Structural Ramsey and EPPA	Graphs	Metric spaces	Faithfulness	Herwig-Lascar theorem	Strenghtening of Herwig-lascar
00000	000	000	0	000	00000

Unifying Themes in Ramsey Theory

Jan Hubička

Department of Applied Mathematics Charles University Prague

Joint work with Martin Balko, David Chodounský, David Evans, Matěj Konečný and Jaroslav Nešetřil

Unifying Themes in Ramsey Theory 2018, BIRS

Structural Ramsey and EPPA	Graphs	Metric spaces	Faithfulness	Herwig-Lascar theorem	Strenghtening of Herwig-lascar
•0000	000	000	0	000	00000

Ramsey classes and EPPA

Definition (Ramsey class, Reminder)

A class C of finite *L*-structures is Ramsey iff $\forall_{\mathbf{A},\mathbf{B}\in C} \exists_{\mathbf{C}\in C} : \mathbf{C} \longrightarrow (\mathbf{B})_2^{\mathbf{A}}$.

Definition (Extension property for partial automorphisms)

A class C of finite *L*-structures has extension property for partial automorphisms (EPPA or Hrushovski property) iff for every $A \in C$ there exists $B \in C$ containing A such that every partial automorphism of A extends to automorphism of B

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

Partial automorphism is any isomorphism between two (induced) substructures.

Structural Ramsey and EPPA	Graphs	Metric spaces	Faithfulness	Herwig-Lascar theorem	Strenghtening of Herwig-lascar
•0000	000	000	0	000	00000

Ramsey classes and EPPA

Definition (Ramsey class, Reminder)

A class C of finite *L*-structures is Ramsey iff $\forall_{\mathbf{A},\mathbf{B}\in C} \exists_{\mathbf{C}\in C} : \mathbf{C} \longrightarrow (\mathbf{B})_2^{\mathbf{A}}$.

Definition (Extension property for partial automorphisms)

A class C of finite *L*-structures has extension property for partial automorphisms (EPPA or Hrushovski property) iff for every $A \in C$ there exists $B \in C$ containing A such that every partial automorphism of A extends to automorphism of B

Partial automorphism is any isomorphism between two (induced) substructures.

Example (Classes with EPPA)

- Graphs (Hrushovski 1992)
- 2 Relational structures (Herwig 1998)
- 3 Classes described by finite forbidden homomorphisms (Herwig-lascar 2000)
- Free amalgamation classes (Hodkinson and Otto 2003)
- G Metric spaces (Solecki 2005, Vershik 2008)
- 6 Generalizations and specializations of metric spaces (Conant 2015)

Structural Ramsey and EPPA	Graphs	Metric spaces	Faithfulness	Herwig-Lascar theorem	Strenghtening of Herwig-lascar
•0000	000	000	0	000	00000

Ramsey classes and EPPA

Definition (Ramsey class, Reminder)

A class C of finite *L*-structures is Ramsey iff $\forall_{\mathbf{A},\mathbf{B}\in C} \exists_{\mathbf{C}\in C} : \mathbf{C} \longrightarrow (\mathbf{B})_2^{\mathbf{A}}$.

Definition (Extension property for partial automorphisms)

A class C of finite *L*-structures has extension property for partial automorphisms (EPPA or Hrushovski property) iff for every $A \in C$ there exists $B \in C$ containing A such that every partial automorphism of A extends to automorphism of B

Partial automorphism is any isomorphism between two (induced) substructures.

Example (Classes with EPPA)

- Graphs (Hrushovski 1992)
 Ramsey with free linear order (Nešetřil-Rödl 1977, Abramson-Harrington 1978)
- Palational structures (Herwig 1998) Ramsey with free linear order (N. R. 1977, A.H. 1978)
- Classes described by finite forbidden homomorphisms (Herwig-lascar 2000) Ramsey with free linear order (H.-Nešetřil 2016)
- Free amalgamation classes (Hodkinson and Otto 2003) Ramsey with free linear order (Nešetřil-Rödl 1977)
- Metric spaces (Solecki 2005, Vershik 2008) Ramsey with free linear order (Nešetřil 2005)
- Generalizations and specializations of metric spaces (Conant 2015) Ramsey with convex linear order (Nguyen Van Thé 2010, H.-Nešetřil 2016)

Sac

Structural Ramsey and EPPA	Graphs	Metric spaces	Faithfulness	Herwig-Lascar theorem	Strenghtening of Herwig-lascar
00000	000	000	0	000	00000

Strenghtenings of amalgamations

Observation (Nešetřil, 1980's)

Joint embedding + Ramsey \implies amalgamation property

Observation

Joint embedding + EPPA \implies amalgamation property

Structural Ramsey and EPPA	Graphs	Metric spaces	Faithfulness	Herwig-Lascar theorem	Strenghtening of Herwig-lascar
00000	000	000	0	000	00000

The construction of EPPA-witness A (3-path):

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへぐ

Structural Ramsey and EPPA	Graphs	Metric spaces	Faithfulness	Herwig-Lascar theorem	Strenghtening of Herwig-lasca
00000	000	000	0	000	00000

The construction of EPPA-witness A (3-path):

$\psi(a) = \{1\}$	$\psi(b)=\{1,2\}$
$\psi({\it c})=\{2,3\}$	$\psi(d) = \{3\}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへぐ

Represent vertices by sets of edges they belong to

Structural Ramsey and EPPA	Graphs	Metric spaces	Faithfulness	Herwig-Lascar theorem	Strenghtening of Herwig-lasca
00000	000	000	0	000	00000

The construction of EPPA-witness **A** (3-path):

$\psi(a) = \{1, 4\}$	$\psi(b)=\{1,2\}$
$\psi({\it c})=\{2,3\}$	$\psi(d) = \{3, 5\}$

- · Represent vertices by sets of edges they belong to
- · Make representation symmetric: extend sets freely so their sizes are the same

Structural Ramsey and EPPA	Graphs	Metric spaces	Faithfulness	Herwig-Lascar theorem	Strenghtening of Herwig-lasca
00000	000	000	0	000	00000

The construction of EPPA-witness **A** (3-path):

$\psi(a) = \{1, 4\}$	$\psi(b)=\{1,2\}$
$\psi({\it c})=\{{\tt 2},{\tt 3}\}$	$\psi(d) = \{3, 5\}$

- · Represent vertices by sets of edges they belong to
- · Make representation symmetric: extend sets freely so their sizes are the same

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Construction of EPPA-witness B

1 Vertices: all 2-element subsets of $\{1, 2, 3, 4, 5\}$.

2 Edges: Two sets are joined by an edge if they intersect.

Structural Ramsey and EPPA	Graphs	Metric spaces	Faithfulness	Herwig-Lascar theorem	Strenghtening of Herwig-lasca
00000	000	000	0	000	00000

The construction of EPPA-witness **A** (3-path):

$\psi(a) = \{1, 4\}$	$\psi(b)=\{1,2\}$
$\psi({\it c})=\{{\tt 2},{\tt 3}\}$	$\psi(d) = \{3, {\color{black}{5}}\}$

- · Represent vertices by sets of edges they belong to
- · Make representation symmetric: extend sets freely so their sizes are the same

Construction of EPPA-witness B

1 Vertices: all 2-element subsets of $\{1, 2, 3, 4, 5\}$.

- 2 Edges: Two sets are joined by an edge if they intersect.
- Partial automorphism of **A** "projects" to partial permutation of {1, 2, 3, 4, 5}.

Structural Ramsey and EPPA	Graphs	Metric spaces	Faithfulness	Herwig-Lascar theorem	Strenghtening of Herwig-lasca
00000	000	000	0	000	00000

The construction of EPPA-witness **A** (3-path):

$\psi(a) = \{1, 4\}$	$\psi(b)=\{1,2\}$
$\psi({\it c})=\{{\tt 2},{\tt 3}\}$	$\psi(d) = \{3, 5\}$

- · Represent vertices by sets of edges they belong to
- · Make representation symmetric: extend sets freely so their sizes are the same

Construction of EPPA-witness B

1 Vertices: all 2-element subsets of $\{1, 2, 3, 4, 5\}$.

- 2 Edges: Two sets are joined by an edge if they intersect.
- Partial automorphism of **A** "projects" to partial permutation of {1, 2, 3, 4, 5}.

Structural Ramsey and EPPA	Graphs	Metric spaces	Faithfulness	Herwig-Lascar theorem	Strenghtening of Herwig-lasca
00000	000	000	0	000	00000

The construction of EPPA-witness A (3-path):

$\psi(a) = \{1, 4\}$	$\psi(b)=\{1,2\}$
$\psi({\it c})=\{{\tt 2},{\tt 3}\}$	$\psi(d) = \{3, 5\}$

- · Represent vertices by sets of edges they belong to
- · Make representation symmetric: extend sets freely so their sizes are the same

Construction of EPPA-witness B

1 Vertices: all 2-element subsets of $\{1, 2, 3, 4, 5\}$.

2 Edges: Two sets are joined by an edge if they intersect.

• Partial automorphism of **A** "projects" to partial permutation of {1, 2, 3, 4, 5}.

