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Abstract

In this paper, we perform a thorough performance analysis of the
CONTAINERS package, the de facto standard Haskell containers li-
brary, comparing it to the most of existing alternatives on Hack-
ageDB. We then significantly improve its performance, making it
comparable to the best implementations available. Additionally, we
describe a new persistent data structure based on hashing, which of-
fers the best performance out of available data structures containing
Strings and ByteStrings.

Categories and Subject Descriptors D.2.8 [Software Engineer-
ing]: Metrics—Performance measures; E.1 [Data Structures]:
Trees; Lists, stacks, and queues

General Terms Algorithms, Measurement, Performance

Keywords Benchmarking, Containers, Haskell

1. Introduction

In almost every computer language there are libraries providing
various data structures, an important tool of a programmer. Pro-
grammers benefit from well written libraries, because these li-
braries

• free the programmer from repeated data structure implementa-
tion and allow them to focus on the high level development,

• prevent bugs in the data structure implementation,

• can provide high performance.

For some languages, standardized data structure libraries exist
(STL for C++ [Stepanov and Lee 1994], Java Collections Frame-
work, .NET System.Collections, etc.), which provide common and
effective options in many cases.

Being the only data structure package coming with GHC and
the Haskell Platform (the standard Haskell development environ-
ment), the CONTAINERS package has become a “standard” data
structure library for Haskell programmers. It is used by almost ev-
ery third package on the HackageDB (674 out of 2083, 21st May
2010), which is a public collection of packages released by Haskell
community.

The CONTAINERS package contains the implementations of

• sets of elements (the elements must be comparable),

• maps of key and value pairs (the keys must be comparable),

[Copyright notice will appear here once ’preprint’ option is removed.]

• ordered sequences of any elements,

• trees and graphs.

All data structures in this package work persistently, ie. they can be
shared [Driscoll et al. 1989].

Our decision to compare and improve the CONTAINERS pack-
age was motivated not only by the wide accessibility of the pack-
age, but also by our intention to replace the GHC internal data
structures with the CONTAINERS package. Therefore we wanted to
confirm that the performance offered by the package is the best pos-
sible, both for small and big volumes of data stored in the structure,
and possibly to improve it.

The contributions of this paper are as follows:

• We present the first comprehensive performance measurements
of the widely-used CONTAINERS package, including head-to-
head comparisons against half a dozen other popular container
libraries (Section 3).

• We describe optimisations to containers that improve the per-
formance of IntSet by up to 8% and the performance of Set
by 30-50% in common cases (Section 4).

• We describe a new container data structure that uses hashing to
improve performance in the situation where key comparison is
expensive, such as the case of strings. Hash tables are usually
thought of as mutable structures, but our new data structure
is fully persistent. Compared to other optimised containers,
performance is improved up to three times for string elements
(Section 5).

2. The CONTAINERS package

In this section we describe the data structures available in the CON-
TAINERS package. We tried to cover the basic and most frequent
usage, for the eventual performance boost to be worthwhile. Fo-
cusing on basic usage is beneficial for the sake of comparison too,
as the basic functionality is offered by nearly all implementations.

2.1 Sets and maps

A set is any data structure providing operations empty, member,
insert, delete and union as listed in Figure 1. Real implemen-
tations certainly offer richer interface, but for our purposes we will
be interested only in these methods.

data Set e
empty :: Set e
member :: Ord e => e -> Set e -> Bool
insert :: Ord e => e -> Set e -> Set e
delete :: Ord e => e -> Set e -> Set e
union :: Ord e => Set e -> Set e -> Set e

Figure 1. A set implementation provided by the CONTAINERS

package
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A map from keys to values is a set of pairs (key, value), which
are compared using the key only. To prevent duplication we discuss

only sets from now on, but everything applies to maps too1.

2.2 Intsets

A set of Ints, or a map whose key type is Int, is used so frequently,
that the CONTAINERS package offers a specialized implementation.
By an intset we therefore mean a specialized implementation of

a set of Ints2. It should of course be faster than a regular set of
Ints, otherwise there would be no point in using it.

