
Span-program-based
quantum algorithm for

formula evaluation

Robert Špalek
Google

Ben Reichardt
Caltech

. . .

OR

. . .G(ρ1) G(ρk)ρ1 ρk

NOT

G(ρ)ρ

MAJ

ρ1 ρ2 ρ3 G(ρ3)G(ρ2)G(ρ1)

EQUAL

G(ρ1)ρ1 G(¬ρ1). . . ρkG(ρk) G(¬ρk)

PARITY

G(ρ1)ρ1 ρ2 G(ρ2)G(¬ρ2) G(¬ρ1)

|t〉

span of tr
ue

co
lumns o

f A0

''S S

Problem: Evaluate φ(x).

x12x11x10x6 x1x9

x8x7

x5

x4x2 x3

AND AND OR

AND

AND

OR

OR

ϕ(x)

x1

Def: Read-once formula φ on gate set S
 = Tree of nested gates from S, with
each input appearing once

Ex: S = {AND, OR}:

x12x11x10x6 x1x9

x8x7

x5

x4x2 x3

AND AND OR

AND

AND

OR

OR

ϕ(x)

x1

Gates cannot have
fan-out!

''S S

(unlike in a circuit)

Ex: S = {AND, OR}:

Def: Read-once formula φ on gate set S
 = Tree of nested gates from S, with
each input appearing once

Problem: Evaluate φ(x).

OR

x2x1 xN· · ·

Classical complexity of formula evaluation

[Snir ‘85, Saks & Wigderson ‘86, Santha ‘95]

Balanced AND-OR

[Nisan ‘91]: R2(f) = Ω(D(f)⅓)

x1

MAJ MAJMAJ MAJ MAJMAJ

x1 x1

MAJ

MAJ

MAJ

MAJ

MAJ

ϕ(x)

MAJMAJ

...

Balanced MAJ3 Ω((7/3)depth) = R2(f) = O((2.6537…)depth)

[Jayram, Kumar, Sivakumar ’03]

AND

OR OR

AND ANDAND AND

x6 x8x7x5x4x2 x3x1

Θ(N)

Θ(N0.753…)
(fan-in two)

x1

MAJ MAJMAJ MAJ MAJMAJ

x1 x1

MAJ

MAJ

MAJ

MAJ

MAJ

ϕ(x)

MAJMAJ

...

Balanced MAJ3

OR

x2x1 xN· · ·

Classical

Θ(N)

AND

OR OR

AND ANDAND AND

x6 x8x7x5x4x2 x3x1

Θ(N0.753…)

[S‘85, SW‘86, S‘95]

Balanced AND-OR

[Nisan ‘91]: R2(f) = Ω(D(f)⅓)

Ω((7/3)d),
O((2.6537…)d)

[JKS ’03]

Quantum

Θ(√N) [Grover ‘96]

...

(fan-in two)

Θ(2d=Nlog32)

Θ(√N)

[Farhi & Goldstone & Gutmann ’07,
ACRŠZ ‘07]

[RŠ ‘07]

Balanced, more gates
[RŠ, STOC‘08]

NAND

NAND

NAND

NAND NAND NAND NAND

x1 x2 x3 x4 x5 x7x6 x8

Two generalizations of
[FGG ‘07] AND-OR

algorithm:

Unbalanced AND-OR
[ACRŠZ, FOCS‘07] • Theorem: A balanced (“adversary-

bound-balanced”) formula φ over a
gate set including all three-bit gates
(and more…) can be evaluated in
O(ADV(φ)) queries (optimal!).

• Theorem ([FGG ‘07, CCJY ‘07]):
A balanced binary AND-OR formula can be
evaluated in time N½+o(1).

• Theorem:

• An “approximately balanced” AND-OR
formula can be evaluated with O(√N)
queries (optimal for read-once!).

• A general AND-OR formula can be
evaluated with N½+o(1) queries.

• Best quantum lower bound is
 [LLS‘05]

• Expand majority into {AND, OR} gates:

∴ {AND, OR} formula size is ≤ 5d

∴ O(√5d) = O(2.24d)-query algorithm

x1

MAJ MAJMAJ MAJ MAJMAJ

x1 x1

MAJ

MAJ

MAJ

MAJ

MAJ

ϕ(x)

MAJMAJ

...

