

Eigenvalue-zero eigenvector of tree

Input dependence

- Substitutions define $\mathrm{G}\left(0^{\mathrm{N}}\right)$; to define graph $G(x)$, delete edges to all leaves evaluating to $x_{i}=I$.

(each edge labeled by the evaluation of the NAND sub-formula above it)

Computation of formula

Eigenvalue-zero eigenvector of tree
Induction Claim: Each edge gives a "dual-rail" encoding for the evaluation of the subformula above that edge...
sub-formula φ_{v}
The $\lambda=0$ eigenvector of $G\left(\varphi_{v}, x\right)$ is:

Supported here $\Leftrightarrow \varphi_{\mathrm{v}}(\mathrm{x})=$ false

3-Majority gate gadget

$$
G\left(\varphi_{1}\right) \quad G\left(\varphi_{2}\right) \quad G\left(\varphi_{3}\right)
$$

Computation of $M A J 3_{3}$ gate

Eigenvalue-zero eigenvector of graph

General graph gadgets

Induction Claim: Each edge (p, v) gives a "dual-rail" encoding...

The $\lambda=0$ eigenvector of $G\left(\varphi_{v}, \mathrm{x}\right)$ is:

Supported on v
$\Leftrightarrow \varphi_{\mathrm{v}}(\mathrm{x})=$ false

Supported on p
$\Leftrightarrow \varphi_{\mathrm{v}}(\mathrm{x})=$ true

Input edges

Arbitrary weighted bipartite graph

Output edge

Span program definition

- Substitution rules defining G come from span programs. [Karchmer,Wigderson '93]
- Def: A span program P is:
- A target vector t in vector space V over \mathbf{C},
- Input vectors v_{j} each associated with a literal from $\left\{x_{1}, \overline{x_{1}}, \ldots, x_{n}, \overline{x_{n}}\right\}$

Span program P computes $f p:\{0, I\}^{n} \rightarrow\{0, \mathrm{I}\}$,
$f_{f}(x)=1 \Leftrightarrow t$ lies in the span of $\left\{\right.$ true $\left.v_{j}\right\}$

- Ex. I: P:

$$
t=\left(\begin{array}{ccc}
\\
1 \\
0
\end{array}\right) \begin{array}{cc}
x_{1} & x_{2} \\
\binom{1}{a} & \binom{1}{b}
\end{array}\binom{1}{c}
$$

with a, b, c distinct and nonzero.
$\Rightarrow f_{P}=M A J_{3}$

Span program \Leftrightarrow Bipartite graph gadget

with $\mathrm{t}=(\mathrm{I}, 0, \ldots, 0)$

E.g., MAJ_{3} :

$$
t=\binom{1}{0} \begin{array}{ccc}
x_{1} & x_{2} & x_{3} \\
1 & 1 & 1 \\
a & b & c
\end{array}
$$

In general:

$$
t=\left(\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right) \quad \boldsymbol{A}
$$

Composing span programs

- Given span programs for g, h_{1}, \ldots, h_{k}, immediately get s.p. for

$$
f=g \circ\left(h_{1}, \ldots, h_{k}\right)
$$

SP composition

- $E x .: \operatorname{MAJ}_{3}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{MA}_{3}\left(\mathrm{x}_{4}, \mathrm{x}_{5}, \mathrm{x}_{6}\right)\right)$:

$$
\left(\begin{array}{cc|c|c|c|c|c}
\underline{t} & x_{1} & x_{2} & 1 & x_{3} & x_{4} & x_{5} \\
\hline\left(\begin{array}{c}
1 \\
0 \\
0
\end{array}\right. & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & b & c & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 1 \\
& 0 & 0 & a & b & c
\end{array}\right.
$$

Composing span programs

- Given span programs for g, h_{1}, \ldots, h_{k}, immediately get s.p. for

$$
f=g \circ\left(h_{1}, \ldots, h_{k}\right)
$$

SP composition

- Ex.: $\operatorname{MAJ}_{3}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \operatorname{MAJ}_{3}\left(\mathrm{x}_{4}, \mathrm{x}_{5}, \mathrm{x}_{6}\right)\right)$:

$$
\left(\begin{array}{cc|c|c|c|c|c}
\underline{=} & x_{1} & x_{2} & 1 & x_{3} & x_{4} & x_{5} \\
\hline\left(\begin{array}{c}
1 \\
0 \\
0 \\
0
\end{array}\right) & 1 & 1 & 1 & 0 & 0 & 0 \\
a & b & c & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & a & b & c
\end{array}\right.
$$

