Honza Hubicka

SuSE CRs.ro
Prague

Joint work with Dhruv Chawla, Petr Hoda¢, Andi Kleen, Eugene Rozenfeld and Kugan
Vivekanandarajah

GNU Cauldron 2025, Porto

«O» «F»r « > > a

it
a
it

What is CFG profile

CFG profile is an annotation of the control flow graph (CFG) by
@ expected branch probabilities
@ expected basic block execution counts (frequences)

J. Hubicka AutoFDO: recent improvements

https://www.ucw.cz/~hubicka/papers/proj.pdf

What is CFG profile

CFG profile is an annotation of the control flow graph (CFG) by
@ expected branch probabilities
@ expected basic block execution counts (frequences)
Callgraph profile is an annotation of the callgraph by
@ expected function counts
@ expected callsites counts

J. Hubicka AutoFDO: recent improvements

https://www.ucw.cz/~hubicka/papers/proj.pdf

What is CFG profile

CFG profile is an annotation of the control flow graph (CFG) by
@ expected branch probabilities
@ expected basic block execution counts (frequences)
Callgraph profile is an annotation of the callgraph by
@ expected function counts
@ expected callsites counts
Value profile is additional information on
@ likely indirect call targets
@ order of first executions of functions
@ expected alisnments and sizes of string oprerations

@ histograms of selected values
(i.e. is division always by power of 2?)

Zdenék Dvorak, J. H., Pavel Nejdedly, Josef Zlomek:
Infrastructure for Profile Driven Optimizations in GCC Compiler, April 2002

https://www.ucw.cz/~hubicka/papers/pro.pdf

J. Hubicka AutoFDO: recent improvements

https://www.ucw.cz/~hubicka/papers/proj.pdf

Instrumentation based profile: ~fprofile-use

@ Uses data gathered by intrumented binary
(via —-fprofile—generate)
@ 54% runtme cost.
@ 90% code size cost.
© Need to stream a lot of data at exit (54MB).
@ Fun with additional runtime in Linux kernel or embedded setups.

(Measured on compiling clang binary)

J. Hubicka AutoFDO: recent improvements

Instrumentation based profile: ~fprofile-use

@ Uses data gathered by intrumented binary
(via —-fprofile—generate)
@ 54% runtme cost.
@ 90% code size cost.
© Need to stream a lot of data at exit (54MB).
@ Fun with additional runtime in Linux kernel or embedded setups.

(Measured on compiling clang binary)
@ Determines profile of single-threaded program precisely

J. Hubicka AutoFDO: recent improvements

Instrumentation based profile: ~fprofile-use

@ Uses data gathered by intrumented binary
(via —-fprofile—generate)
@ 54% runtme cost.
@ 90% code size cost.
© Need to stream a lot of data at exit (54MB).
@ Fun with additional runtime in Linux kernel or embedded setups.

(Measured on compiling clang binary)
@ Determines profile of single-threaded program precisely

© Multi-threaded programs need to deal with race conditions
(may have extreme performance impact)

© Profiles are highly specific to build environemnt
(GCC version, library headers etc.)

© We do not implement path profiles and context sensitive profiles

Ball T, Larus JR. Optimally profiling and tracing programs. ACM TOPLAS. 1994 Jul 1;16(4):1319-60.

J. Hubicka AutoFDO: recent improvements

Static profile: —-fguess-branch-probability

Set of heuristics to predict branch outcomes
@ Good on predicting branch outcome:

@ 56% of branches executed are predicted by reliable heuristics with
88.4% success rate out of 88.8%.

J. Hubicka AutoFDO: recent improvements

Static profile: —-fguess-branch-probability

Set of heuristics to predict branch outcomes
@ Good on predicting branch outcome:

@ 56% of branches executed are predicted by reliable heuristics with
88.4% success rate out of 88.8%.

@ 21% of branches executed are predicted by unreliable heuristics
with 72% success rate out of 85%

J. Hubicka AutoFDO: recent improvements

Static profile: —-fguess-branch-probability

Set of heuristics to predict branch outcomes
@ Good on predicting branch outcome:

@ 56% of branches executed are predicted by reliable heuristics with
88.4% success rate out of 88.8%.