2.3 Sequences

The CONTAINERS package also provides an implementation of
a sequence of elements called a Seq with operations listed in
Figure 2. A Seq is similar to a list, but elements can be added

data Seq a
data ViewL a = EmptyL | a :< (Seq a)
data ViewR a = EmptyR | (Seq a) :> a
empty :: Seq a
(<|) :: a -> Seq a -> Seq a
(|>) :: Seq a -> a -> Seq a
viewl :: Seq a -> ViewL a
viewr :: Seq a -> ViewR a
index :: Seq a -> Int -> a
update :: Int -> a -> Seq a -> Seq a

Figure 2. An implementation of a sequence of elements provided
by the CONTAINERS package

(<| and |>) and removed (viewl and viewr) to the front and
also to the back in constant time, allowing to use this structure as
a double-ended queue. Elements can be also indexed and updated
in logarithmic time and two sequences can be concatenated also in
logarithmic time.

2.4 The rest of the CONTAINERS package

The CONTAINERS package also contains a data type of a multi-way
tree. Aside from the definition of this type, it contains only trivial
methods (folds), so there is no point in benchmarking those.

The last data structure offered by the package is a graph, which
is built on top of the ARRAY package, and some simple graph
algorithms. We perform no graph benchmarks, as the most similar
FGL package is very different in design. We only describe some
simple performance improvements.

3. The benchmarks

Our first step is to benchmark the CONTAINERS package against
other popular Haskell libraries with similar functionality.

3.1 Benchmarking methodology

To benchmark a program written in a language performing lazy
evaluation is a tricky business. Luckily there are powerful bench-
marking frameworks available. We used the CRITERION pack-
age for benchmarking and the PROGRESSION package for run-
ning the benchmarks of different implementations and grouping
the results together.

1 In reality it works the other way around – a set is a special case of map
that has no associated value for a key. We could use a Map e (), where ()
is a unit type with only one value, as a Set e. But the unit values would
still take space, which is why a Set e is provided.
2When the GHC compiles one source file, it spends 5-15 times more
performing intmap operations comparing to map operations (depending
on the code generator used), which we measured with the GHC-head on
26th March 2010.

All benchmarks were performed on a dedicated machine with
Intel Xeon processor and 4GB RAM, using 32-bit GHC 6.12.2. All
Cabal packages were compiled using default compiler switches
(except for the CONTAINERS package, where we adopted the
switches of the precompiled GHC version). We tried to benchmark
all available implementations on the HackageDB. The list of pack-
ages used, together with their versions, can be found in Appendix A.

The benchmarking process works by calling a benchmarked
method on given input data and forcing the evaluation of the result.
The evaluation forcing can be done conveniently using a DEEPSEQ

package. But as the representation of the data structures is usually
hidden from its users, we could not provide NFData instances
directly and had to resort to a fold which performs an evaluation
of all elements in the structure.

Because the benchmarked method can take only microseconds
to execute, the benchmarking framework repeats the execution of
the method until it takes reasonable time (imagine 50ms) and then
divides the elapsed time by the number of iterations.

This process is repeated 100 times to get the whole distribution
of the time needed, and the mean and confidence interval are pro-
duced.

The results are displayed as graphs, one for each benchmark
(Figures 4 to 17). One implementation is chosen as a baseline and
the execution times are normalized with respect to the selected
baseline. For each implementation and input, the mean time of
100 iterations is displayed, together with 95% confidence interval
(which is usually not visible on the graphs as it is nearly identical to
the mean). For every implementation a geometric mean of all times
is computed and displayed in the legend. The implementations
except for the baseline are ordered according to this mean.

Each benchmark consists of several inputs. The size of input
data is always measured in binary logarithms (so the input of size
10 contains 1024 elements). This size is always the first part of
description of the input, which is displayed on the x axis. The input
elements are of type Int unless stated otherwise (Strings and
ByteStrings will be used with the HashSet in Section 5). Where
any order or elements in the input data could be used, we tried
ascending and random order (asc and rnd in the description of the
input) to fully test the data structure behaviour. The random data
are uniformly distributed, generated using standard Haskell random
generator with fixed seed, and duplicates are allowed.

