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Abstract

We present a class P of simple finite structures which induce the
countable homogeneous universal poset. We also define the notion
of a finitely presented countable structure and conjecture that ev-
ery generic structure for a finitely axiomatizable class of structures is
finitely presented. This is verified for undirected graphs, tournaments
and posets. The structure P¢ extends Conway’s surreal numbers and
their linear ordering to posets.

1 Introduction

A countable partially ordered set P (for brevity from now on poset) is said
to be universal if it contains any countable poset (as an induced subposet).

A poset P is said to be homogeneous if every partial isomorphism between
finite subposets extends to an isomorphism (of P).

It is a classical model theory result that a homogeneous universal poset
exists and that it is up to an isomorphism uniquely determined. This poset
is naturally called generic poset and it will be denoted by P. This paper
is devoted to the study of P. P can be constructed in a standard model
theoretic way as Fraissé limit of all finite posets: we start with the singleton
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poset and at n-th step we add new vertices which extend the given poset in
all possible (consistent) ways to a poset with (n + 1) vertices.

This procedure applies (as proved by Fraissé) not only to posets but
to structures in general and thus, in particular, the homogeneous universal
(undirected) graph exists. This graph is called Rado graph R. We state two
of its striking properties which motivate the present paper (see the excellent
survey by P. Cameron [3], see also [5, 9]):

1. R is isomorphic to the following graph R.: vertices of R are all finite
sets (in some countable model of set theory) with edges of the form
{A, B} where either A € B or B € A.

2. R is isomorphic to the following graph Ry: vertices of Ry are all
natural numbers with edges of the form {m,n} where the m-th digit
in the binary expansion of n is 1.

There are other explicit construction by means of quadratic residua and
universal sequences, see [3]. It is remarkable that all these seemingly unre-
lated constructions define the same graph R. The simplicity of these con-
structions motivated our notion of finitely presented structures:

Definition 1.1 A countable structure S is finitely presented if there exists a
finitely axiomatizable theory T and finitely ariomatizable theories Tr where
R is any relation occurring in S such that all finite models of T (or all
finite structures aziomatizable by T ) in the countable set theory together with
relations among them induced by theories Tg induce a structure isomorphic

to S.

Let us state two particular cases of this definition explicitly:

A graph G is finitely presented if there exist finitely axiomatizable theories
Ty and Tg such that the following graph G is isomorphic to G: vertices of G
are all models of M of Ty (in a countable model of set theory); edges of G
are all pairs of models { M, M'} which satisfy 7.

Both constructions R and Ry above are obviously finite presentations
of R.

A poset P is finitely presented if there exists a finitely axiomatizable
theories 7p, 7< such that the following poset P is isomorphic to P: vertices
of P are all models M of 7p (in a countable model of finite set theory) with
M < M"iff (M, M') satisfy T<.

For posets the situation is more complicated than for graphs. In fact an
explicit construction of the generic poset P by means of all finite models
of a finitely axiomatizable structure presented an open problem. The main



result of this paper is a construction of a finitely presented poset Pr which
is isomorphic to P. This is proved in Section 3.

We found the construction of Pr in a broader context of study of fi-
nite presentation of homogeneous structures, homogeneous undirected and
directed graphs, tournaments and posets. For these structures the classi-
fication programme has been completed in a series of difficult papers (see
e.g. [13, 4, 20]) all based on the Fraissé equivalent definition of homogeneous
structures as amalgamation classes of finite structures. Particularly the ho-
mogeneous undirected graphs were characterised in [13]. We shall prove that
all these graphs are finitely presented. For some graphs on Lachlan-Woodrow
list (all finite examples, equivalences and Turdn graphs) this is an easy exer-
cise. For Rado graph this has been stated above. We prove in Section 2 that
also generic graphs for the class Forb(Kj}) of all finite graphs which do not
contain a complete graph Kj, are finitely presented for every k£ > 3. Thus
all homogeneous graphs are finitely presented (Corollary 2.1).

For tournaments and oriented graphs (two other structures with solved
classification problem) the situation is different in that we have to construct
a finite presentation even for the generic oriented graph and for the generic
tournament. This is done in Section 2, Theorem 2.5 and in Section 5, Corol-
lary 5.1. These constructions lie in the background of the construction of
poset Pe (in Section 3) which is the basis for Pg.