@ 21% of branches executed are predicted by unreliable heuristics
with 72% success rate out of 85%

@ 17% of branches executed are not predicted.

J. Hubicka AutoFDO: recent improvements

Static profile: —-fguess-branch-probability

Set of heuristics to predict branch outcomes
@ Good on predicting branch outcome:

@ 56% of branches executed are predicted by reliable heuristics with
88.4% success rate out of 88.8%.

@ 21% of branches executed are predicted by unreliable heuristics
with 72% success rate out of 85%

@ 17% of branches executed are not predicted.

Overall 73% sucess rate out of 86% measured on SPEC2017

J. Hubicka AutoFDO: recent improvements

Static profile: —-fguess-branch-probability

Set of heuristics to predict branch outcomes
@ Good on predicting branch outcome:

@ 56% of branches executed are predicted by reliable heuristics with
88.4% success rate out of 88.8%.

@ 21% of branches executed are predicted by unreliable heuristics
with 72% success rate out of 85%

@ 17% of branches executed are not predicted.

Overall 73% sucess rate out of 86% measured on SPEC2017

@ Good on identifying hot paths in funtions
(basic block reordering)

J. Hubicka AutoFDO: recent improvements

Static profile: —-fguess-branch-probability

Set of heuristics to predict branch outcomes
@ Good on predicting branch outcome:

@ 56% of branches executed are predicted by reliable heuristics with
88.4% success rate out of 88.8%.

@ 21% of branches executed are predicted by unreliable heuristics
with 72% success rate out of 85%

@ 17% of branches executed are not predicted.

Overall 73% sucess rate out of 86% measured on SPEC2017

@ Good on identifying hot paths in funtions
(basic block reordering)

@ Good on identifying relative frequences of basic block
(spill code placement)

J. Hubicka AutoFDO: recent improvements

Static profile: —-fguess-branch-probability

Set of heuristics to predict branch outcomes
@ Good on predicting branch outcome:

@ 56% of branches executed are predicted by reliable heuristics with
88.4% success rate out of 88.8%.

@ 21% of branches executed are predicted by unreliable heuristics
with 72% success rate out of 85%

@ 17% of branches executed are not predicted.

Overall 73% sucess rate out of 86% measured on SPEC2017

@ Good on identifying hot paths in funtions
(basic block reordering)

@ Good on identifying relative frequences of basic block
(spill code placement)

@ Unable to determine value profiles

J. Hubicka AutoFDO: recent improvements

Static profile: —-fguess-branch-probability

Set of heuristics to predict branch outcomes
@ Good on predicting branch outcome:

@ 56% of branches executed are predicted by reliable heuristics with
88.4% success rate out of 88.8%.

@ 21% of branches executed are predicted by unreliable heuristics
with 72% success rate out of 85%

@ 17% of branches executed are not predicted.

Overall 73% sucess rate out of 86% measured on SPEC2017

@ Good on identifying hot paths in funtions
(basic block reordering)

@ Good on identifying relative frequences of basic block
(spill code placement)

@ Unable to determine value profiles

@ Unable to determine loop iteration counts
(vectorization, unrolling, .. .)

J. Hubicka AutoFDO: recent improvements

Static profile: —-fguess-branch-probability

Set of heuristics to predict branch outcomes
@ Good on predicting branch outcome:

@ 56% of branches executed are predicted by reliable heuristics with
88.4% success rate out of 88.8%.

@ 21% of branches executed are predicted by unreliable heuristics
with 72% success rate out of 85%

@ 17% of branches executed are not predicted.

Overall 73% sucess rate out of 86% measured on SPEC2017

@ Good on identifying hot paths in funtions
(basic block reordering)

@ Good on identifying relative frequences of basic block
(spill code placement)

@ Unable to determine value profiles

@ Unable to determine loop iteration counts
(vectorization, unrolling, .. .)

@ No inter-procedural profiles at all

Ball T, Larus JR. Branch prediction for free. ACM SIGPLAN Notices. 1993 Jun 1;28(6):300-13.

