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Abstract. We present a correct proof of Adams’ trees of bounded bal-
ance, which are used in Haskell to implement Data.Map and Data.Set.
Our analysis includes the previously ignored join operation, and also
guarantees trees with smaller depth than the original one. Because the
Adams’ trees can be parametrized, we use benchmarking to find the
best choice of parameters. Finally, a saving memory technique based on
introducing additional data constructor is evaluated.

1 Introduction

Adams’ trees, or trees of bounded balance ω, shortly BB-ω trees, are binary
search trees introduced in [1] and [2]. In order to guarantee an asymptotically
logarithmic depth of these trees, the size of a subtree is stored in every node. This
information is useful not only for rebalancing, but also for other operations – the
size operation runs in constant time, we can locate the i-th smallest element of
the tree in logarithmic time, and so on.

BB-ω trees are used in Haskell to implement the Data.Map and Data.Set

modules, which are part of the standard data structure library containers [10].
BB-ω trees are also used in data structure libraries in Scheme and SML. Ac-
cording to the measurements in [9], their performance is comparable to other
alternatives such as AVL trees [3] or red-black trees [4].

Although the implementation of a BB-ω tree is quite simple, proving its
correctness is tricky. The original proof in [1] has several serious flaws – it wrongly
handles delete, it does not consider join and does not use the fact that the
sizes of subtrees are integers.

Our contributions are as follows:

– We present a correct proof of BB-ω trees, including the previously ignored
join operation. This new analysis guarantees trees with lower depths than
the original one.

– We investigate the depth of BB-ω trees.
– Because the BB-ω trees are parametrized, we perform several benchmarks

to find the best choice of parameters.
– In order to save memory, we evaluate the technique of introducing additional

data constructor representing a tree of size one. This allows us to save 20-30%
of memory and even decreases the time complexity.



2 BB-ω trees

We expect the reader is familiar with binary search trees, see [6] for a compre-
hensive introduction.

Definition 1. A binary search tree is a tree of bounded balance ω, denoted as

BB-ω tree, if in each node the following balance condition holds:

size of the left subtree ≤ ω · size of the right subtree ,

size of the right subtree ≤ ω · size of the left subtree ,

if one subtree is empty, the size of the other one can be 1 .

(1)

If the balance condition holds, the size of a tree decreases by at least the
factor of ω

ω+1 at each level, so the maximum depth of a BB-ω tree with n nodes
is bounded by

log(ω+1)/ω n =
log2 n

log2(1 + 1/ω)
.

Detailed analysis is carried out in Section 6.
The exception for empty subtrees is not elegant, but from the implementation

point of view is of no concern – empty subtrees are usually represented by a
special data constructor and are treated differently anyway. Nevertheless, some
modifications to the balance condition have been proposed to get rid of the
special case – most notably to use the size of a subtree increased by one, which
was proposed in [8]. We therefore define generalized version of balance condition,
which comprises both these cases:

size of the left subtree ≤ max(1, ω · size of the right subtree + δ) ,
size of the right subtree ≤ max(1, ω · size of the left subtree + δ) .

(2)

The parameter δ is a nonnegative integer and if it is positive, the special case
for empty subtrees is no longer necessary. Notice that the definition with sizes
increased by one is equivalent to the generalized balance condition with δ = ω−1.

An implementation of a BB-ω tree needs to store the size of a subtree of
every node, which results in the following data-type:

data BBTree a = Nil -- empty tree

| Node -- tree node

(BBTree a) -- left subtree

Int -- size of this tree

a -- element stored in the node

(BBTree a) -- right subtree

We also provide a function size and a smart constructor node, which constructs
a tree using a left subtree, a key, and a right subtree. The balance condition is
not checked, so it is upon the caller to ensure its validity.

size :: BBTree a -> Int

size Nil = 0

size (Node _ s _ _) = s

node :: BBTree a -> a -> BBTree a -> BBTree a

node left key right = Node left (size left + 1 + size right) key right



3 BB-ω tree operations

Locating an element in a BB-ω tree works as in any binary search tree:

lookup :: Ord a => a -> BBTree a -> Maybe a

lookup k Nil = Nothing

lookup k (Node left _ key right) = case k ‘compare‘ key of

LT -> lookup k left

EQ -> Just key

GT -> lookup k right

When adding and removing elements to the tree, we need to ensure the va-
lidity of the balance condition. We therefore introduce another smart construc-
tor balance with the same functionality as node, which in addition maintains
the balance condition. To achieve effectiveness, certain conditions apply – the
balance function can be used only on subtrees that previously fulfilled the bal-
ance condition and since then one element was inserted or deleted.