Graph gadget composition

Eigenvalue-zero lemmas

- Define: $\mathrm{Gp}_{\mathrm{p}}(\mathrm{x})$ by deleting edges to true input literals
- Lemma: $\mathrm{f}_{\mathrm{p}}(\mathrm{x})=\mathrm{I} \Leftrightarrow \exists \lambda=0$ eigenvector of $A_{G_{p}(x)}$ supported on ao.

$$
t=\left(\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right)\left(\begin{array}{l}
\bigcirc \\
\boldsymbol{A} \\
\end{array}\right)
$$

Eigenvalue-zero lemmas

- Define: $\mathrm{Gp}_{\mathrm{p}}(\mathrm{x})$ by deleting edges to true input literals
- Lemma: $f_{p}(x)=I \Leftrightarrow \exists \lambda=0$ eigenvector of $A_{G_{p}(x)}$ supported on ao.
- Lemma: Delete output edge (ao, bo). Then $f_{f}(x)=0 \Leftrightarrow \exists \lambda=0$ eigenvector supported on bo.

Proof: $\mathrm{ff}_{\mathrm{P}}(\mathrm{x})$ is false $\Leftrightarrow|\mathrm{t}\rangle$ not in span of true columns of A

Eigenvalue-zero lemmas

- Define: $\mathrm{Gp}_{\mathrm{p}}(\mathrm{x})$ by deleting edges to true input literals
- Lemma: $f_{p}(x)=I \Leftrightarrow \exists \lambda=0$ eigenvector of $A_{G_{p}(x)}$ supported on ao.
- Lemma: Delete output edge (ao, bo). Then

$$
f_{p}(x)=0 \Leftrightarrow \exists \lambda=0 \text { eigenvector supported on bo. }
$$

Proof: $\mathrm{f}_{\mathrm{P}}(\mathrm{x})$ is false $\Leftrightarrow|\mathrm{t}\rangle$ not in span of true columns of A

$$
\Leftrightarrow \exists|\mathrm{b}\rangle \text { with }\langle b \mid t\rangle=\mathrm{I} \text {, orthogonal to all true columns of } \mathrm{A}
$$

Quantiteigenvalue-zero lemmas

- Lemma: $f_{p}(x)=I \Leftrightarrow \exists \lambda=0$ eigenvector of $A_{G_{p}(x)}$ supported on ao.

- Assume that $f(x)=I$, and that for all true inputs i, we have constructed normalized $\lambda=0$ eigenvectors with squared support $\geq \gamma$ on a_{i}.
Q: How large can we make $|\mathrm{ao}|^{2}$ in a normalized $\lambda=0$ eigenvector?
- Answer: Fix $\mathrm{ao}_{\mathrm{o}}=\mathrm{I}$ and try to minimize the eigenvector's norm. We want the shortest witness vector:

$$
\begin{aligned}
& \min _{\substack{|w\rangle::_{A|w\rangle=|w\rangle}^{A|w\rangle=|t\rangle}}} \||w\rangle\left\|^{2}=\right\|(A \Pi)^{-}|t\rangle \|^{2} \\
& \text { n onto true input coords. }
\end{aligned} \quad \therefore w_{\text {SiZe }^{(P, x)}}
$$

Quantit Eigenvalue-zero lemmas

- Assume: For all inputs i we have constructed normalized $\lambda=0$ eigenvectors with squared support $\geq \gamma$ on a_{i} or b_{i}.
- Lemma: $f(x)=1 \Rightarrow \exists$ unit-normalized $\lambda=0$ eigenvector with

$$
\left|a_{O}\right|^{2} \geq \frac{\gamma}{\operatorname{wsize}(P, x)} \quad \operatorname{wsize}(P, x):=\min _{\substack{\Pi|w\rangle=|w\rangle \\
|w\rangle: \begin{array}{c}
m|w\rangle=|t\rangle
\end{array}}} \||w\rangle \|^{2}
$$

- Lemma: $f(x)=0 \Rightarrow \exists$ unit-normalized $\lambda=0$ eigenvector with

$$
\left|b_{O}\right|^{2} \geq \frac{\gamma}{\operatorname{wsize}(P, x)}
$$

- Def: Witness size of P

$$
\operatorname{wsize}(P)=\max _{x} \operatorname{wsize}(P, x)
$$

Small $\boldsymbol{\lambda} \neq \mathbf{0}$ analysis

- Construct the eigenvectors starting at the leaves, and working down. Eigenvector equations are

$$
\begin{aligned}
& \lambda b_{C}=A_{C J} a_{J} \\
& \lambda b_{O}=A_{O J} a_{J}+a_{O} \\
& \lambda a_{J}=A_{I J}^{\dagger} b_{I}+A_{O J}^{\dagger} b_{O}+A_{C J}^{\dagger} b_{C}
\end{aligned}
$$