J. Hubicka AutoFDO: recent improvements

Auto-fdo: —fauto-profile

@ Uses perf to record low-overhead profile. Requires LBR
(x86-64) or BRBE (aarch64) support

@ Debug info is used to infer approximate CFG profile out of perf
profile

© Small runtime overhead (useful in production setups)
© May be easier to set up (i.e. for profiling kernel)

@ Profiles are less sensitive to build environment and can be
resused in slightly different setup (i.e. shipped with the source
codes)

J. Hubicka AutoFDO: recent improvements

History

@ 2014: Contributed by Google in 2014 (Dehao Chen)

Application FDO | AutoFDO Ratio
400.perlbench 15.27% 14.99% 98.17%
401.bzip 1.35% 1.00% 74.07%
403.gcc 7.73% 7.52% 97.28%
429.mcf 0.04% 2.75% | 100.00%
445.gobmk 3.67% 3.23% 88.01%
456.hmmer -0.73% 1.90% | 100.00%
458.sjeng 6.19% 6.03% 97.42%
462.libquantum | -10.41% -0.61% | 100.00%
464.h264ref 1.61% -1.75% 0.00%
471.omnetpp 4.03% 1.31% 32.51%
473.astar 8.86% 10.12% | 114.20%
483.xalancbmk 14.44% 11.98% 82.96%
mean 4.40% 4.87% | 112.33%

D. Chen D, D.X. Li, T. Moseley, AutoFDO: Automatic feedback-directed optimization for warehouse-scale applications. CGO 2016.

J. Hubicka AutoFDO: recent improvements

@ 2014: Contributed by Google in 2014 (Dehao Chen)
© 2015: Bitrotting

(Google switched to LLVM; | gave up looking for compatible
setup)

it
v

«0O0>» «F» «E)» « Q>

History

@ 2014: Contributed by Google in 2014 (Dehao Chen)

© 2015: Bitrotting
(Google switched to LLVM; | gave up looking for compatible
setup)

© 2016: Andi Kleen contributed autoprofiledbootstrap and testsuite
support; main problem was limited hardware support and
create_gcov requiring specific old version of perf

J. Hubicka AutoFDO: recent improvements

History

@ 2014: Contributed by Google in 2014 (Dehao Chen)

© 2015: Bitrotting
(Google switched to LLVM; | gave up looking for compatible
setup)

© 2016: Andi Kleen contributed autoprofiledbootstrap and testsuite
support; main problem was limited hardware support and
create_gcov requiring specific old version of perf

© 2017: Rewrite of profile representation with AutoFDO in mind
(me); continued testsuite work (Andi Kleen)

J. Hubicka AutoFDO: recent improvements

History

@ 2014: Contributed by Google in 2014 (Dehao Chen)

© 2015: Bitrotting
(Google switched to LLVM; | gave up looking for compatible
setup)

© 2016: Andi Kleen contributed autoprofiledbootstrap and testsuite
support; main problem was limited hardware support and
create_gcov requiring specific old version of perf

© 2017: Rewrite of profile representation with AutoFDO in mind
(me); continued testsuite work (Andi Kleen)

@ 2018: Bugfixes by Bin Cheng

J. Hubicka AutoFDO: recent improvements

History

@ 2014: Contributed by Google in 2014 (Dehao Chen)

© 2015: Bitrotting
(Google switched to LLVM; | gave up looking for compatible
setup)

© 2016: Andi Kleen contributed autoprofiledbootstrap and testsuite
support; main problem was limited hardware support and
create_gcov requiring specific old version of perf

© 2017: Rewrite of profile representation with AutoFDO in mind
(me); continued testsuite work (Andi Kleen)

@ 2018: Bugfixes by Bin Cheng
© 2019-2020: Bitrotting again

J. Hubicka AutoFDO: recent improvements

History

@ 2014: Contributed by Google in 2014 (Dehao Chen)

© 2015: Bitrotting
(Google switched to LLVM; | gave up looking for compatible
setup)