With such constructor, the implementation of insert and delete is straight-
forward. Assuming the balance constructor works in constant time, insert and
delete run in logarithmic time.

insert :: Ord a => a -> BBTree a -> BBTree a

insert k Nil = node Nil k Nil

insert k (Node left _ key right) = case k ‘compare‘ key of

LT -> balance (insert k left) key right

EQ -> node left k right

GT -> balance left key (insert k right)

delete :: Ord a => a -> BBTree a -> BBTree a

delete _ Nil = Nil

delete k (Node left _ key right) = case k ‘compare‘ key of

LT -> balance (delete k left) key right

EQ -> glue left right

GT -> balance left key (delete k right)

where glue Nil right = right

glue left Nil = left

glue left right

| size left > size right = let (key’, left’) = extractMax left

in node left’ key’ right

| otherwise = let (key’, right’) = extractMin right

in node left key’ right’

extractMin (Node Nil _ key right) = (key, right)

extractMin (Node left _ key right) = case extractMin left of

(min, left’) -> (min, balance left’ key right)

extractMax (Node left _ key Nil) = (key, left)

extractMax (Node left _ key right) = case extractMax right of

(max, right’) -> (max, balance left key right’)

When representing a set with a binary search tree, additional operations
besides inserting and deleting individual elements are needed. Such an operation



is join. The join operation is also a smart constructor – it constructs a tree
using a key and left and right subtrees. However, it poses no assumptions on the
sizes of given balanced subtrees and produces a balanced BB-ω tree.

In order to implement this operation we once again utilize the balance con-
structor, therefore changing its assumptions – the balance can be used on sub-
trees, that previously fulfilled the balance condition and since then one insert,
delete or join operation was performed.

Having improved the balance operation, it is trivial to implement join.
Once again, assuming balance works in constant time, join runs in logarithmic
time.

join :: BBTree a -> a -> BBTree a -> BBTree a

join Nil key right = insertMin key right

where insertMin key Nil = Node Nil 1 key Nil

insertMin key (Node l _ k r) = balance (insertMin key l) k r

join left key Nil = insertMax key left

where insertMax key Nil = Node Nil 1 key Nil

insertMax key (Node l _ k r) = balance l k (insertMax key r)

join left@(Node ll ls lk lr) key right@(Node rl rs rk rr)

| ls > omega * rs + delta = balance ll lk (join lr key right)

| rs > omega * ls + delta = balance (join left key rl) rk rr

| otherwise = node left key right

4 Rebalancing BB-ω trees

In order to restore balance, we use standard single and double rotations. These
are depicted in Fig. 1. The code for these rotations is straightforward, the L or
R suffix indicates the direction of the rotation (both rotations in the Fig. 1 are
to the left).

The balance function restores balance using either a single or a double ro-
tation – but a question is which one to choose. If we perform a left rotation as
in Fig. 1, a single rotation leaves the left son of the right subtree unaffected, but
a double rotation splits it into two subtrees. Therefore we choose the type of a
rotation according to the size of the left son of the right subtree.