 $1\mapsto 3,4\mapsto 5,2\mapsto 2$

Structural Ramsey and EPPA	Graphs	Metric spaces	Faithfulness	Herwig-Lascar theorem	Strenghtening of Herwig-lasca
00000	000	000	0	000	00000

The construction of EPPA-witness A (3-path):

$\psi(a) = \{1, 4\}$	$\psi(b)=\{1,2\}$
$\psi({\it c})=\{{\tt 2},{\tt 3}\}$	$\psi(d) = \{3, 5\}$

- · Represent vertices by sets of edges they belong to
- · Make representation symmetric: extend sets freely so their sizes are the same

Construction of EPPA-witness B

1 Vertices: all 2-element subsets of $\{1, 2, 3, 4, 5\}$.

2 Edges: Two sets are joined by an edge if they intersect.

• Partial automorphism of **A** "projects" to partial permutation of {1, 2, 3, 4, 5}.

$$1\mapsto 3,4\mapsto 5,2\mapsto 2$$

Partial permutation extends to full permutation and induces automorphism of B

Structural Ramsey and EPPA	Graphs	Metric spaces	Faithfulness	Herwig-Lascar theorem	Strenghtening of Herwig-lasca
00000	000	000	0	000	00000

The construction of **C** which is edge-Ramsey for an ordered 3-path:

Structural Ramsey and EPPA	Graphs	Metric spaces	Faithfulness	Herwig-Lascar theorem	Strenghtening of Herwig-lasc
00000	000	000	0	000	00000

The construction of **C** which is edge-Ramsey for an ordered 3-path:

Represent vertices by sets of edges they belong to

Structural Ramsey and EPPA	Graphs	Metric spaces	Faithfulness	Herwig-Lascar theorem	Strenghtening of Herwig-lasca
00000	000	000	0	000	00000

The construction of **C** which is edge-Ramsey for an ordered 3-path:

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- · Represent vertices by sets of edges they belong to
- Extend representation by vertices

Structural Ramsey and EPPA	Graphs	Metric spaces	Faithfulness	Herwig-Lascar theorem	Strenghtening of Herwig-lasc
00000	000	000	0	000	00000

The construction of **C** which is edge-Ramsey for an ordered 3-path:

$$A \xrightarrow{x \quad y} B \xrightarrow{a \quad b \quad c \quad d} \\ \psi'(x) = \{x, 1'\} & \psi(a) = \{a, 1\} \xrightarrow{2} \psi(b) = \{b, 1, 2\} \\ \psi'(y) = \{y, 1'\} & \psi(c) = \{c, 2, 3\} \ \psi(d) = \{d, 3\} \end{cases}$$

- · Represent vertices by sets of edges they belong to
- Extend representation by vertices
- Order vertices and order edges lexicographically: {*x*, *y*, 1'}, {*a*, *b*, *c*, *d*, 1, 2, 3}.

Construction of Ramsey graph $\mathbf{C} \longrightarrow (\mathbf{B})_2^{\mathbf{A}}$

By Graham-Rothschild thm. for $\Sigma = \{\circ\}$ get *N* s. t. for every coloring of 3-parametric subspaces of N-parametric space has monochromatic 7-parametric subspace.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- **Vertices**: Subsets of {1, 2..., *N*}
- 2 Edges: Two sets are joined by an edge if they intersect.

Structural Ramsey and EPPA	Graphs	Metric spaces	Faithfulness	Herwig-Lascar theorem	Strenghtening of Herwig-lasca
00000	000	000	0	000	00000

The construction of **C** which is edge-Ramsey for an ordered 3-path:

- · Represent vertices by sets of edges they belong to
- Extend representation by vertices
- Order vertices and order edges lexicographically: {*x*, *y*, 1'}, {*a*, *b*, *c*, *d*, 1, 2, 3}.

Construction of Ramsey graph $\mathbf{C} \longrightarrow (\mathbf{B})_2^{\mathbf{A}}$

By Graham-Rothschild thm. for $\Sigma = \{\circ\}$ get *N* s. t. for every coloring of 3-parametric subspaces of N-parametric space has monochromatic 7-parametric subspace.

- **1** Vertices: Subsets of {1, 2..., *N*}
- 2 Edges: Two sets are joined by an edge if they intersect.

Coloring of edges induces coloring of 3-parametric words and leads to monochromatic copy of 7-parametric word giving monochromatic copy of **B**.

Structural Ramsey and EPPA	Graphs	Metric spaces	Faithfulness	Herwig-Lascar theorem	Strenghtening of Herwig-lascar
00000	000	000	0	000	00000

From graphs to other classes of structures

- Both constructions extends to relational structures in general but needs more care.
- Neither construction can handle classes with forbidden substructure and needs to be replaced by more involved tools:
 - the (Nešetřil-Rödl's) partite construction for Ramsey objects
 - Herwig-Lascar theorem for EPPA in full generality. Hodkinson-Otto and earlier Herwig's construction for irreducible substructures.

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

• No direct equivalent for big Ramsey structures.

Structural Ramsey and EPPA	Graphs	Metric spaces	Faithfulness	Herwig-Lascar theorem	Strenghtening of Herwig-lascar
00000	000	000	0	000	00000

From graphs to other classes of structures

- Both constructions extends to relational structures in general but needs more care.
- Neither construction can handle classes with forbidden substructure and needs to be replaced by more involved tools:
 - the (Nešetřil-Rödl's) partite construction for Ramsey objects
 - Herwig-Lascar theorem for EPPA in full generality. Hodkinson-Otto and earlier Herwig's construction for irreducible substructures.
- No direct equivalent for big Ramsey structures.

Question

Can we find similarly systematic approach for EPPA and big Ramsey classes as the partite construction is for Ramsey classes?

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

Structural Ramsey and EPPA	Graphs	Metric spaces	Faithfulness	Herwig-Lascar theorem	Strenghtening of Herwig-lascar
00000	000	000	0	000	00000

From graphs to other classes of structures

- Both constructions extends to relational structures in general but needs more care.
- Neither construction can handle classes with forbidden substructure and needs to be replaced by more involved tools:
 - the (Nešetřil-Rödl's) partite construction for Ramsey objects
 - Herwig-Lascar theorem for EPPA in full generality. Hodkinson-Otto and earlier Herwig's construction for irreducible substructures.
- No direct equivalent for big Ramsey structures.

Question

Can we find similarly systematic approach for EPPA and big Ramsey classes as the partite construction is for Ramsey classes?

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

We show systematic proof of a strenghtening of Herwig-Lascar theorem.

Structural Ramsey and EPPA	Graphs	Metric spaces	Faithfulness	Herwig-Lascar theorem	Strenghtening of Herwig-lascar
00000	000	000	0	000	00000

Represent vertex x ∈ A by function ψ_x: A \ {x} → {0,1} that corresponds to given row of the asymmetric incidence matrix of A.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Structural Ramsey and EPPA	Graphs	Metric spaces	Faithfulness	Herwig-Lascar theorem	Strenghtening of Herwig-lascar
00000	000	000	0	000	00000

Represent vertex x ∈ A by function ψ_x: A \ {x} → {0,1} that corresponds to given row of the asymmetric incidence matrix of A.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへぐ

	a	b	С	d
a	0	0	0	0
b	1	0	0	0
С	0	1	0	0
d	0	0	1	0

Structural Ramsey and EPPA	Graphs	Metric spaces	Faithfulness	Herwig-Lascar theorem	Strenghtening of Herwig-lascar
00000	000	000	0	000	00000

Represent vertex x ∈ A by function ψ_x: A \ {x} → {0,1} that corresponds to given row of the asymmetric incidence matrix of A.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Structural Ramsey and EPPA	Graphs	Metric spaces	Faithfulness	Herwig-Lascar theorem	Strenghtening of Herwig-lascar
00000	000	000	0	000	00000

Represent vertex x ∈ A by function ψ_x: A \ {x} → {0,1} that corresponds to given row of the asymmetric incidence matrix of A.

Construction of EPPA-witness B

1 Vertices: All *x*-valuation functions $\chi_x : A \setminus \{x\} \to \{0, 1\}$ for $x \in A$. **2** Edges: $\chi_x \sim \chi_y \iff x \neq y$ and $\chi_x(y) \neq \chi_y(x)$.

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ → 豆 → のへで

Structural Ramsey and EPPA	Graphs	Metric spaces	Faithfulness	Herwig-Lascar theorem	Strenghtening of Herwig-lascar
00000	000	000	0	000	00000

Represent vertex x ∈ A by function ψ_x: A \ {x} → {0,1} that corresponds to given row of the asymmetric incidence matrix of A.

Construction of EPPA-witness B

- **1** Vertices: All *x*-valuation functions $\chi_x : A \setminus \{x\} \to \{0, 1\}$ for $x \in A$. **2** Edges: $\chi_x \sim \chi_y \iff x \neq y$ and $\chi_x(y) \neq \chi_y(x)$.
- Mapping $\psi : A \to B$ assigning $x \in A$ function ψ_x is an embedding $\psi : A \to B$.

Structural Ramsey and EPPA	Graphs	Metric spaces	Faithfulness	Herwig-Lascar theorem	Strenghtening of Herwig-lascar
00000	000	000	0	000	00000

Represent vertex x ∈ A by function ψ_x: A \ {x} → {0,1} that corresponds to given row of the asymmetric incidence matrix of A.