All graphs together with the numerical data are available on the
author’s website http://fox.ucw.cz/papers/containers/.
For comparison, there are also graphs obtained by using only a seq
instead of an all-element fold to evaluate the data structure.

3.2 Benchmarking Sets

The Set interface is polymorphic in the elements, provided the el-
ement type is an instance of Ord. Since the only element opera-
tion available is a comparison, nearly all implementations use some
kind of a balanced search tree. We will not describe the algorithms
used, but will provide references for interested readers.

We benchmarked the following set implementations:

• Set and Map from the CONTAINERS package, which uses
bounded balance trees [Adams 1993],

• FiniteMap from the GHC 6.12.2 sources, which also uses
bounded balance trees [Adams 1993],

• AVL from AVLTREE package, which uses well-known AVL
trees [Adelson-Velskii and Landis 1962],

• AVL from TREESTRUCTURES package, which we denote as
AVL2 in the benchmarks, also using AVL trees,

• RBSet implemented by the author which uses well-known red-
black trees [Guibas and Sedgewick 1978].

We performed these benchmarks:
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Figure 3. A tree called the centipede.

• lookup benchmark: perform a member operation on every el-
ement of the given set, either in ascending order (asc in the
input description) or in random order of elements (rnd in the
input description). For example the results for “08/rnd” are
for a randomly-generated input of size 28.

• insert benchmark: build a set by sequentially calling insert,
either in ascending (asc in the input description) or in random
order of elements (rnd in the input description),

• delete benchmark: sequentially delete all elements of a given
set, either in ascending (asc in the input description) or in
random order of elements (rnd in the input description),

• union benchmark: perform a union of two sets of given sizes
(the sizes are the first and second part of the input description).
The input description asc means the elements in one set are all
smaller than the elements in the other set. The description e_o
stands for an input, where one set contains the even numbers
and the other odd numbers. The last option mix represents an in-
put, whose n elements are grouped in

√
n continuous runs each

of
√
n elements, and there runs are split between the two sets.

• tree union benchmark: given a tree with elements in the leaves,
perform union on all internal vertices to get one resulting set.
The tree union benchmark models a particularly common case
in which a set or map is generated by walking over a tree –
for example, computing the free variables of a term. In these
situations, most of the calls tu union are of very small sets,
a very different test load to the union benchmark.

The input description asc and rnd specify the order of the
elements in the leaves. The shape of the tree is specified by
the last letter of the input description. The letter b stands for
perfectly balanced binary tree, u denotes unbalanced binary tree
(one son is six times the size of the other son) and p stands for
a centipede, see Figure 3.

The results of the benchmarks are plotted in Figures 4 and 5.
The performance of the Set is comparable to the FiniteMap, but
it is significantly worse than AVL and RBSet. This leaves a lot
of space for improvements of the Set implementation to make it
comparable to the AVL and RBSet. We describe such improvements
in Section 4.

3.3 Benchmarking Intsets

The purpose of an intset implementations is to outperform a set of
Ints. This can be achieved by allowing other operations on Ints
in addition to a comparison. All mentioned implementations exploit
the fact that an Int is a sequence of 32 or 64 bits.

We have benchmarked following intset implementations:

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

0
4

/a
s
c

0
4

/r
n

d

0
8

/a
s
c

0
8

/r
n

d

1
2

/a
s
c

1
2

/r
n

d

1
6

/a
s
c

1
6

/r
n

d

2
0

/a
s
c

2
0

/r
n

d

n
o

rm
a

liz
e

d
 e

x
e

c
u

ti
o

n
 t
im

e

Set: lookup
Set(100.0%)

RBSet(79.5%)
AVL(84.9%)

Map(107.1%)
FiniteMap(110.9%)

AVL2(128.0%)

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

0
4
/a

s
c

0
4
/r

n
d

0
8
/a

s
c

0
8
/r

n
d

1
2
/a

s
c

1
2
/r

n
d

1
6
/a

s
c

1
6
/r

n
d

2
0
/a

s
c

2
0
/r

n
d

n
o
rm

a
liz

e
d
 e

x
e
c
u
ti
o
n
 t

im
e

Set: insert
Set(100.0%)
AVL(48.2%)

