Milliken tree theorem and big Ramsey degrees of graphs and hypergraphs

Jan Hubička

Department of Applied Mathematics Charles University Prague

Infinite Ramsey Theory, 2025, Banff

Miss you, Robert!

Ramsey's Theorem

 ω , Unary languages
Ultrametric spaces Λ -ultrametric

Milliken's Tree Theorem

Order of rationals

Random graph

Ramsey's Theorem

 ω , Unary languages
Ultrametric spaces Λ -ultrametric

Simple structures in finite binary laguages

Binary structures with unaries (bipartite graphs)

Coding Triangle-free graphs trees and forcing Free amalgamation Milliken's Tree Theorem in finite binary laguages finitely many cliques Order of rationals K_k -free Random graph graphs, Ramsey's Theorem k > 3 ω , Unary languages Ultrametric spaces Simple structures **SDAP** in finite binary Λ-ultrametric laguages Binary structures with unaries (bipartite graphs)

Triangle-free graphs

Coding trees and forcing

Milliken's Tree Theorem

Order of rationals

Free amalgamation in finite binary laguages finitely many cliques

Random graph

 K_k -free graphs, k > 3

Ramsey's Theorem

 ω , Unary languages Ultrametric spaces Λ-ultrametric

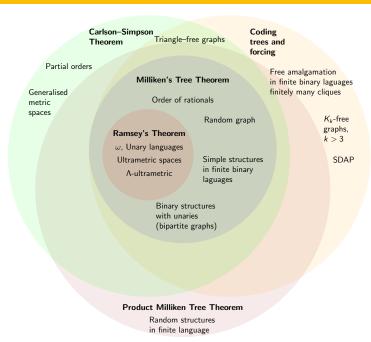
Simple structures in finite binary laguages

SDAP

Binary structures with unaries (bipartite graphs)

Product Milliken Tree Theorem

Random structures in finite language



Ordered hypergraphs and type-equivalence

For simplicity, I will speak only of u-uniform hypergraphs with u = 2 (graphs) and u = 3. All finite or countable. Everything extends naturally to relational structures.

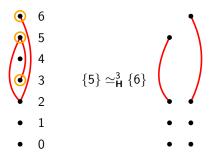
- **1** Hypergraph H has vertex set H and edges E_H .
- **2** Hypergraph **H** is enumerated if $H = |H| = \{0, 1, ..., |H| 1\}$.
- **3** Embeding $f: \mathbf{H} \to \mathbf{H}'$ is order-preserving if $\forall_{u,v \in H} : u < v \implies f(u) < f(v)$.
- **4 H** is order-isomorphic to H', $H \simeq H'$, if there is order-preserving isomorphism $H \to H'$
- **6** Given $S \subseteq H$, $H \upharpoonright_S$, is hypergraph induced by H on S.
- **6** I identify $n \in \omega$ with $\{0, 1, \ldots, n-1\}$.

Definition (Type-equivalence)

Let **H** be enumerated hypergraph, $\ell \in H$, and $S, S' \subseteq H \setminus \ell$. S and S' have the same type over ℓ , and write $S \simeq_{\mathbf{H}}^{\ell} S'$, if and only if $\mathbf{H} \upharpoonright_{\ell \cup S} \simeq \mathbf{H} \upharpoonright_{\ell \cup S'}$.

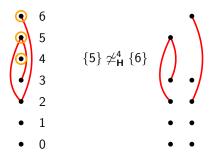
Definition (Type-equivalence)

Let **H** be enumerated hypergraph, $\ell \in H$, and $S, S' \subseteq H \setminus \ell$. S and S' have the same type over ℓ , and write $S \simeq_{\mathbf{H}}^{\ell} S'$, if and only if $\mathbf{H} \upharpoonright_{\ell \cup S} \simeq \mathbf{H} \upharpoonright_{\ell \cup S'}$.



Definition (Type-equivalence)

Let **H** be enumerated hypergraph, $\ell \in H$, and $S, S' \subseteq H \setminus \ell$. S and S' have the same type over ℓ , and write $S \simeq_{\mathbf{H}}^{\ell} S'$, if and only if $\mathbf{H} \upharpoonright_{\ell \cup S} \simeq \mathbf{H} \upharpoonright_{\ell \cup S'}$.



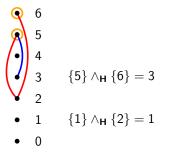
Definition (Type-equivalence)

Let **H** be enumerated hypergraph, $\ell \in H$, and $S, S' \subseteq H \setminus \ell$. S and S' have the same type over ℓ , and write $S \simeq_{\mathbf{H}}^{\ell} S'$, if and only if $\mathbf{H} \upharpoonright_{\ell \cup S} \simeq \mathbf{H} \upharpoonright_{\ell \cup S'}$.

Definition (Meets (splits))

Let **H** be enumerated hypergraph, and $S, S' \subseteq H$ sets satisfying $S \simeq_{\mathbf{H}}^{0} S'$. We put

$$S \wedge_H S' = \max\{\ell \in H : \ell \leq \min(S \cup S') \text{ and } S \simeq^{\ell}_H S'\}$$



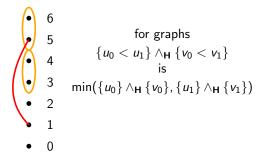
Definition (Type-equivalence)

Let **H** be enumerated hypergraph, $\ell \in H$, and $S, S' \subseteq H \setminus \ell$. S and S' have the same type over ℓ , and write $S \simeq_{\mathbf{H}}^{\ell} S'$, if and only if $\mathbf{H} \upharpoonright_{\ell \cup S} \simeq \mathbf{H} \upharpoonright_{\ell \cup S'}$.

Definition (Meets (splits))

Let **H** be enumerated hypergraph, and $S, S' \subseteq H$ sets satisfying $S \simeq_H^0 S'$. We put

$$S \wedge_H S' = \max\{\ell \in H : \ell \leq \min(S \cup S') \text{ and } S \simeq^{\ell}_H S'\}$$



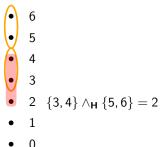
Definition (Type-equivalence)

Let **H** be enumerated hypergraph, $\ell \in H$, and $S, S' \subseteq H \setminus \ell$. S and S' have the same type over ℓ , and write $S \simeq_{\mathbf{H}}^{\ell} S'$, if and only if $\mathbf{H} \upharpoonright_{\ell \cup S} \simeq \mathbf{H} \upharpoonright_{\ell \cup S'}$.

Definition (Meets (splits))

Let **H** be enumerated hypergraph, and $S, S' \subseteq H$ sets satisfying $S \simeq_{\mathbf{H}}^{0} S'$. We put

$$S \wedge_H S' = \max\{\ell \in H : \ell \leq \min(S \cup S') \text{ and } S \simeq^{\ell}_H S'\}$$



Definition (Type-equivalence)

Let **H** be enumerated hypergraph, $\ell \in H$, and $S, S' \subseteq H \setminus \ell$. S and S' have the same type over ℓ , and write $S \simeq_{\mathbf{H}}^{\ell} S'$, if and only if $\mathbf{H} \upharpoonright_{\ell \cup S} \simeq \mathbf{H} \upharpoonright_{\ell \cup S'}$.

Definition (Meets (splits))

Let **H** be enumerated hypergraph, and $S, S' \subseteq H$ sets satisfying $S \simeq_H^0 S'$. We put

$$S \wedge_H S' = \max\{\ell \in H : \ell \leq \min(S \cup S') \text{ and } S \simeq^{\ell}_H S'\}$$

 $S \wedge_H S'$ is defined only if $H \upharpoonright S$ is order-isomorphic to $H \upharpoonright_{S'}$ (i.e. $S \simeq_0^H S'$).

Definition (Type-resepecting embedding)

Let **H**, **H**' be odered hypergraphs.

Embedding $f: \mathbf{H} \to \mathbf{H}'$ is type-resepecting if it is order-preserving and

$$\forall_{S,S'\subseteq H}: S\simeq_0^{\mathbf{H}}S'\implies f(S\wedge_{\mathbf{H}}S')=f[S]\wedge_{\mathbf{H}'}f[S'].$$

All known big Ramsey results are Ramsey theorems on type-respecting embeddings.

Ramsey theorem for type-respecting embeddings

Given enumerated hypergraph **H** and **H**', $n \in \mathbf{H}$ we denote by $\mathsf{TREmb}_n(\mathbf{H}, \mathbf{H}')$ the set of all type-respecting embeddings $\mathbf{H} \to \mathbf{H}'$ which are identity when restricted to n.

We prove:

Theorem

Let ${\bf R}$ be the Rado graph (i.e. universal and homogeneous 2-uniform hypergraph). Then for every finite enumerated hypergraph ${\bf A}$, every n<|A| and every coloring

$$\chi:\mathsf{TREmb}_n(\mathbf{A},\mathbf{R}) o 2$$

there exists $f \in TREmb_n(\mathbf{R}, \mathbf{R})$ so that χ is constant on

$$f \circ \mathsf{TREmb}_n(\mathbf{A}, \mathbf{R}) = \{ f \circ g : g \in \mathsf{TREmb}_n(\mathbf{A}, \mathbf{R}) \}.$$

Ramsey theorem for type-respecting embeddings

Given enumerated hypergraph **H** and **H**', $n \in \mathbf{H}$ we denote by $\mathsf{TREmb}_n(\mathbf{H}, \mathbf{H}')$ the set of all type-respecting embeddings $\mathbf{H} \to \mathbf{H}'$ which are identity when restricted to n.

We prove:

Theorem

Let ${\bf R}$ be the Rado graph (i.e. universal and homogeneous 2-uniform hypergraph). Then for every finite enumerated hypergraph ${\bf A}$, every n<|A| and every coloring

$$\chi:\mathsf{TREmb}_n(\mathbf{A},\mathbf{R})\to 2$$

there exists $f \in TREmb_n(\mathbf{R}, \mathbf{R})$ so that χ is constant on

$$f \circ \mathsf{TREmb}_n(\mathbf{A}, \mathbf{R}) = \{ f \circ g : g \in \mathsf{TREmb}_n(\mathbf{A}, \mathbf{R}) \}.$$

This is an equivalent of the coding-tree theorem for the Rado graph (Dobrinen, Zucker). Generalises to *u*-uniform hypergraphs and relational structures.

Ramsey theorem for type-respecting embeddings

Given enumerated hypergraph **H** and **H**', $n \in \mathbf{H}$ we denote by $\mathsf{TREmb}_n(\mathbf{H}, \mathbf{H}')$ the set of all type-respecting embeddings $\mathbf{H} \to \mathbf{H}'$ which are identity when restricted to n.

We prove:

Theorem

Let **R** be the Rado graph (i.e. universal and homogeneous 2-uniform hypergraph). Then for every finite enumerated hypergraph **A**, every n < |A| and every coloring

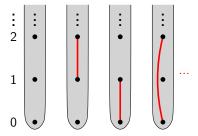
$$\chi:\mathsf{TREmb}_n(\mathbf{A},\mathbf{R})\to 2$$

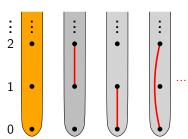
there exists $f \in TREmb_n(\mathbf{R}, \mathbf{R})$ so that χ is constant on

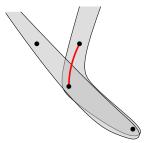
$$f \circ \mathsf{TREmb}_n(\mathbf{A}, \mathbf{R}) = \{ f \circ g : g \in \mathsf{TREmb}_n(\mathbf{A}, \mathbf{R}) \}.$$

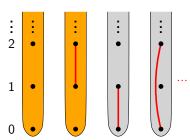
This is an equivalent of the coding-tree theorem for the Rado graph (Dobrinen, Zucker). Generalises to *u*-uniform hypergraphs and relational structures.

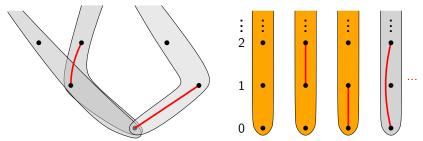
M Balko, D Chodounský, J Hubička, M Konečný, L Vena: Big Ramsey degrees of 3-uniform hypergraphs are finite, Combinatorica 42 (2022), 659–672.

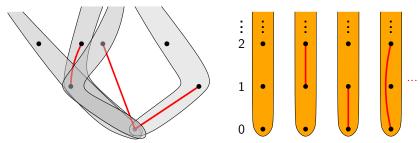




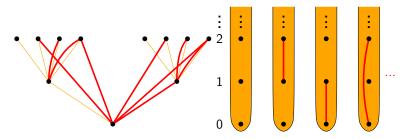








Take all countable, enumerated graphs and amalgamate them over common initial parts.



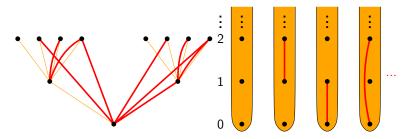
Given graphs \mathbf{A}, \mathbf{B} we write $\mathbf{A} \subseteq \mathbf{B}$ if \mathbf{A} is induced subgraph of \mathbf{B} .

Definition (Graph **K**_I)

Given finite enumerated graph I and denote by K_I graph with

- Vertices of K_I are all non-empty finite enumerated graphs A satisfying $A \upharpoonright_{|I|} = I$, and graphs $I \upharpoonright_n$, $1 \le n < |I|$.
- **2** $A \subseteq B$ forms an edge iff $\{\max A, \max B\} \in E_B$.
- 3 There are no other edges.

Take all countable, enumerated graphs and amalgamate them over common initial parts.



Given graphs \mathbf{A}, \mathbf{B} we write $\mathbf{A} \subseteq \mathbf{B}$ if \mathbf{A} is induced subgraph of \mathbf{B} .

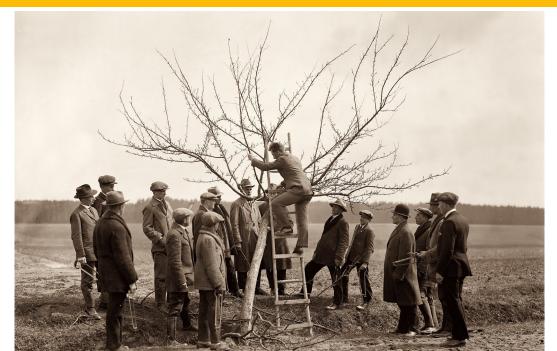
Definition (Graph **K**_I)

Given finite enumerated graph I and denote by K_I graph with

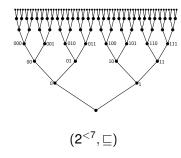
- 1 Vertices of K_I are all non-empty finite enumerated graphs A satisfying $A \upharpoonright_{|I|} = I$, and graphs $I \upharpoonright_n$, $1 \le n < |I|$.
- **2** $A \subseteq B$ forms an edge iff $\{\max A, \max B\} \in E_B$.
- 3 There are no other edges.