Construction of EPPA-witness B

- **1** Vertices: All *x*-valuation functions $\chi_x : A \setminus \{x\} \to \{0, 1\}$ for $x \in A$. **2** Edges: $\chi_x \sim \chi_y \iff x \neq y$ and $\chi_x(y) \neq \chi_y(x)$.
- Mapping $\psi : A \to B$ assigning $x \in A$ function ψ_x is an embedding $\psi : A \to B$.

• **B** is an EPPA witness of **A**.

Structural Ramsey and EPPA	Graphs	Metric spaces	Faithfulness	Herwig-Lascar theorem	Strenghtening of Herwig-lascar
00000	000	000	0	000	00000

Construction of EPPA-witness B of A

1 Vertices: All valuation functions
$$\chi_x : A \setminus \{x\} \to \{0, 1\}$$
 for $x \in A$.

2 Edges:
$$\chi_x \sim \chi_y$$
 iff $x \neq y$ and $\chi_x(y) \neq \chi_y(x)$.

Embedding $\psi : \mathbf{A} \to \mathbf{B}$ is $\psi(x) = \psi_x$ s.t. $\psi_x(y) = I_{x,y}$ (row of assym. incidence matrix).

Theorem (H., Konečný, Nešetřil, 2018)

Every partial automorphism φ of $\psi(\mathbf{A})$ extends to automorphism **B**.

Structural Ramsey and EPPA	Graphs	Metric spaces	Faithfulness	Herwig-Lascar theorem	Strenghtening of Herwig-lascar
00000	000	000	0	000	00000

Construction of EPPA-witness B of A

1 Vertices: All valuation functions
$$\chi_x : A \setminus \{x\} \to \{0, 1\}$$
 for $x \in A$.

2 Edges:
$$\chi_x \sim \chi_y$$
 iff $x \neq y$ and $\chi_x(y) \neq \chi_y(x)$.

Embedding $\psi : \mathbf{A} \to \mathbf{B}$ is $\psi(x) = \psi_x$ s.t. $\psi_x(y) = I_{x,y}$ (row of assym. incidence matrix).

Theorem (H., Konečný, Nešetřil, 2018)

Every partial automorphism φ of $\psi(\mathbf{A})$ extends to automorphism **B**.

Proof.

 φ induces partial permutation of A which extends to full permutation φ(A).

 $a\mapsto c,b\mapsto d,$

● ▲□▶▲□▶▲□▶▲□▶ □ ● ●

Structural Ramsey and EPPA	Graphs	Metric spaces	Faithfulness	Herwig-Lascar theorem	Strenghtening of Herwig-lascar
00000	000	000	0	000	00000

Construction of EPPA-witness B of A

1 Vertices: All valuation functions
$$\chi_x : A \setminus \{x\} \to \{0, 1\}$$
 for $x \in A$.

2 Edges:
$$\chi_x \sim \chi_y$$
 iff $x \neq y$ and $\chi_x(y) \neq \chi_y(x)$.

Embedding $\psi : \mathbf{A} \to \mathbf{B}$ is $\psi(x) = \psi_x$ s.t. $\psi_x(y) = I_{x,y}$ (row of assym. incidence matrix).

Theorem (H., Konečný, Nešetřil, 2018)

Every partial automorphism φ of $\psi(\mathbf{A})$ extends to automorphism **B**.

Proof.

 φ induces partial permutation of A which extends to full permutation φ(A).

$$a \mapsto c, b \mapsto d,$$

 $c \mapsto a, d \mapsto b$

● ▲□▶▲□▶▲□▶▲□▶ □ ● ●

Structural Ramsey and EPPA	Graphs	Metric spaces	Faithfulness	Herwig-Lascar theorem	Strenghtening of Herwig-lascar
00000	000	000	0	000	00000

Construction of EPPA-witness B of A

1 Vertices: All valuation functions
$$\chi_x : A \setminus \{x\} \to \{0, 1\}$$
 for $x \in A$.

2 Edges:
$$\chi_x \sim \chi_y$$
 iff $x \neq y$ and $\chi_x(y) \neq \chi_y(x)$.

Embedding $\psi : \mathbf{A} \to \mathbf{B}$ is $\psi(x) = \psi_x$ s.t. $\psi_x(y) = I_{x,y}$ (row of assym. incidence matrix).

Theorem (H., Konečný, Nešetřil, 2018)

Every partial automorphism φ of $\psi(\mathbf{A})$ extends to automorphism **B**.

Proof.

- φ induces partial permutation of A which extends to full permutation φ̂(A).
- Let *F* be the set of "flipped" pairs $\{x, y\} \in \binom{A}{2}$ such that $\psi_x(y) \neq \psi_{\hat{\varphi}(y)}(\hat{\varphi}(x))$.

 $a \mapsto c, b \mapsto d,$ $c \mapsto a, d \mapsto b$

 $F = \{\{a, b\}, \{b, c\}, \{c, d\}\}$

Structural Ramsey and EPPA	Graphs	Metric spaces	Faithfulness	Herwig-Lascar theorem	Strenghtening of Herwig-lascar
00000	000	000	0	000	00000

Construction of EPPA-witness B of A

1 Vertices: All valuation functions
$$\chi_x : A \setminus \{x\} \to \{0, 1\}$$
 for $x \in A$.

2 Edges:
$$\chi_x \sim \chi_y$$
 iff $x \neq y$ and $\chi_x(y) \neq \chi_y(x)$.

Embedding $\psi : \mathbf{A} \to \mathbf{B}$ is $\psi(x) = \psi_x$ s.t. $\psi_x(y) = I_{x,y}$ (row of assym. incidence matrix).

Theorem (H., Konečný, Nešetřil, 2018)

Every partial automorphism φ of $\psi(\mathbf{A})$ extends to automorphism **B**.

Proof.

- φ induces partial permutation of A which extends to full permutation φ̂(A).
- Let *F* be the set of "flipped" pairs $\{x, y\} \in \binom{A}{2}$ such that $\psi_x(y) \neq \psi_{\hat{\varphi}(y)}(\hat{\varphi}(x))$.
- Automorphism extending φ is $\theta(\chi_x) = \chi'$ where

$$\chi'(\hat{\varphi}(y)) = \begin{cases} \chi_X(y) & \text{if } \{x,y\} \notin F \\ 1 - \chi_X(y) & \text{if } \{x,y\} \in F. \end{cases}$$

For all $y \in A \setminus \hat{\varphi}(x)$.

$$a\mapsto c,b\mapsto d,\ c\mapsto a,d\mapsto b$$

● ▲□▶▲□▶▲□▶▲□▶ □ ● ●

 $F = \{\{a, b\}, \{b, c\}, \{c, d\}\}$

Structural Ramsey and EPPA	Graphs	Metric spaces	Faithfulness	Herwig-Lascar theorem	Strenghtening of Herwig-lascar
00000	000	000	0	000	00000

Given *L*-structure **A** we define:

• Given $x \in A$, $a \ge 1$ $U_a(x)$ is the set of all *a*-tuples of vertices of *A* containing *x*.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへぐ

Structural Ramsey and EPPA	Graphs	Metric spaces	Faithfulness	Herwig-Lascar theorem	Strenghtening of Herwig-lasca
00000	000	000	0	000	00000

Given L-structure A we define:

- Given $x \in A$, $a \ge 1$ $U_a(x)$ is the set of all *a*-tuples of vertices of *A* containing *x*.
- Given $x \in A, R \in L$ of arity *a* an (x, R)-valuation function is $\chi_x^R : U_a(x) \to \{0, 1\}$.

Structural Ramsey and EPPA	Graphs	Metric spaces	Faithfulness	Herwig-Lascar theorem	Strenghtening of Herwig-lasca
00000	000	000	0	000	00000

Given L-structure A we define:

- Given $x \in A$, $a \ge 1$ $U_a(x)$ is the set of all *a*-tuples of vertices of *A* containing *x*.
- Given $x \in A, R \in L$ of arity *a* an (x, R)-valuation function is $\chi_x^R : U_a(x) \to \{0, 1\}$.

• Given $x \in A$ *x*-valuation function is function assigning every relational symbol $R \in L$ an (x, R)-valuation function.

Structural Ramsey and EPPA	Graphs	Metric spaces	Faithfulness	Herwig-Lascar theorem	Strenghtening of Herwig-lasca
00000	000	000	0	000	00000

Given L-structure A we define:

- Given $x \in A$, $a \ge 1$ $U_a(x)$ is the set of all *a*-tuples of vertices of *A* containing *x*.
- Given $x \in A, R \in L$ of arity *a* an (x, R)-valuation function is $\chi_x^R : U_a(x) \to \{0, 1\}$.
- Given $x \in A$ *x*-valuation function is function assigning every relational symbol $R \in L$ an (x, R)-valuation function.

Construction of EPPA-witness B for A

- **1** Vertices: All *x*-valuation functions.
- **2** Relations: $(\chi_{x_1}, \dots, \chi_{x_a}) \in R_B$ if and only if the tuple is transversal and the following sum is odd:

$$\sum_{\chi \in \{\chi_{x_1},\ldots,\chi_{x_a}\}} \chi(R)((x_1,x_2,\ldots,x_n)).$$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>
Structural Ramsey and EPPA	Graphs	Metric spaces	Faithfulness	Herwig-Lascar theorem	Strenghtening of Herwig-lasca
00000	000	000	0	000	00000

Generalization for relational structures

Given L-structure A we define:

- Given $x \in A$, $a \ge 1$ $U_a(x)$ is the set of all *a*-tuples of vertices of *A* containing *x*.
- Given $x \in A, R \in L$ of arity *a* an (x, R)-valuation function is $\chi_x^R : U_a(x) \to \{0, 1\}$.
- Given $x \in A$ *x*-valuation function is function assigning every relational symbol $R \in L$ an (x, R)-valuation function.

