A New Quantum Lower-Bound Method, with Applications to Direct Product Theorems and Time-Space Tradeoffs

Robert Špalek*

*CWI, Amsterdam

\dagger University of Waterloo

Quantum algorithms

- Grover search: find a given number in an unsorted database of n records in time

$$
O(\sqrt{n})
$$

- element distinctness: find a collision $x_{i}=x_{j}$ in time

$$
O\left(n^{2 / 3}\right)
$$

Quantum algorithms

- Grover search: find a given number in an unsorted database of n records in time

$$
O(\sqrt{n})
$$

- element distinctness: find a collision $x_{i}=x_{j}$ in time

$$
O\left(n^{2 / 3}\right)
$$

Quantum query complexity

- allow quantum superposition, unitary evolution, and measurements
- count the number of queries, one query maps

$$
\begin{array}{ll}
|i, z\rangle \rightarrow(-1)^{x_{i}}|i, z\rangle & i=\text { queried bit } \\
z=\text { the rest of memory }
\end{array}
$$

Quantum query lower bounds

Adversary method

- [Bennett, Bernstein, Brassard \& Vazirani, 1994] tight lower bound $\Omega(\sqrt{n})$ for Grover search known 2 years before discovering the algorithm

Quantum query lower bounds

Adversary method

- [Bennett, Bernstein, Brassard \& Vazirani, 1994] tight lower bound $\Omega(\sqrt{n})$ for Grover search known 2 years before discovering the algorithm
- [Ambainis, 2000 \& 2003] generalized to all functions
- easy to use, gives strong bounds

Quantum query lower bounds

Adversary method

- [Bennett, Bernstein, Brassard \& Vazirani, 1994] tight lower bound $\Omega(\sqrt{n})$ for Grover search known 2 years before discovering the algorithm
- [Ambainis, 2000 \& 2003] generalized to all functions
- easy to use, gives strong bounds

Polynomial method

[Beals, Buhrman, Cleve, Mosca \& de Wolf, 2000]

- incomparable to the adversary method
- hard to use for non-symmetric functions

Quantum query lower bounds

Adversary method

- [Bennett, Bernstein, Brassard \& Vazirani, 1994] tight lower bound $\Omega(\sqrt{n})$ for Grover search known 2 years before discovering the algorithm
- [Ambainis, 2000 \& 2003] generalized to all functions
- easy to use, gives strong bounds

Polynomial method

[Beals, Buhrman, Cleve, Mosca \& de Wolf, 2000]

- incomparable to the adversary method
- hard to use for non-symmetric functions
- [Aaronson \& Shi, 2002] tight lower bound $\Omega\left(n^{2 / 3}\right)$ for element distinctness

Adversary lower bounds

- if an algorithm computes f, then it must distinguish between x, y such that $f(x) \neq f(y)$

Adversary lower bounds

- if an algorithm computes f, then it must distinguish between x, y such that $f(x) \neq f(y)$ computation starts in a fixed state and
- it has to diverge far enough after T queries for each such x, y

Adversary lower bounds

- if an algorithm computes f, then it must distinguish between x, y such that $f(x) \neq f(y)$ computation starts in a fixed state and
- it has to diverge far enough after T queries for each such x, y

- prove that one query cannot change the scalar product too much (for an average x, y) \Longrightarrow lower bound on T

Adversary lower bounds

- if an algorithm computes f, then it must distinguish between x, y such that $f(x) \neq f(y)$
computation starts in a fixed state and
- it has to diverge far enough after T queries for each such x, y

- prove that one query cannot change the scalar product too much (for an average x, y) \Longrightarrow lower bound on T

Limitations

1. weak bounds for exponentially small success probability

Adversary lower bounds

- if an algorithm computes f, then it must distinguish between x, y such that $f(x) \neq f(y)$
computation starts in a fixed state and
- it has to diverge far enough after T queries for each such x, y

- prove that one query cannot change the scalar product too much (for an average x, y) \Longrightarrow lower bound on T

Limitations

1. weak bounds for exponentially small success probability
2. [Š \& Szegedy, Zhang, 2004]
bounds limited by $\sqrt{C_{0} C_{1}}$ for total functions
C_{z} is the z-certificate complexity of f

Our new lower-bound method

- does not suffer from the $1^{\text {st }}$ limitation and possibly not even from the $2^{\text {nd }}$

Our new lower-bound method

- does not suffer from the $1^{\text {st }}$ limitation and possibly not even from the $2^{\text {nd }}$
- extends the adversary method above by taking into account the current knowledge of the algorithm at each step (the adversary method is oblivious to this and its bound is the same for each query)