Formally, we use a parameter α1, which we use as follows: When we want to
perform a left rotation, we examine the right subtree. If its left son is strictly
smaller than α-times the size of its right son, we perform a single rotation, and
otherwise a double rotation. The implementation follows:

balance left key right

| size left + size right <= 1 = node left key right

| size right > omega * size left + delta = case right of

(Node rl _ _ rr) | size rl<alpha*size rr -> singleL left key right

| otherwise -> doubleL left key right

1 Our α differs from [1], in the sense that our α is the inverse of α from [1].
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singleL l k (Node rl _ rk rr) = node (node l k rl) rk rr

singleR (Node ll _ lk lr) k r = node ll lk (node lr k r)

doubleL l k (Node (Node rll _ rlk rlr) _ rk rr) =

node (node l k rll) rlk (node rlr rk rr)

doubleR (Node ll _ lk (Node lrl _ lrk lrr)) k r =

node (node ll lk lrl) lrk (node lrr k r)

Fig. 1. Single and double rotations.

| size left > omega * size right + delta = case left of

(Node ll _ _ lr) | size lr<alpha*size ll -> singleR left key right

| otherwise -> doubleR left key right

| otherwise = node left key right

5 Choosing the parameters ω, α and δ

We call the parameters (ω, α, δ) valid, if balance can always restore the balance
condition after one insert, delete or join operation.

It would be best to fully characterize valid combination of parameters, but it
difficult to do so. The reason is that the parameter validity heavily relies on the
fact that small trees still have integral sizes – if the only available counterexam-
ples are non-integral, the balance is always restored. However, because of this
behaviour it is difficult to give generic characterization of parameter validity.

We therefore rule out parameters which are definitely not valid and then
prove the validity only for several chosen parameters. It is easy to see that ω ≥ 5
and ω = 2 are not valid for any α in the sense of the original balance condition,
i.e., with δ = 0: In the situation in Fig. 2 neither single nor double rotation can
restore balance.

To get more accurate idea, we evaluated validity of parameters on all trees
up to size of 1 million – the results are displayed in Fig. 3. The code used to
generate this figure is listed in Appendix A. When choosing the parameters, the
value of ω is the most important, because it defines the height of the tree. On
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Fig. 2. Parameters ω = 2 and ω ≥ 5 are not valid for any α and δ = 0.
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Fig. 3. The space of parameter (ω, α, δ). The values of ω and α are displayed on the
x and y axis, respectively. Every dashed square consists of four smaller squares, which
correspond to the δ values 0

2
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3
. Black denotes non-valid parameters, white denotes

parameters which are valid for trees of size up to 1 million. For example, when ω = 4
and α = 2, δ ∈ {0, 3} is valid and δ ∈ {1, 2} is not valid.



the other hand, the value of α is quite unimportant – it affects only the internal
implementation of balance. The value of δ is kept as low as possible, since it
increases imbalance of tree sizes.

After inspection of Fig. 3 we have chosen integer parameters (ω = 3, α =
2, δ = 0) and (ω = 4, α = 2, δ = 0) and also parameters (ω = 2.5, α = 1.5, δ = 1),
where the value of ω is the smallest possible. The last parameters are not integral,
but we can perform multiplication by ω or α using right bit shift.

5.1 Validity of w = 2.5, w = 3 and w = 4

We now prove the validity of chosen parameters (ω = 2.5, α = 1.5, δ = 1),
(ω = 3, α = 2, δ = 0) and (ω = 4, α = 2, δ = 0). Because the values of α and δ
are determined by ω, we identify these sets of parameters only by the value of ω.

n m

Consider performing balance after the balance is lost. Without loss
of generality assume the right subtree is the bigger one and denote n
and m the sizes of the left and right subtrees, respectively. We will use
the notation of the tree size and the tree itself interchangeably.

Because the balance is lost, we have now ωn+ δ < m. The insert operation
causes imbalance by exactly one element, so it is never worse than imbalance
caused by a delete operation. Therefore we have to consider only two possi-
bilities how the imbalance was caused – delete or join operation. If the last
operation was delete, we know that ωn + δ ≥ m − ω. If the last operation
was join with the subtree of size z, we know that ωn + δ ≥ m − z. During
the join operation the tree z was small enough to be recursively joined with
subtree m, so we have ωz + δ < n + 1 + (m− z), so z < n+1+m−δ

ω+1 and therefore

m− n+m+1−δ
ω+1 < ωn+δ, m < ω+1

ω

(

ωn + δ + n+1−δ
ω+1

)

, m < ω+1
ω

(

ωn + n+ωδ+1
ω+1

)

,

m <
(

ω + 1 + 1
ω

)

n + δ + 1
ω . To summarize:

m
(A)
> ωn + δ , m − ω

(Bdel)≤ ωn + δ , m
(Bjoin)

<
(

ω + 1 + 1
ω

)

n + δ + 1
ω .