Construction of EPPA-witness B for A

- **1** Vertices: All *x*-valuation functions.
- **2** Relations: $(\chi_{x_1}, \dots, \chi_{x_a}) \in R_{\mathbf{B}}$ if and only if the tuple is transversal and the following sum is odd:

$$\sum_{\chi \in \{\chi_{x_1},\ldots,\chi_{x_a}\}} \chi(R)((x_1,x_2,\ldots,x_n)).$$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

• Construction is naturally coherent.

Structural Ramsey and EPPA	Graphs	Metric spaces	Faithfulness	Herwig-Lascar theorem	Strenghtening of Herwig-lasca
00000	000	000	0	000	00000

Generalization for relational structures

Given L-structure A we define:

- Given $x \in A$, $a \ge 1$ $U_a(x)$ is the set of all *a*-tuples of vertices of *A* containing *x*.
- Given $x \in A, R \in L$ of arity *a* an (x, R)-valuation function is $\chi_x^R : U_a(x) \to \{0, 1\}$.
- Given $x \in A$ *x*-valuation function is function assigning every relational symbol $R \in L$ an (x, R)-valuation function.

Construction of EPPA-witness B for A

- **1** Vertices: All *x*-valuation functions.
- **2** Relations: $(\chi_{x_1}, \dots, \chi_{x_a}) \in R_{\mathbf{B}}$ if and only if the tuple is transversal and the following sum is odd:

$$\sum_{\chi \in \{\chi_{x_1},\ldots,\chi_{x_a}\}} \chi(R)((x_1,x_2,\ldots,x_n)).$$

- Construction is naturally coherent.
- Witness constructed depends only on the language and the number of vertices.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Structural Ramsey and EPPA	Graphs	Metric spaces	Faithfulness	Herwig-Lascar theorem	Strenghtening of Herwig-lasca
00000	000	000	0	000	00000

Generalization for relational structures

Given L-structure A we define:

- Given $x \in A$, $a \ge 1$ $U_a(x)$ is the set of all *a*-tuples of vertices of *A* containing *x*.
- Given $x \in A, R \in L$ of arity *a* an (x, R)-valuation function is $\chi_x^R : U_a(x) \to \{0, 1\}$.
- Given $x \in A$ *x*-valuation function is function assigning every relational symbol $R \in L$ an (x, R)-valuation function.

Construction of EPPA-witness B for A

- **1** Vertices: All *x*-valuation functions.
- **2** Relations: $(\chi_{x_1}, \dots, \chi_{x_a}) \in R_{\mathbf{B}}$ if and only if the tuple is transversal and the following sum is odd:

$$\sum_{\chi \in \{\chi_{x_1},\ldots,\chi_{x_a}\}} \chi(R)((x_1,x_2,\ldots,x_n)).$$

- Construction is naturally coherent.
- Witness constructed depends only on the language and the number of vertices.
- Construction has Ramsey counterpart: Sauer's proof of finite big Ramsey degree for Rado graph:

Rows of assymetric incidence matrix truncated at the diagonals \iff vertices of the Milliken's tree with passing number representation of edges.

Structural Ramsey and EPPA	Graphs	Metric spaces	Faithfulness	Herwig-Lascar theorem	Strenghtening of Herwig-lascar
00000	000	● O O	0	000	00000

New construction of EPPA for metric spaces

We consider metric spaces to be complete edge-labeled graphs (or relational structures).

Lemma

Let **A** be a metric space seen (complete) edge-labeled graph. If there is EPPA-witness **B** (possibly with no distance defined for some pairs of vertices) which contains no induced non-metric cycles, then **B** can be completed to a metric space **C** which is EPPA-witeness of **A**.

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

Non-metric cycle is edge-labeled cycle with one long edge ℓ longer than sum of the lengths of others.

Structural Ramsey and EPPA	Graphs	Metric spaces	Faithfulness	Herwig-Lascar theorem	Strenghtening of Herwig-lascar
00000	000	000	0	000	00000

New construction of EPPA for metric spaces

We consider metric spaces to be complete edge-labeled graphs (or relational structures).

Lemma

Let **A** be a metric space seen (complete) edge-labeled graph. If there is EPPA-witness **B** (possibly with no distance defined for some pairs of vertices) which contains no induced non-metric cycles, then **B** can be completed to a metric space **C** which is EPPA-witeness of **A**.

Non-metric cycle is edge-labeled cycle with one long edge ℓ longer than sum of the lengths of others.

Proof.

C has same vertex set as **B** and distance of x, y in **C** is the length of shortest path connecting x and y in **B**.

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

Structural Ramsey and EPPA	Graphs	Metric spaces	Faithfulness	Herwig-Lascar theorem	Strenghtening of Herwig-lascar
00000	000	000	0	000	00000

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへぐ

New proof of EPPA for metric spaces

Main idea: Repeat the valuation trick to unwind cycles to "Möbius strips"

Structural Ramsey and EPPA	Graphs	Metric spaces	Faithfulness	Herwig-Lascar theorem	Strenghtening of Herwig-lascar
00000	000	000	0	000	00000

Main idea: Repeat the valuation trick to unwind cycles to "Möbius strips"

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへぐ

Structural Ramsey and EPPA	Graphs	Metric spaces	Faithfulness	Herwig-Lascar theorem	Strenghtening of Herwig-lascar
00000	000	000	0	000	00000

Main idea: Repeat the valuation trick to unwind cycles to "Möbius strips"

- Let A be metric space, B₀ an EPPA-witness, C₀ smallest non-metric cycle of B₀.
- For $x \in B_0$ let U(x) be the set of all induced non-metric cycles containing x.
- For $x \in B_0$ let *x*-valuation function be any $\chi_x : U(x) \to \{0, 1\}$.

Construction of EPPA-witness B

- **1** Vertices: all pairs (x, χ_x) where $x \in B$ and χ_x is an *x*-valuation function.
- **2** Distances: $d_{\mathbf{B}}((x, \chi_x), (y, \chi_y)) = n$ iff $d_{\mathbf{B}_0}(x, y) = n$ and

 $\forall_{C \in U(x) \cup U(y)} : \chi_x(C) = \chi_y(C) \iff x, y \text{ is not the long edge of } C.$

・ロト・西ト・ヨト・ヨト・日下

Structural Ramsey and EPPA	Graphs	Metric spaces	Faithfulness	Herwig-Lascar theorem	Strenghtening of Herwig-lascar
00000	000	000	0	000	00000

Main idea: Repeat the valuation trick to unwind cycles to "Möbius strips"

- Let **A** be metric space, **B**₀ an EPPA-witness, *C*₀ smallest non-metric cycle of **B**₀.
- For $x \in B_0$ let U(x) be the set of all induced non-metric cycles containing x.
- For $x \in B_0$ let *x*-valuation function be any $\chi_x : U(x) \to \{0, 1\}$.

Construction of EPPA-witness B

- **1** Vertices: all pairs (x, χ_x) where $x \in B$ and χ_x is an *x*-valuation function.
- **2** Distances: $d_{\mathbf{B}}((x, \chi_x), (y, \chi_y)) = n$ iff $d_{\mathbf{B}_0}(x, y) = n$ and

 $\forall_{\mathcal{C} \in U(x) \cup U(y)} : \chi_x(\mathcal{C}) = \chi_y(\mathcal{C}) \iff x, y \text{ is not the long edge of } \mathcal{C}.$

Lemma

B is an EPPA-witness of **A**; non-metric cycles of **B** has more edges than $|C_0|$ edges.

Structural Ramsey and EPPA	Graphs	Metric spaces	Faithfulness	Herwig-Lascar theorem	Strenghtening of Herwig-lascar
00000	000	000	0	000	00000

Main idea: Repeat the valuation trick to unwind cycles to "Möbius strips"

- Let **A** be metric space, **B**₀ an EPPA-witness, *C*₀ smallest non-metric cycle of **B**₀.
- For $x \in B_0$ let U(x) be the set of all induced non-metric cycles containing x.
- For $x \in B_0$ let *x*-valuation function be any $\chi_x : U(x) \to \{0, 1\}$.

Construction of EPPA-witness B

1 Vertices: all pairs (x, χ_x) where $x \in B$ and χ_x is an *x*-valuation function.

2 Distances: $d_{\mathsf{B}}((x,\chi_x),(y,\chi_y)) = n$ iff $d_{\mathsf{B}_0}(x,y) = n$ and

 $\forall_{\mathcal{C} \in U(x) \cup U(y)} : \chi_x(\mathcal{C}) = \chi_y(\mathcal{C}) \iff x, y \text{ is not the long edge of } \mathcal{C}.$

うして 山田 マイボマ エリア しょう

Lemma

B is an EPPA-witness of **A**; non-metric cycles of **B** has more edges than $|C_0|$ edges.