We further refine this construction to any oriented homogeneous graph of
type Forb(T1,...,T,) where T; are (forbidden) tournaments. It follows that
also all homogeneous tournaments are finitely axiomatizable (Corollary 5.1).
As there are continuously many homogeneous oriented graphs we cannot
expect finite presentation of all homogeneous oriented graphs. (See [22] for
results for higher cardinality A-categorical structures.) This shows that there
are natural limits to the programme of representing homogeneous structures
by means of simple structures.

The classification of homogeneous posets is easier than for undirected
graphs. The classification was given by Schmerl [20] and it appears that
apart from anti-chains, the set Q of all rationals, disjoint unions of Q and
“blowing up” Q, the only other homogeneous poset is the generic one.

Several examples of finitely presented linear orders and posets are easy
to find:

e The set of all natural numbers (N, <) (proved by von Neumann);
e the set Q (by standard construction from N);

e P x P’ for finitely presented P and P’;



e lexicographic product of P and P’ for finitely presented P and P'.

It follows that most homogeneous posets are finitely presented. The only
remaining case is the generic poset P which is shown to be finitely presented
in Section 3 (by means of the structures Pc and Pr).

It seems that homogeneous structures are likely to be finitely presented.
Intuitively a high degree of symmetry (such as homogeneity) perhaps leads
to a “low entropy” and thus in turn perhaps to a concise representation.
(Remark that “concise representations” of finite structures were studied from
complexity point of view for graphs ([15, 21]) and posets ([7, 17]). These
considerations and the above results perhaps suggest the following:

Conjecture 1.1 LetT be a finitely axiomatizable theory. Let M be the class
of all finite models of T. Then the generic (i. e. homogeneous universal)
structure corresponding to M, if it exists, is finitely presented.

On the other hand our main result (the construction of the structures Pe
and Px) may be viewed as an extension of surreal numbers of Conway [6, 12]
to posets. In Section 4 we exhibit this connection.

Our research was also motivated by trying to solve several problems re-
lated to universal posets represented by finite graphs with special properties.
It has been proved in a different (category theory) context (see [8, 19]) that
the class of all finite graphs ordered by the existence of homomorphism is
the universal poset. (However note that neither this poset nor posets con-
structed in [8, 19] are homogeneous.) An alternative combinatorial proof of
this result [16] was a starting point of this research.

The techniques of [8, 19] also do not extend to some of the basic subclasses
of graphs such as planar graphs or graphs with bounded degrees. In fact
these classes do not represent arbitrary subgroups [1] and monoids [2]. Yet
by means of the techniques of this paper we can construct universal posets for
both planar and bounded-degree graphs. This also solves a problem stated in
[18]. This together with a deeper analysis of finitely presented homogeneous
oriented graphs is going to appear in the sequel [10] of this paper. Here we
concentrate mostly on posets.

2 Homogeneous Directed Graphs

In this section we find a finite presentation of the homogeneous universal
(generic) directed graph ﬁ and also of some other homogeneous graphs. We
shall study the homogeneous graphs by means of extension properties. This
we briefly recall for completeness (see [9]).
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Definition 2.1 Let C be an isomorphism closed class of graphs, G a graph.

We say that G has extension property for C if the following holds: For any

pair of finite subgraphs G',G" € C and any embeddings ¢’ : G' — G, ¢ :

G' — G" there exists an embedding ¢" : G" — G such that ¢" o p = ¢'.
(An embedding is a isomorphism onto an induced subgraph.)

The extension property implies both universality and homogeneity of G

(see [9]):

Lemma 2.1 For any hereditary isomorphism closed class of finite graphs C,
every graph G having extension property for C is universal and homogeneous.

This statement is a useful tool in proving that a finitely presented structure
is generic. As a warm up we prove this for graph R¢:

Theorem 2.2 R has extension property for class of finite undirected graphs.
Thus R¢ 1s isomorphic to the generic undirected graph R.

Proof. Let My and M; be two disjoint finite sets of vertices of Rc. (The
subgraph of R¢ induced by M; U M, plays the réle of G’ in the extension
property.) We are looking for the vertex X of R¢ such that Y € X for every
Y € My and Y ¢ X for every Y € M,. It suffices to put X = M; U {z}
where M; ¢ M, satisfies My U {z} ¢ M, and M, ¢ M, U {z}.

