
DRAFT
Optimal worst-case fully persistent arrays

Milan Straka∗

Abstract: We describe an implementation of fully persistent arrays with worst-
case O(log logm) time complexity of update and lookup, and O(n +m) space
complexity, where n is the size of the array and m is the number of modifications
to the array.

This lookup complexity is shown to be asymptotically optimal even for par-
tially persistent arrays in the cell probe model using recent results of Pătraşcu
and Thorup. Hence there cannot exist any persistent array, persistent hashtable
nor any persistent graph with constant-time operations.

We also improve the complexity of update and lookup toO(log logmin(n,m))
and show how to augment the algorithm to cooperate with the garbage collector
to free unreachable data.

1 Introduction

Arrays are without question the most frequently used data structure in imper-
ative programming. But in functional setting, arrays have to be fully persistent
unless single-threaded use is somehow forced, e.g. using monads or linear or
unique types.

A persistent array a supports two operations:

• lookup(i, av) returns the value of av[i], the i-th element of array av,

• update(i, x, av) returns new array au obtained from av by performing
av[i]← x.

We call av a version of the array and we will sometimes write only v when the
array is clear from context. The array is partially persistent, if we can perform
lookup with any array version and update only with the most recent array
version, and fully persistent, if we can perform update with any array version as
well. In the whole paper, n is always the size of the array and m is the number
of modifications to the array.

Various implementations of fully persistent arrays have been proposed, both
purely functional ones and imperative ones. The purely functional implementa-
tions such as Hughes [13] are based on binary trees and have O(log n) worst-case
time and space complexity for update and O(log n) worst-case time complexity
for lookup, which cannot be improved in pointer machine model.

The imperative implementations achieve more. Even when using binary
trees, one can make the space complexity constant per update using Driscoll
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et al. [12]. Moreover, Dietz [9] outlines an implementation with O(log logm)
amortized time complexity for updates and the same worst-case complexity for
lookups.

Here we develop an implementation working in random access model which
has O(log logm) worst-case time complexity per update and lookup and con-
stant memory complexity per update. Moreover we show how to improve the
complexities to O(log logmin(n,m)). As Demaine and Langerman pointed out
in [7], the recent result of Pătraşcu and Thorup [16] can be used to show that
this is the optimal lookup time in cell probe model, see section 2 for details.

There have been many attempts to get O(1) complexity for update and
lookup. Any fully persistent implementation can be augmented by explicitly
storing the newest value of each element to achieve O(1) complexities when
the array is used single-threadedly. Other attempts include shallow binding of
Baker [2], which was extended in Chuang [5]. Here the update operations are
always constant and the worst-case of lookup is O(n). But the lookups which are
grouped in voluminous read sequences can be performed in amortized constant
time. Using randomization Chuang [6] improved the worst-case complexity of
this scheme. Another approach was taken by O’Neill and Burton [15], where an
O(log n) worst-case implementation supports constant lookup complexity under
the condition of uniformity of access.

The imperative implementations usually do not consider freeing of unused
versions. But in many algorithms the majority of the array versions becomes
inaccessible and could be freed. We show how to augment both the amortized
and worst-case implementation to take deletions into account, while preserving
O(log logm) complexity.

Our persistent array implementation uses an algorithm for maintaining list
order. This problem has been extensively studied, e.g. in Tsakalidis [20], Dietz
and Sleator [8] and Bender et al. [3]. Here we give simple worst-case constant
time implementation and we use rebuilding to perform deletions in both amor-
tized and worst-case implementations.

The rest of the paper is organized as follows. In section 2 we give the
lower bound for lookup operation in partially persistent arrays. In section 3 we
describe a simplified amortized O(log logm) implementation of fully persistent
arrays. We improve the complexities to worst-case ones in section 4. In section
5 we show how to improve the complexity to O(log logmin(n,m)). In section 6
we use rebuilding in both amortized and worst-cast implementation to support
deletions of unreachable versions.