- Induction assumption: Input ratios $\mathrm{r}_{\mathrm{i}}=\mathrm{a}_{\mathrm{i}} / \mathrm{b}_{\mathrm{i}}$ satisfy:

$$
\begin{aligned}
& \text { i false } \Rightarrow \quad r_{i} \in\left(0, s_{i} \lambda\right) \\
& \text { i true } \Rightarrow \quad r_{i} \in\left(-\infty, \frac{-1}{s_{i} \lambda}\right)
\end{aligned}
$$

- Solve equations for ro = ao/bo, apply Woodbury identity, expand the Taylor series in λ of the matrix inverse (on the range and its Schur complement separately), bound the higher-order terms, QED.
- The first-order term is the same as the factor wsize (P, x) lost in the $\lambda=0$ analysis (not so surprisingly)

Framework for quantum algorithms based on span programs:

- Quantum algorithm for evaluating "span programs":

$$
\text { Span program P } \longleftrightarrow \begin{gathered}
\text { Graph Gp with } \\
\text { detectable spectral gap }
\end{gathered} \longrightarrow \begin{gathered}
\text { Algorithm using } \\
\text { a quantum walk }
\end{gathered}
$$

- Behaves well under composition/recursion:

- Possible extensions: Interesting quantum algorithms based directly on asymptotically large span programs?

Summary of technical results

- Def: Let $S^{\prime}=\{$ arbitrary two- or three-bit gates, $O(I)$-fan-in EQUAL gates $\}$ Let $S=\{O(I)$-size $\{A N D, O R, N O T$, PARITY $\}$ formulas on inputs that are themselves possibly elements of S^{\prime} \}
- E.g., $\operatorname{MAJ}_{3}\left(x_{1}, x_{2}, x_{3}\right) \wedge\left(x_{4} \oplus x_{5} \oplus \cdots \oplus\left(x_{k-1} \vee x_{k}\right)\right)$
- (Idea: Gates other than AND, OR, PARITY need to have balanced inputs. AND, OR, PARITY gates can have constant-factor unbalanced inputs)
- Def: Read-once formula φ is "adversary-bound-balanced" if for each gate g , the adversary bounds for its input sub-formulas are all the same.
- Main Theorem: Any adversary-balanced formula φ over gate set S can be evaluated in $\mathrm{O}(\mathrm{ADV}(\varphi))$ queries.

Time complexity is the same, up to poly-log N factor, in coherent RAM model after preprocessing.

Questions?

3-bit gates

Gate	Adversary lower bound
0	0
x_{1}	1
$x_{1} \wedge x_{2}$	$\sqrt{2}$
$x_{1} \oplus x_{2}$	2
$x_{1} \wedge x_{2} \wedge x_{3}$	$\sqrt{3}$
$x_{1} \oplus x_{2} \oplus x_{3}$	3
$x_{1} \oplus\left(x_{2} \wedge x_{3}\right)$	$1+\sqrt{2}$
$x_{1} \vee\left(x_{2} \wedge x_{3}\right)$	$\sqrt{3}$
$\left(x_{1} \wedge x_{2}\right) \vee\left(\overline{x_{1}} \wedge x_{3}\right)$	2
$x_{1} \vee\left(x_{2} \wedge x_{3}\right) \vee\left(\overline{x_{2}} \wedge \overline{x_{3}}\right)$	$\sqrt{5}$
$\operatorname{MAJ}\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1} \wedge x_{2}\right) \vee\left(\left(x_{1} \vee x_{2}\right) \wedge x_{3}\right)$	2
$\mathrm{MAJ}_{3}\left(x_{1}, x_{2}, x_{3}\right) \vee\left(\overline{x_{1}} \wedge \overline{x_{2}} \wedge \overline{x_{3}}\right)$	$\sqrt{7}$
$\mathrm{EQUAL}\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1} \wedge x_{2} \wedge x_{3}\right) \vee\left(\overline{x_{1}} \wedge \overline{x_{2}} \wedge \overline{x_{3}}\right)$	$3 / \sqrt{2}$
$\left(x_{1} \wedge x_{2} \wedge x_{3}\right) \vee\left(\overline{x_{1}} \wedge \overline{x_{2}}\right)$	$\sqrt{3+\sqrt{3}}$

Fact: $A(f \oplus g)=A(f)+A(g), A(f \wedge g)=\sqrt{ }\left(A(f)^{2}+A(g)^{2}\right)$ if f, g have disjoint inputs.