Goal: Ramsey theorem for KI

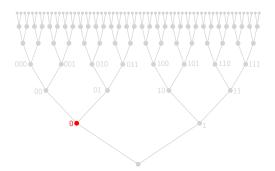
Trees



Trees (terminology)



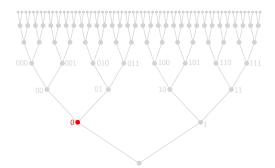
- A tree is a (possibly empty) partially ordered set (T, <_T) such that, for every node t ∈ T its downset
 { s ∈ T : s <_T t } is finite and linearly ordered by <_T.
- Tree is rooted if it has a unique minimal element (root).
- Level of a node $t \in T$ is $|t|_T = |\{s \in T : s <_T t\}|$.
- $T(n) = \{ t \in T : |t|_T = n \}.$
- $T(< n) = \{ t \in T : |t|_T < n \}.$
- For $s, t \in T$, the meet $s \wedge_T t$ of s and t is the largest $s' \in T$ such that $s' \leq_T s$ and $s' \leq_T t$.
- The height of *T* is the $h \in \omega + 1$ such that $T(h) = \emptyset$.
- A subtree of a tree T is a subset S ⊆ T with the induced partial ordering.
- The node s is an immediate successor of t in T if t <_T s and there is no s' ∈ T such that t <_T s' <_T s.
- Node with no successors is leaf.



Definition

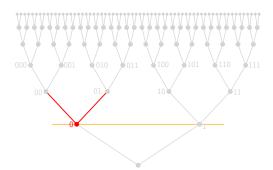
Let *T* be rooted tree. Nonempty $S \subseteq T$ is a strong subtree of *T* of height $n \in \omega + 1$ if:

1 S is closed for meets. (In particular, S is rooted.)



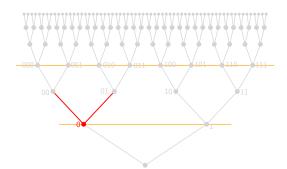
Definition

- **1** *S* is closed for meets. (In particular, *S* is rooted.)
- **2** For every $a \in S(<(n-1))$ and every immediate successor b of a in T there is an unique immediate successor c of a in S such that $a \sqsubseteq b \sqsubseteq c$. (If $n = \omega$ then every $a \in S$.)



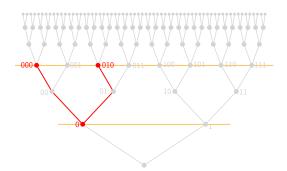
Definition

- **1** *S* is closed for meets. (In particular, *S* is rooted.)
- **2** For every $a \in S(<(n-1))$ and every immediate successor b of a in T there is an unique immediate successor c of a in S such that $a \sqsubseteq b \sqsubseteq c$. (If $n = \omega$ then every $a \in S$.)



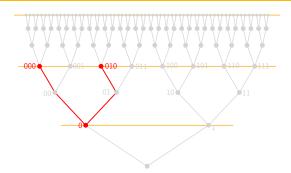
Definition

- 1 S is closed for meets. (In particular, S is rooted.)
- **2** For every $a \in S(<(n-1))$ and every immediate successor b of a in T there is an unique immediate successor c of a in S such that $a \sqsubseteq b \sqsubseteq c$. (If $n = \omega$ then every $a \in S$.)



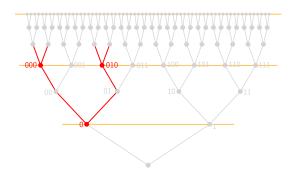
Definition

- **1** *S* is closed for meets. (In particular, *S* is rooted.)
- **2** For every $a \in S(\langle (n-1) \rangle)$ and every immediate successor b of a in T there is an unique immediate successor c of a in S such that $a \sqsubseteq b \sqsubseteq c$. (If $n = \omega$ then every $a \in S$.)



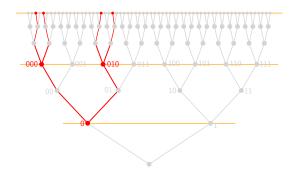
Definition

- **1** *S* is closed for meets. (In particular, *S* is rooted.)
- **2** For every $a \in S(\langle (n-1) \rangle)$ and every immediate successor b of a in T there is an unique immediate successor c of a in S such that $a \sqsubseteq b \sqsubseteq c$. (If $n = \omega$ then every $a \in S$.)



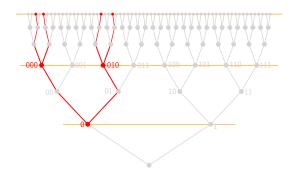
Definition

- **1** *S* is closed for meets. (In particular, *S* is rooted.)
- 2 For every $a \in S(<(n-1))$ and every immediate successor b of a in T there is an unique immediate successor c of a in S such that $a \sqsubseteq b \sqsubseteq c$. (If $n = \omega$ then every $a \in S$.)



Definition

- **1** *S* is closed for meets. (In particular, *S* is rooted.)
- **2** For every $a \in S(<(n-1))$ and every immediate successor b of a in T there is an unique immediate successor c of a in S such that $a \sqsubseteq b \sqsubseteq c$. (If $n = \omega$ then every $a \in S$.)



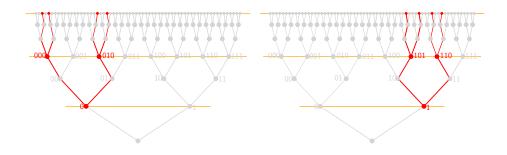
Definition

- 1 S is closed for meets. (In particular, S is rooted.)
- **2** For every $a \in S(\langle (n-1) \rangle)$ and every immediate successor b of a in T there is an unique immediate successor c of a in S such that $a \sqsubseteq b \sqsubseteq c$. (If $n = \omega$ then every $a \in S$.)
- 3 S is level preserving: Every level of S is a subset of some level of T.
- 4 S has height n.

Product tree

A product (vector) tree $\mathbf{T} = (T_i)_{i < n}$ is a finite sequence of n trees.

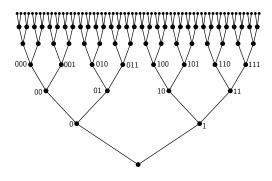
A (product) strong subtree $\mathbf{S} = (S_i)_{i < n}$ is a sequence such that for every i < n tree S_i is a strong subtree of T_i and all the subtrees share the same levels.



Let **T** be a (product) tree and $\ell \le k \in \omega + 1$. We use $\operatorname{Str}_{k,\ell}(\mathbf{T})$ to denote the set of all strong subtrees of T of height k which include first ℓ levels.

Theorem (Milliken 1979)

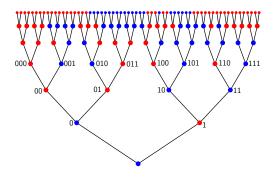
For every (product) ${\bf T}$ tree consisting of rooted finitely branching trees with no leaves, every $\ell < k \in \omega$ and every finite colouring of ${\rm Str}_{k,\ell}({\bf T})$ there is ${\bf S} \in {\rm Str}_{\omega,\ell}({\bf T})$ such that the set ${\rm Str}_{k,\ell}({\bf S})$ is monochromatic.



Let **T** be a (product) tree and $\ell \le k \in \omega + 1$. We use $\operatorname{Str}_{k,\ell}(\mathbf{T})$ to denote the set of all strong subtrees of T of height k which include first ℓ levels.

Theorem (Milliken 1979)

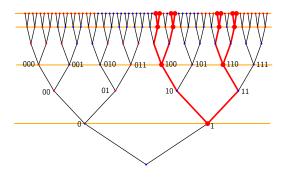
For every (product) ${\bf T}$ tree consisting of rooted finitely branching trees with no leaves, every $\ell < k \in \omega$ and every finite colouring of ${\rm Str}_{k,\ell}({\bf T})$ there is ${\bf S} \in {\rm Str}_{\omega,\ell}({\bf T})$ such that the set ${\rm Str}_{k,\ell}({\bf S})$ is monochromatic.



Let **T** be a (product) tree and $\ell \le k \in \omega + 1$. We use $\operatorname{Str}_{k,\ell}(\mathbf{T})$ to denote the set of all strong subtrees of T of height k which include first ℓ levels.

Theorem (Milliken 1979)

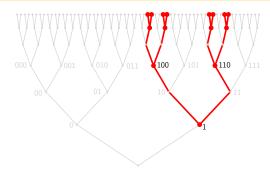
For every (product) **T** tree consisting of rooted finitely branching trees with no leaves, every $\ell < k \in \omega$ and every finite colouring of $\operatorname{Str}_{k,\ell}(\mathbf{T})$ there is $\mathbf{S} \in \operatorname{Str}_{\omega,\ell}(\mathbf{T})$ such that the set $\operatorname{Str}_{k,\ell}(\mathbf{S})$ is monochromatic.



Let **T** be a (product) tree and $\ell \leq k \in \omega + 1$. We use $\operatorname{Str}_{k,\ell}(\mathbf{T})$ to denote the set of all strong subtrees of T of height k which include first ℓ levels.

Theorem (Milliken 1979)

For every (product) $\mathbf T$ tree consisting of rooted finitely branching trees with no leaves, every $\ell < k \in \omega$ and every finite colouring of $\mathrm{Str}_{k,\ell}(\mathbf T)$ there is $\mathbf S \in \mathrm{Str}_{\omega,\ell}(\mathbf T)$ such that the set $\mathrm{Str}_{k,\ell}(\mathbf S)$ is monochromatic.



Let **T** be a (product) tree and $\ell \le k \in \omega + 1$. We use $\operatorname{Str}_{k,\ell}(\mathbf{T})$ to denote the set of all strong subtrees of T of height k which include first ℓ levels.

Theorem (Milliken 1979)

For every (product) $\mathbf T$ tree consisting of rooted finitely branching trees with no leaves, every $\ell < k \in \omega$ and every finite colouring of $\mathrm{Str}_{k,\ell}(\mathbf T)$ there is $\mathbf S \in \mathrm{Str}_{\omega,\ell}(\mathbf T)$ such that the set $\mathrm{Str}_{k,\ell}(\mathbf S)$ is monochromatic.

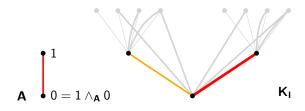
Idea: Get a correspondence of strong subtrees and type-respecting embeddings to K_I . Ideally 1-to-1.

Let **T** be a (product) tree and $\ell \leq k \in \omega + 1$. We use $\operatorname{Str}_{k,\ell}(\mathbf{T})$ to denote the set of all strong subtrees of T of height k which include first ℓ levels.

Theorem (Milliken 1979)

For every (product) $\mathbf T$ tree consisting of rooted finitely branching trees with no leaves, every $\ell < k \in \omega$ and every finite colouring of $\mathrm{Str}_{k,\ell}(\mathbf T)$ there is $\mathbf S \in \mathrm{Str}_{\omega,\ell}(\mathbf T)$ such that the set $\mathrm{Str}_{k,\ell}(\mathbf S)$ is monochromatic.

ldea: Get a correspondence of strong subtrees and type-respecting embeddings to K_I . ldeally 1-to-1.

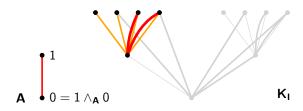


Let **T** be a (product) tree and $\ell \le k \in \omega + 1$. We use $\operatorname{Str}_{k,\ell}(\mathbf{T})$ to denote the set of all strong subtrees of T of height k which include first ℓ levels.

Theorem (Milliken 1979)

For every (product) $\mathbf T$ tree consisting of rooted finitely branching trees with no leaves, every $\ell < k \in \omega$ and every finite colouring of $\mathrm{Str}_{k,\ell}(\mathbf T)$ there is $\mathbf S \in \mathrm{Str}_{\omega,\ell}(\mathbf T)$ such that the set $\mathrm{Str}_{k,\ell}(\mathbf S)$ is monochromatic.

ldea: Get a correspondence of strong subtrees and type-respecting embeddings to K_I . ldeally 1-to-1.

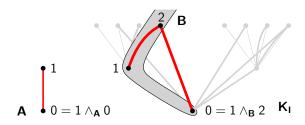


Let **T** be a (product) tree and $\ell \le k \in \omega + 1$. We use $\operatorname{Str}_{k,\ell}(\mathbf{T})$ to denote the set of all strong subtrees of T of height k which include first ℓ levels.

Theorem (Milliken 1979)

For every (product) $\mathbf T$ tree consisting of rooted finitely branching trees with no leaves, every $\ell < k \in \omega$ and every finite colouring of $\mathrm{Str}_{k,\ell}(\mathbf T)$ there is $\mathbf S \in \mathrm{Str}_{\omega,\ell}(\mathbf T)$ such that the set $\mathrm{Str}_{k,\ell}(\mathbf S)$ is monochromatic.

Idea: Get a correspondence of strong subtrees and type-respecting embeddings to K_I . Ideally 1-to-1.

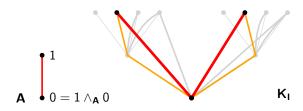


Let **T** be a (product) tree and $\ell \le k \in \omega + 1$. We use $\operatorname{Str}_{k,\ell}(\mathbf{T})$ to denote the set of all strong subtrees of T of height k which include first ℓ levels.

Theorem (Milliken 1979)

For every (product) $\mathbf T$ tree consisting of rooted finitely branching trees with no leaves, every $\ell < k \in \omega$ and every finite colouring of $\mathrm{Str}_{k,\ell}(\mathbf T)$ there is $\mathbf S \in \mathrm{Str}_{\omega,\ell}(\mathbf T)$ such that the set $\mathrm{Str}_{k,\ell}(\mathbf S)$ is monochromatic.

ldea: Get a correspondence of strong subtrees and type-respecting embeddings to K_I . ldeally 1-to-1.

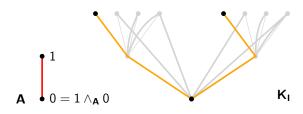


Let **T** be a (product) tree and $\ell \le k \in \omega + 1$. We use $\operatorname{Str}_{k,\ell}(\mathbf{T})$ to denote the set of all strong subtrees of T of height k which include first ℓ levels.

Theorem (Milliken 1979)

For every (product) $\mathbf T$ tree consisting of rooted finitely branching trees with no leaves, every $\ell < k \in \omega$ and every finite colouring of $\mathrm{Str}_{k,\ell}(\mathbf T)$ there is $\mathbf S \in \mathrm{Str}_{\omega,\ell}(\mathbf T)$ such that the set $\mathrm{Str}_{k,\ell}(\mathbf S)$ is monochromatic.

ldea: Get a correspondence of strong subtrees and type-respecting embeddings to K_I . ldeally 1-to-1.

