
infixr 9 .
infixr 8 ^, ^^, **
infixl 7 *, /, ‘quot‘, ‘rem‘, ‘div‘, ‘mod‘
infixl 6 +, −
−− The (:) operator is built−in syntax, and cannot legally be given
−− a fixity declaration; but its fixity is given by: infixr 5 :
infix 4 ==, /=, <, <=, >=, >
infixr 3 &&
infixr 2 ||
infixl 1 >>, >>=
infixr 1 =<<
infixr 0 $, $!, ‘seq‘

class Eq a where
 (==), (/=) :: a −> a −> Bool
 −− Minimal complete definition: (==) or (/=)

class (Eq a) => Ord a where
 compare :: a −> a −> Ordering
 (<), (<=), (>=), (>) :: a −> a −> Bool
 max, min :: a −> a −> a
 −− Minimal complete definition: (<=) or compare

class Enum a where
 succ, pred :: a −> a
 toEnum :: Int −> a
 fromEnum :: a −> Int
 enumFrom :: a −> [a] −− [n..]
 enumFromThen :: a −> a −> [a] −− [n,n’..]
 enumFromTo :: a −> a −> [a] −− [n..m]
 enumFromThenTo :: a −> a −> a −> [a] −− [n,n’..m]
 −− Minimal complete definition: toEnum, fromEnum

class Bounded a where
 minBound, maxBound :: a

class (Eq a, Show a) => Num a where
 (+), (−), (*) :: a −> a −> a
 negate :: a −> a
 abs, signum :: a −> a
 fromInteger :: Integer −> a
 −− Minimal complete definition: All, except negate or (−)

class (Num a, Ord a) => Real a where
 toRational :: a −> Rational

class (Real a, Enum a) => Integral a where
 quot, rem :: a −> a −> a
 div, mod :: a −> a −> a
 quotRem, divMod :: a −> a −> (a,a)
 toInteger :: a −> Integer
 −− Minimal complete definition: quotRem, toInteger

class (Num a) => Fractional a where
 (/) :: a −> a −> a
 recip :: a −> a
 fromRational :: Rational −> a
 −− Minimal complete definition: fromRational and (recip or (/))

class (Fractional a) => Floating a where
 pi :: a
 exp, log, sqrt :: a −> a
 (**), logBase :: a −> a −> a
 sin, cos, tan :: a −> a
 asin, acos, atan :: a −> a
 sinh, cosh, tanh :: a −> a
 asinh, acosh, atanh :: a −> a
 −− Minimal complete definition: pi, exp, log, sin, cos, sinh, cosh,
 −− asin, acos, atan, asinh, acosh, atanh

01/prelude.hs, page 1

class (Real a, Fractional a) => RealFrac a where
 properFraction :: (Integral b) => a −> (b,a)
 truncate, round :: (Integral b) => a −> b
 ceiling, floor :: (Integral b) => a −> b
 −− Minimal complete definition: properFraction

class (RealFrac a, Floating a) => RealFloat a where
 floatRadix :: a −> Integer
 floatDigits :: a −> Int
 floatRange :: a −> (Int,Int)
 decodeFloat :: a −> (Integer,Int)
 encodeFloat :: Integer −> Int −> a
 exponent :: a −> Int
 significand :: a −> a
 scaleFloat :: Int −> a −> a
 isNaN, isInfinite, isDenormalized, isNegativeZero, isIEEE :: a −> Bool
 atan2 :: a −> a −> a
 −− Minimal complete definition:
 −− All except exponent, significand, scaleFloat, atan2

−− Numeric functions
subtract :: (Num a) => a −> a −> a
even, odd :: (Integral a) => a −> Bool
gcd :: (Integral a) => a −> a −> a
lcm :: (Integral a) => a −> a −> a
(^) :: (Num a, Integral b) => a −> b −> a
(^^) :: (Fractional a, Integral b) => a −> b −> a

fromIntegral :: (Integral a, Num b) => a −> b
realToFrac :: (Real a, Fractional b) => a −> b