5.2 Correctness of a single rotation

Let x and y denote the subtrees of the tree m. We perform a single rotation iff
x < αy and in that case we have the following inequalities:

n
m

x y

y

n x

ωx + δ ≥ y ⇒ (ω + 1)x + δ
(C)

≥ m − 1 ,

x < αy ⇒ x
(D)
< α

α+1 (m − 1), y
(E)
> 1

α+1 (m − 1) .

At first we need to solve the cases where n, x or y are zero, as the balance
condition is different in that case. All such cases are shown in Fig. 4.

In the case when all subtrees are nonempty, we need to validate the balance
condition in each of the two new trees:



Fig. 4. Cases when n, x or y are zero and a single rotation is performed.

– ωn + δ ≥ x after delete: x
(D)
< α

α+1 (m − 1)
(Bdel)≤ α

α+1 (ωn + δ + ω − 1)

– ωn+δ ≥ x after join: x
(D)
< α

α+1 (m−1)
(Bjoin)

< α
α+1

(

(ω + 1 + 1
ω )n + δ + 1

ω − 1
)

– ωx + δ ≥ n: n
(A)
< m−δ

ω

(C)

≤ ω+1
ω x + 1

ω
– ω(n + 1 + x) + δ ≥ y: y ≤ ωx + δ

– ωy+δ ≥ n+1+x: n+1+x = n+m−y
(A)

≤ m−1
ω +m−y = mω+1

ω −y− 1
ω

(E)
<

((α + 1)y + 1)ω+1
ω − y − 1

ω = (α+1)(ω+1)−ω
ω y + 1. Here we used the fact that

when ω is an integer, m
(A)

≥ ωn + δ + 1, so we have m
(A)

≥ ωn + 1.

The third and the fourth inequalities obviously hold. To see that also the
first, second and fifth inequalities hold, we evaluate the resulting inequalities
and use the fact that the tree sizes are positive integers:

ωn + δ ≥ x after delete ωn + δ ≥ x after join ωy + δ ≥ n + 1 + x
ω = 2.5 x < 3

2n + 3
2 x < 117

50 n + 6
25 n + 1 + x < 5

2y + 1
ω = 3 x < 2n + 4

3 x < 26
9 n − 4

9 n + 1 + x < 3y + 1
ω = 4 x < 8

3n + 2 x < 7
2n − 1

2 n + 1 + x < 11
4 y + 1

The linear coefficients are always less or equal the required ones and it is simple
to verify that all inequalities hold also for small integer sizes.

5.3 Correctness of a double rotation

When performing a double rotation, we have the following inequalities:

n
m

x
y

s t

n s t y

any child a of b ⇒ (ω + 1)a + δ
(C)

≥ b − 1 ,

any child a of b ⇒ (ω + 1)a
(D)

≤ ω(b − 1) + δ ,

x ≥ αy ⇒ x
(E)

≥ α
α+1 (m − 1), y

(F )

≤ 1
α+1 (m − 1) .

Once again we need to solve the cases when n, y, s or t are zero – we
enumerate these cases in Fig. 5.

When all subtrees are nonempty we create three new trees, so we have to
check six inequalities:



Fig. 5. Cases when n, y, s or t are zero and a double rotation is performed.