Our new lower-bound method

- does not suffer from the $1^{\text {st }}$ limitation and possibly not even from the $2^{\text {nd }}$
- extends the adversary method above by taking into account the current knowledge of the algorithm at each step (the adversary method is oblivious to this and its bound is the same for each query)
- based on subspace analysis of the density matrix

Our new lower-bound method

- does not suffer from the $1^{\text {st }}$ limitation and possibly not even from the $2^{\text {nd }}$
- extends the adversary method above by taking into account the current knowledge of the algorithm at each step (the adversary method is oblivious to this and its bound is the same for each query)
- based on subspace analysis of the density matrix

Applications

- k-fold search (find k ones)
- direct product theorems
- time-space tradeoffs
explained in a moment ,

Subspaces for k-fold search

$$
T_{0} \subseteq T_{1} \subseteq \cdots \subseteq T_{k}
$$

T_{j} "know" at most j ones spanned by

$$
\left|\psi_{i_{1} \ldots i_{j}}\right\rangle=\sum_{\substack{x:|x|=k \\ x_{i_{1}}=\cdots=x_{i_{j}}=1}}|x\rangle
$$

Subspaces for k-fold search

T_{j} "know" at most j ones spanned by

$$
\left|\psi_{i_{1} \ldots i_{j}}\right\rangle=\sum_{\substack{x:|x|=k \\ x_{i_{1}}=\cdots=x_{i_{j}}=1}}|x\rangle
$$

$T_{0} \quad$ starting state

Subspaces for k-fold search

T_{j} "know" at most j ones spanned by

$$
\left|\psi_{i_{1} \ldots i_{j}}\right\rangle=\sum_{\substack{x:|x|=k \\ x_{i_{1}}=\cdots=x_{i_{j}}=1}}|x\rangle
$$

$T_{0} \quad$ starting state
T_{k} entire input space

$$
T_{0} \subseteq T_{1} \subseteq \cdots \subseteq T_{k}
$$

Subspaces for k-fold search

T_{j} "know" at most j ones spanned by

$$
\left|\psi_{i_{1} \ldots i_{j}}\right\rangle=\sum_{\substack{x:|x|=k \\ x_{i_{1}}=\cdots=x_{i_{j}}=1}}|x\rangle
$$

$T_{0} \quad$ starting state
T_{k} entire input space
S_{j} "know" exactly j ones
$S_{j}=T_{j} \cap T_{j-1}^{\perp}$

Subspaces for k-fold search

T_{j} "know" at most j ones spanned by

$$
\left|\psi_{i_{1} \ldots i_{j}}\right\rangle=\sum_{\substack{x:|x|=k \\ x_{i_{1}}=\cdots=x_{i_{j}}=1}}|x\rangle
$$

$T_{0} \quad$ starting state
$T_{k} \quad$ entire input space
S_{j} "know" exactly j ones $S_{j}=T_{j} \cap T_{j-1}^{\perp}$

- in the beginning, all amplitude is in $T_{0}=S_{0}$

Subspaces for k-fold search

T_{j} "know" at most j ones spanned by

$$
\left|\psi_{i_{1} \ldots i_{j}}\right\rangle=\sum_{\substack{x:|x|=k \\ x_{i_{1}}=\cdots=x_{i_{j}}=1}}|x\rangle
$$

$T_{0} \quad$ starting state
$T_{k} \quad$ entire input space
S_{j} "know" exactly j ones

$$
S_{j}=T_{j} \cap T_{j-1}^{\perp}
$$

- in the beginning, all amplitude is in $T_{0}=S_{0}$
- 1 query moves $\leq \sqrt{\frac{k}{n}}$-fraction of amplitude from S_{j} to S_{j+1}

Subspaces for k-fold search

T_{j} "know" at most j ones spanned by

$$
\left|\psi_{i_{1} \ldots i_{j}}\right\rangle=\sum_{\substack{x:|x|=k \\ x_{i_{1}}=\cdots=x_{i_{j}}=1}}|x\rangle
$$

$T_{0} \quad$ starting state
$T_{k} \quad$ entire input space
S_{j} "know" exactly j ones

$$
S_{j}=T_{j} \cap T_{j-1}^{\perp}
$$

- in the beginning, all amplitude is in $T_{0}=S_{0}$
- 1 query moves $\leq \sqrt{\frac{k}{n}}$-fraction of amplitude from S_{j} to S_{j+1}
- to succeed, much amplitude has to be in higher subspaces

Direct Product Theorems

Direct Product Theorems

- We need $Q_{\varepsilon}(f)$ queries to compute f with error ε. How hard is it to compute k independent instances $f\left(x_{1}\right), \ldots, f\left(x_{k}\right)$?