−− Monadic classes
class Functor f where
 fmap :: (a −> b) −> f a −> f b

class Monad m where
 (>>=) :: m a −> (a −> m b) −> m b
 (>>) :: m a −> m b −> m b
 return :: a −> m a
 fail :: String −> m a
 −− Minimal complete definition: (>>=), return
sequence :: Monad m => [m a] −> m [a]
sequence_ :: Monad m => [m a] −> m ()

−− The xxxM functions take list arguments, but lift the function or
−− list element to a monad type
mapM :: Monad m => (a −> m b) −> [a] −> m [b]
mapM f as = sequence (map f as)
mapM_ :: Monad m => (a −> m b) −> [a] −> m ()
(=<<) :: Monad m => (a −> m b) −> m a −> m b

−− Trivial type
data () = () deriving (Eq, Ord, Enum, Bounded)

−− identity function
id :: a −> a
id x = x

−− constant function
const :: a −> b −> a
const x _ = x

−− function composition
(.) :: (b −> c) −> (a −> b) −> a −> c
f . g = \ x −> f (g x)

−− flip f takes its (first) two arguments in the reverse order of f.
flip :: (a −> b −> c) −> b −> a −> c
flip f x y = f y x

01/prelude.hs, page 2

seq :: a −> b −> b −− Primitive

−− right−associating infix application operators
−− (useful in continuation−passing style)
($), ($!) :: (a −> b) −> a −> b
f $ x = f x
f $! x = x ‘seq‘ f x

−− Boolean type
data Bool = False | True deriving (Eq, Ord, Enum, Read, Show, Bounded)

−− Boolean functions
(&&), (||) :: Bool −> Bool −> Bool
not :: Bool −> Bool
otherwise :: Bool

−− Character type
data Char = ... ’a’ | ’b’ ... −− Unicode values

instance Eq Char where
instance Ord Char where
instance Enum Char where
instance Bounded Char where

type String = [Char]

−− Maybe type
data Maybe a = Nothing | Just a deriving (Eq, Ord, Read, Show)

maybe :: b −> (a −> b) −> Maybe a −> b
maybe n f Nothing = n
maybe n f (Just x) = f x

instance Functor Maybe where
 fmap f Nothing = Nothing
 fmap f (Just x) = Just (f x)
instance Monad Maybe where
 (Just x) >>= k = k x
 Nothing >>= k = Nothing
 return = Just
 fail s = Nothing

−− Either type
data Either a b = Left a | Right b deriving (Eq, Ord, Read, Show)

either :: (a −> c) −> (b −> c) −> Either a b −> c
either f g (Left x) = f x
either f g (Right y) = g y

−− IO type
data IO a = ... −− abstract

instance Functor IO where ...
instance Monad IO where ...

−− Ordering type
data Ordering = LT | EQ | GT deriving (Eq, Ord, Enum, Read, Show, Bounded)

data Int = minBound ... −1 | 0 | 1 ... maxBound
 instance Eq, Ord, Num, Real, Enum, Integral, Bounded
data Integer = ... −1 | 0 | 1 ...
 instance Eq, Ord, Num, Real, Enum, Integral
data Float
 instance Eq, Ord, Num, Real, Fractional, Floating, RealFrac, RealFloat
data Double
 instance Eq, Ord, Num, Real, Fractional, Floating, RealFrac, RealFloat

01/prelude.hs, page 3

−− The Enum instances for Floats and Doubles are slightly unusual.
−− The ‘toEnum’ function truncates numbers to Int. The definitions
−− of enumFrom and enumFromThen allow floats to be used in arithmetic
−− series: [0,0.1 .. 0.95]. However, roundoff errors make these somewhat
−− dubious. This example may have either 10 or 11 elements, depending on
−− how 0.1 is represented.
instance Enum Float where
instance Enum Double where