– ωn+δ ≥ s after delete: s
(D)

≤ ω
ω+1 (x−1+ δ

ω )
(D)

≤ ω
ω+1 ( ω

ω+1 (m−1+ δ
ω )−1+

δ
ω )

(Bdel)≤ ω
ω+1 ( ω

ω+1 (ωn+δ+ω−1+ δ
ω )−1+ δ

ω ) = ω3

(ω+1)2 n+ω3+δω2−ω2+δω
(ω+1)2 + δ−ω

ω+1

– ωn + δ ≥ s after join: s
(D)

≤ ω
ω+1 (x− 1 + δ

ω )
(D)

≤ ω
ω+1 ( ω

ω+1 (m− 1 + δ
ω )− 1 +

δ
ω )

(Bjoin)

< ω
ω+1 ( ω

ω+1 ((ω + 1 + 1
ω )n + δ + 1

ω − 1 + δ
ω ) − 1 + δ

ω ) = ω3+ω2+ω
(ω+1)2 n +

δω2−ω2+δω+ω
(ω+1)2 + δ−ω

ω+1

– ωs + δ ≥ n: n
(A)
< 1

ω (m − δ)
(E)

≤ 1
ω (α+1

α x + 1 − δ)
(C)

≤ 1
ω (α+1

α ((ω + 1)s + δ +

1) + 1 − δ) = ω+1
ω

α+1
α s + δ+1

ω
α+1

α + 1−δ
ω

– ωt + δ ≥ y: y ≤ x
α

(C)

≤ ω+1
α t + δ+1

α

– ωy + δ ≥ t: t
(D)

≤ ω(x−1)+δ
ω+1 ≤ ω(ωy+δ−1)+δ

ω+1 = ω2

ω+1y + δ − ω
ω+1

– ω(n+1+s)+δ ≥ t+1+y after delete: ω(n+1+s)+δ ≥ ω(n+1)+ t
(Bdel)≥

m − δ + t ≥ x − δ + 1 + y + t

– ω(n+1+s)+δ ≥ t+1+y after join: t+1+y ≤ ωs+δ+1+y
(F )

≤ ωs+δ+1+

m−1
α+1

(Bjoin)

< ωs+δ+1+
(ω+1+ 1

ω
)n+δ+ 1

ω
−1

α+1 = ω2+ω+1
ω(α+1) n+1+ ω(δ−1)+1

ω(α+1) +ωs+δ

– ω(t + 1 + y) + δ ≥ n + 1 + s: n + 1 + s
(A)
< m

ω + 1 + s ≤ m
ω + 1 + ωt + δ

(C)

≤
ωt + δ + 1 + (ω+1)y+δ+1

ω = ωt + ω+δ+1
ω + ω+1

ω y + δ

All but the first three inequalities obviously hold for positive integral sizes.
In order to prove that the first three inequalities hold, we again evaluate the
resulting inequalities and use the fact that the sizes are positive integers:

ωn + δ ≥ s after delete ωn + δ ≥ s after join ωs + δ ≥ n
ω = 2.5 s < 125

98 n + 103
98 s < 195

98 n − 1
49 n < 7

3s + 4
3

ω = 3 s < 27
16n + 3

8 s < 39
16n − 9

8 n < 2s + 5
6

ω = 4 s < 64
25n + 28

25 s < 84
25n − 32

25 n < 15
8 s + 5

8

The linear coefficients are less or equal than the required ones and for small
positive integral sizes the resulting inequalities imply the required ones, which
concludes the proof.



6 BB-ω trees height

If the balance condition holds and δ ≤ 1, we know that the size of a tree de-
creases by at least a factor of ω

ω+1 . Therefore the maximum height of a tree

is 1
log

2
(1+1/ω) log2 n. But this is merely an upper bound – it is frequently not

possible for the balance condition to be tight, because the tree sizes are integers.
To get an accurate estimate, we compute the maximum heights of BB-ω trees

up to size of 1 million. We used the following recursive definition:

-- Returns the list [ max height of BB-w tree with n elements | n <- [1..] ].

heights :: Ratio Int -> Int -> [Int]

heights w d = result

where

result = 1 : 2 : compute_heights 3 1 result

compute_heights n r rhs@(rhs_head : rhs_tail)

| w*((n-1-(r+1))%1) + d%1 >= (r+1)%1 = compute_heights n (r+1) rhs_tail

| otherwise = 1 + rhs_head : compute_heights (n+1) r rhs

The function compute heights gets the size of the tree n, the size of the its
right subtree r and also a list of maximum heights of BB-ω trees of r and more
elements. It constructs the highest tree of size n by using the largest possible
right subtree, and then using the highest tree of such size.