2 Lower bound

We show that the lower bound of lookup complexity of a partial persistent
array is Ω(log logn) in the case that m = nγ , where γ is a constant such that
1 < γ ≤ 2. This lower bound holds in the cell probe model, assuming that
the space complexity of the array is O(M logk M) for a constant k, where M
is the number of array modifications. The time complexity of an update is not
limited.
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2.1 Predecessor search problem

In the Predecessor search problem we are given a set Y of n integers of ℓ bits
each, and the goal is to answer predecessor queries, i.e. to evaluate, for a
given integer x, predecessor(x)= max{y ∈ Y |y ≤ x}. The paper of Pătraşcu
and Thorup [16] shows that if we use S w-bit words to represent Y and define
a = lg S

n + lgw then the lower bound is, up to constant factors:

min























logw n

lg ℓ−lgn
a

lg(ℓ/a)
lg(a/ lgn·lg(ℓ/a))

lg(ℓ/a)
lg(lg(ℓ/a)/ lg(lgn/a))

The paper also shows a matching upper bound for each case. This lower bound
works only for deterministic algorithms, but the later paper [18] shows the same
lower bound for probabilistic algorithms as well. In the important case when
w = ℓ = γ lg n for a constant γ > 1 and near linear space (S = n · lgO(1) n), the
optimal search time is O(lg ℓ).

2.2 Reducing predecessor search problem to persistent ar-

ray lookup

The predecessor search problem is tightly connected to persistent array lookup,
because lookup(i, av) returns a value au[i] stored by an update operation, where
u is the closest predecessor of version v (inclusive) that modified index i. As
Demaine and Langerman [7] mention in a footnote, the predecessor search prob-
lem can be used to bound the partially persistent array lookup complexity. For
completeness, let us show a reduction of the predecessor search problem to per-
sistent array lookup, as it is not present in the cited paper [7].

Suppose we are given a set Y of n integers of ℓ bits each in the case that
w = ℓ = γ lg n for 1 < γ ≤ 2. Let m = nγ/2 and let t be an auxiliary (nonper-
sistent) array of m+ 1 elements. We create a partially persistent array a of m
elements, every element initially set to −1. For each i ∈ {0, . . . ,m− 1} perform
the following:

• for each y ∈ Y such that y mod m = i modify the current version of a by
storing a value i at the index ⌊y/m⌋,

• store the current version of a in t[i].

Finally let p be another auxiliary nonpersistent array of m elements and set
p[i]← predecessor(i ·m) for 1 ≤ i ≤ m.

Excluding the partially persistent array operations the time complexity is
O(n) and the space complexity is O(m). The partially persistent array has m
elements and we perform n updates on it, so it fits in O(n logk n) space.

To answer the predecessor(x) query we perform a lookup at index ⌊x/m⌋
and version t[x mod m]. If the result is not −1, then the predecessor is the
result increased by m⌊x/m⌋. If the result is −1 then the predecessor is stored
in p[⌊x/m⌋]. Therefore we can compute the predecessor using one lookup and
O(1) extra work.
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Consequently, the lower bound for predecessor search problem can be ap-

plied, showing that the time complexity of partially persistent array lookup
operation is at least Ω(lg ℓ), which is Ω(lg lgn).

3 Amortized O(log logm) implementation

We develop an amortized implementation of fully persistent array. Our imple-
mentation is based on Dietz [9], but it is simplified and better suited for the
worst-case variant in the next section.

3.1 Partially persistent arrays

We first consider the simple case of partially persistent arrays. The core of the
implementation is a data structure of van Emde Boas [4] (hereafter vEB tree
or vEBT). This data structure can be implemented in random access model,
works with integers of size bounded by U = O(2w) and supports insertions,
deletions and finding predecessors and successors in time O(log logU). This
data structure can be made space efficient (i.e. O(1) space per update) using
dynamic perfect hashing [11] at the expense of requiring randomization.

We implement partially persistent array as an array of vEB trees. We label
the array versions by consecutive integers starting from 1. The update operation
with the latest version v is implemented as an insertion into appropriate vEBT
with key v+1. The lookup operation at version v is implemented by predecessor
search in appropriate vEBT with key v.

This implementation has O(log logm) worst-case time complexity for update
and lookup and uses O(m+ n) space.