−− Lists
data [a] = [] | a : [a] deriving (Eq, Ord)
−− Not legal Haskell; for illustration only

instance Functor [] where
 fmap = map
instance Monad [] where
 m >>= k = concat (map k m)
 return x = [x]
 fail s = []

−− Tuples
data (a,b) = (a,b) deriving (Eq, Ord, Bounded)
data (a,b,c) = (a,b,c) deriving (Eq, Ord, Bounded)
−− Not legal Haskell; for illustration only

−− component projections for pairs, not provided for triples, quadruples, etc.
fst :: (a,b) −> a
snd :: (a,b) −> b

−− curry converts an uncurried function to a curried function;
−− uncurry converts a curried function to a function on pairs.
curry :: ((a, b) −> c) −> a −> b −> c
uncurry :: (a −> b −> c) −> ((a, b) −> c)

−− Misc functions
−− until p f yields the result of applying f until p holds.
until :: (a −> Bool) −> (a −> a) −> a −> a
until p f x
 | p x = x
 | otherwise = until p f (f x)

−− asTypeOf is a type−restricted version of const. It is usually used
−− as an infix operator, and its typing forces its first argument
−− (which is usually overloaded) to have the same type as the second.
asTypeOf :: a −> a −> a
asTypeOf = const

−− error stops execution and displays an error message
error :: String −> a
error = primError

−− It is expected that compilers will recognize this and insert error
−− messages that are more appropriate to the context in which undefined
−− appears.
undefined :: a
undefined = error "Prelude.undefined"

01/prelude.hs, page 4

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− PreludeList −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
infixl 9 !!
infixr 5 ++
infix 4 ‘elem‘, ‘notElem‘

−− Map and append
map :: (a −> b) −> [a] −> [b]
(++) :: [a] −> [a] −> [a]
filter :: (a −> Bool) −> [a] −> [a]
concat :: [[a]] −> [a]
concatMap :: (a −> [b]) −> [a] −> [b]

−− head and tail extract the first element and remaining elements,
−− respectively, of a list, which must be non−empty. last and init
−− are the dual functions working from the end of a finite list,
−− rather than the beginning.
head :: [a] −> a
tail :: [a] −> [a]
last :: [a] −> a
init :: [a] −> [a]
null :: [a] −> Bool

−− length returns the length of a finite list as an Int.
length :: [a] −> Int

−− List index (subscript) operator, 0−origin
(!!) :: [a] −> Int −> a

−− foldl, applied to a binary operator, a starting value (typically the
−− left−identity of the operator), and a list, reduces the list using
−− the binary operator, from left to right:
−− foldl f z [x1, x2, ..., xn] == (...((z ‘f‘ x1) ‘f‘ x2) ‘f‘...) ‘f‘ xn
−− foldl1 is a variant that has no starting value argument, and thus must
−− be applied to non−empty lists. scanl is similar to foldl, but returns
−− a list of successive reduced values from the left:
−− scanl f z [x1, x2, ...] == [z, z ‘f‘ x1, (z ‘f‘ x1) ‘f‘ x2, ...]
−− Note that last (scanl f z xs) == foldl f z xs.
−− scanl1 is similar, again without the starting element:
−− scanl1 f [x1, x2, ...] == [x1, x1 ‘f‘ x2, ...]
foldl :: (a −> b −> a) −> a −> [b] −> a
foldl f z [] = z
foldl f z (x:xs) = foldl f (f z x) xs

foldl1 :: (a −> a −> a) −> [a] −> a
foldl1 f (x:xs) = foldl f x xs
foldl1 _ [] = error "Prelude.foldl1: empty list"

scanl :: (a −> b −> a) −> a −> [b] −> [a]
scanl f q xs = q : (case xs of [] −> []
 x:xs −> scanl f (f q x) xs)

scanl1 :: (a −> a −> a) −> [a] −> [a]
scanl1 f (x:xs) = scanl f x xs
scanl1 _ [] = []