Thus R has extension property and thus it is generic for the class of all
finite undirected graphs. g

Analogously we will construct the homogeneous universal directed graph

. In order to easily embed our construction into set theory, we first intro-
duce alternative definition of ordered pair. In the rest of the paper we will
use a fixed countable model of set theory 9 containing single atomic element

Q.
Definition 2.2 For every set M we put
M, ={A;Ae M,0 ¢ A};
Mr={A;AU{0} e M,A#0,0 ¢ A}.
For any set A and B we will denote by (A | B) the set
AU{MU{O} M € B}

For any M not containing O holds (M, | Mr) = M. Thus for the
model 9, the class of sets not containing O represents the universum of the
recursively nested ordered pairs.



Definition 2.3 Define graph ﬁe as follows: The vertices are all sets not
containing O. (M, N) is an arc of R¢ iff either M € My or N € Mg.
(Recall, that we consider a fized countable model M of set theory containing
an additional atomic element O.)

Theorem 2.3 7_2)6 has extension property and thus it is the homogeneous
universal directed graph for the class of all directed graphs. Thus Re is
isomorphic to R.

Proof. We proceed analogously to the proof of Theorem 2.2: let M_, M,
and M, be three disjoint sets of vertices, where My N (M_ U M) is empty.
We need to find vertex M with following properties:

I. For each X € M_ there is an edge from X to M.
IT. For each X € M, there is an edge from M to X.

III. For each X € (M_ U M, U M,) there are no other edges from X to M
or M to X then ones required by I. and II.

x ¢ U m.

meM_UM UM,

Obviously vertex M = (M_U{z} | M, ) has the required properties I.,II.,III..
U

Fix any

Thus generic graphs (both undirected and directed) are finitely presented.
We can extend these representations to other homogeneous structures. We
start with undirected graphs:

Definition 2.4 By R¢ we denote homogeneous universal (i. e. generic)

graph for class C of undirected graphs (if it exists). By ﬁc we denote homo-
geneous universal graph for class C of directed graphs (if it ezists).

We denote by Forb(G) the class of all finite graphs not containing G as
an tnduced subgraph.

We now construct graphs Rrorb(k;),c, K = 3 which are isomorphic to the
generic graph Rrpom(k,)- The construction of graph Rreom(ky),e, & > 3, is
an extension of the construction of R¢ (recall that a finite set S is called
complete for any X, Y € S, X #Y either X e Y or Y € X):

Definition 2.5 Define Reorn(ky),e, k > 3 as follows: The vertices of Ryporb(ky),e
are all sets which do not contain a complete subset with k — 1 elements; two
vertices of S and S' form an edge of Ryorv(k,),e iff either S € S" or S' € S.
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Thus Rrorb(k;,),e 18 the restriction of the graph Re to the class of all sets
without complete subset of size k — 1.

Theorem 2.4 Rrow(k,),e has extension property. Consequently Reor(k,),e
is the homogeneous universal undirected graph for the class Forb(K}).

Proof. Rpom(k,),e does not contain Kj: For contradiction, let us suppose
that Vi, Vs, ..., Vi are edges of complete graph. Without loss of generality we
may assume that V; € V;,; foreach i =1,2,...,k — 1. Since K} is complete
graph, V; € Vj for each i = 1,2,...,k — 1. It follows that {Vi,..., Vi 1}
represents the prohibited subset S. Thus V} is not vertex of Reor(xy)-

The extension property can be verified in analogical way as we did for
R in Theorem 2.2. (The constructed set satisfies the conditions required by
definition Rporb(k)-) O

Corollary 2.1 All homogeneous undirected graphs are finitely presented

Proof. Clearly a graph G is finitely presented iff the complementary graph
G is finitely presented. The statement follows from the discussion in Section
1 and Theorem 2.2 and 2.4. 4

Finally, we extend our construction of the generic directed graph ﬁe to
the graphs R rpom(r),e not containing a tournament 7'. This is slightly more
technical (although it parallels the undirected case).