RBSet(61.9%)

FiniteMap(102.5%)
Map(115.8%)

AVL2(135.8%)

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

0
4
/a

s
c

0
4
/r

n
d

0
8
/a

s
c

0
8
/r

n
d

1
2
/a

s
c

1
2
/r

n
d

1
6
/a

s
c

1
6
/r

n
d

2
0
/a

s
c

2
0
/r

n
d

n
o
rm

a
liz

e
d
 e

x
e
c
u
ti
o
n
 t
im

e

Set: delete
Set(100.0%)

FiniteMap(92.7%)
AVL(101.6%)

Map(102.5%)
AVL2(139.8%)

Figure 4. Benchmark of sets operations I

Haskell Symposium 2010 submission 3 2010/6/15



 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4
0

5
/1

0
/a

s
c

0
5

/1
0

/e
_

o

0
5

/1
0

/m
ix

1
0

/1
0

/a
s
c

1
0

/1
0

/e
_

o

1
0

/1
0

/m
ix

1
0

/2
0

/a
s
c

1
0

/2
0

/e
_

o

1
0

/2
0

/m
ix

2
0

/2
0

/a
s
c

2
0

/2
0

/e
_

o

2
0

/2
0

/m
ix

n
o

rm
a

liz
e

d
 e

x
e

c
u

ti
o

n
 t
im

e

Set: union

2.5 7.2 6.0

Set(100.0%)
AVL(40.4%)

FiniteMap(102.7%)

Map(105.4%)
RBSet(116.0%)

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

0
8
/a

s
c
_
b

0
8
/a

s
c
_
p

0
8
/a

s
c
_
u

0
8
/r

n
d
_
b

0
8
/r

n
d
_
p

0
8
/r

n
d
_
u

1
4
/a

s
c
_
b

1
4
/a

s
c
_
p

1
4
/a

s
c
_
u

1
4
/r

n
d
_
b

1
4
/r

n
d
_
p

1
4
/r

n
d
_
u

2
0
/a

s
c
_
b

2
0
/a

s
c
_
p

2
0
/a

s
c
_
u

2
0
/r

n
d
_
b

2
0
/r

n
d
_
p

2
0
/r

n
d
_
u

n
o
rm

a
liz

e
d
 e

x
e
c
u
ti
o
n
 t

im
e

Set: treeunion

2.5 2.2 6.3 6.6

Set(100.0%)
AVL(56.0%)

RBSet(83.0%)

FiniteMap(98.4%)
Map(110.5%)

Figure 5. Benchmark of sets operations II

• IntSet from the CONTAINERS package which implements big-
endian Patricia trees [Okasaki and Gill 1998],

• UniqueFM from GHC 6.12.2 sources which also implements
big-endian Patricia trees,

• PatriciaLoMap from EdisonCore package, called EdisonMap
in the benchmark, which implements little-endian Patricia
trees [Okasaki and Gill 1998].

We also include ordinary Set Int from the CONTAINERS package
in the benchmarks. For comparison, we also manually specialised
the Set implementation by replacing overloaded comparisons with
direct calls to Int comparisons, a process that could be mecha-
nised. By comparing with this implementation, called SetInlined
we can see the effect of the algorithmic improvements (rather than
mere specialisation) in other intset implementations.

The benchmarks performed are the same as in the case of
generic set implementations. The results can be found in Figures 6
and 7.

The IntSet outperforms all the presented implementations, ex-
cept for the lookup and delete benchmark, where the UniqueFM is
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Figure 6. Benchmark of intsets operations I
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Figure 7. Benchmark of intsets operations II

faster. The IntSet is considerably faster than a Set Int, espe-
cially in the tree union benchmark, where it runs more than four
times faster.

Although IntSet behaves very well, we describe some im-
provements in Section 4 that make it still faster.

3.4 Benchmarking Sequences

The Seq type in CONTAINERS supports beside others both (a) deque
functionality (add and remove elements at beginning and end), and
(b) persistent-array functionality (indexing and update). We com-
pared it to several other libraries, most of which support only (a)
or (b) but not both, and which might therefore be expected to out-
perform Seq.