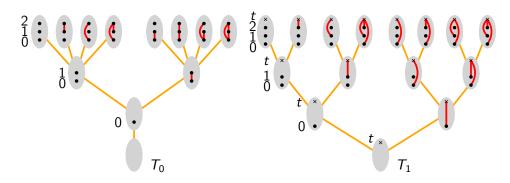


If in trouble, plant more trees

Definition (1-type hypergraph)

Given $\ell\omega$, we call a hypergraph **B** a 1-type hypergraph of level ℓ if its vertex set is $\ell\cup\{t\}$ (t is a special type vertex) and every edge of **B** contains t.

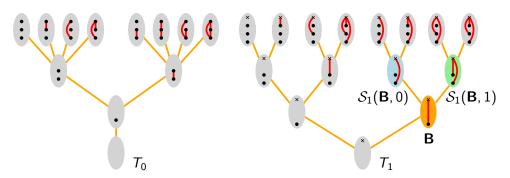
- **1** Let T_0 be the set of all enumerated graphs. (T_0, \subseteq) is tree of enumerations.
- **2** Let T_1 be the set of all 1-type graphs (of all levels). (T_1, \subseteq) is tree of 1-types.
- **3** Put $T = (T_0, T_1)$.



Definition (1-type hypergraph)

Given $\ell\omega$, we call a hypergraph **B** a 1-type hypergraph of level ℓ if its vertex set is $\ell\cup\{t\}$ (t is a special type vertex) and every edge of **B** contains t.

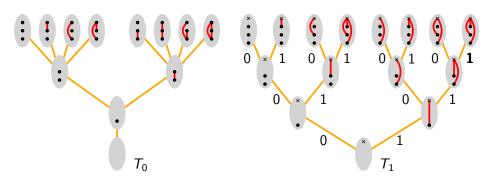
- **1** Let T_0 be the set of all enumerated graphs. (T_0, \subseteq) is tree of enumerations.
- **2** Let T_1 be the set of all 1-type graphs (of all levels). (T_1, \subseteq) is tree of 1-types.
- **3** Put $T = (T_0, T_1)$.



Definition (1-type hypergraph)

Given $\ell\omega$, we call a hypergraph **B** a 1-type hypergraph of level ℓ if its vertex set is $\ell\cup\{t\}$ (t is a special type vertex) and every edge of **B** contains t.

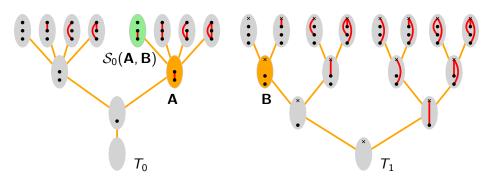
- **1** Let T_0 be the set of all enumerated graphs. (T_0, \subseteq) is tree of enumerations.
- **2** Let T_1 be the set of all 1-type graphs (of all levels). (T_1, \subseteq) is tree of 1-types.
- **3** Put $T = (T_0, T_1)$.



Definition (1-type hypergraph)

Given $\ell\omega$, we call a hypergraph **B** a 1-type hypergraph of level ℓ if its vertex set is $\ell\cup\{t\}$ (t is a special type vertex) and every edge of **B** contains t.

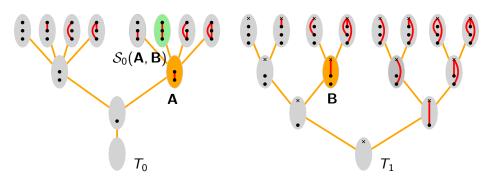
- **1** Let T_0 be the set of all enumerated graphs. (T_0, \subseteq) is tree of enumerations.
- **2** Let T_1 be the set of all 1-type graphs (of all levels). (T_1, \subseteq) is tree of 1-types.
- **3** Put $T = (T_0, T_1)$.



Definition (1-type hypergraph)

Given $\ell\omega$, we call a hypergraph **B** a 1-type hypergraph of level ℓ if its vertex set is $\ell\cup\{t\}$ (t is a special type vertex) and every edge of **B** contains t.

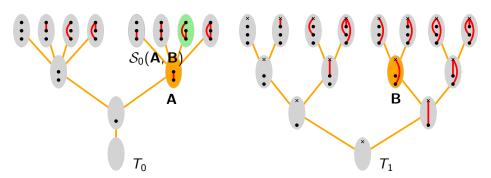
- **1** Let T_0 be the set of all enumerated graphs. (T_0, \subseteq) is tree of enumerations.
- **2** Let T_1 be the set of all 1-type graphs (of all levels). (T_1, \subseteq) is tree of 1-types.
- **3** Put $T = (T_0, T_1)$.



Definition (1-type hypergraph)

Given $\ell\omega$, we call a hypergraph **B** a 1-type hypergraph of level ℓ if its vertex set is $\ell\cup\{t\}$ (t is a special type vertex) and every edge of **B** contains t.

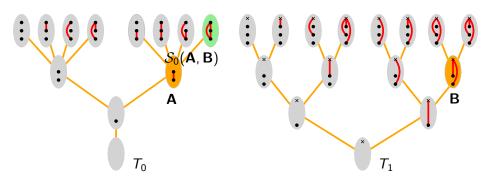
- **1** Let T_0 be the set of all enumerated graphs. (T_0, \subseteq) is tree of enumerations.
- **2** Let T_1 be the set of all 1-type graphs (of all levels). (T_1, \subseteq) is tree of 1-types.
- **3** Put $T = (T_0, T_1)$.



Definition (1-type hypergraph)

Given $\ell\omega$, we call a hypergraph **B** a 1-type hypergraph of level ℓ if its vertex set is $\ell\cup\{t\}$ (t is a special type vertex) and every edge of **B** contains t.

- **1** Let T_0 be the set of all enumerated graphs. (T_0, \subseteq) is tree of enumerations.
- **2** Let T_1 be the set of all 1-type graphs (of all levels). (T_1, \subseteq) is tree of 1-types.
- **3** Put $T = (T_0, T_1)$.



Definition (1-type hypergraph)

Given $\ell\omega$, we call a hypergraph **B** a 1-type hypergraph of level ℓ if its vertex set is $\ell\cup\{t\}$ (t is a special type vertex) and every edge of **B** contains t.

- **1** Let T_0 be the set of all enumerated graphs. (T_0, \subseteq) is tree of enumerations.
- **2** Let T_1 be the set of all 1-type graphs (of all levels). (T_1, \subseteq) is tree of 1-types.
- **3** Put $T = (T_0, T_1)$.

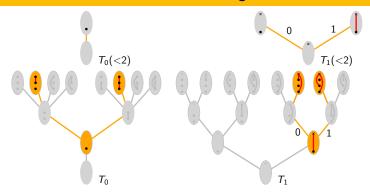
Definition (Successor operations)

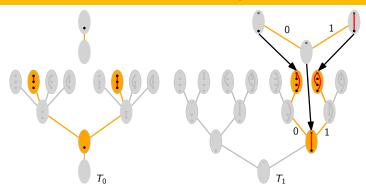
1 Given $\ell \in \omega$, $\mathbf{B} \in \mathcal{T}_1(\ell)$ and $e \in \{0,1\}$ we denote by $\mathcal{S}_1(\mathbf{B},1)$ the graph $\mathbf{B}' \in \mathcal{T}_1$ with

$$B'=B\cup\{\ell\}$$
 and $E_{\mathbf{B}'}=egin{cases} E_{\mathbf{B}} & ext{if } e=0,\ E_{\mathbf{B}}\cup\{\{\ell,t\}\} & ext{if } e=1. \end{cases}$

2 Given $\ell \in \omega$, $\mathbf{A} \in T_0(\ell)$ and $\mathbf{B} \in T_1(\ell)$ we denote by $S_0(\mathbf{A}, \mathbf{B})$ a graph $\mathbf{A}' \in T_0$ with

$$A' = A \cup \{\ell\} \text{ and } E_{A'} = E_{A} \cup \{\{x, y, \ell\} : \{x, y, t\} \in E_{B}\}.$$

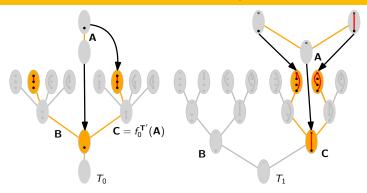




Definition (Canonical embedding $f_1^{T'}$)

Given $h \in \omega + 1$, $\mathbf{T}' = (T'_0, T'_1) = \operatorname{Str}_{h,0}(\mathbf{T})$, denote by $f_1^{\mathbf{T}'}$ the unique embedding $T_1(< h) \to T'_1$ that is

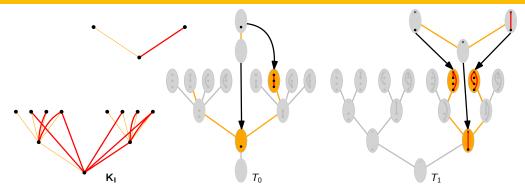
- **1** Level preserving: $\forall_{\mathbf{A} \in \mathcal{T}_1(< h)} : |\mathbf{A}|_{\mathcal{T}_1} = |f_1^{\mathbf{T}'}(\mathbf{A})|_{\mathcal{T}_1'}$
- **2** Sucessor preserving: Whevever $\mathbf{B} = \mathcal{S}_1(\mathbf{A}, e)$ then $f_1^{\mathbf{T}'}(\mathbf{B}) \supseteq \mathcal{S}_1(f_1^{\mathbf{T}'}(\mathbf{A}), e)$.



Definition (Canonical embedding $f_0^{\mathbf{T}'}$)

Given $h \in \omega + 1$, $\mathbf{T}' = (T'_0, T'_1) = \operatorname{Str}_{h,0}(\mathbf{T})$, denote by $f_0^{\mathbf{T}'}$ the unique embedding $T_0(< h) \to T'_0$ that is

- **1** Level preserving: $\forall_{\mathbf{A} \in \mathcal{T}_0(< h)} : |\mathbf{A}|_{\mathcal{T}_0} = \left| f_0^{\mathbf{T}'}(\mathbf{A}) \right|_{\mathcal{T}_0'}$.
- **2** Sucessor preserving: Whevever $\mathbf{C} = \mathcal{S}_0(\mathbf{A}, \mathbf{B})$ then $f_0^{\mathbf{T}'}(\mathbf{C}) \supseteq \mathcal{S}_0(f_0^{\mathbf{T}'}(\mathbf{A}), f_1^{\mathbf{T}'}(\mathbf{B}))$.



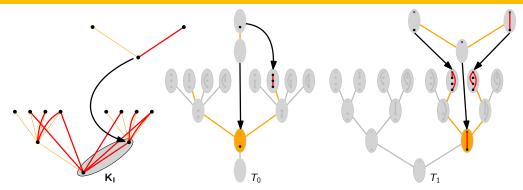
Recall: Vertices of K_I are all non-empty finite enumerated graphs A satisfying $A \upharpoonright_{|I|} = I$, and graphs $I \upharpoonright_n$, $1 \le n < |I|$.

Definition (Canonical embedding $f^{T'}$)

Given $h \in \omega + 1$, $\mathbf{T}' = (T'_0, T'_1) = \operatorname{Str}_{h,|I|}(\mathbf{T})$, denote by $\mathbf{f}^{\mathbf{T}'}$ the embedding $\mathbf{K}_{\mathbf{I}}(< h) \to \mathbf{K}_{\mathbf{I}}$ defined by

$$\mathit{f}^{\mathsf{T}'}(\mathcal{S}_0(\boldsymbol{\mathsf{A}},\boldsymbol{\mathsf{B}})) = \mathcal{S}_0(\mathit{f}^{\mathsf{T}'_0}(\boldsymbol{\mathsf{A}}),\mathit{f}^{\mathsf{T}'_1}(\boldsymbol{\mathsf{B}}))$$

for every $\mathbf{A} \in T_0(< h)$, $\mathbf{B} \in T_1(< h)$ such that $S_0(\mathbf{A}, \mathbf{B}) \in K_I$.



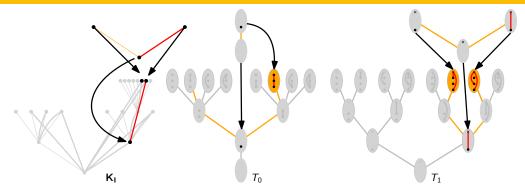
Recall: Vertices of K_I are all non-empty finite enumerated graphs A satisfying $A \upharpoonright_{|I|} = I$, and graphs $I \upharpoonright_n$, $1 \le n < |I|$.

Definition (Canonical embedding $f^{T'}$)

Given $h \in \omega + 1$, $\mathbf{T}' = (T'_0, T'_1) = \operatorname{Str}_{h,|I|}(\mathbf{T})$, denote by $\mathbf{f}^{\mathbf{T}'}$ the embedding $\mathbf{K}_{\mathbf{I}}(< h) \to \mathbf{K}_{\mathbf{I}}$ defined by

$$\mathit{f}^{\mathsf{T}'}(\mathcal{S}_0(\boldsymbol{\mathsf{A}},\boldsymbol{\mathsf{B}})) = \mathcal{S}_0(\mathit{f}^{\mathsf{T}'_0}(\boldsymbol{\mathsf{A}}),\mathit{f}^{\mathsf{T}'_1}(\boldsymbol{\mathsf{B}}))$$

for every $\mathbf{A} \in T_0(< h)$, $\mathbf{B} \in T_1(< h)$ such that $S_0(\mathbf{A}, \mathbf{B}) \in K_I$.



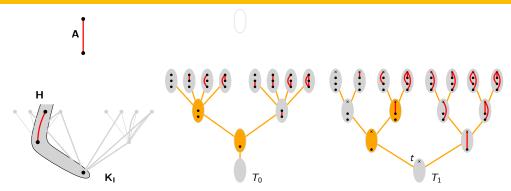
Recall: Vertices of K_I are all non-empty finite enumerated graphs A satisfying $A \upharpoonright_{|I|} = I$, and graphs $I \upharpoonright_n$, $1 \le n < |I|$.

Definition (Canonical embedding $f^{T'}$)

Given $h \in \omega + 1$, $\mathbf{T}' = (T'_0, T'_1) = \operatorname{Str}_{h,|I|}(\mathbf{T})$, denote by $f^{\mathbf{T}'}$ the embedding $\mathbf{K_I}(< h) \to \mathbf{K_I}$ defined by

$$f^{\mathsf{T}'}(\mathcal{S}_0(\mathbf{A},\mathbf{B})) = \mathcal{S}_0(f^{\mathsf{T}'_0}(\mathbf{A}),f^{\mathsf{T}'_1}(\mathbf{B}))$$

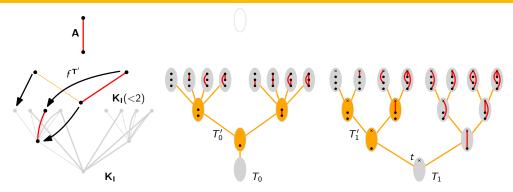
for every $\mathbf{A} \in T_0(< h)$, $\mathbf{B} \in T_1(< h)$ such that $S_0(\mathbf{A}, \mathbf{B}) \in K_I$.