3.2 Linearizing the version tree

To obtain full persistence, we need to be able to navigate in the version graph,
which is a tree in the case of full persistence. As in Driscoll et al. [12] or Dietz [9]
we solve this problem by linearizing the version tree and obtaining a version list.
This list is the result of a DFS traversal of the version tree, where each array
version v is recorded twice, first as v+ when it is first visited and second as
v− when it is left. We can maintain this list incrementally: when we create
a version u from a version v, we insert u+ right after v+ and u− right after u+.

When performing update(i, x, v), we first set x′ ← lookup(i, v). If x′ is the
same as x, then we do nothing and return v. Otherwise we create a new version
u, a descendant of the version v, store u+ and u− in the version list, set au+

[i]←
x and au

−

[i]← x′ and return u. The effect of u− is to undo the change of u+.
We shall call any member of the version list a version, even though only

the •+ elements are real versions and are used to identify a version of the array.
The •− elements are internal versions that are present because of linearization
and have only undo effect. Moreover, each version is assigned an index i, such
that the value of the element at index i is changed in this version. For a given
i we say that all such versions correspond to the index i.

To perform lookup(i, v) we find a predecessor of the version v corresponding
to the index i. We now recall the list order problem, which will eventually allow
us to use vEBT to perform these predecessor searches.

4



DRAFT
3.3 List order problem

The list order problem is a well studied problem of maintaining a list order:

• insert(u, v) inserts a new element u right after v to the list,

• query(u, v) returns true iff u precedes v in the list.

In this section we briefly describe the algorithm of Bender et al. [3], which
performs query in worst-case constant time and insert in amortized constant
time. Let N be the number of elements in the list. We first show an amortized
O(logN) solution. Then we reduce the complexity to O(1) in random access
model.

The algorithm assigns each element of the list a label, an integer tag from
[0, U), where U is polynomial in N . Each insert assigns a label to the new
element and possibly relabels some existing elements. After each insert, the
order of the elements of the list must the same as the order of integer labels.

There is a close connection between list labelling and weight-balanced trees.
When we write integer label in binary, we can consider it a path in a tree, where
0 means left and 1 means right. Obviously, a strategy for maintaining tags in
the universe [0, U) for U polynomial in N with amortized relabel cost f(N)
yields a strategy for maintaining a balanced binary tree of height O(logN) with
amortized insertion time of O(f(N)).

The straightforward converse is false, because a single rotation of the root
of the tree can be performed in O(1) time, and changes paths to all leaves,
thus causing O(N) relabellings. But if we define a weight of a vertex to be the
number its of descendants and a weight cost of an operation to be the sum of
weights of modified nodes, we get following result: Any balanced tree structure
of maximum degree d and height h with (amortized) weight cost f(N) for in-
sertions yields a strategy for list labelling with (amortized) cost O(f(N)) with
tags from universe [0, dh).

Many rotation-based trees like red-black trees or AVL trees have O(N)
weight cost insertions and deletions. Yet some structures with O(logN) weight
cost insertions exist, like BB[α] trees [14], skip lists [17] or weight-balanced B-
trees [1]. These structures could be used to get an O(logN) solution to the list
order problem.

The advantage of the algorithm of Bender et al. [3] is that it does not explic-
itly maintain any tree. For integers i, j ≥ 0 we say that tags j ·2i, . . . , j ·2i+2i−1
form a range of size 2i. If the tag universe size U were a power of two, these
ranges would correspond to vertices of the perfect binary tree with U leaves.

Let 1 < δ < 2 be a constant. We say a range is in overflow if it contains more
than δi labels. Whenever we want to insert a new element between elements
with labels e and f , we assign the new element any label between e and f . If
e+ 1 = f , we first find (by traversing the version list in appropriate directions)
the smallest range containing e which is not in overflow. Then we relabel the
elements contained in this range evenly. Then range of size 2 containing e is not
in overflow and we can insert the new element.

It is easy to see that the resulting labels have at most ⌈logδ N⌉ bits. Amor-
tized complexity of insert is O(logN): We can relabel a range of size 2i in
time O(δi) and after such relabelling, both child subranges contain δi/2 labels.
Another relabelling of this range will occur when one of these children con-
tains more than δi−1 labels, which happens after at least δi−1(1− δ/2) inserts.
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Therefore for a given range it is enough to charge a constant time to each insert
belonging to it. As a label belongs to O(logδ N) ranges, the result follows. For
more detailed proofs and for experiments with δ see the original paper [3].