The resulting heights are presented in Fig. 6. The heights are divided by
⌈log2 n⌉, so the optimal height is 1. Notice that the height of a BB-2.5 tree is
always smaller than 2 for less than million elements – such height is better than
the height of a red-black tree of the same size.

height divided by ⌈log
2
n⌉

size of BB-ω tree
ω = 2.5 ω = 3 ω = 4

10 1.33 1.33 1.33
100 1.57 1.67 1.86

1 000 1.70 1.90 2.30
10 000 1.84 2.00 2.54

100 000 1.86 2.13 2.63
1 000 000 1.90 2.16 2.70

upper bound 2.06 2.41 3.11

Fig. 6. Maximum heights of BB-ω trees with w = 2.5, w = 3 and w = 4.

7 The performance of BB-2.5, BB-3 and BB-4 trees

With various possible ω to use, a search for the optimum value is in order. Is
some value of ω universally the best one or does different usage patterns call for
specific ω values?



We know that smaller values of ω result in lower trees. That seems advan-
tageous, because the time complexity of many operations is proportional to the
tree height.

In order to compare different values of ω, we measured the number of in-
vocations of balance function. We inserted and then deleted 10{1..6} elements,
in both ascending and uniformly random order, and measured the number of
invocations of balance during each phase. The results are displayed in Fig. 7.

insert delete

w = 2.5 w = 3.0 w = 4.0 w = 2.5 w = 3.0 w = 4.0

consecutive 10 elements 25 25 26 11 12 10
random 10 elements 23 23 23 12 12 12

consecutive 102 elements 617 657 769 362 349 302
random 102 elements 542 549 562 377 376 413

consecutive 103 elements 10245 11439 13997 6554 6116 5500
random 103 elements 8700 8753 8953 7162 7177 7377

consecutive 104 elements 143685 163261 206406 94865 88487 79938
random 104 elements 121192 121623 124204 105251 105854 108362

consecutive 105 elements 1852582 2133997 2722419 1251621 1175569 1042398
random 105 elements 1554230 1562168 1595269 1395871 1402939 1434371

consecutive 106 elements 22701321 26336469 33878677 15492747 14429384 12974950
random 106 elements 18956075 19074599 19476673 17367930 17480730 17856278

Fig. 7. The number of balance calls during inserting and deleting elements.

In case of ascending elements, smaller ω values perform better during inser-
tion – the difference between ω = 2.5 and ω = 4 is nearly 50% for large number
of elements. On the other hand, higher ω values perform better during deletion,
although the difference is only 18% at most. In case of random elements, lower
values of ω are always better, but the difference is less noticeable in this case.

We also performed the benchmark of running time of insert, lookup and
delete operations. We used the criterion package [11], a commonly used
Haskell benchmarking framework. All benchmarks were performed on a dedi-
cated machine with Intel Xeon processor and 4GB RAM, using 32-bit GHC 7.0.1.
The benchmarking process works by calling the benchmarked method on given
input data and forcing the evaluation of the result. Because the benchmarked
method can take only microseconds to execute, the benchmarking framework re-
peats the execution of the method until it takes reasonable time (imagine 50ms)
and then divides the elapsed time by the number of iterations. This process is
repeated 100 times to get the whole distribution of the time needed, and the
mean and the confidence interval are produced.

The benchmarks are similar to our previous experiment – we insert, lo-
cate and delete 10{1..6} elements of type Int, which are both in ascending
and uniformly random order. We used the implementation of balance from the
containers package – we already improved this implementation in [9]. The re-



sulting execution times are normalised with respect to one of the implemen-
tations and presented as percentages. The overview is in Fig. 8. (Ignore the
trees with One subscript, they are explained in the next section.) Here the ge-
ometric mean of running times for all input sizes 101 to 106 is displayed. The
detailed results and the benchmark itself are available on the author’s website
http://fox.ucw.cz/papers/bbtree.
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Fig. 8. The normalized execution times of BB-ω trees with various ω.