−− foldr, foldr1, scanr, and scanr1 are the right−to−left duals of the
−− above functions.
foldr :: (a −> b −> b) −> b −> [a] −> b
foldr f z [] = z
foldr f z (x:xs) = f x (foldr f z xs)

foldr1 :: (a −> a −> a) −> [a] −> a
foldr1 f [x] = x
foldr1 f (x:xs) = f x (foldr1 f xs)
foldr1 _ [] = error "Prelude.foldr1: empty list"

scanr :: (a −> b −> b) −> b −> [a] −> [b]
scanr f q0 [] = [q0]
scanr f q0 (x:xs) = let qs(q:_)=scanr f q0 xs in f x q : qs

01/prelude.hs, page 5

scanr1 :: (a −> a −> a) −> [a] −> [a]
scanr1 f [] = []
scanr1 f [x] = [x]
scanr1 f (x:xs) = let qs(q:_)=scanr1 f x in f x q : qs

−− iterate f x returns an infinite list of repeated applications of f to x:
−− iterate f x == [x, f x, f (f x), ...]
iterate :: (a −> a) −> a −> [a]

−− repeat x is an infinite list, with x the value of every element.
repeat :: a −> [a]

−− replicate n x is a list of length n with x the value of every element
replicate :: Int −> a −> [a]

−− cycle ties a finite list into a circular one, or equivalently,
−− the infinite repetition of the original list. It is the identity
−− on infinite lists.
cycle :: [a] −> [a]
cycle [] = error "Prelude.cycle: empty list"
cycle xs = xs’ where xs’ = xs ++ xs’

−− take n, applied to a list xs, returns the prefix of xs of length n,
−− or xs itself if n > length xs. drop n xs returns the suffix of xs
−− after the first n elements, or [] if n > length xs. splitAt n xs
−− is equivalent to (take n xs, drop n xs).
take :: Int −> [a] −> [a]
drop :: Int −> [a] −> [a]
splitAt :: Int −> [a] −> ([a],[a])

−− takeWhile, applied to a predicate p and a list xs, returns the longest
−− prefix (possibly empty) of xs of elements that satisfy p. dropWhile p xs
−− returns the remaining suffix. span p xs is equivalent to
−− (takeWhile p xs, dropWhile p xs), while break p uses the negation of p.
takeWhile :: (a −> Bool) −> [a] −> [a]
dropWhile :: (a −> Bool) −> [a] −> [a]
span, break :: (a −> Bool) −> [a] −> ([a],[a])

−− lines breaks a string up into a list of strings at newline characters.
−− The resulting strings do not contain newlines. Similary, words
−− breaks a string up into a list of words, which were delimited by
−− white space. unlines and unwords are the inverse operations.
−− unlines joins lines with terminating newlines, and unwords joins
−− words with separating spaces.
lines :: String −> [String]
words :: String −> [String]
unlines :: [String] −> String
unwords :: [String] −> String

−− reverse xs returns the elements of xs in reverse order. xs must be finite.
reverse :: [a] −> [a]

−− and returns the conjunction of a Boolean list. For the result to be
−− True, the list must be finite; False, however, results from a False
−− value at a finite index of a finite or infinite list. or is the
−− disjunctive dual of and.
and, or :: [Bool] −> Bool

−− Applied to a predicate and a list, any determines if any element
−− of the list satisfies the predicate. Similarly, for all.
any, all :: (a −> Bool) −> [a] −> Bool

−− elem is the list membership predicate, usually written in infix form,
−− e.g., x ‘elem‘ xs. notElem is the negation.
elem, notElem :: (Eq a) => a −> [a] −> Bool

−− lookup key assocs looks up a key in an association list.
lookup :: (Eq a) => a −> [(a,b)] −> Maybe b

01/prelude.hs, page 6

−− sum and product compute the sum or product of a finite list of numbers.
sum, product :: (Num a) => [a] −> a