Recursive 3-bit majority tree

< 7/3 • [Jayram, Kumar & Sivakumar ‘03]

d

3d

MAJ3(x1, x2, x3)
= (x1 ∧ x2) ∨ (x3 ∧ (x1 ∨ x2))

Ω
(
ADV(ϕ) = 2d

)

[FGG, ACRŠZ ‘07]

• New: O(2d)-query quantum algorithm

[RŠ ‘07] algorithm
• Theorem: A balanced (“adversary-

bound-balanced”) formula φ over a
gate set including all three-bit gates
(and more…) can be evaluated in
O(ADV(φ)) queries (optimal!).

PARITY

G(ρ1)ρ1 ρ2 G(ρ2)G(¬ρ2) G(¬ρ1)

MAJ

ρ1 ρ2 ρ3 G(ρ3)G(ρ2)G(ρ1)

EQUAL

G(ρ1)ρ1 G(¬ρ1). . . ρkG(ρk) G(¬ρk)

NAND

3

(with appropriate edge weights)

Converting formula into a tree

. . .

OR

. . .G(ρ1) G(ρk)ρ1 ρk

NOT

G(ρ)ρ

• Main Theorem:

• φ(x)=1 AG has λ=0 eigenvector with
Ω(1) support on the root.

• φ(x)=0 AG has no eigenvectors
overlapping the root with |λ|<1/O(ADV(φ)).

⇒

⇒

2√log N

MAJ

ρ1 ρ2 ρ3 G(ρ3)G(ρ2)G(ρ1)

3

MAJ3 x4

x1 x2 x3

x4

x1 x2 x3

x4

x1 x2 x3

PARITY

G(ρ1)ρ1 ρ2 G(ρ2)G(¬ρ2) G(¬ρ1)

• Main Theorem:

• φ(x)=1 AG has λ=0 eigenvector with
Ω(1) support on the root.

• φ(x)=0 AG has no eigenvectors
overlapping the root with |λ|<1/O(ADV(φ)).

⇒

⇒

2√log N

quantitative bounds needed to
analyze the running time

|eigenvector〉 corr.
eigenvalue ±δ|λ〉 λ± δ

Precision-δ phase estimation
on a unitary U, starting at an
e-state, returns the e-value
to precision δ, except w/ prob. 1/4.
It uses O(1/δ) calls to c-U.

• Start at the root

• Apply phase estimation to the quantum walk with precision 1/O(ADV(φ))

• If measured phase is 0, output “φ(x)=1.”
Otherwise, output “φ(x)=0.”

Fast Quantum Algorithm:

2√log N

Running time
is O(ADV(φ))

⇒

⇒

• Main Theorem:

• φ(x)=1 AG has λ=0 eigenvector with
Ω(1) support on the root.

• φ(x)=0 AG has no eigenvectors
overlapping the root with |λ|<1/O(ADV(φ)).

1 1 1 1 11 1 10 0 0 0 0 0 0 0x=

1 0 01 1 1 10

0 1 1 1

01

1

(each edge labeled by the evaluation of
the NAND sub-formula above it)

00

01

10

11

1

1

1

0

NAND

Input dependence

• Substitutions define G(0N); to
define graph G(x), delete edges
to all leaves evaluating to xi=1.

Computation of
formula

Eigenvalue-zero
eigenvector of tree⇔

Q: What is an eigenvalue-0
eigenvector of a graph?

A: Assignment of coefficients
to each vertex, such that sum

of neighboring coefficients
adds up to 0.

1 1 1 1 11 1 10 0 0 0 0 0 0 0x=

r

Induction Claim: Each edge
gives a “dual-rail” encoding for
the evaluation of the sub-
formula above that edge…

sub-formula φv

v “output edge”

Supported here
⇔ φv(x)=true

Supported here
⇔ φv(x)=false

The λ=0 eigenvector
of G(φv,x) is:

Computation of
formula

Eigenvalue-zero
eigenvector of tree⇔

MAJ3

1
ω ω2

3-Majority gate gadget

MAJ
3

ϕ1 ϕ2 ϕ3

1
1 1

1

11 1

G(ϕ1) G(ϕ2) G(ϕ3)

ω = e2πi/3

1
ω ω2

r

v1 v2 v3

s

w1 w2 w3

c

• Induction hypothesis: λ=0 eigenvectors
on sub-formula graphs G(φi) compute
the sub-formulas

Computation of
MAJ3 gate

Eigenvalue-zero
eigenvector of

graph
⇔

• Constraints
(

1 1 1 1
0 1 ω ω2

)




αr

αv1

αv2

αv3



 = 0

AG

=




1 1 1 0 0
1 ω2 0 1 0
1 ω 0 0 1









αs

αc

αw1

αw2

αw3





• When can αr be nonzero (i.e., gadget evaluates to true)?