The findings are similar to the previous experiment – if the elements are in
random order, the value of ω makes little difference, and smaller values perform
slightly better. In case of ascending elements, smaller ω are better when inserting
and larger when deleting. As expected, the lookup operation runs faster for
smaller values of ω, independently on the order of elements.



8 Reducing memory by introducing additional data

constructor

The proposed representation of a BB-ω tree provides room for improvements in
terms of memory efficiency – if the tree contains n nodes, there are n + 1 Nil

constructors in the whole tree, because every Node constructors contains two sub-
trees. We can improve the situation by introducing additional data constructor
for a tree of size one:

data BBTree a = Nil -- empty tree

| One a -- tree of size one

| Node -- tree node

(BBTree a) -- left subtree

Int -- size of this tree

a -- element stored in the node

(BBTree a) -- right subtree

Leaves are represented efficiently with this data-type. However, the trees of
size 2 still require one Nil constructor.

To determine the benefit of the new data constructor we need to bound the
number of Nil constructors in the tree. A Nil constructor appears in a tree of size
2 and if there are t trees of size 2, there need to be at least (t−1) internal Nodes for
these t trees to be reachable from the root. Therefore, there can be at most n/3
Nil constructors in the tree. This implies that the number of One constructors is
between n/3 and n/2. Experimental measurements presented in Fig. 9 show that
a tree created by repeatedly inserting ascending elements contains n/2 One and
no Nil constructors, and a tree created by inserting uniformly random elements
contains approximately 0.43n One and 0.14n Nil constructors.

TOne2.5 TOne3.0 TOne4.0

any number of consecutive elements 50.0% 50.0% 50.0%

random 10 elements 45.5% 45.5% 45.5%
random 102 elements 43.6% 43.6% 43.6%
random 103 elements 43.0% 43.0% 42.8%
random 104 elements 43.0% 43.0% 43.0%
random 105 elements 42.8% 42.8% 42.9%
random 106 elements 42.9% 42.9% 42.9%

Fig. 9. The percentage of One constructors in a BB-ω tree.

Considering the memory representation used by the GHC compiler, the Node
constructor occupies 5 words and One constructor occupies 2 words, so the new
representation takes 20-30% less memory. The time complexity of the new rep-
resentation is also better as shown in Fig. 8. Especially note the speedup of the
fold operation, which is the result of decreased number of Nil constructors in



the tree. The only disadvantage is the increase of the code size – but this affects
the library author only.

We could also add a fourth data constructor to represent a tree of size 2.
That would result in no Nil constructors in a nonempty tree. The disadvantage is
further code size increase and also a noticeable time penalty – on 32bit machines
GHC uses pointer tagging to distinguish data constructors without the pointer
dereference, which is described in detail in [7]. This technique works with types
with at most three data constructors (and up to 7 different constructors on 64bit
machines), so it is not advantageous to add a fourth data constructor.

8.1 The order of data constructors

When implementing the data-type with the One constructor, we found out that
the order of data constructors in the definition of the data-type notably af-
fects the performance. On Fig. 10 you can see the time improvements in the
benchmark from the previous section, when we reordered the constructors to
the following order: Node first, then One and Nil last.

TOne2.5 TOne3.0 TOne4.0

insert asc 5.1% 6.8% 6.6%

insert rnd 4.5% 5.2% 5.0%

lookup asc 7.4% 6.1% 6.2%

lookup rnd 6.1% 5.4% 5.4%

delete asc 5.3% 8.4% 8.5%

delete rnd 4.4% 4.8% 5.0%

fold asc 8.9% 9.5% 13.1%

fold rnd 10.1% 10.5% 9.4%

Fig. 10. The improvements of time complexity after reordering the data constructors.