−− maximum and minimum return the maximum or minimum value from a list,
−− which must be non−empty, finite, and of an ordered type.
maximum, minimum :: (Ord a) => [a] −> a

−− zip takes two lists and returns a list of corresponding pairs. If one
−− input list is short, excess elements of the longer list are discarded.
−− zip3 takes three lists and returns a list of triples. Zips for larger
−− tuples are in the List library
zip :: [a] −> [b] −> [(a,b)]
zip3 :: [a] −> [b] −> [c] −> [(a,b,c)]

−− The zipWith family generalises the zip family by zipping with the
−− function given as the first argument, instead of a tupling function.
−− For example, zipWith (+) is applied to two lists to produce the list
−− of corresponding sums.
zipWith :: (a−>b−>c) −> [a]−>[b]−>[c]
zipWith3 :: (a−>b−>c−>d) −> [a]−>[b]−>[c]−>[d]

−− unzip transforms a list of pairs into a pair of lists.
unzip :: [(a,b)] −> ([a],[b])
unzip3 :: [(a,b,c)] −> ([a],[b],[c])

01/prelude.hs, page 7

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− PreludeText −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
type ReadS a = String −> [(a,String)]
type ShowS = String −> String

class Read a where
 readsPrec :: Int −> ReadS a
 readList :: ReadS [a]
 −− Minimal complete definition: readsPrec

class Show a where
 showsPrec :: Int −> a −> ShowS
 show :: a −> String
 showList :: [a] −> ShowS
 −− Mimimal complete definition: show or showsPrec
reads :: (Read a) => ReadS a
reads = readsPrec 0
shows :: (Show a) => a −> ShowS
shows = showsPrec 0
read :: (Read a) => String −> a
read s = case [x | (x,t) <− reads s, ("","") <− lex t] of
 [x] −> x
 [] −> error "Prelude.read: no parse"
 _ −> error "Prelude.read: ambiguous parse"
showChar :: Char −> ShowS
showString :: String −> ShowS
showParen :: Bool −> ShowS −> ShowS
showParen b p = if b then showChar ’(’ . p . showChar ’)’ else p
readParen :: Bool −> ReadS a −> ReadS a
readParen b g = if b then mandatory else optional
 where optional r = g r ++ mandatory r
 mandatory r = [(x,u) | ("(",s) <− lex r,
 (x,t) <− optional s,
 (")",u) <− lex t]
−− This lexer is not completely faithful to the Haskell lexical syntax.
−− Limitations: Qualified names are not handled properly
−− Octal & hexidecimal numerics aren’t recognized as single token
−− Comments are not treated properly
lex :: ReadS String
lex "" = [("","")]
lex (c:s)
 | isSpace c = lex (dropWhile isSpace s)
lex (’\’’:s) = [(’\’’:ch++"’", t) | (ch,’\’’:t) <− lexLitChar s, ch /= "’"]
lex (’"’:s) = [(’"’:str, t) | (str,t) <− lexString s]
 where
 lexString (’"’:s) = [("\"",s)]
 lexString s = [(ch++str, u) | (ch,t)<−lexStrItem s, (str,u)<−lexString t]
 lexStrItem (’\\’:’&’:s) = [("\\&",s)]
 lexStrItem (’\\’:c:s)
 | isSpace c = [("\\&",t) | ’\\’:t<−[dropWhile isSpace s]]
 lexStrItem s = lexLitChar s
lex (c:s) | isSingle c = [([c],s)]
 | isSym c = [(c:sym,t) | (sym,t) <− [span isSym s]]
 | isAlpha c = [(c:nam,t) | (nam,t) <− [span isIdChar s]]
 | isDigit c = [(c:ds++fe,t) | (ds,s) <− [span isDigit s],
 (fe,t) <− lexFracExp s]
 | otherwise = [] −− bad character
 where
 isSingle c = c ‘elem‘ ",;()[]{}_‘"
 isSym c = c ‘elem‘ "!@#$%&*+./<=>?\\^|:−~"
 isIdChar c = isAlphaNum c || c ‘elem‘ "_’"
 lexFracExp (’.’:c:cs) | isDigit c = [(’.’:ds++e,u) |
 (ds,t)<−lexDigits (c:cs), (e,u) <− lexExp t]
 lexFracExp s = lexExp s
 lexExp (e:s) | e ‘elem‘ "eE"
 = [(e:c:ds,u) | (c:t) <− [s], c ‘elem‘ "+−",
 (ds,u) <− lexDigits t] ++
 [(e:ds,t) | (ds,t) <− lexDigits s]
 lexExp s = [("",s)]
instance Read a Show jsou vsechny zatim definovane typy krome funkci