Now assume that we are given an algorithm solving the list order problem
with (amortized) time complexity O(logN) for insert. We use it to obtain an
algorithm with amortized time complexity O(1) per insert. We partition the list
into continuous O(N/ logN) sublists of size O(logN) each and use the given
algorithm on O(N/ logN) elements representing these sublists. When inserting
a new element after x, we insert it to the sublist containing x. If the size of
the sublist reaches c logN , we split it in halves and insert the second half into
the top-level structure. As there must be c/2 logN inserts before new sublist is
created, there are at most O(N/ logN) sublists. Because each top-level insert
takes O(logN) time, we get amortized constant time per insert.

We order elements in a sublist using this simple algorithm: when inserting
an element between labels e and f , we give it the label ⌊ e+f

2 ⌋. As in the random
access model the integer words have Ω(logN) bits, the algorithm works for at
least Ω(logN) elements. During sublist splitting we relabel all labels evenly,
creating space for Ω(logN) inserts in the resulting sublist.

To perform a query, we find out whether the two list elements are in the
same sublist. If so, we compare the labels inside the sublist. If not, we ask the
top-level structure to compare the order of the sublists.

3.4 Amortized fully persistent arrays

The described algorithm for list order problem works by assigning labels to
versions, such that the order of the labels and the order of the versions is the
same. That is convenient for us – for each index in the persistent array we could
store corresponding labels in a vEBT and use its integer predecessor search to
implement list predecessor search.

The problem is that the described algorithm does not assign labels directly
to the elements of a list. The label of each list element is a catenation of the
sublist label and the label in the sublist. Though the insert operation works in
amortized constant time, it changes Θ(logm) labels, as changing a sublist label
changes the labels of all its elements.

We could hope in a better algorithm, that would change only a constant
number of labels per insert. But it was shown by Dietz et al. [10] that there
is a lower bound of Ω(N logN) relabelling during N inserts. So our list order
algorithm is optimal with respect to the number of relabellings and we have to
deal with more than constant number of relabellings per insert.

As in Dietz [9] we use bucketing to overcome the problem of relabellings
(with some modifications). For each persistent array index i we do not store
all corresponding versions. Instead, we partition versions corresponding to the
index i to buckets of size O(logm) and call the first version of a bucket a bucket
leader. For each index i we store only labels of bucket leaders in vEBT and
each bucket leader points to a binary balanced tree containing versions in this
bucket. When performing lookup, we first find the right bucket using vEBT
and then search the bucket for the right version, both operations carried out in
O(log logm) time.

We have to connect sublists and buckets. We do so by introducing the
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following invariant: every sublist contains at most one bucket leader. When we
maintain buckets by splitting only the buckets of size Ω(logm), this invariant
does not asymptotically change the number of sublists.

Version list
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Figure 1: Fully persistent array implementation

We now describe the resulting implementation of a fully persistent array.
We maintain a version list of versions. For each array index i we store versions
corresponding to this index. The versions are split into continuous buckets of
size O(logm), and a bucket is split only if its size is Ω(logm). The bucket
leaders are stored in vEBT for this index i and every bucket forms a balanced
binary tree pointed to by its bucket leader. The version list is split in sublists
of size O(logm), such that every sublist contains at most one bucket leader.
A sublist is split only if its size is Ω(logm) or if it contains two bucket leaders.

A create(n, x0) operation creates initial version 0, at which all array elements
have value x0. This version is the only member of the version list and in each
vEBT 0 is a bucket leader of a bucket containing exactly the version 0. We return
a pointer to version 0 in the version list.

To perform lookup(i, v), we search the vEBT of index i for a predecessor of
label of version v (inclusive). A bucket leader is found and we search corre-
sponding balanced binary tree for predecessor of version v and return the value
stored with that predecessor. These operations take O(log logm) time.

