Span-program-based |,
quantum algorithm for »\/

formula evaluation

Ben Reichardt ~ Robert Spalek
Caltech Google

Def: Read-once formula ¢ on gate set S

= Tree of nested gates from S, with
each input appearing once

L1 X2 X3 T4

A\

AND AND Is

Ex: S = {AND, OR}:

Problem: Evaluate @(x).

Def: Read-once formula ¢ on gate set S

= Tree of nested gates from S, with
each input appearing once

L1 X2 X3 T4

A\

AND AND Is

Ex: S = {AND, OR}:

Problem: Evaluate @(x).

Gates cannot have
fan-out!

(unlike in a circuit)

Classical complexity of formula evaluation

xle ...CE’N

Balanced AND-OR

L1 To X3 T4 Ty Te X7 s

O(N)

@(NO.753...)

(fan-in two)

[Snir ‘85, Saks & Wigderson ‘86, Santha ‘95]

Balanced MAJs Q((7/3)%rth) = Ry(f) = O((2.6537...)depth)

[Jayram, Kumar, Sivakumar ’03]

Classical

Quantum

xle ...CE’N

O(N)

O©(N) [Grover ‘96]

Balanced AND-OR

L1 To X3 T4 Ty Te X7 s

@(NO.753...)

(fan-in two)

[S‘85, SW'86, $‘95]

O(N)

[Farhi & Goldstone & Gutmann '07,
ACRSZ ‘07]

Balanced MA|3

Q((7/3)9),
O((2.6537...))

[JKS ’03]

6(2d= Nlog32)

[RS ‘07]-

1 o X3 ry4 Iy e T7 g

Two generalizations of
[FGG ‘07] AND-OR
algorithm:

® Theorem ([FGG ‘07, CCJY ‘07]):
A balanced binary AND-OR formula can be

evaluated in time Ngto().
J MBalanced, more gates

= ¢
Unbalanced AND-OR ,[.I:hs’ ST?;::Z:! (“adversary
[ACRgZ, FOCS‘07] eorem: -

bound-balanced”) formula ¢ over a
¢ Theorem: gate set including all three-bit gates

® An “approximately balanced” AND-OR (and more...) can be evaluated in
formula can be evaluated with O(VN) O(ADV(®)) queries (optimal).
queries (optimal for read-once!).

® A general AND-OR formula can be
evaluated with N”2*°(l) queries.

Recursive 3-bit majority tree

3d

/\/\/\/\/\/\/\/

((mag) mag) mag) ((mas)(mas) mas) (s)(mag) mag)

<

[RS ‘07] algorithm

® Theorem: A balanced (“adversar

bound-balanced”) formula @ &ver a
gate set including all three-bit gates
(and more...) can be evaluated in

O(ADV()) queries (optimal!).

® Best quantum lower bound is

Q(ADV(p) = 29) [LLS‘05]

® Expand majority into {AND, OR} gates:
MAJ3(x1, 22, T3)
= (1 Ax2) V (23 A (21 V 23))
.. {AND, OR} formula size is < 5¢
. O(V59) = O(2.249)-query algorithm
[FGG,ACRSZ ‘07]

New: O(29)-query quantum algorithm

Converting formula into a tree

-y

P2 1 ﬂ,02 _'Pl
PARITY \v/

(with appropriate edge weights)

® Main Theorem:

® @(x)=I| = Ac has A=0 eigenvector with
QQ(1) support on the root.

® @(x)=0 = Ac has no eigenvectors
overlapping the root with |A|<I/O(ADV()).

p2 G(p1) G(—pz2) G(—p1)

Ly

® Main Theorem:

® @(x)=I| = Ac has A=0 eigenvector with
Q)(1) support on the root.

= Ag has no eigenvectors
ping the root with |A|<I/O(ADV(y)).

quantitative bounds needed to
analyze the running time

F

® Main Theorem:

® @(x)=I| = Ac has A=0 eigenvector with
QQ(1) support on the root.

® @(x)=0 = Ac has no eigenvectors
overlapping the root with |A|<I/O(ADV()).

ast Quantum Algorithm:

(

.

e Start at the root

® Apply phase estimation to the quantum walk with precision I/O(ADV(p))

® |[f measured phase is 0, output “¢(x)=1."
Otherwise, output “(x)=0.”