01/prelude.hs, page 8

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− PreludeIO −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
type FilePath = String
data IOError −− The internals of this type are system dependent
instance Show IOError where ...
instance Eq IOError where ...

ioError :: IOError −> IO a
userError :: String −> IOError
catch :: IO a −> (IOError −> IO a) −> IO a
putChar :: Char −> IO ()
putStr :: String −> IO ()
putStrLn :: String −> IO ()
print :: Show a => a −> IO ()
getChar :: IO Char
getLine :: IO String
getContents:: IO String
interact :: (String −> String) −> IO ()
readFile :: FilePath −> IO String
writeFile :: FilePath −> String −> IO ()
appendFile :: FilePath −> String −> IO ()
−− raises an exception instead of an error
readIO :: Read a => String −> IO a
readIO s = case [x | (x,t) <− reads s, ("","") <− lex t] of
 [x] −> return x
 [] −> ioError (userError "Prelude.readIO: no parse")
 _ −> ioError (userError "Prelude.readIO: ambiguous parse")
readLn :: Read a => IO a
readLn = do l <− getLine
 r <− readIO l
 return r

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− Ratio −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
infixl 7 %

data (Integral a) => Ratio a = ...
type Rational = Ratio Integer

(%) :: (Integral a) => a −> a −> Ratio a
numerator, denominator :: (Integral a) => Ratio a −> a
approxRational :: (RealFrac a) => a −> a −> Rational

instance (Integral a) => Eq (Ratio a) where ...
instance (Integral a) => Ord (Ratio a) where ...
instance (Integral a) => Num (Ratio a) where ...
instance (Integral a) => Real (Ratio a) where ...
instance (Integral a) => Fractional (Ratio a) where ...
instance (Integral a) => RealFrac (Ratio a) where ...
instance (Integral a) => Enum (Ratio a) where ...
instance (Read a,Integral a)=> Read (Ratio a) where ...
instance (Integral a) => Show (Ratio a) where ...

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− Complex −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
infix 6 :+

data (RealFloat a) => Complex a = !a :+ !a

realPart, imagPart:: (RealFloat a) => Complex a −> a
conjugate :: (RealFloat a) => Complex a −> Complex a
mkPolar :: (RealFloat a) => a −> a −> Complex a
cis :: (RealFloat a) => a −> Complex a
polar :: (RealFloat a) => Complex a −> (a,a)
magnitude, phase :: (RealFloat a) => Complex a −> a

instance (RealFloat a) => Eq (Complex a) where ...
instance (RealFloat a) => Read (Complex a) where ...
instance (RealFloat a) => Show (Complex a) where ...
instance (RealFloat a) => Num (Complex a) where ...
instance (RealFloat a) => Fractional (Complex a) where ...
instance (RealFloat a) => Floating (Complex a) where ...