Given enumerated hypergraph **A** extending hypergraph **I** we denote by $g_{\mathbf{A}}$ the embedding $\mathbf{A} \to \mathbf{K}_{\mathbf{I}}$ defined by $g_{\mathbf{A}}(v) = \mathbf{A} \upharpoonright_{v+1}$.

Lemma

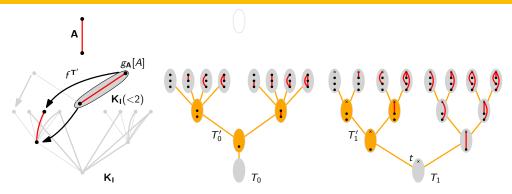
Let $\mathbf{I} \subseteq \mathbf{A}$, \mathbf{H} be enumerated graphs. Then for every type-respecting embedding $e: \mathbf{A} \to \mathbf{H}$ exists $\mathbf{T}' \in \operatorname{Str}_{|A|,|I|}(\mathbf{T})$ such that $g_{\mathbf{H}} \circ e = f^{\mathbf{T}'} \circ g_{\mathbf{A}}$.



Given enumerated hypergraph **A** extending hypergraph **I** we denote by $g_{\mathbf{A}}$ the embedding $\mathbf{A} \to \mathbf{K}_{\mathbf{I}}$ defined by $g_{\mathbf{A}}(v) = \mathbf{A} \upharpoonright_{v+1}$.

Lemma

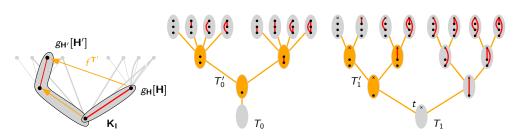
Let $\mathbf{I} \subseteq \mathbf{A}$, \mathbf{H} be enumerated graphs. Then for every type-respecting embedding $e: \mathbf{A} \to \mathbf{H}$ exists $\mathbf{T}' \in \operatorname{Str}_{|A|,|I|}(\mathbf{T})$ such that $g_{\mathbf{H}} \circ e = f^{\mathbf{T}'} \circ g_{\mathbf{A}}$.



Given enumerated hypergraph **A** extending hypergraph **I** we denote by $g_{\mathbf{A}}$ the embedding $\mathbf{A} \to \mathbf{K}_{\mathbf{I}}$ defined by $g_{\mathbf{A}}(v) = \mathbf{A} \upharpoonright_{v+1}$.

Lemma

Let $\mathbf{I} \subseteq \mathbf{A}$, \mathbf{H} be enumerated graphs. Then for every type-respecting embedding $e: \mathbf{A} \to \mathbf{H}$ exists $\mathbf{T}' \in \operatorname{Str}_{|A|,|I|}(\mathbf{T})$ such that $g_{\mathbf{H}} \circ e = f^{\mathbf{T}'} \circ g_{\mathbf{A}}$.



Given enumerated hypergraph **A** extending hypergraph **I** we denote by $g_{\mathbf{A}}$ the embedding $\mathbf{A} \to \mathbf{K}_{\mathbf{I}}$ defined by $g_{\mathbf{A}}(v) = \mathbf{A} \upharpoonright_{v+1}$.

Lemma

For every $\mathbf{T}' \in \operatorname{Str}_{\infty,|I|}$ and every enumerated hypergraph \mathbf{H} extending \mathbf{I} there exists enumerated hypergraph \mathbf{H}' extending \mathbf{I} such that $g_{\mathbf{H}'}^{-1} \circ f^{\mathbf{T}'} \circ g_{\mathbf{H}}$ is a type respecting embedding $\mathbf{H} \to \mathbf{H}'$.

Putting it all together

Finally, we can show:

Theorem

Let ${\bf R}$ be the Rado graph (i.e. universal and homogeneous 2-uniform hypergraph). Then for every finite enumerated hypergraph ${\bf A}$, every $n < |{\bf A}|$ and every coloring

$$\chi:\mathsf{TREmb}_n(\mathbf{A},\mathbf{R}) o 2$$

there exists $f \in \mathsf{TREmb}_n(\mathbf{R}, \mathbf{R})$ so that χ is constant on $f \circ \mathsf{TREmb}_n(\mathbf{A}, \mathbf{R})$

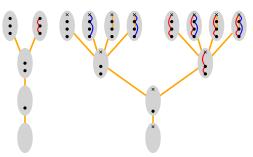
Proof.

- Fix **A**, n < |A| and $\chi : \mathsf{TREmb}_n(\mathbf{A}, \mathbf{R}) \to 2$.
- **2** Put $I = R \upharpoonright_n$.
- 3 Let $\varphi: \mathbf{K_I} \to \mathbf{R}$ be a an embedding extending $g_{\mathbf{I}}^{-1}$ such that for every enumerated hypergraph $\mathbf{H} \supseteq \mathbf{I}$ function $\varphi \circ g_{\mathbf{H}}$ is type-respecting embedding $\mathbf{H} \to \mathbf{R}$. (exists by the extension property)
- **4** Define coloring χ' : $Str_{|A|,|I|}(\mathbf{T}) \to 2$ by putting $\chi'(\mathbf{T}') = \chi(\varphi \circ f^{\mathbf{T}'} \circ g_{\mathbf{A}})$.
- **6** By Milliken tree theorem obtain $T' \in Str_{\infty,|I|}$.
- **6** Put $f = \varphi \circ f^{\mathsf{T}'} \circ g_{\mathsf{R}}$.

_

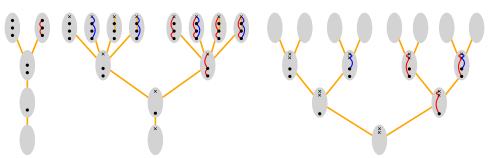
Initial part of 3-uniform hypergraph $\mathbf{K_{I}}$.

Initial part of 3-uniform hypergraph $\boldsymbol{K_{l}}.$



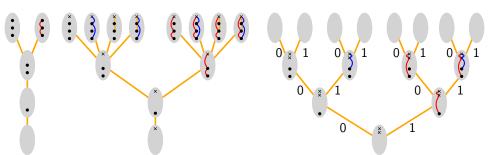
Trees T_0 (enumerations) and T_1 (1-types)

Initial part of 3-uniform hypergraph K_I.



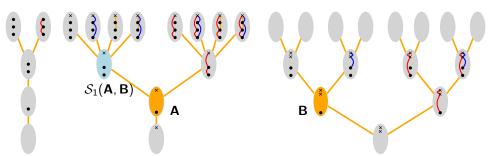
Trees T_0 (enumerations), T_1 (1-types) and T_2 Tree T_2 consist of aux-type-hypergraphs with vertex set $\ell \cup \{t_0, t_1\}$, for some $\ell \in n$ and where every hyper-edge contains both t_0 and t_1 .

Initial part of 3-uniform hypergraph K_I.



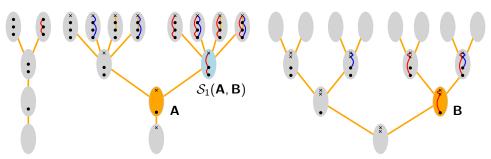
Trees T_0 (enumerations), T_1 (1-types) and T_2 Successor operations and the rest of the proof can be structured analogously to the binary case.

Initial part of 3-uniform hypergraph K_I .



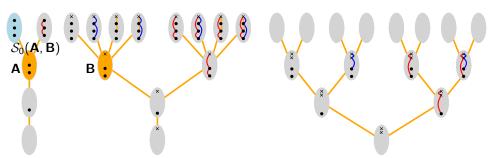
Trees T_0 (enumerations), T_1 (1-types) and T_2 Successor operations and the rest of the proof can be structured analogously to the binary case.

Initial part of 3-uniform hypergraph K_I.



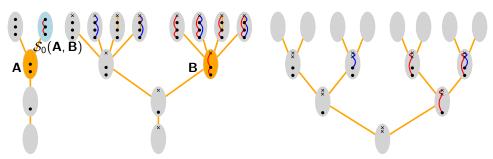
Trees T_0 (enumerations), T_1 (1-types) and T_2 Successor operations and the rest of the proof can be structured analogously to the binary case.

Initial part of 3-uniform hypergraph K_I.



Trees T_0 (enumerations), T_1 (1-types) and T_2 Successor operations and the rest of the proof can be structured analogously to the binary case.

Initial part of 3-uniform hypergraph K_I.



Trees T_0 (enumerations), T_1 (1-types) and T_2 Successor operations and the rest of the proof can be structured analogously to the binary case.

The following is a strenghtening of Balko, Chodounský, Hubička, Konečný, Vena, 2022:

Theorem

Let **G** be the universal and homogeneous 3-uniform hypergraph. Then for every finite enumerated hypergraph **A**, every n < |A| and every coloring

$$\chi:\mathsf{TREmb}_n(\mathbf{A},\mathbf{G}) o 2$$

there exists $f \in \mathsf{TREmb}_n(\mathbf{G}, \mathbf{G})$ so that χ is constant on $f \circ \mathsf{TREmb}_n(\mathbf{A}, \mathbf{G})$.

The following is a strenghtening of Balko, Chodounský, Hubička, Konečný, Vena, 2022:

Theorem

Let **G** be the universal and homogeneous 3-uniform hypergraph. Then for every finite enumerated hypergraph **A**, every n < |A| and every coloring

$$\chi:\mathsf{TREmb}_n(\mathbf{A},\mathbf{G}) o 2$$

there exists $f \in \mathsf{TREmb}_n(\mathbf{G}, \mathbf{G})$ so that χ is constant on $f \circ \mathsf{TREmb}_n(\mathbf{A}, \mathbf{G})$.

This theorem is true, but does not follow from the Milliken theorem

The following is a strenghtening of Balko, Chodounský, Hubička, Konečný, Vena, 2022:

Theorem

Let **G** be the universal and homogeneous 3-uniform hypergraph. Then for every finite enumerated hypergraph **A**, every n < |A| and every coloring

$$\chi:\mathsf{TREmb}_n(\mathbf{A},\mathbf{G}) o 2$$

there exists $f \in \mathsf{TREmb}_n(\mathbf{G}, \mathbf{G})$ so that χ is constant on $f \circ \mathsf{TREmb}_n(\mathbf{A}, \mathbf{G})$.

- This theorem is true, but does not follow from the Milliken theorem
- Can be obtained using:
 - M. Balko, D. Chodounský, N. Dobrinen, J.H., M. Konečný, J. Nešetřil, A. Zucker: Ramsey theorem for trees with successor operation, arXiv:2311.06872 (2023).

The following is a strenghtening of Balko, Chodounský, Hubička, Konečný, Vena, 2022:

Theorem

Let **G** be the universal and homogeneous 3-uniform hypergraph. Then for every finite enumerated hypergraph **A**, every n < |A| and every coloring

$$\chi:\mathsf{TREmb}_n(\mathbf{A},\mathbf{G}) o 2$$

there exists $f \in \mathsf{TREmb}_n(\mathbf{G}, \mathbf{G})$ so that χ is constant on $f \circ \mathsf{TREmb}_n(\mathbf{A}, \mathbf{G})$.

- This theorem is true, but does not follow from the Milliken theorem
- Can be obtained using:
 - M. Balko, D. Chodounský, N. Dobrinen, J.H., M. Konečný, J. Nešetřil, A. Zucker: Ramsey theorem for trees with successor operation, arXiv:2311.06872 (2023).
- Original proof for 3-uniform hypergraphs:
 - M. Balko, D. Chodounský, J.H., M. Konečný, L. Vena: Big Ramsey degrees of 3-uniform hypergraphs are finite, Combinatorica (2022).
 - S. Braunfeld, D. Chodounský, N. de Rancourt, J. Hubička, J. Kawach, M. Konečný: Big Ramsey degrees and infinite languages, Advances in Combinatorics, 2024.

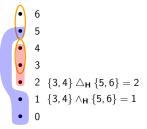
Definition (Aux-type equivalence and meets)

Given an enumerated hypergraph \mathbf{H} , vertex $\ell \in H$, and sets $S, S' \in \binom{H \setminus \ell}{2}$ we say that S and S' have the same aux-type over ℓ , and write $S \equiv_{\mathbf{H}}^{\ell} S'$, if and only if for every $v < \ell$ we have

$$\{v\} \cup S \in E_H \iff \{v\} \cup S' \in E_H.$$

We also put

$$S \triangle_{\mathbf{H}} S' = \max\{\ell \in H : \ell \leq \min(S \cup S') \text{ and } S \equiv_{\mathbf{H}}^{\ell} S'\}.$$



Recall: Tree T_2 consist of aux-type-hypergraphs with vertex set $\ell \cup \{t_0, t_1\}$, for some $\ell \in n$ and where every hyper-edge contains both t_0 and t_1 .

Definition (Aux-type equivalence and meets)

Given an enumerated hypergraph \mathbf{H} , vertex $\ell \in H$, and sets $S, S' \in \binom{H \setminus \ell}{2}$ we say that S and S' have the same aux-type over ℓ , and write $S \equiv_{\mathbf{H}}^{\ell} S'$, if and only if for every $v < \ell$ we have

$$\{v\} \cup S \in E_H \iff \{v\} \cup S' \in E_H.$$

We also put

$$S \triangle_{\mathsf{H}} S' = \max\{\ell \in H : \ell \leq \min(S \cup S') \text{ and } S \equiv_{\mathsf{H}}^{\ell} S'\}.$$

Definition (Aux-type-resepecting embedding)

Given enumerated hypergraphs ${\bf H}$ and ${\bf H}'$ we call embedding $f: {\bf H} \to {\bf H}'$ aux-type-resepecting if

- 1 f is order-preserving,
- 2 for every $u, v \in H$ it holds that $f(u \wedge_H v') = f(u) \wedge_{H'} f(v')$, and
- 3 for every $S, S' \in {H \choose 2}$ it holds that $f(S \triangle_H S') = f[S] \triangle_{H'} f[S']$.

