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Quantum simulation

• quantum systems have complex behavior
• want to simulate them, i.e. compute the outcome classically

without actually building the system
• hard in the worst case, but there are systems for which this

is feasible
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Tensors

• are multi-linear operators
• generalize vectors and matrices
• dimension is the number of indices

rank of an index denotes its domain

• drawn as a creature with a number of legs
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Robert Špalek, UC Berkeley – Classical Simulation of Quantum Systems via Tensor Networks – p.3/13



Tensor networks

• tensor network is a collection of possibly connected tensors

• connecting two legs = contracting a common index i

Ra,b,c
x,y,z =

∑

i

Pa,b,c,iQx,y,z,i

◦ requires equal rank
◦ generalizes matrix multiplication
◦ can contract more than 1 leg at the same time
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Quantum states as tensors

• don’t think of them as vectors (with 1 leg of rank 2n)

• instead, an n-qubit state will be a tensor with n legs of rank
2, i.e. it is specified by 2n complex coefficients
◦ an arbitrary quantum state is one fat spider with many

legs
◦ product states can be drawn as a group of skinnier

creatures
=⇒ fewer coefficients are needed!

• is there anything between?
◦ for larger family of states
◦ stil efficient
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Schmidt decomposition

• every bipartite quantum state can be written as

|φ〉 =

r∑

i=1

|ψA,i〉|ψB,i〉,

where r is the Schmidt rank of the bipartition
the states |ψB,i〉 need not be normalized

• hence we can slash any creature into two smaller ones
connected by just one leg
◦ notice that these legs may be longer
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Quantum states as tensor networks

• [Vidal] we can split tensors iterativaly until we end up, say,
with a 3-regular tree with leaves corresponding to the
original qubits and a couple of added internal vertices
containing the intermediate Schmidt coefficients

• can this description possibly be efficient?
◦ yes as long as the Schmidt ranks are not too high
◦ then we need at most n ·R3 coefficients, where
R = maxe re is the maximal rank

◦ not every possible tensor networks yields efficient ranks!

• can apply unitaries and measurements fast on states with
efficient networks
◦ the tree structure is not altered much
◦ hence we can simulate computation as long as all

intermediate states are efficient
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Efficient tensor networks

• can we connect the n qubits by a 3-regular graph such that
the rank of the worst bipartition is not too high?

• that is, optimize Schmidt-rank width defined as

rwd(|ψ〉) = log min
tree T

max
edge e∈T

χAe

T
,Be

T
(|ψ〉),

where χAe

T
,Be

T
(|ψ〉) is the number of nonzero Schmidt

coefficients of |ψ〉 corresponding to the bipartition induced
by removing e from T

• [S.-I. Oum, PhD thesis] polynomial time constant
approximation algorithm for the width of every sub-modal
function χ (which is our case)
• it is polynomial assuming that χAe

T
,Be

T
is an oracle whose

computation takes constant time
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Evaluating the Schmidt rank χ

• we cannot evaluate χ fast for an arbitrary state |ψ〉, because
already the description of |ψ〉 is exponentially large

• need an efficient description of |ψ〉 as an input
◦ for example, |ψ〉 may be computed by a small quantum

circuit
this is hopeless, as it would solve factoring

◦ works when |ψ〉 is a cluster state, because then the
Schmidt rank of a bipartition equals the GF(2) rank of
the adjacency matrix of this bipartition
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Cluster states

• cluster state corresponding to a graph G = (V,E) is the
(unique) state stabilized by

Xv
∏

(v,w)∈E

Zw

for every v

• equivalently, start in the state |+〉⊗|V | and apply CPHASE
on every edge

• [Raussendorf & Briegel] one-way quantum computer
◦ start in a highly entangled cluster state
◦ perform a sequence of adaptive one-qubit

measurements
◦ universal for quantum computation
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How does cluster state computation work?

• if we have a chain (cluster state corresponding to a path),
then left-to-right one-qubit measurements in a certain basis
teleport quantum information to the right and one can also
perform some unitaries along the way

• CPHASE gates can also be applied by incorporating them
into the underlying cluster state

• this set of gates is universal =⇒ every quantum circuit can
be efficiently rewritten into this form
◦ the cluster state basically resembles the shape of the

circuit
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Efficiency of quantum simulation

• [Markov & Shi] simulation in time 2twd(G), where twd is the
tree-width of G

• [Nest, Dür, Vidal & Briegel] simulation in time 2rwd(G)

◦ this is faster, because rwd(G) ≤ 4 · twd(G) + 2
◦ on the other hand, there are graphs with constant rank

width and tree width n

• this result also subsumes other similar results based on
structural properties of the quantum circuit [Jozsa]

• when applied to factoring, the complexity lies in the modular
exponentiation and the approximate QFT is easy
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Summary

1. tensor networks

2. representation of quantum states

3. can find quickly the most efficient tensor network
polynomial algorithm for representing cluster states

4. simulating general quantum circuits on cluster states

5. polynomial time simulation of quantum computation when
the Schmidt-rank width is at most logarithmic
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