3.4.1 Queue functionality

The queue functionality performance is significant, as there are no
other implementations of queues and deques in standard Haskell
libraries and so the Seq is the first choice when a queue is needed.
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Figure 8. Benchmark of queue operations

The queue benchmark consists of two phases: first a certain
number of elements is added to the queue (the number of the
elements added is the first part of the input description) and then
some of the previously added elements are removed from the queue
(the second part of the input description). We also tried mixing the
additions and deletions, but there were hardly any differences in
performance, so we do not present these.

In this benchmark we tested the following implementations:

• Seq from the CONTAINERS package, which implements 2-3
finger trees annotated with sizes [Hinze and Paterson 2006],

• Trivial, which is a non-persistent queue with amortized
bounds, described in Section 5.2 of [Okasaki 1999],

• Amortized, which is a persistent queue with amortized bounds,
described in Section 6.3.2 of [Okasaki 1999],

• Realtime, which is a persistent queue with worst-case bounds,
described in Section 7.2 of [Okasaki 1999],

• Ed_Simple, Ed_Amortized and Ed_Seq from the EDISON-
CORE package, which implement the same algorithms as
Trivial, Amortized and Seq, respectively.

The results are displayed in Figure 8. The Ed_Seq is missing, as
it was roughly 20 times slower than the Seq implementation. Be-
cause the Trivial queue implementation is not persistent (cannot
be shared), we do not consider it to be a practical alternative. That
means the Seq implementation is only 50% slower than the fastest
queue implementation available. That is a solid result, considering
the additional functionality it provides.

3.4.2 Persistent-array functionality

The index and update benchmark perform a sequence of index
and update operations, respectively, one for each element in the
structure (the size of this structure is in the input description). We
benchmarked the following implementations:

• Seq from the CONTAINERS package,

• Array from the ARRAY package for the index benchmark only,

• RandList from the RANDOM-ACCESS-LIST package, which
implements the skew binary random-access list from Section
9.3 of [Okasaki 1999],
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Figure 9. Benchmark of sequence operations

• Ed_RandList from the EDISONCORE package, which imple-
ments the same algorithm,

• Ed_BinRandList from the EDISONCORE package, which im-
plements bootstrapped binary random-access list from Section
10.1.2 of [Okasaki 1999],

• Ed_Seq from the EDISONCORE package,

• IntMap from the CONTAINERS package.

The results are presented in Figure 9. Again we do not display
Ed_Seq, because it was 10-20 times slower than Seq. The IntMap
was used as a map from the Int indexes to the desired values. De-
spite the surplus indexes, it outperformed most of the other imple-
mentations. The Array is present only in the lookup benchmark,
because the whole array has to be copied when modified and thus
the update operation modifying only one element is very ineffec-
tive.

3.4.3 Summary

The Seq type is neither fastest queue nor the fastest persistent array,

but it excels when both these qualities are required3. For compar-
ison, when an IntMap is used in the queue benchmark, it is 2.5-
times slower than Seq, and Ed_RandList and Ed_BinRandList
are 5-times and 7-times slower, respectively.

4. Improving the CONTAINERS performance

There are several methods of improving an existing code.
The simplest is probably the “look and see” method – after care-

fully exploring the properties of the implementation (practically
“staring at the source code for some time”) some obvious deficien-
cies can be found.

As an example, consider the following definitions:
data Tree a = Node a (Forest a)
type Forest a = [Tree a]

In the Data.Graph module, function for pre-order and post-order
Tree traversal are provided. The reader is welcome to consider
what is wrong about both of these implementations:

preorder :: Tree a -> [a]
preorder (Node a ts) = a : preorderF ts
preorderF :: Forest a -> [a]
preorderF ts = concat (map preorder ts)

postorder :: Tree a -> [a]
postorder (Node a ts) = postorderF ts ++ [a]
postorderF :: Forest a -> [a]
postorderF ts = concat (map postorder ts)

The postorder case is straightforward – the list concatenation
is linear in the length of the first list, so the time complexity of
postorder performed on a path is quadratic.