To perform update(i, x, v) we first perform x′ ← lookup(i, v) and if x = x′,
then we just return v. Otherwise we insert versions u+ and u− in the version
list. During this insert there is amortized constant number of sublist relabellings
and sublist element relabellings. When changing a label of a sublist element,
which is a bucket leader, we update the vEBT. As a sublist contains at most
one bucket leader, change of the sublist label can be handled by updating one
value in a vEBT as well. Now we insert version u+ with value of x and version
u− with value of x′ into the vEBT at index i. We do it by finding the right
bucket and inserting the version to it. If the bucket gets bigger than 2 logm, we
split the bucket in half and insert the bucket leader of the second half into the
vEBT. Finally, we check that a sublist containing the new bucket leader does
not contain any other bucket leader. If it does, we split this sublist into two.

Theorem 3.1 The worst-case complexity of lookup is O(log logm) and the
amortized complexity of update is O(log logm).
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Proof: The complexity of lookup is obvious. When not taking splitting of
buckets into account, the amortized time of an update is O(log logm), because
we perform amortized constant number of vEBT operations. Each bucket split
takes O(log logm) time to split the balanced search tree and possibly the cor-
responding sublist. If the sublist is split, we spend O(logm) time relabelling its
elements and a new element must be inserted into top-level list order structure,
which causes O(logm) amortized relabellings of sublist labels. So a bucket split
takes amortized O(logm log logm) time. But there must be Ω(logm) inserts
into a bucket before it is split, hence it is enough to charge O(log logm) to each
one of them.

4 Worst-case O(log logm) implementation

There are multiple places where we have to get rid of amortization. We have
to maintain O(m/ logm) buckets of bounded size by spending only constant
time per update on splitting, the list order structure must work in worst-case
constant time per update and we must maintain the “one bucket leader per
sublist” invariant.

4.1 Maintaining O(m/ logm) buckets of bounded size

We maintain exactly ⌊m/ logm⌋ buckets. Whenever the number of allowed
buckets increases, we create a new bucket by splitting the largest one. Obviously
the next bucket will be created after at least logm steps.

It is clear that this algorithm maintains the right number of buckets. What
we need to prove is the bound on the bucket sizes.

Theorem 4.1 The size of buckets produced by this algorithm is O(log2 m).

Proof: The proof of this theorem is based on a pebble game first introduced by
Dietz and Sleator [8]. A pebble game starts with p empty piles, i.e. nonnegative
real numbers x1, . . . , xp, and proceeds by repeating following steps:

• the adversary chooses nonnegative real numbers a1, . . . , ap such that the
some of them

∑

i ai = 1 and sets xi ← xi + ai,

• we find index i such that xi is maximal and set xi ← 0.

Dietz and Sleator (Theorem 5) proved that for any adversary no xi ever exceeds
Hn−1 + 1, where Hn =

∑n
i=1 i

−1 ≤ lnn+ 1.
Raman [19] obtained a bound of (1−α)−1(Hn−1+1) on all xi if we can only

perform xi ← αxi instead of zeroing, where 0 ≤ α < 1. We present the proof
here, as we need it. Let Mα be the yet unknown bound on all xi. We define
another pebble game with yi = max(xi − αMα, 0). The key observation is that
after performing xi ← αxi we have yi = 0. Thus we play zeroing game on yi,
consequently all yi are bounded by Hn−1 + 1 and the result follows.

In our case the splitting of the buckets is just a pebble game with halving,
where the adversary adds logm to the piles per turn. Although each split creates
new nonempty bucket, from the mentioned proof we see that the bucket’s yi is
zero. Thus we can imagine that the whole game took place on m/ logm initially
zeroed piles and we get the O(log2 m) bound on the size of the buckets.
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4.2 List order problem in worst-case constant time

Amortized solution to the list order problem maintains O(m/ logm) sublists of
size O(logm). Our worst-case implementation will too maintain O(m/ logm)
sublists, by splitting the largest sublist every logm updates. Similarly to Theo-
rem 4.1 this results in sublists of size O(log2 m). We now describe how to work
with sublists of this size and how to split them.