Put 7= (V, E) and for each v € V put

Lv)={v" € V;(¥',v) € E}

R(v) ={v' € V;(v,0) € E}

(observe that L(v) U R(v) =V — {v}.)
Our vertices will be sets M which satisfy the following condition C, (M)
(for each v € V).

Cy(M): There are no sets X, v' € L(v) U R(v) satisfying the following
I. X, € My, for v' € L(v);
II. X,y € Mg for v' € R(v);

III. For every arc (v',v") € E, v',v" € L(v) U R(v) either X,y € (Xy)g or
Xv” € (Xv’)R-

In the other words the sets X, v € L(v) U R(v) do not represent the
tournament 7" — {v} in 7%6.



Definition 2.6 Denote by ﬁForb(T),e the directed graph ﬁe restricted to the
class of all sets M which satisfy the condition Cy,(M) for every v € V.

Theorem 2.5 ﬁForb(T),e 18 1somorphic to ﬁForb(T), explicitly TZ)Forb(T),e 18
homogeneous universal graph for class of all directed graphs not containing
T.

Proof. Proof is analogous to the proof of Theorem 2.4. O

This can be extended to classes Forb(7) for any finite set of tournaments
(but clearly not to all classes Forb(7)). In Section 5 we shall also prove that
all homogeneous tournaments are finitely presented.

3 Universal Homogeneous Structure P

In this section we further modify the finite presentation of ﬁe to a finite
presentation of the generic poset P. We shall proceed in two steps. First we

define a poset Pc which extends the definition of ﬁe. The definition of P¢
is recursive and thus not finitely presented. However it is possible to modify
the construction of P¢ to a finite presentation Px. This is done in the last
part of this Section (see Definition 3.3 and Theorem 3.7).

We use the same notation as in Section 2. Particularly we work in a fixed
countable model 90t of theory of finite set extended by a single atomic set O.
Also recall the following notations:

My ={A;Ae M,0 ¢ A}
My = {A; (AU{O}) € M, A £ 0,0 ¢ A}.
The following is our basic construction:

Definition 3.1 Denote by Pc the following relation:
The elements of Pe are all sets M with the following properties:

1. (correctness)
(a) O ¢ M;
(b) ML UMR C Pe;
(¢) MpN Mg = 0.

2. (ordering property) ({A}UAg)N({B}UBL) # 0 for each A € M, B €
MR;'



3. (left completeness) A, C My, for each A € My;
4. (right completeness) Br C Mg for each B € Mg;

The relation of Pc is denoted by < and it is defined as follows: We put
M < N if:
({M}UMg)n ({N}UNL) #0

We write M < N if either M < N or M = N.

The class Pc is nonempty. It is of course M = 0 = (0 | ) € Pe.
(Obviously correctness property holds. Because My, = (), Mg = 0, ordering
property and completeness properties follow trivially.)

Here are a few examples of non-empty elements of the structure P. are:

(010)
(01 {(0]0)})
({0 10),(0[{(0]0)})}10)

It is a non-trivial fact that P is a poset. This will be proved after
introducing some auxiliary notions:

Definition 3.2 Any element W € (AU Ag) N (B U By) is called a witness
of inequality A < B.
The level of A € P¢ is defined as follows:

o = o
I(A) = maz(l(B);B € AL UAg) +1 for A# 0.

We observe the following early facts (which follow directly from the defi-
nition of Pe):

Fact 1 X < A<Y forevery A€ Pe, X € AL and Y € Ag.
Fact 2 A < WAB < B for any A < B and witness WAZ of A < B.

Fact 3 Let A < B and let WAB to be witness of A < B. Then [(WAB) <
min(l(A),(B)) and either (WAB) < I(A) or (WAB) < I(B).

First we prove transitivity of the strict inequality.

Lemma 3.1 Relation < is transitive for the class Pc.