1. Only depends on first constraint eq.’s ()

2. Need , but

3. Can only have if input i evaluates to true

αv1 , αv2 , αv3

αv1 + αv2 + αv3 != 0
αv1 + ωαv2 + ω2αv3 = 0

αvi != 0

✓MAJ3
• At least two inputs φi must be true to satisfy both

constraints nontrivially.

Induction Claim: Each edge
(p,v) gives a “dual-rail” encoding… v

Supported on p
⇔ φv(x)=true

Supported on v
⇔ φv(x)=false

The λ=0 eigenvector
of G(φv,x) is:

p

General graph gadgets

Input edges

Output edge

Arbitrary
weighted

bipartite graph

• Substitution rules defining G come from span programs.

• Def: A span program P is:

• A target vector t in vector space V over C,

• Input vectors vj each associated with a literal from

Span program P computes fP: {0,1}n→{0,1},
 fP(x) = 1 ⇔ t lies in the span of { true vj }

• Ex. 1: P:

with a,b,c distinct and nonzero.

➡ fP = MAJ3

Span program definition

{x1, x1, . . . , xn, xn}

• Remarks:

• Can assume target vector is t=(1,0,…,0) by changing basis

• Field is C, possibly w.l.o.g. R for our applications (I’d conjecture)

x1 x2 x3

t = (1
0) (1

a) (1
b) (1

c)

[Karchmer, Wigderson ’93]

Span program ⇔ Bipartite graph gadget

E.g., MAJ3:

input edges

output edge

constraints

x1 x2 x3

1 1 1
a b c

t =
(

1
0

)

with t=(1,0,…,0)

1 1
1 a

b c

aO

bO bC

a1
a2 a3

b1 b2 b3

In general:

. . .t =





1
0
...
0



 A

• Ex.: MAJ3(x1, x2, MAJ3(x4,x5,x6)):

SP composition Graph gadget composition

Composing span programs

• Identify the output edge of one gadget
with an input edge of the next.

• (Note: all I/O edge weights are 1.)

• Given span programs for g, h1, …, hk, immediately get s.p. for

f = g ◦ (h1, . . . , hk)

()

output

inputs

• Corollary: Gφ(x) has an eigenvalue-
zero eigenvector supported on root aO
⇔ φ(x)=1

t x1 x2 1 x3 x4 x5

1 1 1 1 0 0 0
0 a b c 0 0 0
0 0 0 1 1 1 1
0 0 0 0 a b c

MAJ3

MAJ3
a

b c

a
b c

• Ex.: MAJ3(x1, x2, MAJ3(x4,x5,x6)):

SP composition Graph gadget composition

Composing span programs

• Identify the output edge of one gadget
with an input edge of the next.

• (Note: all I/O edge weights are 1.)

• Given span programs for g, h1, …, hk, immediately get s.p. for

f = g ◦ (h1, . . . , hk)

()

• Corollary: Gφ(x) has an eigenvalue-
zero eigenvector supported on root aO
⇔ φ(x)=1

t x1 x2 1 x3 x4 x5

1 1 1 1 0 0 0
0 a b c 0 0 0
0 0 0 1 1 1 1
0 0 0 0 a b c a

b ca
b c

bI|J|

a|J|
. . .

. . .

a1

bI1

bC
aO

bO

︷︸︸︷ ︷︸︸︷

︸ ︷︷ ︸

.

Proof: Need to write aO as a linear combination
of the true inputs, with the coefficients also
satisfying the constraints.
∴ aO≠0 ⇔ target vector t=(1,0,…,0) reachable

 ⇔ fP(x) is true.