Given enumerated hypergraphs \mathbf{H} and \mathbf{H}' , $n \in \mathbf{H}$ we denote by $\mathsf{ATREmb}_n(\mathbf{H}, \mathbf{H}')$ the set of all aux-type-respecting embeddings $\mathbf{H} \to \mathbf{H}'$ which are identity when restricted to n. We proved:

Theorem (H., Konečný, Zucker, 2025+)

Let **G** be the universal and homogeneous 3-uniform hypergraph. Then for every finite enumerated hypergraph **A**, every n < |A| and every coloring

$$\chi:\mathsf{ATREmb}_n(\mathbf{A},\mathbf{G}) o 2$$

there exists $f \in ATREmb_n(\mathbf{G}, \mathbf{G})$ so that χ is constant on $f \circ ATREmb_n(\mathbf{A}, \mathbf{G})$.

Given enumerated hypergraphs \mathbf{H} and \mathbf{H}' , $n \in \mathbf{H}$ we denote by $\mathsf{ATREmb}_n(\mathbf{H}, \mathbf{H}')$ the set of all aux-type-respecting embeddings $\mathbf{H} \to \mathbf{H}'$ which are identity when restricted to n. We proved:

Theorem (H., Konečný, Zucker, 2025+)

Let **G** be the universal and homogeneous 3-uniform hypergraph. Then for every finite enumerated hypergraph **A**, every n < |A| and every coloring

$$\chi:\mathsf{ATREmb}_n(\mathbf{A},\mathbf{G}) o 2$$

there exists $f \in ATREmb_n(\mathbf{G}, \mathbf{G})$ so that χ is constant on $f \circ ATREmb_n(\mathbf{A}, \mathbf{G})$.

Observation

Every aux-type-respecting embedding is also type-respecting.

For every $S, S' \in \binom{H}{2}$ it holds that

$$S \wedge_{\textbf{D}} S' = \min(\{S \triangle_{\textbf{D}} s\}, \min S \wedge_{\textbf{D}} \min S', \max S \wedge_{\textbf{D}} \max S'\}).$$

Lemma (Type stabilization lemma)

Let R be an enumerated Rado graph and K an enumerated graph.

For every embedding $f: \mathbf{R} \to \mathbf{K}$ there exists type-respecting embedding $g: \mathbf{R} \to \mathbf{R}$ such that $f \circ g$ is order-preserving and for every $0 < \ell \le u < v$

$$u \simeq_{\mathbf{K}}^{\ell} v \implies f(g(u)) \simeq_{\mathbf{K}}^{f(g(\ell-1))+1} f(g(v)).$$

"Every embedding of the Rado graph into an enumerated graph can be turned into an almost type-respecting embedding"

Definition (Recall: Type-resepecting embedding)

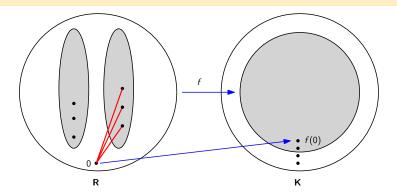
Let \mathbf{H} , \mathbf{H}' be odered graphs.

Embedding $f: \mathbf{H} \to \mathbf{H}'$ is type-resepecting if it is order-preserving and

$$\forall_{u,v \in H} : f(\{u\} \wedge_{\mathbf{H}} \{v\}) = \{f(u)\} \wedge_{\mathbf{H}'} \{f(v)\}.$$

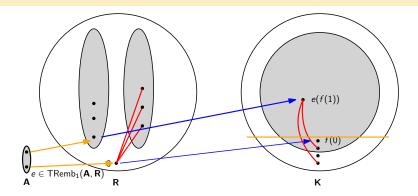
Lemma (Type stabilization lemma)

$$u \simeq_{\mathbf{R}}^{\ell} v \implies f(g(u)) \simeq_{\mathbf{K}}^{f(g(\ell-1))+1} f(g(v)).$$



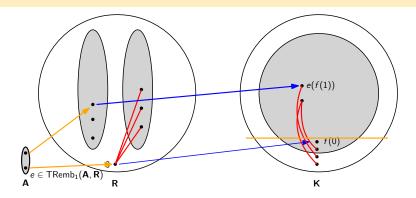
Lemma (Type stabilization lemma)

$$u \simeq_{\mathbf{R}}^{\ell} v \implies f(g(u)) \simeq_{\mathbf{K}}^{f(g(\ell-1))+1} f(g(v)).$$



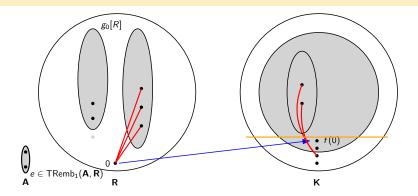
Lemma (Type stabilization lemma)

$$u \simeq_{\mathbf{R}}^{\ell} v \implies f(g(u)) \simeq_{\mathbf{K}}^{f(g(\ell-1))+1} f(g(v)).$$



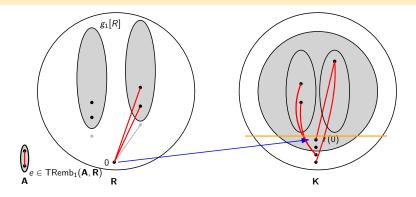
Lemma (Type stabilization lemma)

$$u \simeq_{\mathbf{R}}^{\ell} v \implies f(g(u)) \simeq_{\mathbf{K}}^{f(g(\ell-1))+1} f(g(v)).$$



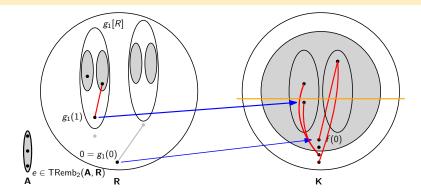
Lemma (Type stabilization lemma)

$$u \simeq_{\mathbf{R}}^{\ell} v \implies f(g(u)) \simeq_{\mathbf{K}}^{f(g(\ell-1))+1} f(g(v)).$$



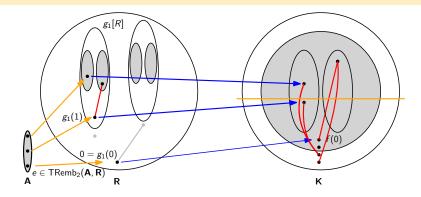
Lemma (Type stabilization lemma)

$$u \simeq_{\mathbf{R}}^{\ell} v \implies f(g(u)) \simeq_{\mathbf{K}}^{f(g(\ell-1))+1} f(g(v)).$$

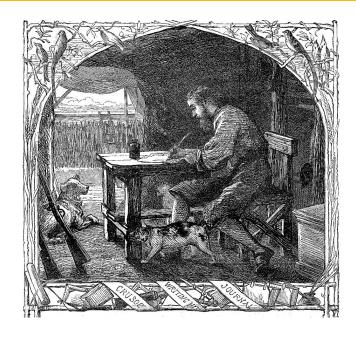


Lemma (Type stabilization lemma)

$$u \simeq_{\mathbf{R}}^{\ell} v \implies f(g(u)) \simeq_{\mathbf{K}}^{f(g(\ell-1))+1} f(g(v)).$$



Diaries



Definition (Graph diary)

A graph diary is an enumerated hypergraph **D** such that:

- Every vertex $\ell \in D$ has precisely one of the following roles:
 - 1-type split:
 - There exist two leaf vertices $u, v > \ell$ such that $\ell = u \wedge_{\mathbf{D}} v$.
 - Whenever $\{\ell, \nu\}$ is and edge then ν is leaf vertex and $\nu > \ell$.
 - If $\{\ell, u\}, \{\ell, v\} \in E_{\mathbf{D}}$, then $u \simeq_{\mathbf{D}}^{\ell} v$.
 - Leaf
- For every pair of distinct leaf vertices $u, v \in D$ it holds that $u \wedge_{\mathbf{D}} v$ is 1-type split vertex.

We denote by $leaf(\mathbf{D})$ the set of all leaves of \mathbf{D} .

Theorem (Laflamme-Sauer-Vuskanovic, 2006)

The big Ramsey degree of a finite graph $\bf A$ in finite graph $\bf R$ is the number of diaries $\bf D$ such that $\bf D \mid_{leafD}$ is isomorphic to $\bf A$.

Definition (Graph diary)

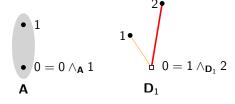
A graph diary is an enumerated hypergraph **D** such that:

- Every vertex $\ell \in D$ has precisely one of the following roles:
 - 1-type split:
 - There exist two leaf vertices $u, v > \ell$ such that $\ell = u \wedge_{\mathbf{D}} v$.
 - Whenever $\{\ell, \nu\}$ is and edge then ν is leaf vertex and $\nu > \ell$.
 - If $\{\ell, u\}, \{\ell, v\} \in E_{\mathbf{D}}$, then $u \simeq_{\mathbf{D}}^{\ell} v$.
 - Leaf
- For every pair of distinct leaf vertices $u, v \in D$ it holds that $u \wedge_{\mathbf{D}} v$ is 1-type split vertex.

Definition (Graph diary)

A graph diary is an enumerated hypergraph **D** such that:

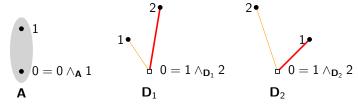
- Every vertex $\ell \in D$ has precisely one of the following roles:
 - 1-type split:
 - There exist two leaf vertices $u, v > \ell$ such that $\ell = u \wedge_{\mathbf{D}} v$.
 - Whenever $\{\ell, \nu\}$ is and edge then ν is leaf vertex and $\nu > \ell$.
 - If $\{\ell, u\}, \{\ell, v\} \in E_{\mathbf{D}}$, then $u \simeq_{\mathbf{D}}^{\ell} v$.
 - Leaf
- For every pair of distinct leaf vertices $u, v \in D$ it holds that $u \wedge_D v$ is 1-type split vertex.



Definition (Graph diary)

A graph diary is an enumerated hypergraph **D** such that:

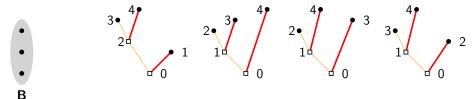
- Every vertex $\ell \in D$ has precisely one of the following roles:
 - 1-type split:
 - There exist two leaf vertices $u, v > \ell$ such that $\ell = u \wedge_{\mathbf{D}} v$.
 - Whenever $\{\ell, \nu\}$ is and edge then ν is leaf vertex and $\nu > \ell$.
 - If $\{\ell, u\}, \{\ell, v\} \in E_{\mathbf{D}}$, then $u \simeq_{\mathbf{D}}^{\ell} v$.
 - Leaf
- For every pair of distinct leaf vertices $u, v \in D$ it holds that $u \wedge_{\mathbf{D}} v$ is 1-type split vertex.



Definition (Graph diary)

A graph diary is an enumerated hypergraph **D** such that:

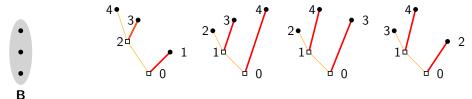
- Every vertex $\ell \in D$ has precisely one of the following roles:
 - 1-type split:
 - There exist two leaf vertices $u, v > \ell$ such that $\ell = u \wedge_{\mathbf{D}} v$.
 - Whenever $\{\ell, v\}$ is and edge then v is leaf vertex and $v > \ell$.
 - If $\{\ell, u\}, \{\ell, v\} \in E_{\mathbf{D}}$, then $u \simeq_{\mathbf{D}}^{\ell} v$.
 - Leaf
- For every pair of distinct leaf vertices $u, v \in D$ it holds that $u \wedge_{\mathbf{D}} v$ is 1-type split vertex.



Definition (Graph diary)

A graph diary is an enumerated hypergraph **D** such that:

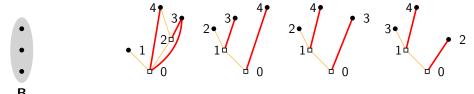
- Every vertex $\ell \in D$ has precisely one of the following roles:
 - 1-type split:
 - There exist two leaf vertices $u, v > \ell$ such that $\ell = u \wedge_{\mathbf{D}} v$.
 - Whenever $\{\ell, \nu\}$ is and edge then ν is leaf vertex and $\nu > \ell$.
 - If $\{\ell, u\}, \{\ell, v\} \in E_{\mathbf{D}}$, then $u \simeq_{\mathbf{D}}^{\ell} v$.
 - Leaf
- For every pair of distinct leaf vertices $u, v \in D$ it holds that $u \wedge_{\mathbf{D}} v$ is 1-type split vertex.



Definition (Graph diary)

A graph diary is an enumerated hypergraph **D** such that:

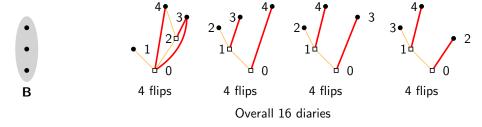
- Every vertex $\ell \in D$ has precisely one of the following roles:
 - 1-type split:
 - There exist two leaf vertices $u, v > \ell$ such that $\ell = u \wedge_{\mathbf{D}} v$.
 - Whenever $\{\ell, \nu\}$ is and edge then ν is leaf vertex and $\nu > \ell$.
 - If $\{\ell, u\}, \{\ell, v\} \in E_{\mathbf{D}}$, then $u \simeq_{\mathbf{D}}^{\ell} v$.
 - Leaf
- For every pair of distinct leaf vertices $u, v \in D$ it holds that $u \wedge_{\mathbf{D}} v$ is 1-type split vertex.



Definition (Graph diary)

A graph diary is an enumerated hypergraph **D** such that:

- Every vertex $\ell \in D$ has precisely one of the following roles:
 - 1-type split:
 - There exist two leaf vertices $u, v > \ell$ such that $\ell = u \wedge_{\mathbf{D}} v$.
 - Whenever $\{\ell, \nu\}$ is and edge then ν is leaf vertex and $\nu > \ell$.
 - If $\{\ell, u\}, \{\ell, v\} \in E_{\mathbf{D}}$, then $u \simeq_{\mathbf{D}}^{\ell} v$.
 - Leaf
- For every pair of distinct leaf vertices $u, v \in D$ it holds that $u \wedge_{\mathbf{D}} v$ is 1-type split vertex.

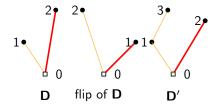


Theorem (Laflamme-Sauer-Vuskanovic, 2006)

The big Ramsey degree of a finite graph ${\bf A}$ in ${\bf R}$ is the number of diaries ${\bf D}$ such that ${\bf D}$ $|_{{\sf leaf}D}$ is isomorphic to ${\bf A}$.

Lemma (Flip property)

For every diary **D** there exists a diary **D**' such that for every flip **D**'' of **D**' has type-respecting embedding $D \to D''$

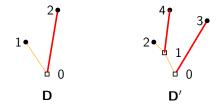


Theorem (Laflamme-Sauer-Vuskanovic, 2006)

The big Ramsey degree of a finite graph $\bf A$ in $\bf R$ is the number of diaries $\bf D$ such that $\bf D$ $\bf D$ is isomorphic to $\bf A$.