Proof. Assume that three elements A, B,C' of Pc satisfy A < B < C.
We prove that A < C holds as well. Let W4E and W5 to be witnesses
of the inequalities A < B and B < C respectively. First we prove that
WAB < WBC. We distinguish four cases (according to the definition of the
witness):

1. WAB € BL and WBC € BR.

In this case it follows from Fact 1 that W48 < WBC,

2. WAB = B and WBC ¢ Bp.
Then WBC is witness of the inequality B < W2 and thus W4B <
WBC,

3. WAB ¢ B, and WB® = B.

Inequality W48 < WBC follows symmetrically to the previous case.
4. WAB = WBC = B (and thus W48 < W5C),

In the last case B is the witness of the inequality A < C'. Thus we may

assume that WAB £ WBC, Let WAC be a witness of the inequality W42 <
WEC. Finally we prove that W4 is a witness of the inequality A < C. We
distinguish three possibilities:

1. WAC = WA4B = 4.
2. WAC = WAB and WAC € Ap.
3. WAC € W4B | then also WAY € Ay from the completeness property.

It follows that either W4C = A or WAC € Ap. Analogously either WAC = C
or WAC € C, and thus W4C is the witness of inequality A < C. O

Lemma 3.2 Relation < is strongly antisymmetric on the class of elements

of Pe.

Proof. Assume that A and B, A < B < A, is a counterexample with
minimal [(A) + [(B). Let W4B be a witness of the inequality A < B and
WEBA a witness of reverse inequality. From Fact 2 it follows that A < WA4B <
B < WBA < A < WAB, From the transitivity we know that WAB < WBA
and WBA < WAB,

Again we shall consider 4 possible cases:
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1. WAB = 1y/BA,

From the disjointness of the sets A, and Ag it follows that W4 =
WBA = A, Symmetrically WAZ = WB4 = B which is a contradiction.

2. Either WAB = A and WB4 = B or WAB = B and W54 = A.

Then contradiction follows in both cases from the fact that I[(A4) < I(B)
and [(B) < I(A) (by Fact 3).

3. WAB £ A WAV £ B, WAB £ WBA,

Then ((WAB) < I(A) and [(WAB) < L(B). Additionally {(W5B4) <
I(A) and {(W5B4) < [(B) and thus A and B is not the minimal counter
example.

4. WBA L A WBA AL B, WAB £ WBA,

The contradiction follows symmetrically to the previous case from min-
imality of [(A) + I(B).

O
Theorem 3.3 < is partial ordering on the class of elements of Pe.

Proof. Reflexivity of the relation follows directly from the definition, tran-
sitivity and antisymmetry follows from Lemmas 3.1 and 3.2. U

Now we are ready to prove the main result of this section:
Theorem 3.4 Pc is the universal and homogeneous partially ordered class.

First we show the following lemma:
Lemma 3.5 Pc has the extension property.

Proof. Let M be a finite subset of the elements of P.. We want to extend the
partially ordered set induced by M by the new element X. This extension
can be described by three subsets of M: M _ containing elements smaller
than X, M, containing elements greater than X and M, containing elements
incomparable with X. Since extended relation is partial order we have the
following properties of these sets:

I. Any element of M_ is strictly smaller than any element of M, ;
II. B< Aforno Ae M_, B € My;
III. A< Bforno Ae M,, Be My;

11



IV.

M_, M, and M, form a partition of M.

Put

M: U BLUM,;
BeM_
BeMy

We verify that the properties 1., IL., IIL., IV. still hold for M_, M,

ad L

ad II.

ad III.

ad IV.

We prove that any element of M_ is strictly smaller than any element
of M,:

Let A€ M_ A" € M,. We prove A < A'. By the definition of M_
there exists B € M_ such that either A = B or A € By. By the
definition of M, there exists B’ € M, such that either A’ = B’ or
A" € Bj,. By the definition of < we have A < B, B < B’ (by I.) and
B' < A’ again by the definition of <. It follows A < A'.

We prove that B < A forno A € M_, B € M,:

Let A € M_,B € M, and let A’ € M_ satisfies either A = A’ or
A e A, We know that B £ A’ and as A < A’ we have also B £ A.
We prove that A < B forno A € M, , B € Mj;

We proceed similarly to ad II.

We prove that M_, M, and M, are pairwise disjoint:

M_nNM, = () follows from I. M_NM, = () follows from II. M, N My = ()
follows from III.

It follows, that A = (M_ | M, ) is element of P with the desired in-
equalities to the elements in the sets M_ and M.

Obviously each element of M_ is smaller than A and each element of M,
greater than A.

It remains to be shown that each N € M, is incomparable with A. How-
ever we will run into problem here: it is possible that A = N. We can avoid
this problem by first considering the set:

M = U Br U M.