01/prelude.hs, page 9

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− List −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
infix 5 \\

elemIndex :: Eq a => a −> [a] −> Maybe Int
elemIndices :: Eq a => a −> [a] −> [Int]
find :: (a −> Bool) −> [a] −> Maybe a
findIndex :: (a −> Bool) −> [a] −> Maybe Int
findIndices :: (a −> Bool) −> [a] −> [Int]
nub :: Eq a => [a] −> [a]
nubBy :: (a −> a −> Bool) −> [a] −> [a]
delete :: Eq a => a −> [a] −> [a]
deleteBy :: (a −> a −> Bool) −> a −> [a] −> [a]
(\\) :: Eq a => [a] −> [a] −> [a]
deleteFirstsBy :: (a −> a −> Bool) −> [a] −> [a] −> [a]
union :: Eq a => [a] −> [a] −> [a]
unionBy :: (a −> a −> Bool) −> [a] −> [a] −> [a]

intersect :: Eq a => [a] −> [a] −> [a]
intersectBy :: (a −> a −> Bool) −> [a] −> [a] −> [a]
intersperse :: a −> [a] −> [a]
transpose :: [[a]] −> [[a]]
partition :: (a −> Bool) −> [a] −> ([a],[a])
group :: Eq a => [a] −> [[a]]
groupBy :: (a −> a −> Bool) −> [a] −> [[a]]
inits :: [a] −> [[a]]
tails :: [a] −> [[a]]
isPrefixOf :: Eq a => [a] −> [a] −> Bool
isSuffixOf :: Eq a => [a] −> [a] −> Bool
mapAccumL :: (a −> b −> (a, c)) −> a −> [b] −> (a, [c])
mapAccumR :: (a −> b −> (a, c)) −> a −> [b] −> (a, [c])
unfoldr :: (b −> Maybe (a,b)) −> b −> [a]
sort :: Ord a => [a] −> [a]
sortBy :: (a −> a −> Ordering) −> [a] −> [a]
insert :: Ord a => a −> [a] −> [a]
insertBy :: (a −> a −> Ordering) −> a −> [a] −> [a]
maximumBy :: (a −> a −> Ordering) −> [a] −> a
minimumBy :: (a −> a −> Ordering) −> [a] −> a
genericLength :: Integral a => [b] −> a
genericTake :: Integral a => a −> [b] −> [b]
genericDrop :: Integral a => a −> [b] −> [b]
genericSplitAt :: Integral a => a −> [b] −> ([b],[b])
genericIndex :: Integral a => [b] −> a −> b
genericReplicate :: Integral a => a −> b −> [b]

zip4 :: [a] −> [b] −> [c] −> [d] −> [(a,b,c,d)]
zip5 :: [a] −> [b] −> [c] −> [d] −> [e] −> [(a,b,c,d,e)]
zip6 :: [a] −> [b] −> [c] −> [d] −> [e] −> [f]
 −> [(a,b,c,d,e,f)]
zip7 :: [a] −> [b] −> [c] −> [d] −> [e] −> [f] −> [g]
 −> [(a,b,c,d,e,f,g)]
zipWith4 :: (a−>b−>c−>d−>e) −> [a]−>[b]−>[c]−>[d]−>[e]
zipWith5 :: (a−>b−>c−>d−>e−>f) −>
 [a]−>[b]−>[c]−>[d]−>[e]−>[f]
zipWith6 :: (a−>b−>c−>d−>e−>f−>g) −>
 [a]−>[b]−>[c]−>[d]−>[e]−>[f]−>[g]
zipWith7 :: (a−>b−>c−>d−>e−>f−>g−>h) −>
 [a]−>[b]−>[c]−>[d]−>[e]−>[f]−>[g]−>[h]
unzip4 :: [(a,b,c,d)] −> ([a],[b],[c],[d])
unzip5 :: [(a,b,c,d,e)] −> ([a],[b],[c],[d],[e])
unzip6 :: [(a,b,c,d,e,f)] −> ([a],[b],[c],[d],[e],[f])
unzip7 :: [(a,b,c,d,e,f,g)] −> ([a],[b],[c],[d],[e],[f],[g])