Direct Product Theorems

- We need $Q_{\varepsilon}(f)$ queries to compute f with error ε. How hard is it to compute k independent instances $f\left(x_{1}\right), \ldots, f\left(x_{k}\right)$?
- Relation between total number of queries and overall success probability

$$
\text { DPT: } \quad Q_{\varepsilon}\left(f^{(k)}\right)=\Omega\left(k \cdot Q_{\frac{1}{3}}(f)\right) \quad \text { for } \varepsilon=1-2^{-O(k)}
$$

Easy to prove for $\varepsilon=\frac{1}{3}$, hard for ε close to 1

Direct Product Theorems

- We need $Q_{\varepsilon}(f)$ queries to compute f with error ε. How hard is it to compute k independent instances $f\left(x_{1}\right), \ldots, f\left(x_{k}\right)$?
- Relation between total number of queries and overall success probability

$$
\text { DPT: } \quad Q_{\varepsilon}\left(f^{(k)}\right)=\Omega\left(k \cdot Q_{\frac{1}{3}}(f)\right) \quad \text { for } \varepsilon=1-2^{-O(k)}
$$

Easy to prove for $\varepsilon=\frac{1}{3}$, hard for ε close to 1

- It is not known whether the DPT holds in general! There are counter-examples for average-case complexity

Direct Product Theorems

- We need $Q_{\varepsilon}(f)$ queries to compute f with error ε. How hard is it to compute k independent instances $f\left(x_{1}\right), \ldots, f\left(x_{k}\right)$?
- Relation between total number of queries and overall success probability

$$
\text { DPT: } \quad Q_{\varepsilon}\left(f^{(k)}\right)=\Omega\left(k \cdot Q_{\frac{1}{3}}(f)\right) \quad \text { for } \varepsilon=1-2^{-O(k)}
$$

Easy to prove for $\varepsilon=\frac{1}{3}$, hard for ε close to 1

- It is not known whether the DPT holds in general!

There are counter-examples for average-case complexity

- [Klauck, Š, de Wolf, FOCS 2004]

Tight quantum DPT for OR using the polynomial method

Quantum DPT for Symmetric Functions

- Symmetric function f depends only on the number of ones

Quantum DPT for Symmetric Functions

- Symmetric function f depends only on the number of ones
- Tight quantum DPT for all symmetric functions

$$
Q_{\varepsilon}\left(f^{(k)}\right)=\Omega\left(k \cdot Q_{\frac{1}{3}}(f)\right) \quad \text { for } \varepsilon=1-2^{-O(k)}
$$

using our new lower-bound method

Quantum DPT for Symmetric Functions

- Symmetric function f depends only on the number of ones
- Tight quantum DPT for all symmetric functions

$$
Q_{\varepsilon}\left(f^{(k)}\right)=\Omega\left(k \cdot Q_{\frac{1}{3}}(f)\right) \quad \text { for } \varepsilon=1-2^{-O(k)}
$$

using our new lower-bound method

- Classically, the DPT was already known [KŠW'04]

Quantum DPT for Symmetric Functions

- Symmetric function f depends only on the number of ones
- Tight quantum DPT for all symmetric functions

$$
Q_{\varepsilon}\left(f^{(k)}\right)=\Omega\left(k \cdot Q_{\frac{1}{3}}(f)\right) \quad \text { for } \varepsilon=1-2^{-O(k)}
$$

using our new lower-bound method

- Classically, the DPT was already known [KŠW'04]
- Tight 1 -sided quantum DPT for t-threshold functions

$$
Q_{\varepsilon}\left(f^{(k)}\right)=\Omega\left(k \cdot Q_{\frac{1}{3}}(f)\right) \quad \text { for } \varepsilon=1-2^{-O(k \cdot t)}
$$

using the polynomial method

Time-Space Tradeoffs

Time-Space Tradeoffs

- A relation between the running time and space complexity

The more memory is available, the faster the algorithm could possibly run.

Time-Space Tradeoffs

- A relation between the running time and space complexity

The more memory is available, the faster the algorithm could possibly run.

- Example: sorting of N numbers
- Classically

$$
T S=\Theta\left(N^{2}\right)
$$

Time-Space Tradeoffs

- A relation between the running time and space complexity

The more memory is available, the faster the algorithm could possibly run.