BeM

It is then easy to show that B = (() | M) is an element of P strictly smaller
than all elements of M.

12
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Figure 1: Partially ordered set P

Finally we construct the set A’ = (A, U{B} | Ar). The set A’ has the
same properties with respect to the elements of the sets M and M, and
differs from any set in M. It remains to be shown that A’ is incomparable
with V.

Assume for contrary, for example, that N < A" and WN4 is the witness
of the inequality. Then WN4" € M_ and N < WN4'. Recall that N € M.
From IV. above and definition of A follows that N < W4, From ad III.
above follows that there is no choice of elements such as N < W4,

The case N > A’ is analogous. O

Proof. Proof of Theorem 3.4 follows by combining Lemma 3.5 and Lemma
2.1. 0

Example 3.1 The above proof when applied to the poset P from Figure 1
(with the indicated order of elements) will proceed as follows:

c(l) = (010)

c(2) = (01{(0]0)})

c3) = ({(010),(0[{(0[0)})}]0)

c4) = ({1 o))} [{HD10), (01 {0[0)})}[0)})

It is not clear from Definition 3.1 that Pc has finite representation (Def-
inition 3.1 is recursive). We will now give the finite representation Px:

Definition 3.3 Elements of P are all finite partially ordered sets (P, <p)
with the greatest element denoted by m(P,<p). In addition each M € P
satisfies properties analogous to elements of Pe:

1. (correctness)
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(a) O ¢ M;
(b) My, UMg C P;
(C) MLﬂMRZ(Z).

2. (ordering property) ({A}UAg)N({B}UBL) # 0 for each A € M, B €
MR;'

3. (left completeness) A, C My, for each A € My;
4. (right completeness) Br C Mg for each B € Mpg;

The relation <p is the transitive closure of the set {(A, B); A € BLUBg, B €
P}.
The relation <p, of Pr is defined by comparison of the greatest elements:

(P, <P) S'p}. (Pl, <P’) zﬁm(P, <P) < m(P', <P’) m PE'
Lemma 3.6 P C P¢ for each (P,<p) € Pr.

Proof. Suppose on the contrary that there is A € P such that A ¢ Pe.
Without loss of generality we may assume that there is no B € P, B ¢ P.
such that B <p A. From the definition of <p it follows that C' € P, for each
C € ApUAg. Thus for A we have (i) (b) in the definition above equivalent to
the (i) (b) from the Definition 3.1. The rest of the definitions are equivalent
t00, so we have A € Pe. O

Theorem 3.7 Pr is finitely presented and isomorphic to Pe.

For the correctness of the definition of Px we have to show that m(P, <p)
are elements of P.. This follows from Lemma 3.6.
The poset Pr is finitely presented. We claim that the correspondence

¢: (P, <p)— m(P,<p)

is isomorphism of Pz and Pe.
Clearly it suffices to prove that ¢ is bijective. This follows from the
following two facts:

1. For each (P, <p) the set P contains all the elements of P which appear
in the construction of m(P, <p) € Pc. (This is the consequence of (i)
(b)) and both Definition 3.1 and definition above.)

14



2. For each (P, <p) the set P consists only of elements of P which appear
in the construction of m(P, <p).

Let A" <p m(P,<p). By definition of <p we have A', A%,... A" =
m(P, <p) such that A € A" U A But as m(P, <p) € Pe we aget
also A € Pc by definition 3.1 (ii).

So for different sets, the greatest elements are different and each M € Pc
can be used as a greatest element to construct an element of Px.

Corollary 3.1 All homogeneous posets are finitely presented.

Proof. Using the Schmerl classification [20] and by remarks in Section 1 all
homogeneous non-generic posets are finitely presented. The generic poset P
is isomorphic to Pc by Theorem 3.4. O

4 Conway’s numbers

Definition 4.1 A surreal number is a pair x = {x"|z®}, where every mem-
ber of the sets x and x% is a surreal number and every member of z is
strictly lower than every member of z%.

We say that a surreal number x is lower than or equal to the surreal
number y if and only if y is not less than any member of ¥ and any member
of y® is not less than or equal to .

We will denote the class of surreal numbers by S.