. . .

aO

bO

a1
a2 a3

b1 b2 b3

am

bm

…

cCc1

TRUE TRUE

t =





1
0
...
0



 A









Eigenvalue-zero lemmas

• Define: GP(x) by deleting edges to true input literals

• Lemma: fP(x)=1 ⇔ ∃ λ=0 eigenvector of AGP(x) supported on aO.

• Define: GP(x) by deleting edges to true input literals

• Lemma: fP(x)=1 ⇔ ∃ λ=0 eigenvector of AGP(x) supported on aO.

• Lemma: Delete output edge (aO, bO). Then
 fP(x)=0 ⇔ ∃ λ=0 eigenvector supported on bO.

Eigenvalue-zero lemmas

bI|J|

a|J|
. . .

. . .

a1

bI1

bC
aO

bO

︷︸︸︷ ︷︸︸︷

︸ ︷︷ ︸

.

Proof: fP(x) is false ⇔ |t〉not in span of true columns of A

. . .
bO

|t〉

spa
n o

f tr
ue

co
lum

ns
of A

0

. . .
bO

• Define: GP(x) by deleting edges to true input literals

• Lemma: fP(x)=1 ⇔ ∃ λ=0 eigenvector of AGP(x) supported on aO.

• Lemma: Delete output edge (aO, bO). Then
 fP(x)=0 ⇔ ∃ λ=0 eigenvector supported on bO.

Eigenvalue-zero lemmas

bI|J|

a|J|
. . .

. . .

a1

bI1

bC
aO

bO

︷︸︸︷ ︷︸︸︷

︸ ︷︷ ︸

.

Proof: fP(x) is false ⇔ |t〉not in span of true columns of A

⇔ ∃ |b〉with =1, orthogonal to all true columns of A 〈b|t〉

|t〉
|b〉

spa
n o

f tr
ue

co
lum

ns
of A

0

FALSE FALSEA†|b〉

|b〉

• Lemma: fP(x)=1 ⇔ ∃ λ=0 eigenvector of AGP(x) supported on aO.

• Assume that f(x)=1, and that for all true inputs i, we have constructed
normalized λ=0 eigenvectors with squared support ≥ γ on ai.
Q: How large can we make |aO|2 in a normalized λ=0 eigenvector?

• Answer: Fix aO=1 and try to minimize the eigenvector’s norm. We want
the shortest witness vector:

Eigenvalue-zero lemmas

. . .

aO

a1 a2 a3 am

…

t =





1
0
...
0



 A









Quantitative

TRUE TRUE

Π

min
|w〉:Π|w〉=|w〉

A|w〉=|t〉

‖|w〉‖2

= projection onto true input coords.

= ‖(AΠ)−|t〉‖2

:= wsize(P, x)

• Assume: For all inputs i we have constructed normalized λ=0
eigenvectors with squared support ≥ γ on ai or bi.

• Lemma: f(x)=1 unit-normalized λ=0 eigenvector with

• Lemma: f(x)=0 unit-normalized λ=0 eigenvector with

Eigenvalue-zero lemmasQuantitative

⇒ ∃

⇒ ∃

|t〉
|b〉

sp
an

 of t
ru

e

co
lum

ns
 of A

0

|aO|2 ≥ γ

wsize(P, x)

|bO|2 ≥ γ

wsize(P, x)

wsize(P, x) := min
|w〉:Π|w〉=|w〉

A|w〉=|t〉

‖|w〉‖2

wsize(P, x) := min
|b〉: 〈t|b〉=1

ΠA†|b〉=|t〉

‖A†|b〉‖2

• Def: Witness size of P

wsize(P) = max
x

wsize(P, x)

• Construct the eigenvectors starting at the leaves, and working down.
Eigenvector equations are

• Induction assumption: Input ratios ri = ai/bi satisfy:

• Solve equations for rO = aO/bO, apply Woodbury identity, expand the Taylor
series in λ of the matrix inverse (on the range and its Schur complement
separately), bound the higher-order terms, QED.

• The first-order term is the same as the factor wsize(P, x) lost in the λ=0
analysis (not so surprisingly)

Small λ≠0 analysis

si = −1/(riλ). Assume that 0 < si ≤ Si for each i. If aj = bi = 0, then input i will not matter. To unify
notation, though, define ri in this case as either λSi or −1/(λSi) if i is true or false, respectively. Then
si = Si. The cases aj = 0, bi #= 0 and aj #= 0, bi = 0 will not arise.