Running time

is O(ADV(ep))

Precision-0 phase estimation

on a unitary U, starting at an
e-state, returns the e-value

to precision 0, except w/ prob. 1/4.
It uses O(1/d) calls to c-U.

Computation of @ Eigenvalue-zero
eigenvector of tree

formula
x=1 0 001 I 0000

Input dependence

e Substitutions define G(0M); to
define graph G(x), delete edges
to all leaves evaluating to x;=1.

Q: What is an eigenvalue-0
eigenvector of a graph?

A: Assignment of coefficients
to each vertex, such that sum
of neighboring coefficients

adds up to 0. (each edge labeled by the evaluation of
the NAND sub-formula above it)

Computation of @ Eigenvalue-zero
eigenvector of tree

formula

Induction Claim: Eachedge = | 0 o0 01 I 0 00 O | 11
gives a “dual-rail” encoding for o o @ 9Q ¢

the evaluation of the sub- :

formula above that edge...

| 0 |

sub-formula @,

The A=0 eigenvector v “outgut edge”
of G(Pv,X) is: %
Supported here "
& @y(x)=false

Supported here iy
& y(x)=true

3-Majority gate gadget
G(41) G(p2)

P1 ©2 Y3

\/

Eigenvalue-zero

Computation of ;
eigenvector of
MA); gate
graph
8 Induction hypothesis: A=0 eigenvectors

on sub-formula graphs G((pi) compute
the sub-formulas

Constraings o
Oér S
C

2

1 1) o, . ‘

0 1 w w
Ac Qvg \am)

(0%
v2 w Olyyy

® When can & be nonzero (i.e., gadget evaluates to true)?
|. Only depends on first constraint eq.’s (av,, , ., , Qy,)
2. Need oy, + ay, + ay, # 0, but

Uy, + Wy, + Wt =0
3. Can only have «,, # 0 if input i evaluates to true

® At least two inputs (pi must be true to satisfy both
constraints nontrivially. VM Al3

General graph gadgets

y

Input edges

Arbitrary
weighted

Induction Claim: Each edge bipartite graph

(p,v) gives a “dual-rail” encoding...

The A=0 eigenvector Supported on v Output edge
of G(Pv,x) is: & @y(x)=false

Supported on p
& @y(X)=true

Span program definition

e Substitution rules defining G come from span programs. [Karchmer,Wigderson '93]
e Def: A span program P is:
® A target vector t in vector spaceV over C,

® Input vectors v; each associated with a literal from {Z1,%1,...,Zn, Ty}

Span program P computes fp: {0,1}"—{0, 1},
fr(x) = | & tlies in the span of { true v; }

(6) (o) (5) (&)

with a,b,c distinct and nonzero.

= > = MAJs

Span program & Bipartite graph gadget
with t=(1,0,...,0)

<> input edges

In general:

(1)
\ O) - gconstraint

output edge

Composing span programs

® Given span programs for g, hy, ..., hy,immediately get s.p. for
f:go(hlv"'yhk)

SP composition Graph gadget composition

o Ex.: MAJ3(xi, X2, MAJ3(x4,x5,X6)): { <€ inputs

1| X2 1 Iy

Composing span programs

® Given span programs for g, hy, ..., hy,immediately get s.p. for
f:go(hlv"'ahk)

SP composition Graph gadget composition

o Ex.: MAJ3(xi, x2, MAJ3(x4,X5,X6)):

1| X2 1 Iy

Eigenvalue-zero lemmas

e Define: Gp(x) by deleting edges to true input literals

¢ Lemma: fp(x)=1 & d A=0 eigenvector of Agyx) supported on ao.

b|O b, © o b3

Eigenvalue-zero lemmas

e Define: Gp(x) by deleting edges to true input literals

¢ Lemma: fp(x)=1 & d A=0 eigenvector of Agyx) supported on ao.

® Lemma: Delete output edge (ao, bo). Then
fr(x)=0 < d A=0 eigenvector supported on bo.

Proof: fp(x) is false < |t) not in span of true columns of A

Eigenvalue-zero lemmas

Define: Gp(x) by deleting edges to true input literals

¢ Lemma: fp(x)=1 & d A=0 eigenvector of Agyx) supported on ao.

® Lemma: Delete output edge (ao, bo). Then
fr(x)=0 < d A=0 eigenvector supported on bo.