The definition of surreal numbers is very close to the definition of Pc.
Since the elements of P, are formally similar to S, we can define new “Con-
way’s inequality”:

Definition 4.2 For elements A, B € Pc we write A <s B, when there is no
le AL, B<gl and nor € Bg, r <g X.

Theorem 4.1 For any A, B € P A < B implies A <g B.

Proof. We proceed by induction on I(A) + I(B).
For empty A and B the theorem holds as they are not comparable by <.
Let A < B and W*P be the witness. In the case W42 #£ A B, then
A <g WAB <4 B by induction. In the case A € By, then A <g B from
definition of <g. O

Thus the surreal numbers S may be thought as a linear extension of Pe.
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5 Concluding remarks

1. The above finite presentations can be extended to further classes of di-
rected, oriented homogeneous graphs. This we intend to pursue in the near
future.

2. In Theorem 3.4 we presented what we believe to be the first finite presen-
tation of the generic (i. e. homogeneous and universal) poset.

One should stress that even the finite presentation of universal poset is
a non-trivial question which presented a problem. The problem has been
solved in category-theory context by [8] and [19]. However none of these
structures is homogeneous. For example the extension properties of the class
of finite graphs with the homomorphism order do not hold and also some
difficult combinatorial problem (such as Hedetniemi’s product conjecture)
may be expressed as particular extension properties, [16].
3. We can also consider oriented graphs (i. e. antisymmetric relations). Let
O denote the generic oriented graph. O has finite presentation O, which we

obtain as a variant of ﬁe: we say that M a is vertex of O, M € %e which
satisfies M, N Mp = (). (see Definition 2.3).
Further results of Section 2 may be modified accordingly.

4. Analogously to the relation R and Ry we can represent the ordered pairs
by integers:

Definition 5.1 Let M be any set not containing O. By code c¢(M) of M we
denote the integer

C(M) = Z QQC(A)+ Z 22c(B)+1'

A€eMy, AEMpg

Notice that ¢ is a bijection between the sets not containing O and the
integers. The predicate X € M, is equivalent to test whether 2¢(X)-th digit
of binary representation of ¢(m) is 1 and similarly for X € Mp. Thus all our
constructions involved in construction of R based on these predicates can
be expressed arithmetically.

5. The finite presentation of generic directed graph 7_2> and of the generic ori-
ented graph O may be used for finite presentation of the generic tournament
T.

Let O¢ be the finite presentation of O constructed in Remark 3. Denote
by Oy the arithmetic presentation of Oc. Explicitly, an integer n is a vertex
of Oy iff there exists an element M of O¢ such that n = ¢(M). (Thus in
addition to 5.1 we have that n does not contain 1’s on both positions 27 and
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2i4+ 1,7 >1.) Let n and n' be vertices of Oc. There is an edge from n to n'
if and only if there are sets M and M’ such as ¢(M) = n and ¢(M') = n' and
there is edge from M to N’ in O¢. Alternatively there is an edge from n to
n' if there is 1 on 2n/-th place of binary representation of n or on (2n+ 1)-th
place of binary representation of n'.

We use the finite presentation Oy of generic oriented graph O for the
construction of a finite presentation 7y of the generic tournament 7: An
integer n is vertex of Ty iff n is a vertex of Oy. The arcs of 7y will be all
arcs of Oy together with pairs (n,n'), n < n' for which (n',n) is not an arc
of ON.

Tx is obviously a tournament. 7y has the extension property by the same
proof as above for Theorem 2.3 (the construction vertex M has the same
properties in Ty as in 7_Z)N).

Thus we have:

Corollary 5.1 All homogeneous tournaments are finitely presented.

Proof. According to Lachlan’s classification [14] (see also [4]) all homoge-
neous tournaments are Cj, Q (dense linear order), S(2) (dense local order)
and the generic tournament. Only S(2) needs to be considered.

Intuitively, the tournament S(2) can be seen as a circuit with edges form-
ing a dense countable set of chords. The orientation is chosen in such a way
that shorter chords are oriented clockwise.

One can check that S(2) may be equivalently described as follows: The
vertices of S(2) are all rational numbers ¢, 0 < ¢ < 1. There is an arc (a, b)
in S(2) iff eithera <b<a+jora—1<b<a-—1.

O
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