We believe the reason for the performance improvement is the following:
When matching data constructors, a conditional forward jump is made if the
constructor is not the first one from the data-type definition. Then another
conditional forward jump is made if the constructor is not the second one from
the data-type definition. In other words, it takes i−1 conditional forward jumps
to match the i-th constructor from the data-type definition, and these forward
jumps are usually mispredicted (forward jumps are expected not to be taken).
It is therefore most efficient to list the data constructor in decreasing order of
their frequency.

9 Conclusions

We described balanced trees and explicitly proved their correctness for several
representative parameter combinations. For these parameters we also measured



their runtime performance. The resulting implementation is comparable to other
available on Hackage (this work started already in [9]). We also focused on mem-
ory complexity and improved it by changing the data-type representation. Dur-
ing this process we discovered the effect of the data constructors order in the
data-type definition on the performance.

Several goals remain for future work. In our further efforts, we will incor-
porate the improvements described here in the containers package. We will
also benchmark the effect of reordering data constructors of other data struc-
tures from the containers package – especially the IntMap, IntSet, HashMap
and HashSet, which all use three data constructors. Also the benchmark of BB-
ω trees could be extended to include set operations like union, intersection
and others. We already described a benchmark with a union operation in [9].

9.1 Related work

The original weight balanced trees were described in [8], with two parameters
with values 1+

√
2 and

√
2. Because these are not integers, the resulting algorithm

is not very practical. Adams created a variant of balanced trees, the BB-ω trees,
and described them in papers [1] and [2]. Unfortunately, the proof is erroneous
– the paper concludes that for α = 2 the valid parameters are ω ≥ 4.646.

The error in the proof was known by several people, but in 2010 a bug
was also found in the Haskell implementation – in the Data.Set and Data.Map

modules from the containers package. The recent paper [5] deals with the
correctness of the original weight balanced trees (equivalent to setting δ = ω− 1
in our definition) and proves in Coq, that for δ = ω − 1 the only integral valid
parameters are ω = 3 and α = 2. Our proof on the other hand is explicit,
and proves validity of only some chosen parameters. It covers both the original
weighted trees and Adams’ trees.
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A Generating the Fig. 3

When generating the Fig. 3 of valid parameters for all trees up to size of 1 million,
we used the following code:

max_n = 1000000

find_min x p | p x = last $ x : takeWhile p [x-1, x-2 .. 0]

| otherwise = head $ dropWhile (not . p) [x+1, x+2 ..]

test w a d = and [delete n m && join n m | n <- [0 .. max_n],

let m = flr $ max 1 (w * n + d)]

where

delete n m = n == 0 || rebalance (n-1) m

join n m = rebalance n (m+increment)

where increment = max 1 $ ceil ((n+m+1-d) / (w+1) - 1)

rebalance n m = and [rebalance’ n m x | x <- nub [x_min, x_mid - 1,

x_mid, m - 1 - x_min]]

where x_min = find_min (flr $ m / (w+1)) (\x -> balanced x (m-1-x))

x_mid = find_min (flr $ m * a / (a+1)) (\x -> x >= a * (m-1-x))

rebalance’ n m x

| x < a * y = balanced n x && balanced (n + 1 + x) y

| otherwise = balanced n s && balanced t y && balanced (n+1+s) (t+1+y) &&

balanced n t && balanced s y && balanced (n+1+t) (s+1+y)

where(y,s,t)=(m-1-x,find_min (flr$x/(w+1)) (\s->balanced s (x-1-s)),x-1-s)

balanced n m = max 1 (w * n + d) >= m && n <= max 1 (w * m + d)

flr, ceil :: Double -> Double

flr = fromInteger . floor

ceil = fromInteger . ceiling

results = [(w, a, d, test w a d) | w <- [2, 2.125 .. 5],

a <- [1, 1.125 .. 3], d <- [0 .. 3]]

It relies on the fact that when there is a tree which cannot be balanced, there
also exists a counterexample with a subtree as large as the balance condition
allows. Therefore, for a fixed value of n it is enough to try the largest possible
m and for a fixed value of m it is enough to verify that the balance condition is
restored when considering the smallest and the largest subtree causing a single
rotation and the smallest and the largest subtree causing a double rotation.