In Lemma 4.6, we were given that either ai = 0 or bi = 0 according to whether input i evaluated to 0
or 1, which could be determined recursively by an earlier span program with output edge (ai, bi). Now, we
are given the nonzero input ratios rI , possibly determined by earlier span programs, and will solve for the
output ratio rO.

That is, letting R be a diagonal matrix with the ratios rI along its diagonal, we are given

bI = R−1AIJaJ , (5.1)

assuming that for no j ∈ J and i ∈ Ij is either aj = 0, bi #= 0 or aj #= 0, bi = 0. This assumption implies
that for each j either aj #= 0 and all bi #= 0, i ∈ Ij , or aj = 0 and all bi = 0, i ∈ Ij .

The eigenvector equations for eigenvalue λ, at internal vertices of the span program graph AGP are

λbC = ACJaJ (5.2a)
λbO = AOJaJ + aO (5.2b)

λaJ = AIJ
†bI + AOJ

†bO + ACJ
†bC (5.2c)

We want to allow other graphs, for other span programs, to be attached to the input vertices bI and to the
output vertex aO, so we will leave the equations at bI and aO to be solved in the adjacent span programs.

Now we will solve for the output ratio rO. Letting sO = rO/λ in case fP (x) = 0, or sO = −1/(λrO) in
case fP (x) = 1, we aim to show that 0 < sO ≤ SO for some SO. This statement is weaker for larger SO,
but as long as SO < 1/λ, it still allows for distinguishing case fP (x) = 0 from fP (x) = 1 based on |rO|. We
therefore hope that SO is not too much larger than the input bounds SI .

Lemma 5.2. Let rO = aO/bO be the output ratio for the gadget of Eq. (4.1) and Figure 2, solving Eqs. (5.1)
and (5.2). Let R̃ = (AIJ

†R−1AIJ − λ)−1 (a diagonal matrix). Then aO = 0 if bO = 0, and otherwise,

rO = λ + AOJ

(
R̃− 1

λ
R̃ACJ

†(1 + 1
λACJ R̃ACJ

†)−1ACJ R̃

)
AOJ

† , (5.3)

provided that R̃ and (1 + 1
λACJ R̃ACJ

†)−1 exist.

Proof. Substituting Eqs. (5.1) and (5.2a) into (5.2c), and rearranging terms gives
(

λ−AIJ
†R−1AIJ −

1
λ

ACJ
†ACJ

)
aJ = AOJ

†bO .

From Eq. (5.2b), if bO #= 0, then aO/bO = λ−AOJaJ/bO, so

rO = λ + AOJ(R̃−1 +
1
λ

ACJ
†ACJ)−1AOJ

† (5.4)

= λ + AOJ

(
R̃− 1

λ
R̃ACJ

†(1 + 1
λACJ R̃ACJ

†)−1ACJ R̃

)
AOJ

† ,

by the Woodbury matrix identity [GV96], provided that R̃ and (1 + 1
λACJ R̃ACJ

†)−1 exist.

Remark 5.3 (Form of Eq. (5.3)). Note from Eq. (5.3) that rO is a real number provided that all the input
ratios rI are themselves reals. Also, note that rO depends on ACJ only through ACJ

†ACJ (see too Eq. (5.4) in
the proof); in particular, left-multiplying ACJ by U where U is any linear isometry (i.e., satisfying U†U = 1)
has no effect. Since the grouped input vectors vJ can be arbitrary in Definition 4.1, ACJ

†ACJ is in general
an arbitrary k × k positive semidefinite matrix.

9

bI|J|

a|J|
. . .

. . .

a1

bI1

bC
aO

bO

︷︸︸︷ ︷︸︸︷

︸ ︷︷ ︸

.

i false

i true

si = −1/(riλ). Assume that 0 < si ≤ Si for each i. If aj = bi = 0, then input i will not matter. To unify
notation, though, define ri in this case as either λSi or −1/(λSi) if i is true or false, respectively. Then
si = Si. The cases aj = 0, bi #= 0 and aj #= 0, bi = 0 will not arise.

In Lemma 4.6, we were given that either ai = 0 or bi = 0 according to whether input i evaluated to 0
or 1, which could be determined recursively by an earlier span program with output edge (ai, bi). Now, we
are given the nonzero input ratios rI , possibly determined by earlier span programs, and will solve for the
output ratio rO.