Structural Ramsey and EPPA	Graphs	Metric spaces	Faithfulness	Herwig-Lascar theorem	Strenghtening of Herwig-lascar
00000	000	000	0	000	00000

Main idea: Repeat the valuation trick to unwind cycles to "Möbius strips"

- Let **A** be metric space, **B**₀ an EPPA-witness, *C*₀ smallest non-metric cycle of **B**₀.
- For $x \in B_0$ let U(x) be the set of all induced non-metric cycles containing x.
- For $x \in B_0$ let *x*-valuation function be any $\chi_x : U(x) \to \{0, 1\}$.

Construction of EPPA-witness B

① Vertices: all pairs (x, χ_x) where $x \in B$ and χ_x is an *x*-valuation function.

2 Distances: $d_{\mathbf{B}}((x, \chi_x), (y, \chi_y)) = n$ iff $d_{\mathbf{B}_0}(x, y) = n$ and

 $\forall_{C \in U(x) \cup U(y)} : \chi_x(C) = \chi_y(C) \iff x, y \text{ is not the long edge of } C.$

Lemma

B is an EPPA-witness of **A**; non-metric cycles of **B** has more edges than $|C_0|$ edges.

Proof.

- Induced non-metric C cycle of B₀ intersects A by at most 2 vertices x, y. Put χ_C(x) = 0, χ_C(y) = 1 if edge x, y is long and χ_C(x), χ_C(y) = 0 otherwise.
- Embedding $\psi : \mathbf{A} \to \mathbf{B}$ maps $x \in A$ to (x, χ_x) where $\chi_x(C) = \chi_C(x)$.
- Automorphism of **B**₀ induce automorphisms of **B** with "flips".

Structural Ramsey and EPPA	Graphs	Metric spaces	Faithfulness	Herwig-Lascar theorem	Strenghtening of Herwig-lascar
00000	000	000	0	000	00000

Lemma

B is an EPPA-witness of **A**; non-metric cycles of **B** has more edges than C_0 edges.

- Induced non-metric *C* cycle of **B**₀ intersects **A** by at most 2 vertices *x*, *y*. Put $\chi_C(x) = 0, \chi_C(y) = 1$ if edge *x*, *y* is long and $\chi_C(x), \chi_C(y) = 0$ otherwise.
- Embedding ψ : **A** = **B** maps $x \in A$ to (x, χ_x) where $\chi_x(C) = \chi_C(x)$.
- Automorphism of **B**₀ induce automorphisms of **B** with "flips".

Structural Ramsey and EPPA	Graphs	Metric spaces	Faithfulness	Herwig-Lascar theorem	Strenghtening of Herwig-lascar
00000	000	000	0	000	00000

Lemma

B is an EPPA-witness of **A**; non-metric cycles of **B** has more edges than C_0 edges.

- Induced non-metric *C* cycle of **B**₀ intersects **A** by at most 2 vertices *x*, *y*. Put $\chi_C(x) = 0, \chi_C(y) = 1$ if edge *x*, *y* is long and $\chi_C(x), \chi_C(y) = 0$ otherwise.
- Embedding ψ : **A** = **B** maps $x \in A$ to (x, χ_x) where $\chi_x(C) = \chi_C(x)$.
- Automorphism of **B**₀ induce automorphisms of **B** with "flips".

Structural Ramsey and EPPA	Graphs	Metric spaces	Faithfulness	Herwig-Lascar theorem	Strenghtening of Herwig-lascar
00000	000	000	0	000	00000

Lemma

B is an EPPA-witness of **A**; non-metric cycles of **B** has more edges than C_0 edges.

- Induced non-metric *C* cycle of **B**₀ intersects **A** by at most 2 vertices *x*, *y*. Put $\chi_C(x) = 0, \chi_C(y) = 1$ if edge *x*, *y* is long and $\chi_C(x), \chi_C(y) = 0$ otherwise.
- Embedding ψ : **A** = **B** maps $x \in A$ to (x, χ_x) where $\chi_x(C) = \chi_C(x)$.
- Automorphism of **B**₀ induce automorphisms of **B** with "flips".

Structural Ramsey and EPPA	Graphs	Metric spaces	Faithfulness	Herwig-Lascar theorem	Strenghtening of Herwig-lascar
00000	000	000	0	000	00000

Lemma

B is an EPPA-witness of **A**; non-metric cycles of **B** has more edges than C_0 edges.

Proof.

- Induced non-metric *C* cycle of **B**₀ intersects **A** by at most 2 vertices *x*, *y*. Put $\chi_C(x) = 0, \chi_C(y) = 1$ if edge *x*, *y* is long and $\chi_C(x), \chi_C(y) = 0$ otherwise.
- Embedding ψ : **A** = **B** maps $x \in A$ to (x, χ_x) where $\chi_x(C) = \chi_C(x)$.
- Automorphism of **B**₀ induce automorphisms of **B** with "flips".

• Given automorphism $\hat{\varphi} : \mathbf{B}_0 \to \mathbf{B}_0$, F is set of "flipped" cycles. Define automorphism $\theta : \mathbf{B} \to \mathbf{B}$ by $\theta((x, \chi_X)) = (\hat{\varphi}(x), \chi')$ where $\chi'(\hat{\varphi}(C)) = \chi_X(C) \iff C \notin F$.

Structural Ramsey and EPPA	Graphs	Metric spaces	Faithfulness	Herwig-Lascar theorem	Strenghtening of Herwig-lascar
00000	000	000	0	000	00000

Lemma

B is an EPPA-witness of **A**; non-metric cycles of **B** has more edges than C_0 edges.

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

Theorem (Solecki 2005, Vershik 2008; new proof by H., Konečný, Nešetřil 2018)

The class of all finite metric spaces has EPPA.

Structural Ramsey and EPPA	Graphs	Metric spaces	Faithfulness	Herwig-Lascar theorem	Strenghtening of Herwig-lascar
00000	000	000	0	000	00000

Lemma

B is an EPPA-witness of **A**; non-metric cycles of **B** has more edges than C_0 edges.

Theorem (Solecki 2005, Vershik 2008; new proof by H., Konečný, Nešetřil 2018)

The class of all finite metric spaces has EPPA.

Proof.

- Given metric space A construct EPPA-witness B₀ (using construction for relational structures)
- Repeat Lemma N times to obtain B'.

$$N = \left\lceil \frac{\max\{d_{\mathbf{A}}(x, y); x \neq y \in A\}}{\min\{d_{\mathbf{A}}(x, y); x \neq y \in A\}} \right\rceil$$

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

• Complete **B**['] to **B** by the shortest path completion.

Structural Ramsey and EPPA	Graphs	Metric spaces	Faithfulness	Herwig-Lascar theorem	Strenghtening of Herwig-lascar
00000	000	000	•	000	00000

Irreducible structure faithful EPPA

Structure **C** is irreducible iff it is not free amalgamation of its two proper substructures.

Definition

EPPA-witness **B** of **A** is irreducible-structure faithfull if for every irreducible substructure $\mathbf{C} \subseteq \mathbf{B}$ there exists automorphism $\varphi : \mathbf{B} \to \mathbf{B}$ such that $\varphi(\mathbf{C}) \subseteq \mathbf{A}$.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ < つ < ○</p>

Structural Ramsey and EPPA	Graphs	Metric spaces	Faithfulness	Herwig-Lascar theorem	Strenghtening of Herwig-lascar
00000	000	000	•	000	00000

Irreducible structure faithful EPPA

Structure **C** is irreducible iff it is not free amalgamation of its two proper substructures.

Definition

EPPA-witness **B** of **A** is irreducible-structure faithfull if for every irreducible substructure $\mathbf{C} \subseteq \mathbf{B}$ there exists automorphism $\varphi : \mathbf{B} \to \mathbf{B}$ such that $\varphi(\mathbf{C}) \subseteq \mathbf{A}$.

<ロト < 回 > < 三 > < 三 > < 三 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theorem (Hodkinson, Otto, 2003)

Let \mathbf{B}_0 be an EPPA-witness of \mathbf{A} . Then there exists irreducible-structure faithful EPPA-witness \mathbf{B} of \mathbf{A} .

Structural Ramsey and EPPA	Graphs	Metric spaces	Faithfulness	Herwig-Lascar theorem	Strenghtening of Herwig-lascar
00000	000	000	•	000	00000

Irreducible structure faithful EPPA

Structure **C** is irreducible iff it is not free amalgamation of its two proper substructures.

Definition

EPPA-witness **B** of **A** is irreducible-structure faithfull if for every irreducible substructure $\mathbf{C} \subseteq \mathbf{B}$ there exists automorphism $\varphi : \mathbf{B} \to \mathbf{B}$ such that $\varphi(\mathbf{C}) \subseteq \mathbf{A}$.

Theorem (Hodkinson, Otto, 2003)

Let \mathbf{B}_0 be an EPPA-witness of \mathbf{A} . Then there exists irreducible-structure faithful EPPA-witness \mathbf{B} of \mathbf{A} .

- Substructure $\mathbf{C} \subseteq \mathbf{B}_0$ is bad if it is irreducible and there is no automorphism $\varphi : \mathbf{B}_0 \to \mathbf{B}_0$ such that $\varphi(\mathbf{C}_0) \subseteq \mathbf{A}_0$
- Given $x \in B$, U(x) is the set of all bad substructures containing x.
- Given $x \in B$, *x*-valuation is $\chi_x : U(x) \to \mathbb{N}$ such that $\forall_{\mathbf{C} \in U(x)} : \chi_x(\mathbf{C}) \le |C| 1$.

