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Quantum algorithms

• Grover search: find a given number in an unsorted
database of n records in time

O(
√
n)

• element distinctness: find a collision xi = xj in time

O(n2/3)

Quantum query complexity
• allow quantum superposition, unitary evolution, and

measurements
• count the number of queries, one query maps

|i, z〉 → (−1)xi |i, z〉 i = queried bit
z = the rest of memory
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Quantum query lower bounds

Adversary method
• [Bennett, Bernstein, Brassard & Vazirani, 1994]

tight lower bound Ω(
√
n) for Grover search

known 2 years before discovering the algorithm

• [Ambainis, 2000 & 2003] generalized to all functions
• easy to use, gives strong bounds

Polynomial method
[Beals, Buhrman, Cleve, Mosca & de Wolf, 2000]
• incomparable to the adversary method
• hard to use for non-symmetric functions
• [Aaronson & Shi, 2002]

tight lower bound Ω(n2/3) for element distinctness

Robert Špalek, CWI – A New Quantum Lower-Bound Method, with Applications to Direct Product Theorems and Time-Space Tradeoffs – p.3/14



Quantum query lower bounds

Adversary method
• [Bennett, Bernstein, Brassard & Vazirani, 1994]

tight lower bound Ω(
√
n) for Grover search

known 2 years before discovering the algorithm
• [Ambainis, 2000 & 2003] generalized to all functions
• easy to use, gives strong bounds

Polynomial method
[Beals, Buhrman, Cleve, Mosca & de Wolf, 2000]
• incomparable to the adversary method
• hard to use for non-symmetric functions
• [Aaronson & Shi, 2002]

tight lower bound Ω(n2/3) for element distinctness
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Adversary lower bounds

• if an algorithm computes f , then it must distinguish between
x, y such that f(x) 6= f(y)

•
computation starts in a fixed state and
it has to diverge far enough after T
queries for each such x, y

|start〉
|ψT

x 〉

|ψT
y 〉

• prove that one query cannot change the scalar product too
much (for an average x, y) =⇒ lower bound on T

Limitations

1. weak bounds for exponentially small success probability

2. [Š & Szegedy, Zhang, 2004]
bounds limited by

√
C0C1 for total functions

Cz is the z-certificate complexity of f
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Our new lower-bound method

• does not suffer from the 1st limitation
and possibly not even from the 2nd

• extends the adversary method above by taking into account
the current knowledge of the algorithm at each step (the
adversary method is oblivious to this and its bound is the
same for each query)

• based on subspace analysis of the density matrix

Applications

• k-fold search (find k ones)
• direct product theorems
• time-space tradeoffs











explained in a moment
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Subspaces for k-fold search

T0 T1 T2 T3 Tk. . .

T0 ⊆ T1 ⊆ · · · ⊆ Tk

Tj “know” at most j ones
spanned by
|ψi1...ij

〉 =
∑

x:|x|=k
xi1

=···=xij
=1

|x〉

T0 starting state
Tk entire input space
Sj “know” exactly j ones

Sj = Tj ∩ T⊥
j−1

• in the beginning, all amplitude is in T0 = S0

• 1 query moves ≤
√

k
n -fraction of amplitude from Sj to Sj+1

• to succeed, much amplitude has to be in higher subspaces
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Direct Product Theorems
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Direct Product Theorems

• We need Qε(f) queries to compute f with error ε.
How hard is it to compute k independent instances
f(x1), . . . , f(xk)?

• Relation between total number of queries
and overall success probability

DPT: Qε(f
(k)) = Ω(k ·Q 1

3

(f)) for ε = 1− 2−O(k)

Easy to prove for ε = 1
3 , hard for ε close to 1

• It is not known whether the DPT holds in general!
There are counter-examples for average-case complexity

• [Klauck, Š, de Wolf, FOCS 2004]
Tight quantum DPT for OR using the polynomial method
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Quantum DPT for Symmetric Functions

• Symmetric function f depends only on the number of ones

• Tight quantum DPT for all symmetric functions

Qε(f
(k)) = Ω(k ·Q 1

3

(f)) for ε = 1− 2−O(k)

using our new lower-bound method

• Classically, the DPT was already known [KŠW’04]
• Tight 1-sided quantum DPT for t-threshold functions

Qε(f
(k)) = Ω(k ·Q 1

3

(f)) for ε = 1− 2−O(k·t)

using the polynomial method
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Time-Space Tradeoffs
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Time-Space Tradeoffs

• A relation between the running time and space complexity

The more memory is available,
the faster the algorithm could possibly run.

• Example: sorting of N numbers
◦ Classically

TS = Θ(N2)

◦ Quantumly

T 2S = Θ̃(N3)

using the DPT for OR [KŠW’04]
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Evaluating Solutions to Systems of Linear Inequalities

• A fixed N ×N zero-one matrix
x non-negative integer input vector of length N

The task is to determine which inequalities are true

Ax ≥ (t, . . . , t)

• We study the query complexity with bounded error

log N

S

T

N/t N

N

Nt

N2

√

N3t

classically

quantumly

Classically TS = Θ̃(N2)

Quantumly

T 2S = Θ̃(N3t) S ≤ N
t

TS = Θ̃(N2) S > N
t
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Robert Špalek, CWI – A New Quantum Lower-Bound Method, with Applications to Direct Product Theorems and Time-Space Tradeoffs – p.12/14



Time-Space Tradeoff for Linear Inequalities

Quantum algorithm uses
• Grover search
• quantum counting

to find non-zero inputs faster than classically

Matching lower bound proved as follows
• Fix a hard matrix A.
• Slice the circuit. Deciding k inequalities in one slice allows

computing k non-overlapping threshold functions.
• Replace (unknown) starting state by completely mixed state.

Success probability goes down to 2−S .
• By DPT, we still need many queries in each slice.

=⇒ (tight) lower bound on T as a function of S
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Robert Špalek, CWI – A New Quantum Lower-Bound Method, with Applications to Direct Product Theorems and Time-Space Tradeoffs – p.13/14



Time-Space Tradeoff for Linear Inequalities

Quantum algorithm uses
• Grover search
• quantum counting

to find non-zero inputs faster than classically

Matching lower bound proved as follows
• Fix a hard matrix A.
• Slice the circuit. Deciding k inequalities in one slice allows

computing k non-overlapping threshold functions.
• Replace (unknown) starting state by completely mixed state.

Success probability goes down to 2−S .

• By DPT, we still need many queries in each slice.
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Summary and open problems

• a new quantum lower bound method
based on analysis of subspaces of the density matrix

• tight quantum direct product theorem for all symmetric
functions

• optimal time-space tradeoff for evaluating solutions to
systems of linear inequalities
◦ with small space, quantum computers are faster
◦ with large space, classical are as good as quantum

Open problems

• binary AND-OR tree: O(n0.753), Ω(
√
n)

• triangle finding: O(n1.3), Ω(n)

• verification of matrix products: O(n5/3), Ω(n3/2)
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