That is, letting R be a diagonal matrix with the ratios rI along its diagonal, we are given

bI = R−1AIJaJ , (5.1)

assuming that for no j ∈ J and i ∈ Ij is either aj = 0, bi #= 0 or aj #= 0, bi = 0. This assumption implies
that for each j either aj #= 0 and all bi #= 0, i ∈ Ij , or aj = 0 and all bi = 0, i ∈ Ij .

The eigenvector equations for eigenvalue λ, at internal vertices of the span program graph AGP are

λbC = ACJaJ (5.2a)
λbO = AOJaJ + aO (5.2b)

λaJ = AIJ
†bI + AOJ

†bO + ACJ
†bC (5.2c)

We want to allow other graphs, for other span programs, to be attached to the input vertices bI and to the
output vertex aO, so we will leave the equations at bI and aO to be solved in the adjacent span programs.

Now we will solve for the output ratio rO. Letting sO = rO/λ in case fP (x) = 0, or sO = −1/(λrO) in
case fP (x) = 1, we aim to show that 0 < sO ≤ SO for some SO. This statement is weaker for larger SO,
but as long as SO < 1/λ, it still allows for distinguishing case fP (x) = 0 from fP (x) = 1 based on |rO|. We
therefore hope that SO is not too much larger than the input bounds SI .

Lemma 5.2. Let rO = aO/bO be the output ratio for the gadget of Eq. (4.1) and Figure 2, solving Eqs. (5.1)
and (5.2). Let R̃ = (AIJ

†R−1AIJ − λ)−1 (a diagonal matrix). Then aO = 0 if bO = 0, and otherwise,

rO = λ + AOJ

(
R̃− 1

λ
R̃ACJ

†(1 + 1
λACJ R̃ACJ

†)−1ACJ R̃

)
AOJ

† , (5.3)

provided that R̃ and (1 + 1
λACJ R̃ACJ

†)−1 exist.

Proof. Substituting Eqs. (5.1) and (5.2a) into (5.2c), and rearranging terms gives
(

λ−AIJ
†R−1AIJ −

1
λ

ACJ
†ACJ

)
aJ = AOJ

†bO .

From Eq. (5.2b), if bO #= 0, then aO/bO = λ−AOJaJ/bO, so

rO = λ + AOJ(R̃−1 +
1
λ

ACJ
†ACJ)−1AOJ

† (5.4)

= λ + AOJ

(
R̃− 1

λ
R̃ACJ

†(1 + 1
λACJ R̃ACJ

†)−1ACJ R̃

)
AOJ

† ,

by the Woodbury matrix identity [GV96], provided that R̃ and (1 + 1
λACJ R̃ACJ

†)−1 exist.

Remark 5.3 (Form of Eq. (5.3)). Note from Eq. (5.3) that rO is a real number provided that all the input
ratios rI are themselves reals. Also, note that rO depends on ACJ only through ACJ

†ACJ (see too Eq. (5.4) in
the proof); in particular, left-multiplying ACJ by U where U is any linear isometry (i.e., satisfying U†U = 1)
has no effect. Since the grouped input vectors vJ can be arbitrary in Definition 4.1, ACJ

†ACJ is in general
an arbitrary k × k positive semidefinite matrix.

9

. . .

aO

bO

a1 a2 a3

b1 b2 b3

am

bm
…

cCc1⇒

⇒ ri ∈
(
−∞,

−1
siλ

)
ri ∈ (0, siλ)

• Quantum algorithm for evaluating “span programs”:

• Span program Associated graph with detectable spectral gap
 Algorithm using a quantum walk

• Behaves well under composition/recursion:

• Possible extensions: Interesting quantum algorithms based directly on
asymptotically large span programs?

compose

compose

→
↔

Framework for quantum algorithms
based on span programs:

Span program P Graph GP with
detectable spectral gap

Algorithm using
a quantum walk

Composed span
program for φ

Span programs
for gates

Gate graph
gadgets

Graph G(φ)

Summary of technical results

• Def: Let S’ = { arbitrary two- or three-bit gates, O(1)-fan-in EQUAL gates}
 Let S = { O(1)-size {AND, OR, NOT, PARITY} formulas on inputs that
 are themselves possibly elements of S’ }

• E.g.,

• (Idea: Gates other than AND, OR, PARITY need to have balanced inputs.
 AND, OR, PARITY gates can have constant-factor unbalanced inputs)

• Def: Read-once formula φ is “adversary-bound-balanced” if for each gate
g, the adversary bounds for its input sub-formulas are all the same.