Proof: fp(x) is false < |t) not in span of true columns of A

< 1 |b) with (b|t)=1, orthogonal to all true columns of A

42 LIVE
Qua“utgigenvalue-zero lemmas

e Lemma: fp(x)=1 & d A=0 eigenvector of Agyx) supported on ao.
(® A

® Assume that f(x)=1, and that for all true inputs i, we have constructed
normalized A=0 eigenvectors with squared support 2 Y on ai.
Q: How large can we make |ao|? in a normalized A=0 eigenvector?

e Answer: Fix ao=1| and try to minimize the eigenvector’s norm. We want

the shortest witness vector: 5 5
min w)||” = ||(AIl)™ |t
min)= | (ATD|8)]
Alw)=|t)

|w)

NS Ws;
II = projection onto true input coords. ze(’?)()

- +2LIVE
Qua“ﬂtgigenvalue-zero lemmas

® Assume: For all inputs i we have constructed normalized A=0
eigenvectors with squared support 2 Y on a; or b..

® Lemma: f(x)=1 = I unit-normalized A=0 eigenvector with

ao|? > 8 wsize(P, x) := min |||w)]]?

— wsize(P,) |w>:rjl||ffu>>::||tf>>

¢ Lemma: f(x)=0 = 3 unit-normalized A=0 eigenvector with

. L : 1112
bol? > Y wsize(P, x) := min | AT|6)]]

> (t[b)=1
wsize(P, x) TLAT[b)=]t)

e Def: Withess size of P

wsize(P) = max wsize(P, x)

Small A#0 analysis

Construct the eigenvectors starting at the leaves, and working down.
Eigenvector equations are

Mbc = Acyay b b,? 9b; O b
Ao = Aopjag + ap)
Aa. g :A]JTb[—i—AOJTbo—I—ACJTbC al

Induction assumption: Input ratios I = ai/b; satisfy:
ifalse = 7 € (0,5;))
—1

i true = TiE(—OO7—>
87;>\

Solve equations for ro = ao/bo, apply Woodbury identity, expand the Taylor
series in A of the matrix inverse (on the range and its Schur complement
separately), bound the higher-order terms, QED.

® The first-order term is the same as the factor wsize(P, x) lost in the A=0
analysis (not so surprisingly)

Framework for quantum algorithms
based on span programs:

® Quantum algorithm for evaluating “span programs’:

Graph Gp with 5 Algorithm using

«—>
Span program P detectable spectral gap a quantum walk

® Behaves well under composition/recursion:

Span programs i Composed span
for gates compose program for

I !

Gate graph _— Graph G(¢p)
gadgets compose

® Possible extensions: Interesting quantum algorithms based directly on
asymptotically large span programs?

Summary of technical results

Def: Let S’ = { arbitrary two- or three-bit gates, O(|)-fan-in EQUAL gates}
Let S = { O(l)-size {AND, OR, NOT, PARITY?} formulas on inputs that
are themselves possibly elements of S’ }

Eg, MAJ3(x1,22,23) N (24 D5 PB -+ D (-1 V xk))

(Idea: Gates other than AND, OR, PARITY need to have balanced inputs.
AND, OR, PARITY gates can have constant-factor unbalanced inputs)

Def: Read-once formula ¢ is “adversary-bound-balanced” if for each gate
g, the adversary bounds for its input sub-formulas are all the same.

Main Theorem: Any adversary-balanced formula ¢ over gate set S can
be evaluated in O(ADV()) queries.

Time complexity is the same, up to poly-log N factor, in coherent RAM model
after preprocessing.

Questions!

3-bit gates

Adversary lower bound

1 /\LUQ /\5133
T1 D T2 D T3
r1 @ (22 A x3)
r1 V (ZCQ N 5133)
(331 /N $2) V (33—1/\ 5173)

I V (332 N\ 333) V (:132 /N 583)
MAJg(xl,aig,ZUg) — (331 A\ $2> \% ((581 V .CCQ) A\ $3>
MAJ3($1,$2,$3) V (371 N\ To N $3)
EQUAL(ml,CBQ,Q?g) — (iCl N\ X9 N $3> V (331 N\ To N CEg)

(x1 ANxo AN x3) V (T1 A T2)

Fact: A(fPg)=A(f)+A(g), A(fAg)=V(A(f)2+A(g)?) if f, g have disjoint inputs.