Construction of EPPA-witness B

1 Vertices: All pairs (x, χ_x) where $x \in B_0$ and χ_x is *x*-valuation. **2** Relations: $((x_1, \chi_1), \ldots, (x_a, \chi_a)) \in R_{\mathbf{B}}$ iff $(x_1, \ldots, x_a) \in R_{\mathbf{B}_0}$ and

 $\forall_{1 \leq i < k \leq a, \mathbf{C} \in U(x_i) \cap U(x_j)} : \chi_i(\mathbf{C}) \neq \chi_j(\mathbf{C}).$

Structural Ramsey and EPPA	Graphs	Metric spaces	Faithfulness	Herwig-Lascar theorem	Strenghtening of Herwig-lascar
00000	000	000	0	● 00	00000

Herwig-Lascar theorem

- Given *L*-structures **A** and **B**, function $f : A \to B$ is homomorphism if for every $R \in L$, $(x_1, \ldots, x_a) \in R_A$ it holds that $(f(x_1), \ldots, f(x_a)) \in R_B$
- *f* is homomorhism-embedding if the restriction *f*|_C is an embedding whenever C is an irreducible substructure of A
- Forb_{he}(\mathcal{F}) is the set of all structures **A** such that there is no **F** $\in \mathcal{F}$ with homomorphism-embedding to **A**.

Theorem (Herwig-Lascar, 2000)

Let L be relational language, \mathcal{F} be a finite family of finite L-structures. If there is possibly infinite "EPPA-witness" of $\mathbf{M} \in \mathsf{Forb}_{\mathsf{he}}(\mathcal{F})$ of \mathbf{A} then there is finite EPPA-witness $\mathbf{B} \in \mathsf{Forb}_{\mathsf{he}}(\mathcal{F})$ of \mathbf{A} .

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

Structural Ramsey and EPPA	Graphs	Metric spaces	Faithfulness	Herwig-Lascar theorem	Strenghtening of Herwig-lascar
00000	000	000	0	● 00	00000

Herwig-Lascar theorem

- Given *L*-structures **A** and **B**, function $f : A \to B$ is homomorphism if for every $R \in L$, $(x_1, \ldots, x_a) \in R_A$ it holds that $(f(x_1), \ldots, f(x_a)) \in R_B$
- *f* is homomorhism-embedding if the restriction *f*|_C is an embedding whenever C is an irreducible substructure of A
- Forb_{he}(\mathcal{F}) is the set of all structures **A** such that there is no **F** $\in \mathcal{F}$ with homomorphism-embedding to **A**.

Theorem (Herwig-Lascar, 2000)

Let L be relational language, \mathcal{F} be a finite family of finite L-structures. If there is possibly infinite "EPPA-witness" of $\mathbf{M} \in \mathsf{Forb}_{\mathsf{he}}(\mathcal{F})$ of \mathbf{A} then there is finite EPPA-witness $\mathbf{B} \in \mathsf{Forb}_{\mathsf{he}}(\mathcal{F})$ of \mathbf{A} .

Lemma

If \mathcal{F} is as in Herwig-Lascar theorem and **C** constructed by series of free amalgamation of copies of **A** over their substructures, then $\mathbf{C} \in \text{Forb}_{he}(\mathcal{F})$.

Structural Ramsey and EPPA	Graphs	Metric spaces	Faithfulness	Herwig-Lascar theorem	Strenghtening of Herwig-lascar
00000	000	000	0	000	00000

Theorem (Herwig-Lascar, 2000)

Let L be relational language, \mathcal{F} be a finite family of finite L-structures. If there is possibly infinite "EPPA-witness" of $\mathbf{M} \in \mathsf{Forb}_{\mathsf{he}}(\mathcal{F})$ of \mathbf{A} then there is finite EPPA-witness $\mathbf{B} \in \mathsf{Forb}_{\mathsf{he}}(\mathcal{F})$ of \mathbf{A} .

Lemma

If \mathcal{F} is as in Herwig-Lascar theorem and **C** constructed by series of free amalgamation of copies of **A** over theis substructures, then $\mathbf{C} \in \mathsf{Forb}_{he}(\mathcal{F})$.

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

Structural Ramsey and EPPA	Graphs	Metric spaces	Faithfulness	Herwig-Lascar theorem	Strenghtening of Herwig-lascar
00000	000	000	0	000	00000

Theorem (Herwig-Lascar, 2000)

Let L be relational language, \mathcal{F} be a finite family of finite L-structures. If there is possibly infinite "EPPA-witness" of $\mathbf{M} \in \mathsf{Forb}_{\mathsf{he}}(\mathcal{F})$ of \mathbf{A} then there is finite EPPA-witness $\mathbf{B} \in \mathsf{Forb}_{\mathsf{he}}(\mathcal{F})$ of \mathbf{A} .

Lemma

If \mathcal{F} is as in Herwig-Lascar theorem and **C** constructed by series of free amalgamation of copies of **A** over theis substructures, then $\mathbf{C} \in \mathsf{Forb}_{he}(\mathcal{F})$.

Construction of EPPA-witness B of A

- Fix **A**. WLOG assume that there is $E \in L$ and **A** has the property that for every $x \neq y \in A$ it holds that $(x, y) \in R_{\mathsf{E}}^{A}$.
- Construct EPPA-witness **B**₀.

Structural Ramsey and EPPA	Graphs	Metric spaces	Faithfulness	Herwig-Lascar theorem	Strenghtening of Herwig-lascar
00000	000	000	0	000	00000

Theorem (Herwig-Lascar, 2000)

Let L be relational language, \mathcal{F} be a finite family of finite L-structures. If there is possibly infinite "EPPA-witness" of $\mathbf{M} \in \mathsf{Forb}_{\mathsf{he}}(\mathcal{F})$ of \mathbf{A} then there is finite EPPA-witness $\mathbf{B} \in \mathsf{Forb}_{\mathsf{he}}(\mathcal{F})$ of \mathbf{A} .

Lemma

If \mathcal{F} is as in Herwig-Lascar theorem and **C** constructed by series of free amalgamation of copies of **A** over theis substructures, then $\mathbf{C} \in \mathsf{Forb}_{he}(\mathcal{F})$.

Construction of EPPA-witness B of A

- Fix **A**. WLOG assume that there is $E \in L$ and **A** has the property that for every $x \neq y \in A$ it holds that $(x, y) \in R_{\mathsf{F}}^{A}$.
- Construct EPPA-witness **B**₀.
- Construct irreducible-structure faithful EPPA-witness \mathbf{B}_1 with homomorphism embedding to \mathbf{B}_0 .

Structural Ramsey and EPPA	Graphs	Metric spaces	Faithfulness	Herwig-Lascar theorem	Strenghtening of Herwig-lascar
00000	000	000	0	000	00000

Theorem (Herwig-Lascar, 2000)

Let L be relational language, \mathcal{F} be a finite family of finite L-structures. If there is possibly infinite "EPPA-witness" of $\mathbf{M} \in \mathsf{Forb}_{\mathsf{he}}(\mathcal{F})$ of \mathbf{A} then there is finite EPPA-witness $\mathbf{B} \in \mathsf{Forb}_{\mathsf{he}}(\mathcal{F})$ of \mathbf{A} .

Lemma

If \mathcal{F} is as in Herwig-Lascar theorem and **C** constructed by series of free amalgamation of copies of **A** over theis substructures, then $\mathbf{C} \in \mathsf{Forb}_{he}(\mathcal{F})$.

Construction of EPPA-witness B of A

- Fix **A**. WLOG assume that there is $E \in L$ and **A** has the property that for every $x \neq y \in A$ it holds that $(x, y) \in R_{\mathsf{F}}^{A}$.
- Construct EPPA-witness **B**₀.
- Construct irreducible-structure faithful EPPA-witness \mathbf{B}_1 with homomorphism embedding to \mathbf{B}_0 .
- Put $n = \max\{|F|; \mathbf{F} \in \mathcal{F}\}, N = \binom{n}{2}$.
- Consider every induced graph cycle in relation *E* bad, repeat *N* times the construction unwinding bad cycles to get B₁...B_N such that B_i has homomorphism embedding to every B_j, j ≤ i. Put B = B_N.

Structural Ramsey and EPPA	Graphs	Metric spaces	Faithfulness	Herwig-Lascar theorem	Strenghtening of Herwig-lasca
00000	000	000	0	000	00000

Theorem (Herwig-Lascar, 2000)

Let L be relational language, \mathcal{F} be a finite family of finite L-structures. If there is possibly infinite "EPPA-witness" of $\mathbf{M} \in \mathsf{Forb}_{\mathsf{he}}(\mathcal{F})$ of \mathbf{A} then there is finite EPPA-witness $\mathbf{B} \in \mathsf{Forb}_{\mathsf{he}}(\mathcal{F})$ of \mathbf{A} .

Proof.

We constructed sequence B₁,... B_N. Each B_i is an irreducible-structure faithful EPPA-witness of A. For every 1 ≤ i ≤ N there is homomorphism-embedding f_i : B_i → B_{i-1} with property that every f_i(C) is not isomorphic to C for every induced graph cycle in relation E^{B_i}.

