We connect I will write I recently saw a cool construction of Hodkinson–Otto. It can be modified to solve our problem. Let argue in the Herwig–Lascar paper and dates back to Erdos.

After two years of hard work!

Every two-graph corresponds to an antipodal metric space. Aha, two-graphs are interesting:

1. Vertices are pairs
2. Distances are given by the following rules:
   - \(d(x, y) = 1\) if \(x \neq y\)
   - \(d(x, y) = 2\) if \(x = y\) or \(x\) and \(y\) are both in \(A\) or both in \(B\)
   - \(d(x, y) = 3\) otherwise
3. There is no edge between \(A\) and \(B\).
4. Every two-graph \(A\) with \(A\) and \(B\) has \(|A| = |B|\).

Classes of structures \(X\) has EPA if every \(A\) has an EPA preserving solution. This is just like metric spaces have only distances 1, 2 and 3 such that every two-graph can be described by a partial automorphism.

I will write \(B(x, y)\) for the label of the edge connecting vertices \(x\) and \(y\) in \(B\) if it exists. Every two-graph \(A\) corresponds to an antipodal metric space \(B\). After two years of hard work! OK, it easily follows that edges with label 3 form a perfect matching.

We construct \(C\) as follows:

1. Vertices of \(C\) are \((x, \chi_x)\), where \(x \in A\) and \(\chi_x\) is a function from vertices in \(A\) (resp. \(B\)) to \([0, 1]\).\(\chi_x\) is 1 on \(A\) (resp. \(B\)) and 0 otherwise.
2. Edges of \(C\) are \((x, \chi_x)\) and \((y, \chi_y)\) if and only if \(d_B(x, y) = 1\) (resp. \(d_B(x, y) = 2\)).
3. We have \(d_C((x, \chi_x), (y, \chi_y)) = 2\) if \(d_B(x, y) = 3\) and rule 2e does not apply.
4. \(d_C((x, \chi_x), (y, \chi_y)) = 3\) if \(d_B(x, y) = 2\) and rule 2e does not apply.

\(d_C((x, \chi_x), (y, \chi_y)) = 1\) if \(d_B(x, y) = 0\) and rule 2e does not apply.

\(d_C((x, \chi_x), (y, \chi_y)) = 0\) if \(d_B(x, y) = 0\) and rule 2e does not apply. The construction for you.

I will write