- Example: sorting of N numbers
- Classically

$$
T S=\Theta\left(N^{2}\right)
$$

- Quantumly

$$
T^{2} S=\tilde{\Theta}\left(N^{3}\right)
$$

using the DPT for OR [KŠW'04]

Evaluating Solutions to Systems of Linear Inequalities

- A fixed $N \times N$ zero-one matrix
x non-negative integer input vector of length N
The task is to determine which inequalities are true

$$
A x \geq(t, \ldots, t)
$$

Evaluating Solutions to Systems of Linear Inequalities

- A fixed $N \times N$ zero-one matrix
x non-negative integer input vector of length N
The task is to determine which inequalities are true

$$
A x \geq(t, \ldots, t)
$$

- We study the query complexity with bounded error

Classically $\quad T S=\tilde{\Theta}\left(N^{2}\right)$

Evaluating Solutions to Systems of Linear Inequalities

- A fixed $N \times N$ zero-one matrix
x non-negative integer input vector of length N
The task is to determine which inequalities are true

$$
A x \geq(t, \ldots, t)
$$

- We study the query complexity with bounded error

Classically $\quad T S=\tilde{\Theta}\left(N^{2}\right)$
Quantumly

$$
\begin{array}{rlr}
T^{2} S & =\tilde{\Theta}\left(N^{3} t\right) & S \leq \frac{N}{t} \\
T S & =\tilde{\Theta}\left(N^{2}\right) & S>\frac{N}{t}
\end{array}
$$

Time-Space Tradeoff for Linear Inequalities

Quantum algorithm uses

- Grover search
- quantum counting
to find non-zero inputs faster than classically

Time-Space Tradeoff for Linear Inequalities

Quantum algorithm uses

- Grover search
- quantum counting
to find non-zero inputs faster than classically
Matching lower bound proved as follows
- Fix a hard matrix A.

Time-Space Tradeoff for Linear Inequalities

Quantum algorithm uses

- Grover search
- quantum counting
to find non-zero inputs faster than classically
Matching lower bound proved as follows
- Fix a hard matrix A.
- Slice the circuit. Deciding k inequalities in one slice allows computing k non-overlapping threshold functions.

Time-Space Tradeoff for Linear Inequalities

Quantum algorithm uses

- Grover search
- quantum counting
to find non-zero inputs faster than classically
Matching lower bound proved as follows
- Fix a hard matrix A.
- Slice the circuit. Deciding k inequalities in one slice allows computing k non-overlapping threshold functions.
- Replace (unknown) starting state by completely mixed state. Success probability goes down to 2^{-S}.

Time-Space Tradeoff for Linear Inequalities

Quantum algorithm uses

- Grover search
- quantum counting
to find non-zero inputs faster than classically
Matching lower bound proved as follows
- Fix a hard matrix A.
- Slice the circuit. Deciding k inequalities in one slice allows computing k non-overlapping threshold functions.
- Replace (unknown) starting state by completely mixed state. Success probability goes down to 2^{-S}.
- By DPT, we still need many queries in each slice.

Time-Space Tradeoff for Linear Inequalities

Quantum algorithm uses

- Grover search
- quantum counting
to find non-zero inputs faster than classically
Matching lower bound proved as follows
- Fix a hard matrix A.
- Slice the circuit. Deciding k inequalities in one slice allows computing k non-overlapping threshold functions.
- Replace (unknown) starting state by completely mixed state. Success probability goes down to 2^{-S}.
- By DPT, we still need many queries in each slice.
\Longrightarrow (tight) lower bound on T as a function of S

Summary and open problems

- a new quantum lower bound method based on analysis of subspaces of the density matrix
- tight quantum direct product theorem for all symmetric functions
- optimal time-space tradeoff for evaluating solutions to systems of linear inequalities
- with small space, quantum computers are faster
- with large space, classical are as good as quantum

Summary and open problems

- a new quantum lower bound method based on analysis of subspaces of the density matrix
- tight quantum direct product theorem for all symmetric functions
- optimal time-space tradeoff for evaluating solutions to systems of linear inequalities
- with small space, quantum computers are faster
- with large space, classical are as good as quantum

Open problems

- binary AND-OR tree: $O\left(n^{0.753}\right), \Omega(\sqrt{n})$
- triangle finding: $O\left(n^{1.3}\right), \Omega(n)$
- verification of matrix products: $O\left(n^{5 / 3}\right), \Omega\left(n^{3 / 2}\right)$