The preorder is a bit more challenging – the concat takes the
time of the length of all but the last list given. This also results in
quadratic behaviour, for example when the preorder is executed
on a centipede (Figure 3). The same mistake is also present in the
postorder function.

It is trivial to reimplement both these functions to have linear
time complexity.

However, potential performance improvements are usually not
found merely by examining the source code. Another method is to
use profiling to see which part of the code takes long to execute and
which would be beneficial to improve.

Having two implementations, we can also examine why one is
faster. In the simplest case it can be done at the level of Haskell
sources. But if the reason for different performance is not apparent,
we can inspect the differences at the level of Core Haskell [Tolmach
2001] using for example the -ddump-stranal GHC flag, which
shows the results of strictness analysis. If this is not enough, we can
examine the C-- code [Jones et al. 1999] using the -ddump-cmm
GHC flag. We had to resort to analysis on all these levels when
improving the performance of the CONTAINERS.

We now briefly describe the changes we made to improve the
performance and present the benchmark results of the new im-
plementations. The patches are available on the author’s website
http://fox.ucw.cz/papers/containers/ and will soon be
submitted for inclusion to the upstream. The correctness of these
patches has been verified using tests from the CONTAINERS pack-
age.

3 In addition, a Seq can also be split and concatenated in logarithmic time.
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4.1 Improving Sets

Since the Set implementation already has good performance rela-
tive to its competitors, we did not change the algorithm, but instead
focused in improving its implementation. We made the following
improvements:

• As already mentioned, the methods of a Set works for any
comparable type (i.e. an instance of Ord) and therefore use
generic comparison method. That hurts performance in case
the methods which spend a lot of time comparing the elements
(like member or insert) are used non-polymophically. By
supplying an INLINE pragma we allow these methods to be
inlined to the call site and if the call is not polymorphic, to use
the specialized comparison instead of the generic one. We inline
only the code performing the tree navigation, the rebalancing
code is not duplicated to keep the code growth at minimum.

• When balancing a node, the function balance checked the bal-
ancing condition and called one of the four rotating functions,
which rebuilt the tree using smart constructors. This resulted
in a repeated pattern matching, which was unnecessary. We
rewrote the balance function to contain all the logic and to
use as few pattern matches as possible. That resulted in signifi-
cant performance improvements in all Setmethods that modify
a given set.

• When a recursive method accesses its parameter at different
recursion levels, Haskell usually has to check that it is evaluated
each time it is accessed. For a member or insert, that causes
a measurable slowdown. We rewrote these methods so that they
evaluate the parameter at most once. To illustrate, we changed
the original member method

member :: Ord a => a -> Set a -> Bool
member x t = case t of Tip -> False

Bin _ y l r ->
case compare x y of
LT -> member x l
GT -> member x r
EQ -> True

to the following:

member _ Tip = False
member x t = x ‘seq‘ member’ t where

member’ Tip = False
member’ (Bin _ y l r) = case compare x y of

LT -> member’ l
GT -> member’ r
EQ -> True

• We improved the union to handle small cases – merging a set of
size one is the same as inserting that one element. We achieved
that by adding the following cases to the definition of a union:

union (Bin _ x Tip Tip) t = insert x t

union t (Bin _ x Tip Tip) = insertR4 x t

That helped significantly in the tree union benchmark. We tried
to use this rule also on sets of size 2 and 3, but the performance
did not improve further.

• In the union method, a comparison with a possibly infinite
element must be performed. That was originally done by sup-
plying a comparison function, which was constant for the
infinite bound. Supplying a value Maybe elem with infinity
represented as Nothing improved the performance notably.
To demonstrate the changes, consider the filterGt method,

4 The insertR method works just like an insert, but it does not in-
sert the element if it is already present in the set.

which keeps in the set only the elements greater than the given
bound (which could be −∞):
filterGt :: (a -> Ordering) -> Set a -> Set a
filterGt _ Tip = Tip
filterGt cmp (Bin _ x l r) = case cmp x of
LT -> join x (filterGt cmp l) r
GT -> filterGt cmp r
EQ -> r

We altered it to:
filterGt Nothing t = t
filterGt (Just b) t = b ‘seq‘ filter’ t where

filter’ Tip = Tip
filter’ (Bin _ x l r) = case compare b x of
LT -> join x (filter’ l) r
GT -> filter’ r
EQ -> r

The results are displayed in Figures 10 and 11. The improved
implementations are called NewSet and NewMap. We were able to
reach the AVL implementation performance, except for the union
benchmark. Yet we outperformed it on the tree union benchmark,
which was our objective.