Lemma (Flip property)

For every diary **D** there exists a diary **D**' such that for every flip **D**'' of **D**' has type-respecting embedding $D \to D''$

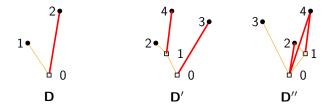


Theorem (Laflamme-Sauer-Vuskanovic, 2006)

The big Ramsey degree of a finite graph $\bf A$ in $\bf R$ is the number of diaries $\bf D$ such that $\bf D$ $\bf L$ is isomorphic to $\bf A$.

Lemma (Flip property)

For every diary **D** there exists a diary **D**' such that for every flip **D**'' of **D**' has type-respecting embedding $D \to D''$



Theorem (Laflamme-Sauer-Vuskanovic, 2006)

The big Ramsey degree of a finite graph $\bf A$ in $\bf R$ is the number of diaries $\bf D$ such that $\bf D$ $\bf D$ is isomorphic to $\bf A$.

Lemma (Flip property)

For every diary **D** there exists a diary **D**' such that for every flip **D**'' of **D**' has type-respecting embedding $D \to D''$

Proof.

Let **E** be a diary of a Rado graph. Let $f: \mathbf{R} \to \mathbf{E} \upharpoonright_{\mathsf{leaf}(\mathbf{E})}$ be an embedding given by an enemy. We prove that for every diary **D** there exits type-respecting embedding $e: \mathbf{D} \to \mathbf{E}$ such that $e[\mathsf{leaf}(\mathbf{D})] \subseteq f[R]$.

Theorem (Laflamme-Sauer-Vuskanovic, 2006)

The big Ramsey degree of a finite graph $\bf A$ in $\bf R$ is the number of diaries $\bf D$ such that $\bf D$ $\bf D$ is isomorphic to $\bf A$.

Lemma (Flip property)

For every diary **D** there exists a diary **D**' such that for every flip **D**'' of **D**' has type-respecting embedding $D \to D''$

Proof.

Let **E** be a diary of a Rado graph. Let $f: \mathbf{R} \to \mathbf{E} \upharpoonright_{\mathsf{leaf}(\mathbf{E})}$ be an embedding given by an enemy. We prove that for every diary **D** there exits type-respecting embedding $e: \mathbf{D} \to \mathbf{E}$ such that $e[\mathsf{leaf}(\mathbf{D})] \subseteq f[R]$.

- Fix finite diary **D**. Let **D**′ be given by the flip property.
- **2** WLOG $\mathbf{D}' = \mathbf{R} \upharpoonright_{|D'|}$.
- 3 Let g be given by the type stabilization lemma for \mathbf{R}' .
- **4** One can adjust $f \circ g$ to be embedding of flip of diary \mathbf{D}' to \mathbf{E} .

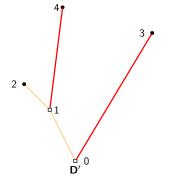
Constructing embedding of diaries

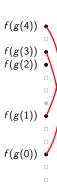
Lemma (Recall: Type stabilization lemma)

Let $\mathbf R$ be an enumerated Rado graph and $\mathbf K$ an enumerated graph. For every embedding $f:\mathbf R\to \mathbf K$ there exists embedding $g:\mathbf R\to \mathbf R$ such that $f\circ g$ is order-preserving and for every $\ell\in R\setminus\{0\}$, $u,v\in R\setminus \ell$

$$u \simeq_{\mathbf{R}}^{\ell} v \implies f(g(u)) \simeq_{\mathbf{K}}^{f(g(\ell-1))+1} f(g(v)).$$

Fixing $f \circ g : \mathbf{D}' \to \mathbf{E}$ to a type-respecting embedding $\mathbf{D}' \to \mathbf{E}$:

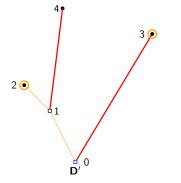




Lemma (Recall: Type stabilization lemma)

Let $\mathbf R$ be an enumerated Rado graph and $\mathbf K$ an enumerated graph. For every embedding $f:\mathbf R\to \mathbf K$ there exists embedding $g:\mathbf R\to \mathbf R$ such that $f\circ g$ is order-preserving and for every $\ell\in R\setminus\{0\}$, $u,v\in R\setminus \ell$

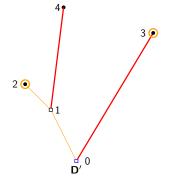
$$u \simeq_{\mathbf{K}}^{\ell} v \implies f(g(u)) \simeq_{\mathbf{K}}^{f(g(\ell-1))+1} f(g(v)).$$

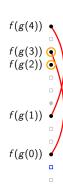


Lemma (Recall: Type stabilization lemma)

Let $\mathbf R$ be an enumerated Rado graph and $\mathbf K$ an enumerated graph. For every embedding $f:\mathbf R\to \mathbf K$ there exists embedding $g:\mathbf R\to \mathbf R$ such that $f\circ g$ is order-preserving and for every $\ell\in R\setminus\{0\},\ u,v\in R\setminus \ell$

$$u \simeq_{\mathbf{R}}^{\ell} v \implies f(g(u)) \simeq_{\mathbf{K}}^{f(g(\ell-1))+1} f(g(v)).$$

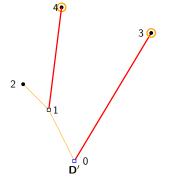


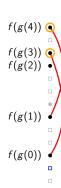


Lemma (Recall: Type stabilization lemma)

Let **R** be an enumerated Rado graph and **K** an enumerated graph. For every embedding $f: \mathbf{R} \to \mathbf{K}$ there exists embedding $g: \mathbf{R} \to \mathbf{R}$ such that $f \circ g$ is order-preserving and for every $\ell \in R \setminus \{0\}$, $u, v \in R \setminus \ell$

$$u \simeq_{\mathbf{K}}^{\ell} v \implies f(g(u)) \simeq_{\mathbf{K}}^{f(g(\ell-1))+1} f(g(v)).$$

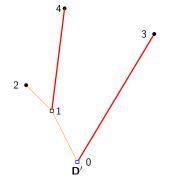


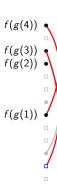


Lemma (Recall: Type stabilization lemma)

Let $\mathbf R$ be an enumerated Rado graph and $\mathbf K$ an enumerated graph. For every embedding $f:\mathbf R\to \mathbf K$ there exists embedding $g:\mathbf R\to \mathbf R$ such that $f\circ g$ is order-preserving and for every $\ell\in R\setminus\{0\}$, $u,v\in R\setminus \ell$

$$u \simeq_{\mathbf{R}}^{\ell} v \implies f(g(u)) \simeq_{\mathbf{K}}^{f(g(\ell-1))+1} f(g(v)).$$

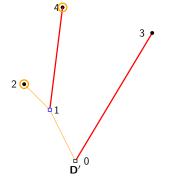


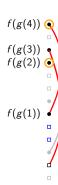


Lemma (Recall: Type stabilization lemma)

Let $\mathbf R$ be an enumerated Rado graph and $\mathbf K$ an enumerated graph. For every embedding $f:\mathbf R\to \mathbf K$ there exists embedding $g:\mathbf R\to \mathbf R$ such that $f\circ g$ is order-preserving and for every $\ell\in R\setminus\{0\}$, $u,v\in R\setminus \ell$

$$u \simeq_{\mathbf{R}}^{\ell} v \implies f(g(u)) \simeq_{\mathbf{K}}^{f(g(\ell-1))+1} f(g(v)).$$

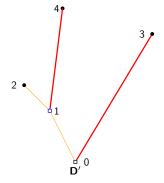




Lemma (Recall: Type stabilization lemma)

Let $\mathbf R$ be an enumerated Rado graph and $\mathbf K$ an enumerated graph. For every embedding $f:\mathbf R\to \mathbf K$ there exists embedding $g:\mathbf R\to \mathbf R$ such that $f\circ g$ is order-preserving and for every $\ell\in R\setminus\{0\}$, $u,v\in R\setminus \ell$

$$u \simeq_{\mathbf{R}}^{\ell} v \implies f(g(u)) \simeq_{\mathbf{K}}^{f(g(\ell-1))+1} f(g(v)).$$



3-uniform diaries

Definition (3-uniform hypergrah diary (H., Konečný, Zucker, 2025+))

A 3-uniform hypergraph diary is an enumerated hypergraph **D** such that:

- Every vertex $\ell \in D$ has precisely one of the following roles:
 - 1-type split:
 - There exist two leaf vertices $u, v > \ell$ such that $\ell = u \wedge_{\mathbf{D}} v$.
 - Every hyper-edge containing ℓ contains 0 and a leaf vertex $\nu > \ell$.
 - If $\{0, \ell, u\}, \{0, \ell, v\} \in E_{\mathbf{D}}$, then $u \simeq_{\mathbf{D}}^{\ell} v$.

• 2-type split:

- $\ell = 0$ or there exitst leaves $\ell < u_0 < u_1$ and $\ell < v_1 < v_2$ such that $\ell = \{u_0, u_1\} \land_{\mathbf{p}} \{v_0, v_1\}$.
- Every hyper-edge containing ℓ contains two leaf vertices $v_1 > v_0 > \ell$.
- If $\{\ell < u_0 < u_1\}, \{\ell < v_0 < v_1\} \in E_{\mathbf{D}} \text{ then } \{u_0, u_1\} \simeq_{\mathbf{D}}^{\ell} \{v_0, v_1\}.$

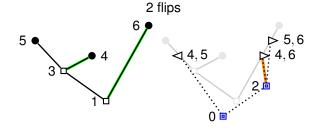
• Leaf:

- For every $v \in \text{leaf}(\mathbf{D})$, $v < \ell$ we have $\{0, v, \ell\} \in E_{\mathbf{D}} \iff v <_{\mathbf{D}}^{\text{lex}} \ell$.
- The following conditions are satisfied:
 - For every $u, v \in \text{leaf}(\mathbf{D})$ it holds that $u \wedge_{\mathbf{D}} v$ is 1-type split vertex.
 - For every $S, S' \in \binom{\mathsf{leaf}(D)}{2}$ precisely one of the following is satisfied
 - $S \wedge_D S' = \min S = \min S'$ and $\max S \simeq_D^{\min S+1} \max S'$,
 - $v = S \wedge_D S'$ is 2-type split vertex. v = 0 iff S and S' disagrees in lexicographic order.

Diaries of non-hyperedge 1/8

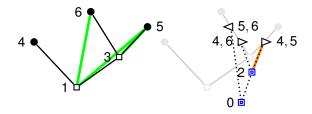


$$E_{D_1} = \{\{0, 1, 4\}, \{0, 1, 5\}, \{0, 3, 4\}, \{0, 2, 4\}, \{0, 2, 5\}\}$$



$$\begin{aligned} \textbf{\textit{E}}_{\textbf{\textit{D}}_2} &= \{\{0,1,6\},\{0,3,4\},\{0,4,6\},\{0,5,6\},\{\textbf{\textit{2}},\textbf{\textit{4}},6\}\} \\ &\quad \text{4 flips} \end{aligned}$$

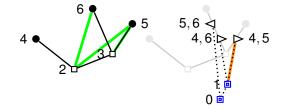
Diaries of non-hyperedge 2/8

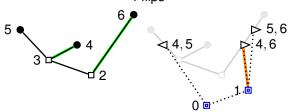


$$E_{\textbf{D}_3} = \{\{0,1,5\},\{0,1,6\},\{0,3,5\},\{0,4,5\},\{0,4,6\},\{\textbf{2},\textbf{4},\textbf{5}\}\}$$
 4 flips

$$\begin{split} E_{\textbf{D_4}} = \{\{0,2,5\},\{0,3,6\},\{0,4,5\},\{0,4,6\},\{1,4,5\}\} \\ & \text{4 flips} \end{split}$$

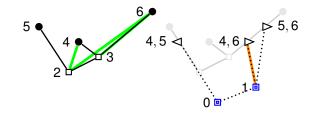
Diaries of non-hyperedge 3/8

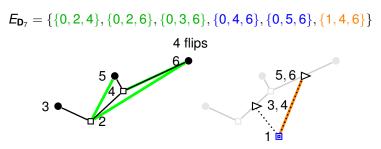




$$\begin{split} \textbf{\textit{E}}_{\textbf{\textit{D}}_{6}} = \{\{0,2,6\},\{0,3,4\},\{0,4,6\},\{0,5,6\},\{1,4,6\}\} \\ & \quad \text{4 flips} \end{split}$$

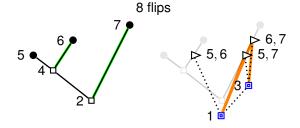
Diaries of non-hyperedge 4/8





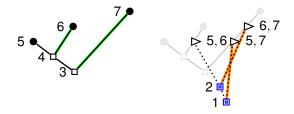
Diaries of non-hyperedge 5/8

$$\textbf{\textit{E}}_{\textbf{\textit{D}}_{9}} = \{\{0,2,6\},\{0,2,7\},\{0,4,7\},\{0,5,6\},\{0,5,7\},\{0,6,7\},\{1,6,7\},\{3,5,7\}\}$$

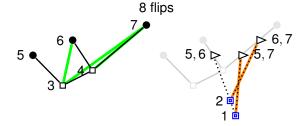


$$\begin{split} E_{\textbf{D}_{10}} = \{\{0,2,7\},\{0,4,6\},\{0,5,6\},\{0,5,7\},\{0,6,7\},\{1,5,7\},\{1,6,7\},\{3,6,7\}\} \\ & \text{8 flips} \end{split}$$

Diaries of non-hyperedge 6/8

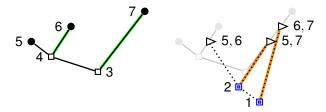


$$\textit{E}_{\textbf{D}_{11}} = \{\{0,3,7\},\{0,4,6\},\{0,5,6\},\{0,5,7\},\{0,6,7\},\{1,5,7\},\{2,6,7\}\}\}$$

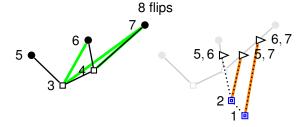


$$\begin{split} \textbf{\textit{E}}_{\textbf{\textit{D}}_{12}} = \{\{0,3,6\},\{0,3,7\},\{0,4,7\},\{0,5,6\},\{0,5,7\},\{0,6,7\},\{1,5,7\},\{2,6,7\}\} \\ & \text{8 flips} \end{split}$$

Diaries of non-hyperedge 7/8



$$\textit{E}_{\textbf{D}_{13}} = \{\{0,3,7\},\{0,4,6\},\{0,5,6\},\{0,5,7\},\{0,6,7\},\{1,6,7\},\{2,5,7\}\}$$