Structural Ramsey and EPPA	Graphs	Metric spaces	Faithfulness	Herwig-Lascar theorem	Strenghtening of Herwig-lasca
00000	000	000	0	000	00000

Theorem (Herwig-Lascar, 2000)

Let L be relational language, \mathcal{F} be a finite family of finite L-structures. If there is possibly infinite "EPPA-witness" of $\mathbf{M} \in \mathsf{Forb}_{\mathsf{he}}(\mathcal{F})$ of \mathbf{A} then there is finite EPPA-witness $\mathbf{B} \in \mathsf{Forb}_{\mathsf{he}}(\mathcal{F})$ of \mathbf{A} .

- We constructed sequence B₁,... B_N. Each B_i is an irreducible-structure faithful EPPA-witness of A. For every 1 ≤ i ≤ N there is homomorphism-embedding f_i : B_i → B_{i-1} with property that every f_i(C) is not isomorphic to C for every induced graph cycle in relation E^{B_i}.
- Consider $\mathbf{D} \subseteq \mathbf{B}_N$ with at most *n* vertices. One of the following holds
 - 1 D contains no induced cycles in relation E
 - **2** $|f_N(\mathbf{D})| < |D|$, or
 - **3** $f_N(\mathbf{D})$ has more edges in *E* than **D**.

Structural Ramsey and EPPA	Graphs	Metric spaces	Faithfulness	Herwig-Lascar theorem	Strenghtening of Herwig-lasca
00000	000	000	0	000	00000

Theorem (Herwig-Lascar, 2000)

Let L be relational language, \mathcal{F} be a finite family of finite L-structures. If there is possibly infinite "EPPA-witness" of $\mathbf{M} \in \mathsf{Forb}_{\mathsf{he}}(\mathcal{F})$ of \mathbf{A} then there is finite EPPA-witness $\mathbf{B} \in \mathsf{Forb}_{\mathsf{he}}(\mathcal{F})$ of \mathbf{A} .

- We constructed sequence B₁,... B_N. Each B_i is an irreducible-structure faithful EPPA-witness of A. For every 1 ≤ i ≤ N there is homomorphism-embedding f_i : B_i → B_{i-1} with property that every f_i(C) is not isomorphic to C for every induced graph cycle in relation E^{B_i}.
- Consider $D \subseteq B_N$ with at most *n* vertices. One of the following holds
 - 1 D contains no induced cycles in relation E
 - **2** $|f_N(\mathbf{D})| < |D|$, or
 - **3** $f_N(\mathbf{D})$ has more edges in *E* than **D**.
- There is 1 ≤ *j* ≤ *N* and D_{*j*} such that D has homomorphism-embedding to D_{*j*} and D_{*j*} has no induced cycles in *E*.

Structural Ramsey and EPPA	Graphs	Metric spaces	Faithfulness	Herwig-Lascar theorem	Strenghtening of Herwig-lasca
00000	000	000	0	000	00000

Theorem (Herwig-Lascar, 2000)

Let L be relational language, \mathcal{F} be a finite family of finite L-structures. If there is possibly infinite "EPPA-witness" of $\mathbf{M} \in \mathsf{Forb}_{\mathsf{he}}(\mathcal{F})$ of \mathbf{A} then there is finite EPPA-witness $\mathbf{B} \in \mathsf{Forb}_{\mathsf{he}}(\mathcal{F})$ of \mathbf{A} .

- We constructed sequence B₁,... B_N. Each B_i is an irreducible-structure faithful EPPA-witness of A. For every 1 ≤ i ≤ N there is homomorphism-embedding f_i : B_i → B_{i-1} with property that every f_i(C) is not isomorphic to C for every induced graph cycle in relation E^{B_i}.
- Consider $\mathbf{D} \subseteq \mathbf{B}_N$ with at most *n* vertices. One of the following holds
 - 1 D contains no induced cycles in relation E
 - **2** $|f_N(\mathbf{D})| < |D|$, or
 - **3** $f_N(\mathbf{D})$ has more edges in *E* than **D**.
- There is 1 ≤ *j* ≤ *N* and D_{*j*} such that D has homomorphism-embedding to D_{*j*} and D_{*j*} has no induced cycles in *E*.
- Because B_j is irreducible-structure faithful it follows that D_j can be constructed by sequence of free amalgamation of copies of substructures of A.

Structural Ramsey and EPPA	Graphs	Metric spaces	Faithfulness	Herwig-Lascar theorem	Strenghtening of Herwig-lasca
00000	000	000	0	000	00000

Theorem (Herwig-Lascar, 2000)

Let L be relational language, \mathcal{F} be a finite family of finite L-structures. If there is possibly infinite "EPPA-witness" of $\mathbf{M} \in \mathsf{Forb}_{\mathsf{he}}(\mathcal{F})$ of \mathbf{A} then there is finite EPPA-witness $\mathbf{B} \in \mathsf{Forb}_{\mathsf{he}}(\mathcal{F})$ of \mathbf{A} .

- We constructed sequence B₁,... B_N. Each B_i is an irreducible-structure faithful EPPA-witness of A. For every 1 ≤ i ≤ N there is homomorphism-embedding f_i : B_i → B_{i-1} with property that every f_i(C) is not isomorphic to C for every induced graph cycle in relation E^{B_i}.
- Consider $\mathbf{D} \subseteq \mathbf{B}_N$ with at most *n* vertices. One of the following holds
 - 1 D contains no induced cycles in relation E
 - **2** $|f_N(\mathbf{D})| < |D|$, or
 - **3** $f_N(\mathbf{D})$ has more edges in *E* than **D**.
- There is 1 ≤ *j* ≤ *N* and D_{*j*} such that D has homomorphism-embedding to D_{*j*} and D_{*j*} has no induced cycles in *E*.
- Because B_j is irreducible-structure faithful it follows that D_j can be constructed by sequence of free amalgamation of copies of substructures of A.
- By Lemma we know that $\mathbf{B}_N \in \text{Forb}_{he}(\mathcal{F})$.

Structural Ramsey and EPPA	Graphs	Metric spaces	Faithfulness	Herwig-Lascar theorem	Strenghtening of Herwig-lasc
00000	000	000	0	000	•0000

Symetric version of model-theoretic structures

- Let *L* be a language with relation symbols and function symbols each with arity denoted by *a*(*R*) and *a*(*F*).
- We consider multiple-valued functions: for function symbol $F \in L$, *L*-structure **A**, $x \in A$ we put $F^{\mathbf{A}}(x) \subseteq A$.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ < つ < ○</p>

Structural Ramsey and EPPA	Graphs	Metric spaces	Faithfulness	Herwig-Lascar theorem	Strenghtening of Herwig-las
00000	000	000	0	000	•0000

car

<ロト < 回 > < 三 > < 三 > < 三 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Symetric version of model-theoretic structures

- Let *L* be a language with relation symbols and function symbols each with arity denoted by *a*(*R*) and *a*(*F*).
- We consider multiple-valued functions: for function symbol $F \in L$, *L*-structure **A**, $x \in A$ we put $F^{\mathbf{A}}(x) \subseteq A$.
- Let Γ_L be a permutation group on L which preserves types and arities of all symbols. We will say that Γ_L is a language equipped with a permutation group. (This generalize Herwig's notion of permomorphism)

Structural Ramsey and EPPA	Graphs	Metric spaces	Faithfulness	Herwig-Lascar theorem	Strenghtening of Herwig-lascar
00000	000	000	0	000	0000

Symetric version of model-theoretic structures

- Let *L* be a language with relation symbols and function symbols each with arity denoted by *a*(*R*) and *a*(*F*).
- We consider multiple-valued functions: for function symbol $F \in L$, *L*-structure **A**, $x \in A$ we put $F^{\mathbf{A}}(x) \subseteq A$.
- Let Γ_L be a permutation group on L which preserves types and arities of all symbols. We will say that Γ_L is a language equipped with a permutation group. (This generalize Herwig's notion of permomorphism)

We consider Γ_L -structures which are essentially *L*-structures with the following definition of homomorphism:

Definition

A homomorphism $f : \mathbf{A} \to \mathbf{B}$ is a pair $f = (f_L, f_A)$ where $f_L \in \Gamma_L$ and f_A is a mapping $A \to B$ such that for every $R \in L_R$ and $F \in L_F$ we have:

(a) $(x_1, x_2, \dots, x_{a(R)}) \in R_{\mathbf{A}} \implies (f_A(x_1), f_A(x_2), \dots, f_A(x_{a(R)})) \in f_L(R)_{\mathbf{B}}$, and,

(b) $f_A(F_{\mathbf{A}}(x_1, c_2, ..., x_{a(F)})) \subseteq f_L(F)_{\mathbf{B}}(f_A(x_1), f_A(x_2), ..., f_A(x_{a(F)})).$

Structural Ramsey and EPPA	Graphs	Metric spaces	Faithfulness	Herwig-Lascar theorem	Strenghtening of Herwig-la
00000	000	000	0	000	00000

scar

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Symetric version of model-theoretic structures

- Let *L* be a language with relation symbols and function symbols each with arity denoted by *a*(*R*) and *a*(*F*).
- We consider multiple-valued functions: for function symbol $F \in L$, *L*-structure **A**, $x \in A$ we put $F^{\mathbf{A}}(x) \subseteq A$.
- Let Γ_L be a permutation group on L which preserves types and arities of all symbols. We will say that Γ_L is a language equipped with a permutation group. (This generalize Herwig's notion of permomorphism)

We consider Γ_L -structures which are essentially *L*-structures with the following definition of homomorphism:

Definition

A homomorphism $f : \mathbf{A} \to \mathbf{B}$ is a pair $f = (f_L, f_A)$ where $f_L \in \Gamma_L$ and f_A is a mapping $A \to B$ such that for every $R \in L_R$ and $F \in L_F$ we have:

- (a) $(x_1, x_2, \dots, x_{a(R)}) \in R_{\mathbf{A}} \implies (f_A(x_1), f_A(x_2), \dots, f_A(x_{a(R)})) \in f_L(R)_{\mathbf{B}}$, and,
- (b) $f_A(F_{\mathbf{A}}(x_1, c_2, ..., x_{a(F)})) \subseteq f_L(F)_{\mathbf{B}}(f_A(x_1), f_A(x_2), ..., f_A(x_{a(F)})).$

Notion of embedding, homomorphism-embedding, substructure, EPPA-witness and irreducible-structure faithfulness generalize naturally to this category.