Note that using the existing AVL implementation as a Map is not
trivial, because it does not allow to implement all the functionality
of a Map efficiently (notably elemAt, deleteAt etc.).

4.2 Improving IntSets

The IntSet implementation was already extensively tuned and
difficult to improve. We performed only minor optimizations:

• As with the Sets, some recursive functions checked whether the
parameters were evaluated multiple times. We made sure it is
done at most once. Because some functions were already strict
in the key, it was enough to add the seq calls to appropriate
places. This improved the lookup function significantly.

• The implementation uses a function maskW. When m contains
exactly one bit set, the maskW i m should return only the values
of bits of i than are higher than the bit set in m:

m 0...010...0
i a...abc...c

maskW i m a...a00...0

This method is defined as
maskW i m = i .&. (complement (m-1) ‘xor‘ m)

But there are other effective alternatives, for example:
maskW i m = i .&. (-m - m)
maskW i m = i .&. (m * complement 1)

The last one is (unexpectedly for us) the best and caused the
speedup in the insert, union and tree union benchmarks.

The results are presented in Figures 12 and 13, the improved
implementations are called NewIntSet and NewIntMap. The
NewIntSet implementation is faster especially in the lookup and
the insert benchmark. The speedup of the NewIntMap is a bit
smaller.

5. New set and map implementation based on

hashing

When a comparison of two elements is expensive, using a tree
representation for a set can be slow, because at least log2(N)
comparisons must be made for each operation. In this section we
investigate whether we can do better on average, by developing
a new implementation for set/map optimised for the expensive-
comparison case.
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Figure 10. Benchmark of improved sets operations I
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Figure 11. Benchmark of improved sets operations II

Two approaches suggest themselves. First, one could use a hash
table (Section 6.4 of [Knuth 1998]) to guess the position of an
element in the set and performs only one comparison if the guess
was correct. Another alternative is a trie (Section 6.3 of [Knuth
1998]), which can also be implemented using a ternary search tree
([Bentley and Sedgewick 1998]), which compares only subparts of
elements.

The problem with a hash table is that it is usually built using
an array, but there is no available implementation of an array that
could be shared, ie. be persistent. However, we have already seen
that an IntMap can be used as a persistent array with reasonable
performance. We used this fact and implemented a HashSet elem
as
data HashSet elem = HS (IntMap (Set elem)).

The HashSet is therefore an IntMap indexed by the hash value
of an element. In the IntMap, there is a Set elem containing el-
ements with the same hash value (this set will be of size one if
there are no hash collisions). A HashMap can be implemented in
the same way as
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Figure 12. Benchmark of improved intsets operations I
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Figure 13. Benchmark of improved intsets operations II

data HashMap key val = HM (IntMap (Map key val)).
Such a data structure is usually called a hash trie and described in
[Goubault 1994] or in [Bagwell 2001].

This data structure is quite simple to implement, using the
methods of an IntMap and a Set or a Map. It offers a subset of
IntMap interface, which does not depend on the elements being
stored in an IntMap in ascending order (the elements are stored
in ascending order of the hash value only). Namely, we do not
provide toAscList (users can use sort . toList), split, and
the methods working with the minimum and maximum element
(findMin, findMax and others). Moreover, the folds and maps are
performed in unspecified element order.

We uploaded our implementation to the HackageDB as a pack-
age called HASHMAP.

We performed the same lookup, insert and delete benchmark
on the HashSet as on the Set and IntSet. We used the original
unimproved implementation of the CONTAINERS package – the
performance of the HashSet will improve once the improvements
from Section 4 are incorporated.
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Figure 14. Benchmark of hashset operations on Ints

The performance of a HashSet when using elements of type
Int is displayed in Figure 14. It is worse than the IntSet, because
it uses an additional Set for elements with same hash values.