We start by describing a split of a sublist of size O(logm). When the size of
a sublist becomes equal to 2 logm, we start the split. We fix the middle version
v and create two empty sublists, one for versions preceding v and second for the
rest of the versions. During following inserts we insert the elements to the old
sublist, but we also copy elements to new sublists, three at a time. The copies
are labelled during inserts, meaning a version has temporarily two labels, but
we use the labels from the original sublist in queries. After logm such inserts we
have copied all elements and we immediately switch to new labels and dispose
the old sublist and old labels. The maximum size of the new sublists is 2 logm,
so (2 logm)-bit labels are enough during the whole algorithm.

Now we consider sublists of size O(log2 m). A sublist of this size is repre-
sented as a two-level tree with nodes of degree O(logm), each node represented
as a sublist of size O(logm). When we insert an element, we insert it to the
corresponding bottom node. When this node is of size 2 logm, we use the de-
scribed algorithm and start a split, inserting the newly created node to the top
node. The label of an element is a catenation of the label in the top node and
in the corresponding bottom node, so we can perform query in constant time.

To carry out a split of a sublists of size O(log2 m), we again find the middle
version v. We split the bottom node containing v and then we split the top
node according to v too. These two splits are splits of sublists of size O(logm),
so we can perform them during following O(logm) inserts.

To complete the worst-case list order implementation, we need a top-level
structure with O(logm) worst-case time per insert: suppose we have such a
structure. We maintain the sublists in the described way. Each logm inserts
we start the split of the biggest sublist. We simultaneously perform an insert to
the top-level structure, spreading the work during the following logm inserts.
After these inserts both the top-level insert and the split of the biggest sublist
is finished, so we can store the newly created sublist in the top-level structure.
The only thing left to describe is the top-level structure.

4.3 Worst-case list order top-level structure

The top-level structure is a tree based on a weight-balanced B-tree [1], specialized
for our needs. All its leaves are in the same depth and weight of a vertex of
depth i is between 2i−1 and 2i+1, where a weight of a node is the number of
leaves in its subtree. Obviously a vertex of depth i has at most eight children,
because its weight is at most 2i+1 and the weight of its children is at least 2i−2.

Let this tree contain N elements. We show how an insert can be performed
in O(logN) worst-case time, such that we can update the labels of all elements.

We start by inserting a new leaf. Then we check its ancestors, starting from
the lowest level, and if we find one with too big weight we split it. To split a
node v of depth i we divide its children in two groups, the left children and the
right children, such that the weights of those two groups are as close as possible.
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Then we create nodes vl with the left children and vr with the right children,
insert these nodes to the parent of v instead of v and continue by checking the
weight of the parent of v.

If we split the children of v equally, the weight of both vl and vr would be 2i.
But there can be a child of weight 2i, half of it missing in one group and half of
it surplus in the other group, so the weight of vl and vr is in the range between
2i − 2i−1 = 2i−1 and 2i + 2i−1 = (3/2)2i. Therefore it is in the required range.

The children of a node are assigned 10-bit labels, such that the order of
the children and the order of the labels is the same. The label of a leaf is a
catenation of labels of the nodes on the path from the root to the leaf itself.
We explicitly maintain both children labels and leaf labels. The children labels
are updated immediately during split, but the leaf labels are updated gradually,
though the order of the labels and the order of the leaves is the same all the
time.

First consider the children labels. The first child gets the label 10000000002.
When a child v is split into vl and vr, the label of vl is the average of the label of
the left sibling of v (or 0 if it does not exist) and the label of v; the label of vr is
the average of the label of v and the label of right sibling of v (or 100000000002
if it does not exist). As a node has at most 8 children, 8-bit labels are always
enough. We elaborate on the two remaining bits later.

When the node v splits, we cannot update all the leaf labels in its subtree.
Instead we start two relabelling processes. The left relabel relabels the leaves in
the subtree of vl and the right relabel relabels the leaves in the subtree of vr.
We consider here only the left relabel, the right is the same, only mirrored.

To relabel a leaf of vl 20 bits of the label have to be changed – the 10 bits
corresponding to v change to the label of vl and the 10 bits corresponding to
the label of the child of v containing this leaf change to the label of the child
of vl containing this leaf. When we split v, we associate the left relabel with vl
and during following insert into vl we relabel 4 leftmost not relabelled leaves.
As the weight of vl is at most (3/2)2i, there must be at least 2i−1 inserts into
vl before the next split, so we relabel all leaves in the subtree of vl before the
vl splits.