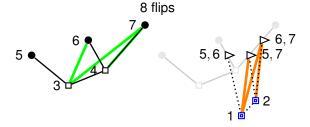


$$\begin{split} E_{\textbf{D}_{14}} = \{\{0,3,6\},\{0,3,7\},\{0,4,7\},\{0,5,6\},\{0,5,7\},\{0,6,7\},\{1,6,7\},\{2,5,7\}\} \\ & \text{8 flips} \end{split}$$

Diaries of non-hyperedge 8/8

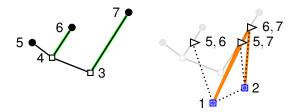


$$\textit{E}_{\textbf{D}_{15}} = \{\{0, 3, 7\}, \{0, 4, 6\}, \{0, 5, 6\}, \{0, 5, 7\}, \{0, 6, 7\}, \{1, 5, 7\}, \{1, 6, 7\}, \{2, 6, 7\}\}$$

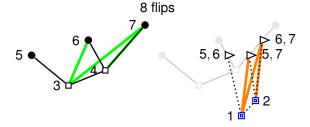


$$\begin{aligned} \textbf{\textit{E}}_{\textbf{\textit{D}}_{16}} = \{\{0,3,6\},\{0,3,7\},\{0,4,7\},\{0,5,6\},\{0,5,7\},\{0,6,7\},\{1,5,7\},\{1,6,7\},\{2,6,7\}\}\} \\ & \text{8 flips} \end{aligned}$$

Diaries of non-hyperedge 8/8



$$\textit{E}_{\textbf{D}_{15}} = \{\{0, 3, 7\}, \{0, 4, 6\}, \{0, 5, 6\}, \{0, 5, 7\}, \{0, 6, 7\}, \{1, 5, 7\}, \{1, 6, 7\}, \{2, 6, 7\}\}$$



$$\begin{aligned} \textbf{\textit{E}}_{\textbf{\textit{D}}_{16}} = \{\{0,3,6\},\{0,3,7\},\{0,4,7\},\{0,5,6\},\{0,5,7\},\{0,6,7\},\{1,5,7\},\{1,6,7\},\{2,6,7\}\}\} \\ & \text{8 flips} \end{aligned}$$

2379172 diaries of 4 vertex anti-clique

2379172 diaries of 4 vertex anti-clique

Change my mind!

2379172 diaries of 4 vertex anti-clique

Change my mind, Štěpán!

Thank you!

Winter fun in 2014

While most Ramsey-type theorems are concerned about regularly branching trees, we need more general notion allowing trees with finite but unbounded branching.

Definition (S-tree)

An \mathcal{S} -tree is a quadruple $(T, \leq, \Sigma, \mathcal{S})$ where (T, \leq) is a countable finitely branching tree with finitely many nodes of level 0, Σ is a set called the alphabet and \mathcal{S} is a partial function $\mathcal{S} \colon T \times T^{<\omega} \times \Sigma \to T$ called the successor operation satisfying the following three axioms:

While most Ramsey-type theorems are concerned about regularly branching trees, we need more general notion allowing trees with finite but unbounded branching.

Definition (S-tree)

An \mathcal{S} -tree is a quadruple $(T, \leq, \Sigma, \mathcal{S})$ where (T, \leq) is a countable finitely branching tree with finitely many nodes of level $0, \Sigma$ is a set called the alphabet and \mathcal{S} is a partial function $\mathcal{S} \colon T \times T^{<\omega} \times \Sigma \to T$ called the successor operation satisfying the following three axioms:

• If $S(a, \bar{p}, c)$ is defined for some base $a \in T$, parameter $\bar{p} \in T^{<\omega}$ and character $c \in \Sigma$, then $S(a, \bar{p}, c)$ is an immediate successor of a and all nodes in \bar{p} have levels at most $\ell(a) - 1$.

While most Ramsey-type theorems are concerned about regularly branching trees, we need more general notion allowing trees with finite but unbounded branching.

Definition (S-tree)

An \mathcal{S} -tree is a quadruple $(T, \leq, \Sigma, \mathcal{S})$ where (T, \leq) is a countable finitely branching tree with finitely many nodes of level $0, \Sigma$ is a set called the alphabet and \mathcal{S} is a partial function $\mathcal{S} \colon T \times T^{<\omega} \times \Sigma \to T$ called the successor operation satisfying the following three axioms:

- If $S(a, \bar{p}, c)$ is defined for some base $a \in T$, parameter $\bar{p} \in T^{<\omega}$ and character $c \in \Sigma$, then $S(a, \bar{p}, c)$ is an immediate successor of a and all nodes in \bar{p} have levels at most $\ell(a) 1$.
- **2** For every node $a \in T$ and its immediate successor b, there exist $\bar{p} \in T^{<\omega}$ and $c \in \Sigma$ such that $b = S(a, \bar{p}, c)$.

While most Ramsey-type theorems are concerned about regularly branching trees, we need more general notion allowing trees with finite but unbounded branching.

Definition (S-tree)

An \mathcal{S} -tree is a quadruple $(T, \leq, \Sigma, \mathcal{S})$ where (T, \leq) is a countable finitely branching tree with finitely many nodes of level $0, \Sigma$ is a set called the alphabet and \mathcal{S} is a partial function $\mathcal{S} \colon T \times T^{<\omega} \times \Sigma \to T$ called the successor operation satisfying the following three axioms:

- If $S(a, \bar{p}, c)$ is defined for some base $a \in T$, parameter $\bar{p} \in T^{<\omega}$ and character $c \in \Sigma$, then $S(a, \bar{p}, c)$ is an immediate successor of a and all nodes in \bar{p} have levels at most $\ell(a) 1$.
- **2** For every node $a \in T$ and its immediate successor b, there exist $\bar{p} \in T^{<\omega}$ and $c \in \Sigma$ such that $b = S(a, \bar{p}, c)$.

Example: a binary tree

Consider S-tree is $(2^{<\omega}, \sqsubseteq, 2, S)$.

 \mathcal{S} is defined only for empty parameters \bar{p} by concatenation: $\mathcal{S}(a,c)=a^{-}c$.

$$S(S(S(S(S((1),0),1),0),1),1) = 01011.$$

Definition (Shape-preserving functions)

Let (T, \leq, Σ, S) be an S-tree. We call an injection $F: T \to T$ shape-preserving if

1 *F* is level-preserving:

$$(\forall_{a,b\in T}): (\ell(a) = \ell(b)) \implies (\ell(F(a)) = \ell(F(b))).$$

Definition (Shape-preserving functions)

Let (T, \leq, Σ, S) be an S-tree. We call an injection $F: T \to T$ shape-preserving if

1 *F* is level-preserving:

$$(\forall_{a,b\in T}): (\ell(a) = \ell(b)) \implies (\ell(F(a)) = \ell(F(b))).$$

2 F is weakly S-preserving:

$$(\forall_{a\in \mathcal{T},\bar{p}\in \mathcal{T}^{<\omega},c\in\Sigma}):\mathcal{S}(a,\bar{p},c)\text{ is defined }\implies \mathcal{S}(F(a),F(\bar{p}),c)\preceq F(\mathcal{S}(a,\bar{p},c)).$$

Definition (Shape-preserving functions)

Let (T, \leq, Σ, S) be an S-tree. We call an injection $F: T \to T$ shape-preserving if

1 *F* is level-preserving:

$$(\forall_{a,b\in\mathcal{T}}): (\ell(a)=\ell(b)) \implies (\ell(F(a))=\ell(F(b))).$$

2 F is weakly S-preserving:

$$(\forall_{a\in \mathcal{T},\bar{p}\in \mathcal{T}^{<\omega},c\in\Sigma}):\mathcal{S}(a,\bar{p},c)\text{ is defined }\implies \mathcal{S}(F(a),F(\bar{p}),c)\preceq F(\mathcal{S}(a,\bar{p},c)).$$

3 For every $a \in T(0)$ and b such that $a \leq b$ it also holds that $a \leq F(b)$.

Definition (Shape-preserving functions)

Let (T, \leq, Σ, S) be an S-tree. We call an injection $F: T \to T$ shape-preserving if

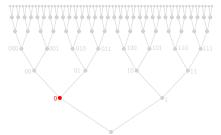
1 *F* is level-preserving:

$$(\forall_{a,b\in\mathcal{T}}): (\ell(a)=\ell(b)) \implies (\ell(F(a))=\ell(F(b))).$$

2 F is weakly S-preserving:

$$(\forall_{a\in\mathcal{T},\bar{p}\in\mathcal{T}^{<\omega},c\in\Sigma}):\mathcal{S}(a,\bar{p},c)\text{ is defined }\Longrightarrow\mathcal{S}(F(a),F(\bar{p}),c)\preceq F(\mathcal{S}(a,\bar{p},c)).$$

3 For every $a \in T(0)$ and b such that $a \leq b$ it also holds that $a \leq F(b)$.



Definition (Shape-preserving functions)

Let (T, \leq, Σ, S) be an S-tree. We call an injection $F: T \to T$ shape-preserving if

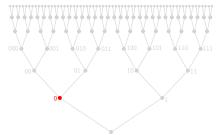
1 *F* is level-preserving:

$$(\forall_{a,b\in\mathcal{T}}): (\ell(a)=\ell(b)) \implies (\ell(F(a))=\ell(F(b))).$$

2 F is weakly S-preserving:

$$(\forall_{a\in\mathcal{T},\bar{p}\in\mathcal{T}^{<\omega},c\in\Sigma}):\mathcal{S}(a,\bar{p},c)\text{ is defined }\Longrightarrow\mathcal{S}(F(a),F(\bar{p}),c)\preceq F(\mathcal{S}(a,\bar{p},c)).$$

3 For every $a \in T(0)$ and b such that $a \leq b$ it also holds that $a \leq F(b)$.



Definition (Shape-preserving functions)

Let (T, \leq, Σ, S) be an S-tree. We call an injection $F: T \to T$ shape-preserving if

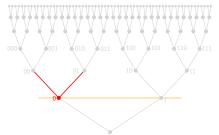
1 *F* is level-preserving:

$$(\forall_{a,b\in\mathcal{T}}): (\ell(a)=\ell(b)) \implies (\ell(F(a))=\ell(F(b))).$$

2 F is weakly S-preserving:

$$(\forall_{a\in\mathcal{T},\bar{p}\in\mathcal{T}^{<\omega},c\in\Sigma}):\mathcal{S}(a,\bar{p},c)\text{ is defined }\Longrightarrow\mathcal{S}(F(a),F(\bar{p}),c)\preceq F(\mathcal{S}(a,\bar{p},c)).$$

3 For every $a \in T(0)$ and b such that $a \leq b$ it also holds that $a \leq F(b)$.



Definition (Shape-preserving functions)

Let (T, \leq, Σ, S) be an S-tree. We call an injection $F: T \to T$ shape-preserving if

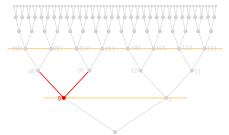
1 *F* is level-preserving:

$$(\forall_{a,b\in\mathcal{T}}): (\ell(a)=\ell(b)) \implies (\ell(F(a))=\ell(F(b))).$$

2 F is weakly S-preserving:

$$(\forall_{a\in\mathcal{T},\bar{p}\in\mathcal{T}^{<\omega},c\in\Sigma}):\mathcal{S}(a,\bar{p},c)\text{ is defined }\Longrightarrow\mathcal{S}(F(a),F(\bar{p}),c)\preceq F(\mathcal{S}(a,\bar{p},c)).$$

3 For every $a \in T(0)$ and b such that $a \leq b$ it also holds that $a \leq F(b)$.



Definition (Shape-preserving functions)

Let (T, \leq, Σ, S) be an S-tree. We call an injection $F: T \to T$ shape-preserving if

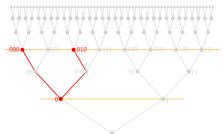
1 *F* is level-preserving:

$$(\forall_{a,b\in\mathcal{T}}): (\ell(a)=\ell(b)) \implies (\ell(F(a))=\ell(F(b))).$$

2 F is weakly S-preserving:

$$(\forall_{a\in\mathcal{T},\bar{p}\in\mathcal{T}^{<\omega},c\in\Sigma}):\mathcal{S}(a,\bar{p},c)\text{ is defined }\Longrightarrow\mathcal{S}(F(a),F(\bar{p}),c)\preceq F(\mathcal{S}(a,\bar{p},c)).$$

3 For every $a \in T(0)$ and b such that $a \leq b$ it also holds that $a \leq F(b)$.



Definition (Shape-preserving functions)

Let (T, \leq, Σ, S) be an S-tree. We call an injection $F: T \to T$ shape-preserving if

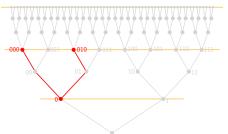
1 *F* is level-preserving:

$$(\forall_{a,b\in\mathcal{T}}): (\ell(a)=\ell(b)) \implies (\ell(F(a))=\ell(F(b))).$$

2 F is weakly S-preserving:

$$(\forall_{a\in\mathcal{T},\bar{p}\in\mathcal{T}^{<\omega},c\in\Sigma}):\mathcal{S}(a,\bar{p},c)\text{ is defined }\Longrightarrow\mathcal{S}(F(a),F(\bar{p}),c)\preceq F(\mathcal{S}(a,\bar{p},c)).$$

3 For every $a \in T(0)$ and b such that $a \leq b$ it also holds that $a \leq F(b)$.



Definition (Shape-preserving functions)

Let (T, \leq, Σ, S) be an S-tree. We call an injection $F: T \to T$ shape-preserving if

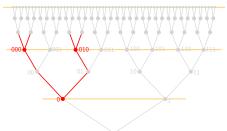
1 *F* is level-preserving:

$$(\forall_{a,b\in\mathcal{T}}): (\ell(a)=\ell(b)) \implies (\ell(F(a))=\ell(F(b))).$$

2 F is weakly S-preserving:

$$(\forall_{a\in\mathcal{T},\bar{p}\in\mathcal{T}^{<\omega},c\in\Sigma}):\mathcal{S}(a,\bar{p},c)\text{ is defined }\Longrightarrow\mathcal{S}(F(a),F(\bar{p}),c)\preceq F(\mathcal{S}(a,\bar{p},c)).$$

3 For every $a \in T(0)$ and b such that $a \leq b$ it also holds that $a \leq F(b)$.



Shape-preserving functions

Definition (Shape-preserving functions)

Let (T, \leq, Σ, S) be an S-tree. We call an injection $F: T \to T$ shape-preserving if

1 *F* is level-preserving:

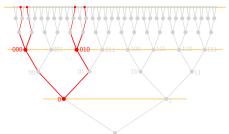
$$(\forall_{a,b\in\mathcal{T}}): (\ell(a)=\ell(b)) \implies (\ell(F(a))=\ell(F(b))).$$

2 F is weakly S-preserving:

$$(\forall_{a\in\mathcal{T},\bar{p}\in\mathcal{T}^{<\omega},c\in\Sigma}):\mathcal{S}(a,\bar{p},c)\text{ is defined }\Longrightarrow\mathcal{S}(F(a),F(\bar{p}),c)\preceq F(\mathcal{S}(a,\bar{p},c)).$$

3 For every $a \in T(0)$ and b such that $a \leq b$ it also holds that $a \leq F(b)$.

Given $S \subseteq T$, we also call a function $f \colon S \to T$ shape-preserving if it extends to a shape-preserving function $F \colon T \to T$.