The HashSet should be beneficial when the comparison of
the set elements is expensive. We therefore benchmarked it with
Strings and ByteStrings elements. We compared the HashSet
implementation to all alternatives present on the HackageDB
(mostly trie-like data structures):

• ListTrie and PatriciaTrie from the LIST-TRIES package
implementing a trie and a Patricia trie (Section 6.3 of [Knuth
1998]),

• BStrTrie from the BYTESTRING-TRIE package, which is spe-
cialized for ByteStrings and (like IntSet) implements a big-
endian Patricia tree [Okasaki and Gill 1998],

• StringSet from the TERNARYTREES package, which imple-
ments a ternary search tree ([Bentley and Sedgewick 1998])
specialized for the elements of type String,

• TernaryTrie from EdisonCore also implementing a ternary
search tree.

The results are presented in Figures 15 and 16. The length of
the strings used in the benchmarks is the last number in the input
description. We used uniformly distributed random strings of small
letters (rnd in the input description) and also a consecutive ascend-
ing sequence of strings (asc in the input description). In the latter
case the strings have a long common prefix of a’s. The ListTrie
is not present in the benchmark results because it was 5-10 times
slower than the HashSet.

The HashSetNoC is the same as the HashSet, only the compu-
tation of a hash value of a ByteString is done in Haskell and not
in C. There is quite significant slowdown in the case Haskell gener-
ating the hashing code. We discussed this with the GHC developers
and were informed that the problem should be solved using the new
LLVM backend [Terei 2009].

We also performed the union benchmark. We generated a se-
quence of elements (its length is the first part of the input descrip-
tion) and created two sets of the same size, one from the elements
on the positions and the other from the elements on odd positions.
Then we performed a union of those sets. The results for Int,
String and ByteString elements are presented in Figure 17.

The performance of a HashSet is superior to trie structures,
even those specialised for the String or ByteString elements.
As mentioned, the performance will improve even more with the
enhancements of the CONTAINERS package.

6. Conclusions and further work

We have undertaken a thorough performance analysis of the CON-
TAINERS package, comparing it to the most of existing alternatives
found on the HackageDB. These measurements are interesting of
its own accord, because they allow existing data structure imple-
mentations to be compared.

Using the benchmark results and code profiling, we significantly
improved the performance of the CONTAINERS package, making it
comparable to the best implementations available. We will submit
our patches for inclusion to the upstream shortly.

Inspired by the benchmark results we also implemented a new
persistent data structure based on hashing, which offers the best
performance out of available set implementations with String and
ByteString elements, but should perform well for any element
type whose comparison is expensive. This data structure is now
available on the HackageDB.

Improving a library’s performance is an unending process. Cer-
tainly the CONTAINERS package could be improved even further
and more its methods could be benchmarked.
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Figure 15. Benchmark of hashset operations on Strings
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Figure 16. Benchmark of hashset operations on ByteStrings
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A. The list of referenced HackageDB packages

All packages mentioned in this paper can be found on the Hack-
ageDB, which is a public collection of packages released by the
Haskell community. The list of HackageDB packages currently re-
sides at http://hackage.haskell.org/.

We used the following packages in the benchmarks:

Packages used

ARRAY – 0.3.0.0 HASHMAP – 1.0.0.3
AVLTREE – 4.2 LIST-TRIES – 0.2
BYTESTRING-TRIE – 0.1.4 PROGRESSION – 0.3
CONTAINERS – 0.3.0.0 RANDOM-ACCESS-LIST – 0.2
CRITERION – 0.5.0.0 TERNARYTREES – 0.1.3.4
DEEPSEQ – 1.1.0.0 TREESTRUCTURES – 0.0.2
EDISONCORE – 1.2.1.3

We also benchmarked internal data structures of the GHC com-
piler. Their implementation can be found in the sources of GHC
6.12.2, namely as files FiniteMap.hs and UniqFM.hs in the
compiler/utils directory.
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Figure 17. Benchmark of union operation on hashset
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