During the left relabel a child w of vl can split. If the leaves in its subtree are
not yet relabelled, we cannot label the leaves in the subtree of wl and wr using
the child label of wl and wr in vl, as this would corrupt the ordering. Instead
we must use the child labels wl and wr would get if they were children of v. As
children of vl can split at most twice before the left relabel finishes (they split
after at least 2i−2 inserts), two spare bits of the child labels are enough to solve
this.

Notice that when we change the label of a leaf, both the old and the new
label preserve the ordering, as no labels between these two are used. Moreover,
because the label changes are local, relabellings on different levels of a tree do
not interfere.

We recapitulate the insert. After inserting the new leaf we check its ances-
tors, starting from the lowest level. If there is a relabelling process associated
with an ancestor, we perform 4 its relabellings. If the weight of an ancestor v is
too big, we split it and associate the left and the right relabels with vl and vr.

We conclude that the insert has a worst-case time complexity of O(logN).

10



DRAFT
4.4 Implementation of worst-case fully persistent arrays

The resulting implementation of a worst-case fully persistent array is as follows.
As in Figure 1 we maintain a version list, split into O(m/ logm) sublists of size
O(log2 m). For each array index i we store versions corresponding to this index
split into continuous buckets of size O(log2 m). The bucket leaders are stored
in a vEBT for this index i and every bucket is represented as a balanced binary
tree pointed to by its bucket leader. Every sublist contains at most one bucket
leader.

Create and lookup operations are performed exactly as in amortized imple-
mentation. The update is also the same, but we do not split sublists and buckets
when they get too full. Instead the splitting works in phases of length 2 logm.
At the beginning of the phase we start the split of the largest sublist and we start
the insert to the top-level structure, finishing both in logm steps and storing
the new sublist in the top-level structure afterwards. Then we split the largest
bucket, finishing immediately. If this split created second bucket leaders in a
sublist, we start the split of this sublist, which finishes in following logm steps.
Using the described list order data structure we conclude:

Theorem 4.2 The worst-case complexity of lookup and update is O(log logm).

5 Improving to O(log logmin(n,m))

Improving the complexity to O(log logmin(n,m)) is just a matter of splitting
an array into independent pieces, each containing at most O(n) versions. We
shall call these pieces hunks.

5.1 Amortized implementation

Whenever a hunk contains 2n versions, we perform a split. To peform a split, we
find the version just in the middle of the version list and create two hunks, first
containing versions preceding the middle version and second containing the rest
of versions. Because we need the new hunks to be independent, we also create a
snapshot of the whole array at the middle version and use this snapshot as the
initial array value of the second hunk (the values associated with the version 0).

The actual implementation does not create two new hunks, but utilizes the
existing hunk instead. Only the second hunk is created, with values of the middle
version of the array, and then bigger versions are moved to this new hunk. The
time complexity is linear, as we need to copy the initial n array values, n versions
in the version list and we delete and subsequently insert O(n/ log n) values in
vEBTs. As there are n updates between splits, it is enough to charge constant
time to each insert, thus getting splits “for free”.

5.2 Worst-case implementation

In the case of worst-case implementation, we cannot afford to do the whole split
at once. Instead, we have to perform it step by step.

Whenever a hunk contains 2n versions, we start a split operation. We imme-
diately identify the middle version and during the next n/2 updates we create a
copy of the middle version of the array and create a new hunk from it. During
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the following n/2 updates we move the versions bigger than middle version from
the original hunk to the new hunk, four at a time. We finish on time, as we
need to move at most n original versions and n/2 + n/2 recent versions. The
same argument shows that the newly created hunks are of size at most 2n.

The time needed by split is O(log logn) per one update to the hunk being
split, so we once again get split “for free”.

6 Supporting deletions

When a data structure is used in a functional environment, usually a garbage
collector is used to free the unused data. Unlike purely functional implemen-
tations, imperative implementations must be augmented in order to facilitate
this. We shall implement a function delete(v), which is supposed to be called
by a garbage collector to indicate that the version v is no longer accessible (the
so-called finalizer). A version which is not deleted is called active.