• Main Theorem: Any adversary-balanced formula φ over gate set S can
be evaluated in O(ADV(φ)) queries.
 Time complexity is the same, up to poly-log N factor, in coherent RAM model
after preprocessing.

ϕg = g ◦ (ϕh1 , . . . , ϕhk)

MAJ3(x1, x2, x3) ∧ (x4 ⊕ x5 ⊕ · · ·⊕ (xk−1 ∨ xk))

∴ If , and
 then

Questions?

Table 1: Binary gates on up to three bits. Up to equivalences—permutation of inputs, complementation of
some or all inputs or output—there are fourteen binary gates on three inputs x1, x2, x3. Adversary bounds
for all functions on up to four bits have been computed by [HLŠ06], and see [RŠ07].

Gate Adversary lower bound
0 0
x1 1

x1 ∧ x2

√
2

x1 ⊕ x2 2
x1 ∧ x2 ∧ x3

√
3

x1 ⊕ x2 ⊕ x3 3
x1 ⊕ (x2 ∧ x3) 1 +

√
2

x1 ∨ (x2 ∧ x3)
√

3
(x1 ∧ x2) ∨ (x1 ∧ x3) 2

x1 ∨ (x2 ∧ x3) ∨ (x2 ∧ x3)
√

5
MAJ3(x1, x2, x3) = (x1 ∧ x2) ∨ ((x1 ∨ x2) ∧ x3) 2

MAJ3(x1, x2, x3) ∨ (x1 ∧ x2 ∧ x3)
√

7
EQUAL(x1, x2, x3) = (x1 ∧ x2 ∧ x3) ∨ (x1 ∧ x2 ∧ x3) 3/

√
2

(x1 ∧ x2 ∧ x3) ∨ (x1 ∧ x2)
√

3 +
√

3

Definition 2.3 (Nonnegative-weight adversary bound A(f)). Let f : {0, 1}k → {0, 1}. Define

A(f) = max
Γ≥0
Γ "=0

‖Γ‖
maxi ‖Γ ◦Di‖

, (2.2)

where Γ ◦ Di denotes the entrywise matrix product between Γ and Di a zero-one-valued matrix defined by
〈x|Di|y〉 = 1 if and only if bitstrings x and y differ in the ith coordinate, for i ∈ {1, . . . , k}. The maximum
is over all 2k × 2k symmetric matrices Γ with nonnegative entries satisfying 〈x|Γ|y〉 = 0 if f(x) = f(y).

The motivation for this definition is that A(f) gives a lower bound on the number of queries to the
phase-flip input oracle Ox required to evaluate f on input x, i.e., a lower bound on the quantum query
complexity:

Definition 2.4 (Phase-flip input oracle). The phase-flip input oracle for an input string x is a unitary
operator

Ox : |c〉 ⊗ |i〉 -→
{

(−1)xi |c〉 ⊗ |i〉 if c = 1
|c〉 ⊗ |i〉 if c = 0

Theorem 2.5 ([Amb06a, BSS03]). The two-sided ε-bounded error quantum query complexity of function f ,

Qε(f), is at least 1−2
√

ε(1−ε)

2 A(f).

Therefore, to match the lower bound of Theorem 2.5, our goal will be to use O(A(ϕ)) queries to evaluate ϕ.

Remark 2.6. We have used the nonnegative weight adversary bound A instead of the more general adversary
bound ADV± of [HLŠ07] because for any g ∈ S, A(g) = ADV±(g). See the open problems in Section 13.

Example 2.7. The adversary bounds for all binary functions on up to three bits are given in Table 1. The
adversary bounds for all functions on up to four bits are listed at the webpage [RŠ07], taken from [HLŠ06];
the list also includes ADV±(f) and the minimum-size {AND, OR, NOT} formula for each f .

4

3-bit gates

Fact: A(f⊕g)=A(f)+A(g), A(f∧g)=√(A(f)2+A(g)2) if f, g have disjoint inputs.