01/prelude.hs, page 10

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− Numeric −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
fromRat :: (RealFloat a) => Rational −> a

showSigned :: (Real a) => (a −> ShowS) −> Int −> a −> ShowS
showIntAtBase :: Integral a => a −> (Int −> Char) −> a −> ShowS
showInt :: Integral a => a −> ShowS
showOct :: Integral a => a −> ShowS
showHex :: Integral a => a −> ShowS

readSigned :: (Real a) => ReadS a −> ReadS a
readInt :: (Integral a) => a −> (Char−>Bool) −> (Char−>Int) −> ReadS a
readDec :: (Integral a) => ReadS a
readOct :: (Integral a) => ReadS a
readHex :: (Integral a) => ReadS a

showEFloat :: (RealFloat a) => Maybe Int −> a −> ShowS
showFFloat :: (RealFloat a) => Maybe Int −> a −> ShowS
showGFloat :: (RealFloat a) => Maybe Int −> a −> ShowS
showFloat :: (RealFloat a) => a −> ShowS

floatToDigits :: (RealFloat a) => Integer −> a −> ([Int], Int)

readFloat :: (RealFrac a) => ReadS a
lexDigits :: ReadS String

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− Maybe −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
isJust, isNothing :: Maybe a −> Bool
fromJust :: Maybe a −> a
fromMaybe :: a −> Maybe a −> a
listToMaybe :: [a] −> Maybe a
maybeToList :: Maybe a −> [a]
catMaybes :: [Maybe a] −> [a]
mapMaybe :: (a −> Maybe b) −> [a] −> [b]

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− Char −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
isAscii, isLatin1, isControl, isPrint, isSpace, isUpper :: Char −> Bool
isLower, isAlpha, isDigit, isOctDigit, isHexDigit, isAlphaNum :: Char −> Bool

toUpper, toLower :: Char −> Char

digitToInt :: Char −> Int
intToDigit :: Int −> Char

ord :: Char −> Int
chr :: Int −> Char

lexLitChar :: ReadS String
readLitChar :: ReadS Char
showLitChar :: Char −> ShowS

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− System −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
data ExitCode = ExitSuccess | ExitFailure Int
 deriving (Eq, Ord, Read, Show)

getArgs :: IO [String]
getProgName :: IO String
getEnv :: String −> IO String
system :: String −> IO ExitCode
exitWith :: ExitCode −> IO a
exitFailure :: IO a

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− CPUTime −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
getCPUTime :: IO Integer −−−v pikosekundach−−−
cpuTimePrecision :: Integer −−−kolik nejmene se umi odmerit−−−

01/prelude.hs, page 11

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− Random −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
class RandomGen g where
 genRange :: g −> (Int, Int)
 next :: g −> (Int, g)
 split :: g −> (g, g)

−−−−−−−−−−−−−−−− A standard instance of RandomGen −−−−−−−−−−−
data StdGen = ... −− Abstract

instance RandomGen StdGen where ...
instance Read StdGen where ...
instance Show StdGen where ...

mkStdGen :: Int −> StdGen

−−−−−−−−−−−−−−−− The Random class −−−−−−−−−−−−−−−−−−−−−−−−−−−
class Random a where
 randomR :: RandomGen g => (a, a) −> g −> (a, g)
 random :: RandomGen g => g −> (a, g)

 randomRs :: RandomGen g => (a, a) −> g −> [a]
 randoms :: RandomGen g => g −> [a]

 randomRIO :: (a,a) −> IO a
 randomIO :: IO a

instance Random Int where ...
instance Random Integer where ...
instance Random Float where ...
instance Random Double where ...
instance Random Bool where ...
instance Random Char where ...

−−−−−−−−−−−−−−−− The global random generator −−−−−−−−−−−−−−−−
newStdGen :: IO StdGen
setStdGen :: StdGen −> IO ()
getStdGen :: IO StdGen
getStdRandom :: (StdGen −> (a, StdGen)) −> IO a

01/prelude.hs, page 12