The delete(v) cannot immediately delete version v from version list and from
vEBT, because the update which created version v+ is visible until version v−.
So the version v can be really purged only when its effect is not observable
between versions v+ and v− anymore. We call such a version purgeable.

Even if we are able to properly choose which versions to purge, another se-
rious problem arises: it is not easy to maintain O(logm)-sized buckets/sublists.
In the amortized implementation, we inspect only modified buckets, so if there
are N elements in the list and then a lot of them are deleted, the untouched
buckets can still be of size Θ(logN), which can be unbounded in the current
size. Likewise, the pebble game from worst-case implementation suffers from
the same problem: if there are N elements in the list at one moment, even the
optimal strategy results in a bucket of size Ω(log N) at some point in the future,
when logN can be also unbounded in the current size.

Because of these observations we do not handle deletes directly, as we still
would have to tamper with all buckets even if only small number of them is
accessed, and use a global rebuilding technique instead. If we denote the number
of active versions by a, there can be a ·n nonpurgeable versions, so the resulting
implementations have O(log log(a · n)) time complexity and O(n+ a · n) space
complexity.

6.1 Identifying purgeable versions

Let v be a version modifying index i. We call the version between v+ and v−
descendant versions. A descendant version u is captured, if there exists a version
w modifying index i, such that the order of versions is v+ w+ u+ u− w− v−.
The version v is purgeable, if there is no active uncaptured descendant version.

To recognize purgeable versions, we traverse the version list from left to
right, counting for each v active descendant versions (nav) and captured active
descendant versions (ncv). We use a stack and an array e of n elements. When
we encounter a version v+ modifying index i we push v and e[i] to the stack and
set e[i]← v. When we encounter a version v−, we pop v and reset e[i] according
to the stack. At this point we know nav and ncv, so we classify v as purgeable
iff nav > ncv. We then add the number of active versions between v+ and v−
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(inclusive, i.e. nav + 1 if v is active) to the parent of v and to the nce[i] if e[i]
is not empty.

This algorithm works in linear time and identifies all purgeable versions.

6.2 Amortized and worst-case implementation

In the amortized implementation we perform a rebuild after eachm/2 inserts and
deletes. The rebuild identifies purgeable versions and then creates a copy of the
array containing only nonpurgeable versions. Such a rebuild can be performed
in O(m) time, so its amortized complexity is O(1) per insert or delete.

In the case of worst-case implementation we cannot afford to do the whole
rebuild at once. Instead we perform it step by step. Let the array contain N
versions when we start rebuilding. We want to copy the nonpurgeable versions
to a fresh empty array. We do so during following modifications to the array,
copying three versions at a time. After at most N/3 steps all original versions
are copied, and at most N/3 more have been created since. We copy these
again in at most N/9 steps and iterate this copying algorithm, finishing after
∑∞

i=1 N · 3
−i = N/2 steps. At that moment both arrays are the same with

respect to nonpurgeable versions, so we instantly switch to the just constructed
one. When the rebuilding is finished, we immediately start a new rebuilding
process.

7 Conclusion

We presented fully persistent array implementation with worst-case complexity
O(log logmin(n,m)) for lookup and update and shown that this lookup com-
plexity is optimal in quite a general model. Thereby we fully analysed the
potential of fully persistent arrays.

Fully persistent arrays are an important data structure as a functional ana-
logue of arrays. But other data structures are based on arrays, e.g. any fully
persistent graph data structure can be used as an array. On the other hand, one
can implement fully persistent graph using fully persistent array. Thus we clari-
fied the theoretical efficiency of important data structures in functional setting.
We also studied how garbage collection of unused versions can be supported.

As mentioned by Dietz [9], any algorithm with worst-case complexities in
random access model can be made fully persistent using a fully persistent array,
with O(log logm) worst-case slowdown per operation.

The lower bound complexity of lookup applies only if we can access older
versions of the array. If we are somehow able to limit the access to the latest
version only, we can use an imperative array even in functional setting, thus
being able to perform lookup and update in constant time.

Acknowledgements. I want to thank my supervisor Zdeněk Dvořák for his
encouragement and a great deal of advice on this paper.
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