Structural Ramsey and EPPA	Graphs	Metric spaces	Faithfulness	Herwig-Lascar theorem	Strenghtening of Herwig-lasca
00000	000	000	0	000	0000

A strenghtening of Herwig-Lascar theorem

Theorem (H., Konečný, Nešetřil, 2018)

Let *L* be a finite language with relations and unary functions equipped with a permutation group Γ_L . Let \mathcal{F} be a finite family of finite Γ_L -structures.

If there exists a possibly infinite "EPPA-witness" $\mathbf{M} \in \mathsf{Forb}_{\mathsf{he}}(\mathcal{F})$ of \mathbf{A} , then there exists a finite structure $\mathbf{B} \in \mathsf{Forb}_{\mathsf{he}}(\mathcal{F})$ which is an irreducible structure faithful coherent EPPA-witness of \mathbf{A} .

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~
Structural Ramsey and EPPA	Graphs	Metric spaces	Faithfulness	Herwig-Lascar theorem	Strenghtening of Herwig-lasca
00000	000	000	0	000	0000

A strenghtening of Herwig-Lascar theorem

Theorem (H., Konečný, Nešetřil, 2018)

Let *L* be a finite language with relations and unary functions equipped with a permutation group Γ_L . Let \mathcal{F} be a finite family of finite Γ_L -structures.

If there exists a possibly infinite "EPPA-witness" $\mathbf{M} \in \mathsf{Forb}_{\mathsf{he}}(\mathcal{F})$ of \mathbf{A} , then there exists a finite structure $\mathbf{B} \in \mathsf{Forb}_{\mathsf{he}}(\mathcal{F})$ which is an irreducible structure faithful coherent EPPA-witness of \mathbf{A} .

Proof follows same three steps using valuation constructions:

1 Construction of an EPPA-witness **B**₀.

2 Construction of an irreducible-structure faithful EPPA-witness **B**₁.

3 Construction of EPPA-witnesses $\mathbf{B}_2, \dots \mathbf{B}_N$ unwinding cycles in copies.

Unary functions are added by simple "local covering" technique used earlier by Evans, H., Nevšetřil, 2017.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Structural Ramsey and EPPA	Graphs	Metric spaces	Faithfulness	Herwig-Lascar theorem	Strenghtening of Herwig-lascar
00000	000	000	0	000	00000

Unary functions and language permutations are useful tools for structures with definable equivalences.

Structural Ramsey and EPPA	Graphs	Metric spaces	Faithfulness	Herwig-Lascar theorem	Strenghtening of Herwig-lascar
00000	000	000	0	000	00000

Unary functions and language permutations are useful tools for structures with definable equivalences.

- Free amalgamation classes of Γ_L structures are Ramsey
 - 2-orietnations of the Ω-categorical Hrushovski constructions have EPPA (this answers question of Evans, H., Nešetřil)
 - Two-graphs has EPPPA (this answers question of MacPherson and Siniora; coherency remain open)

<ロト < 回 > < 三 > < 三 > < 三 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- EPPA for classes with definable equivalences on *n*-tuples with infinitely many equivalence classes.
- EPPA for Λ-ultrametric spaces.

Structural Ramsey and EPPA	Graphs	Metric spaces	Faithfulness	Herwig-Lascar theorem	Strenghtening of Herwig-lascar
00000	000	000	0	000	00000

Unary functions and language permutations are useful tools for structures with definable equivalences.

- Free amalgamation classes of Γ_L structures are Ramsey
 - 2-orietnations of the Ω-categorical Hrushovski constructions have EPPA (this answers question of Evans, H., Nešetřil)
 - Two-graphs has EPPPA (this answers question of MacPherson and Siniora; coherency remain open)
 - EPPA for classes with definable equivalences on *n*-tuples with infinitely many equivalence classes.
 - EPPA for Λ-ultrametric spaces.
- Applications of Γ_L structures for non-free amalgamation classes:
 - All antipodal metric spaces arrising from emtricaly homogeneous graphs have EPPA (this answers question of Aranda, Bradley-Williams, H., Karamanlis, Kompatscher, Konečný, Pawliuk

<ロト < 回 > < 三 > < 三 > < 三 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• Semigroup values metric spaces (this answers question of Conant)

Structural Ramsey and EPPA	Graphs	Metric spaces	Faithfulness	Herwig-Lascar theorem	Strenghtening of Herwig-lascar
00000	000	000	0	000	00000

Unary functions and language permutations are useful tools for structures with definable equivalences.

- Free amalgamation classes of Γ_L structures are Ramsey
 - 2-orietnations of the Ω-categorical Hrushovski constructions have EPPA (this answers question of Evans, H., Nešetřil)
 - Two-graphs has EPPPA (this answers question of MacPherson and Siniora; coherency remain open)
 - EPPA for classes with definable equivalences on *n*-tuples with infinitely many equivalence classes.
 - EPPA for Λ-ultrametric spaces.
- Applications of Γ_L structures for non-free amalgamation classes:
 - All antipodal metric spaces arrising from emtricaly homogeneous graphs have EPPA (this answers question of Aranda, Bradley-Williams, H., Karamanlis, Kompatscher, Konečný, Pawliuk

< ロ > < 同 > < 三 > < 三 > 、 三 > の Q (?)

• Semigroup values metric spaces (this answers question of Conant)

Open problems:

- Class of all structures with one binary function
- Class of all partial steiner systems
- · Class with two equivalence classes on 2-tuples
- Class of all tournaments

Structural Ramsey and EPPA	Graphs	Metric spaces	Faithfulness	Herwig-Lascar theorem	Strenghtening of Herwig-lasc
00000	000	000	0	000	00000

Relationship to the structural Ramsey theory

• Our proof follows exactly the same structure as proof of the main result of:

H., Nešetřil: All those Ramsey classes (Ramsey classes with closures and forbidden homomorphisms)

- Resulting structural conditions for class being Ramsey or have EPPA are almost the same except for:
 - Ramsey classes are always ordered; EPPA classes never define order.
 - To obtain an EPPA one needs completion that is automorphism preserving (EPPA for tournaments remain open).

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

 Constructions are very similar to the construction used to show finite big Ramsey degree.

Structural Ramsey and EPPA	Graphs	Metric spaces	Faithfulness	Herwig-Lascar theorem	Stren
00000	000	000	0	000	000

Strenghtening of Herwig-lascar

Thank you for the attention

- J.H., J. Nešetřil: All those Ramsey classes (Ramsey classes with closures and forbidden homomorphisms). Submitted (arXiv:1606.07979), 2016, 59 pages.
- A. Aranda, D. Bradley-Williams, J. H., M. Karamanlis, M. Kompatscher, M. Konečný, M. Pawliuk: Ramsey expansions of metrically homogeneous graphs. Submitted (arXiv:1706.00295), 57 pages.
- D. Evans, J. H., J. Nešetřil: Ramsey properties and extending partial automorphisms for classes of finite structures. Submitted (arXiv:1705.02379), 33 pages.
- J.H., M. Konečný, J. Nešetřil: Conant's generalised metric spaces are Ramsey. To appear in Contributions to Discrete Mathematics (arXiv:1710.04690), 20 pages.
- J.H., M. Konečný, J. Nešetřil: A combinatorial proof of the extension property for partial isometries. To appear in Commentationes Mathematicae Universitatis Carolinae (arXiv:1807.10976), 7 pages.
- M. Konečný: Combinatorial Properties of Metrically Homogeneous Graphs. Bachelor's Thesis, Charles University, 51 pages.
- M. Konečný: Semigroup valued metric spaces. draft of Master's Thesis, arXiv:1810.08963, 81 pages.
- D. Evans, J.H., J. Nešetřil: Automorphism groups and Ramsey properties of sparse graphs. arXiv:1801.01165, 40 pages.
- D. Evans, J.H., M. Konečný, J. Nešetřil: EPPA for two-graphs. 14 pages; to appear soon.
- J.H., J. Nešetřil: All those EPPA classes (A strengthening of the Herwig-Lascar theorem). 19 pages; to appear soon.