For a level-preserving function $F: S \to T$, we denote by \tilde{F} the function $\tilde{F}: \ell(S) \to \omega$ defined by $\tilde{F}(n) = \ell(F(a))$ for some $a \in S$ with $\ell(a) = n$.

We say that F is skipping level m if $m \notin \tilde{F}[\omega]$ and that F is skipping only level m if $\tilde{F}[\omega] = \omega \setminus \{m\}$.

Definition ((\mathcal{S}, \mathcal{M})-tree)

Given an S-tree (T, \preceq, Σ, S) and a monoid \mathcal{M} of some shape-preserving functions $T \to T$, we call $(T, \preceq, \Sigma, S, \mathcal{M})$ an (S, \mathcal{M}) -tree if the following three conditions are satisfied:

For a level-preserving function $F: S \to T$, we denote by \tilde{F} the function $\tilde{F}: \ell(S) \to \omega$ defined by $\tilde{F}(n) = \ell(F(a))$ for some $a \in S$ with $\ell(a) = n$.

We say that F is skipping level m if $m \notin \tilde{F}[\omega]$ and that F is skipping only level m if $\tilde{F}[\omega] = \omega \setminus \{m\}$.

Definition ((\mathcal{S}, \mathcal{M})-tree)

Given an \mathcal{S} -tree $(T, \preceq, \Sigma, \mathcal{S})$ and a monoid \mathcal{M} of some shape-preserving functions $T \to T$, we call $(T, \preceq, \Sigma, \mathcal{S}, \mathcal{M})$ an $(\mathcal{S}, \mathcal{M})$ -tree if the following three conditions are satisfied:

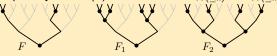
For a level-preserving function $F: S \to T$, we denote by \tilde{F} the function $\tilde{F}: \ell(S) \to \omega$ defined by $\tilde{F}(n) = \ell(F(a))$ for some $a \in S$ with $\ell(a) = n$.

We say that F is skipping level m if $m \notin \tilde{F}[\omega]$ and that F is skipping only level m if $\tilde{F}[\omega] = \omega \setminus \{m\}$.

Definition ((S, M)-tree)

Given an \mathcal{S} -tree $(T, \preceq, \Sigma, \mathcal{S})$ and a monoid \mathcal{M} of some shape-preserving functions $T \to T$, we call $(T, \preceq, \Sigma, \mathcal{S}, \mathcal{M})$ an $(\mathcal{S}, \mathcal{M})$ -tree if the following three conditions are satisfied:

- $oldsymbol{1}{\mathcal{M}}$ forms a closed monoid: \mathcal{M} contains the identity and is closed for compositions and limits.
- **2** \mathcal{M} admits decompositions: For every $n \in \omega$ and $F \in \mathcal{M}$ skipping level $\tilde{F}(n) 1$ there exist $F_1, F_2 \in \mathcal{M}$ such that F_2 skips only level $\tilde{F}(n) 1$ and $F_2 \circ F_1 \upharpoonright_{T(\leq n)} = F \upharpoonright_{T(\leq n)}$.



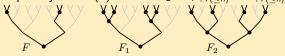
For a level-preserving function $F: S \to T$, we denote by \tilde{F} the function $\tilde{F}: \ell(S) \to \omega$ defined by $\tilde{F}(n) = \ell(F(a))$ for some $a \in S$ with $\ell(a) = n$.

We say that F is skipping level m if $m \notin \tilde{F}[\omega]$ and that F is skipping only level m if $\tilde{F}[\omega] = \omega \setminus \{m\}$.

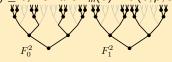
Definition ((S, M)-tree)

Given an S-tree (T, \preceq, Σ, S) and a monoid M of some shape-preserving functions $T \to T$, we call $(T, \preceq, \Sigma, S, M)$ an (S, M)-tree if the following three conditions are satisfied:

- \bullet M forms a closed monoid: \mathcal{M} contains the identity and is closed for compositions and limits.
- **2** \mathcal{M} admits decompositions: For every $n \in \omega$ and $F \in \mathcal{M}$ skipping level $\tilde{F}(n) 1$ there exist $F_1, F_2 \in \mathcal{M}$ such that F_2 skips only level $\tilde{F}(n) 1$ and $F_2 \circ F_1 \upharpoonright_{T(\leq n)} = F \upharpoonright_{T(\leq n)}$.



3 \mathcal{M} is closed for duplication: For all n and m with $n < m \in \omega$, there exists a function $F_m^n \in \mathcal{M}$ skipping only level m such that for every $a \in T(n)$, $b \in T(m)$, $\bar{p} \in T^{<\omega}$ and $c \in \Sigma$, where $S(a, \bar{p}, c)$ is defined and $S(a, \bar{p}, c) \leq b$, we have $F_m^n(b) = S(b, \bar{p}, c)$.



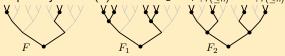
For a level-preserving function $F: S \to T$, we denote by \tilde{F} the function $\tilde{F}: \ell(S) \to \omega$ defined by $\tilde{F}(n) = \ell(F(a))$ for some $a \in S$ with $\ell(a) = n$.

We say that F is skipping level m if $m \notin \tilde{F}[\omega]$ and that F is skipping only level m if $\tilde{F}[\omega] = \omega \setminus \{m\}$.

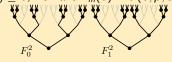
Definition ((S, M)-tree)

Given an S-tree (T, \preceq, Σ, S) and a monoid M of some shape-preserving functions $T \to T$, we call $(T, \preceq, \Sigma, S, M)$ an (S, M)-tree if the following three conditions are satisfied:

- \bullet M forms a closed monoid: \mathcal{M} contains the identity and is closed for compositions and limits.
- **2** \mathcal{M} admits decompositions: For every $n \in \omega$ and $F \in \mathcal{M}$ skipping level $\tilde{F}(n) 1$ there exist $F_1, F_2 \in \mathcal{M}$ such that F_2 skips only level $\tilde{F}(n) 1$ and $F_2 \circ F_1 \upharpoonright_{T(\leq n)} = F \upharpoonright_{T(\leq n)}$.



3 \mathcal{M} is closed for duplication: For all n and m with $n < m \in \omega$, there exists a function $F_m^n \in \mathcal{M}$ skipping only level m such that for every $a \in T(n)$, $b \in T(m)$, $\bar{p} \in T^{<\omega}$ and $c \in \Sigma$, where $S(a, \bar{p}, c)$ is defined and $S(a, \bar{p}, c) \leq b$, we have $F_m^n(b) = S(b, \bar{p}, c)$.



 $\text{Put } \mathcal{M}^n = \{ F \in \mathcal{M} : F \upharpoonright_{T(< n)} \text{ is identity} \}, \\ \mathcal{A} \mathcal{M}^n_k = \{ F \upharpoonright_{T(< n + k)} : F \in \mathcal{M}^n \}.$

Theorem (Balko, Dobrinen, Chodounský, H., Konečný, Nešetřil, Zucker, 2023+)

Let $(T, \leq, \Sigma, \mathcal{S}, \mathcal{M})$ be an $(\mathcal{S}, \mathcal{M})$ -tree. Then, for every pair $n, k \in \omega$ and every finite coloring χ of \mathcal{AM}_k^n , there exists $F \in \mathcal{M}^n$ such that χ is constant when restricted to $\{F \circ g : g \in \mathcal{AM}_k^n\}$.

Put $\mathcal{M}^n = \{ F \in \mathcal{M} : F \upharpoonright_{T(< n)} \text{ is identity} \}, \mathcal{AM}^n_k = \{ F \upharpoonright_{T(< n+k)} : F \in \mathcal{M}^n \}.$

Theorem (Balko, Dobrinen, Chodounský, H., Konečný, Nešetřil, Zucker, 2023+)

Let $(T, \leq, \Sigma, \mathcal{S}, \mathcal{M})$ be an $(\mathcal{S}, \mathcal{M})$ -tree. Then, for every pair $n, k \in \omega$ and every finite coloring χ of \mathcal{AM}_k^n , there exists $F \in \mathcal{M}^n$ such that χ is constant when restricted to $\{F \circ g : g \in \mathcal{AM}_k^n\}$.

Examples

Consider S-tree $(\Sigma^{<\omega}, \sqsubseteq, \Sigma, S)$ for some finite alphabet Σ .

1 If $|\Sigma| = 1$ we obtain Ramsey theorem.

 $\text{Put } \mathcal{M}^n = \{ F \in \mathcal{M} : F \upharpoonright_{T(< n)} \text{ is identity} \}, \\ \mathcal{A} \mathcal{M}^n_k = \{ F \upharpoonright_{T(< n + k)} : F \in \mathcal{M}^n \}.$

Theorem (Balko, Dobrinen, Chodounský, H., Konečný, Nešetřil, Zucker, 2023+)

Let $(T, \leq, \Sigma, \mathcal{S}, \mathcal{M})$ be an $(\mathcal{S}, \mathcal{M})$ -tree. Then, for every pair $n, k \in \omega$ and every finite coloring χ of \mathcal{AM}_k^n , there exists $F \in \mathcal{M}^n$ such that χ is constant when restricted to $\{F \circ g \colon g \in \mathcal{AM}_k^n\}$.

Examples

Consider S-tree $(\Sigma^{<\omega}, \sqsubseteq, \Sigma, S)$ for some finite alphabet Σ .

- 1 If $|\Sigma| = 1$ we obtain Ramsey theorem.
- 2 If $|\Sigma| > 1$ and \mathcal{M} consists of all shape-preserving functions we obtain Milliken tree theorem.

 $\text{Put } \mathcal{M}^n = \{ F \in \mathcal{M} : F \upharpoonright_{T(< n)} \text{ is identity} \}, \\ \mathcal{A} \mathcal{M}^n_k = \{ F \upharpoonright_{T(< n + k)} : F \in \mathcal{M}^n \}.$

Theorem (Balko, Dobrinen, Chodounský, H., Konečný, Nešetřil, Zucker, 2023+)

Let $(T, \leq, \Sigma, \mathcal{S}, \mathcal{M})$ be an $(\mathcal{S}, \mathcal{M})$ -tree. Then, for every pair $n, k \in \omega$ and every finite coloring χ of \mathcal{AM}_k^n , there exists $F \in \mathcal{M}^n$ such that χ is constant when restricted to $\{F \circ g : g \in \mathcal{AM}_k^n\}$.

Examples

Consider S-tree $(\Sigma^{<\omega}, \sqsubseteq, \Sigma, S)$ for some finite alphabet Σ .

- 1 If $|\Sigma| = 1$ we obtain Ramsey theorem.
- 2 If $|\Sigma| > 1$ and \mathcal{M} consists of all shape-preserving functions we obtain Milliken tree theorem.
- 3 If $|\Sigma| > 1$ and $\mathcal M$ is generated only by duplication functions we obtain dual Ramsey theorem.

Put $\mathcal{M}^n = \{ F \in \mathcal{M} : F \upharpoonright_{T(< n)} \text{ is identity} \}, \mathcal{AM}^n_k = \{ F \upharpoonright_{T(< n+k)} : F \in \mathcal{M}^n \}.$

Theorem (Balko, Dobrinen, Chodounský, H., Konečný, Nešetřil, Zucker, 2023+)

Let $(T, \leq, \Sigma, \mathcal{S}, \mathcal{M})$ be an $(\mathcal{S}, \mathcal{M})$ -tree. Then, for every pair $n, k \in \omega$ and every finite coloring χ of \mathcal{AM}_k^n , there exists $F \in \mathcal{M}^n$ such that χ is constant when restricted to $\{F \circ g : g \in \mathcal{AM}_k^n\}$.

Examples

Consider S-tree $(\Sigma^{<\omega}, \sqsubseteq, \Sigma, S)$ for some finite alphabet Σ .

- 1 If $|\Sigma| = 1$ we obtain Ramsey theorem.
- 2 If $|\Sigma| > 1$ and \mathcal{M} consists of all shape-preserving functions we obtain Milliken tree theorem.
- 3 If $|\Sigma| > 1$ and \mathcal{M} is generated only by duplication functions we obtain dual Ramsey theorem.
- 4 If $|\Sigma| > 1$ and \mathcal{M} is generated only by duplication and "constant" functions we obtain Graham–Rothschild theorem theorem.

References

- J.H., J. Nešetřil: All those Ramsey classes. Adv. Math., 356C (2019), 106791.
- N. Dobrinen. The Ramsey theory of the universal homogeneous triangle-free graph.
 J. Math. Log., 20 (2020), 2050012.
- M. Balko, D. Chodounský, J.H., M. Konečný, L. Vena: Big Ramsey degrees of 3-uniform hypergraphs are finite, Combinatorica (2022).
- M. Balko, D. Chodounský, J.H., M. Konečný, J. Nešetřil, L. Vena: Big Ramsey degrees and forbidden cycles, Extended Abstracts EuroComb 2021.
- M. Balko, D. Chodounský, N. Dobrinen, J.H., M. Konečný, L. Vena, A. Zucker: Exact big Ramsey degrees via coding trees, J. Eur. Math. Soc. (JEMS) (2024).
- J.H.: Big Ramsey degrees using parameter spaces, Adv. in Math. 478 (2025), 110386.
- M. Balko, D. Chodounský, N. Dobrinen, J.H., M. Konečný, L. Vena, A. Zucker: Characterisation
 of the big Ramsey degrees of the generic partial order, Accepted to the Transactions of AMS.
- M. Balko, D. Chodounský, N. Dobrinen, J.H., M. Konečný, J. Nešetřil, A. Zucker: Ramsey theorem for trees with successor operation, arXiv:2311.06872 (2023+).

Surveys:

- N. Dobrinen: Ramsey theory of homogeneous structures: current trends and open problems, International Congress of Mathematicians, 2023.
- J.H., A. Zucker: Survey on big Ramsey structures, Zbornik radova (to appear), arXiv:2407.17958, 2025.
- J.H., M. Konečný: Twenty years of Nešetřil's classification programme of Ramsey classes, arXiv:2501.17293. 2025.