© 2016: Andi Kleen contributed autoprofiledbootstrap and testsuite
support; main problem was limited hardware support and
create_gcov requiring specific old version of perf

© 2017: Rewrite of profile representation with AutoFDO in mind
(me); continued testsuite work (Andi Kleen)

@ 2018: Bugfixes by Bin Cheng
© 2019-2020: Bitrotting again

@ 2021-2024: Eugene Rozenfield started fixing autoFDO, worked
on aarch64 support; appointed as a maintainer

J. Hubicka AutoFDO: recent improvements

History

@ 2014: Contributed by Google in 2014 (Dehao Chen)

© 2015: Bitrotting
(Google switched to LLVM; | gave up looking for compatible
setup)

© 2016: Andi Kleen contributed autoprofiledbootstrap and testsuite
support; main problem was limited hardware support and
create_gcov requiring specific old version of perf

© 2017: Rewrite of profile representation with AutoFDO in mind
(me); continued testsuite work (Andi Kleen)

@ 2018: Bugfixes by Bin Cheng
© 2019-2020: Bitrotting again

@ 2021-2024: Eugene Rozenfield started fixing autoFDO, worked
on aarch64 support; appointed as a maintainer

© 2025: | have noticed that my machine supports AutoFDO and
Dhruv Chawla, Kugan Vivekanandarajah started working on
aarch64 improvements

J. Hubicka AutoFDO: recent improvements

Using AutoFDO: Compile and train

[[gnu: :used]] int a[N];
[[gnu: :noipa]] wvoid test ()
{
for (int i = 0; i < N;

alil++;
}

a4+)
int main ()
{
for (int i = 0; i < M; i++)
test () ;
return 1;

J. Hubicka

=] =
AutoFDO: recent improvements

Using AutoFDO: Compile and train

[[gnu::used]] int a[N];
[[gnu: :noipa]] wvoid test ()
{

for (int i = 0; i < N; 1++)
alil++;
}
int main ()
{
for (int i = 0; i < M; i++)
test () ;
return 1;

Compile and train

$ gcc -02 test.c —g -DN=1000 -DM=1000000
$ perf record -e ex_ret_brn_tkn:Pu -b -c 100003 —- ./a.ouE

| additionally used —fno-tree-vectorize -fno-unroll-loops
to simplify the assembly.

] [=

J. Hubicka AutoFDO: recent improvements

Using AutoFDO: Compile and train

Compile and train

$ gcc -02 test.c -g -DN=1000 -DM=1000000 \
—fno-tree-vectorize -fno-unroll-loops
$ perf record -e ex_ret_brn_tkn:Pu -b -c 100003 -- ./a.ou

@ e ex_ret_brn_tkn:Pu enables recording of retired taken
branches in userland on AMD Zen 3, 4 and 5.

@ Use -e br_inst_retired.near_taken:pu for Intel cores
@ Do not specify —e for Aarch 64

@ -b enables branch stack sampling (LBR or BRBE). Each sample
captures a sequences of 32 branches.

© -c enables sampling count. It is better to be prime.

J. Hubicka AutoFDO: recent improvements

Using AutoFDO: verify data (optional)

[gnu::used]] int a[N];

[
[[gnu: :noipa]] woid test ()
{

for (int i = 0; i < N; 1++)
afi]++;

}

N=1000, M=1000000, sample each 100003

perf report of function test

74 mov $0x404040, $eax
94339 10: addl $S0x1, (%rax)
add $0x4, $rax
cmp $0x404fe0, $rax
94339 jne 10
106 ret)
o = = = =

J. Hubicka AutoFDO: recent improvements

Using AutoFDO: Produce GCC readable profile

Compile AutoFDO tools from

https://github.com/google/autofdo
(Good luck!)

J. Hubicka AutoFDO: recent improvements

https://github.com/google/autofdo

Using AutoFDO: Produce GCC readable profile

Compile AutoFDO tools from
https://github.com/google/autofdo
(Good luck!)

Create GCC readable profile

$ create_gcov —--binary a.out -—-gcov_version 2 perf.data \
——gcov test.gcov

[WARNING: /home/jh/autofdo/third_party/perf_data_converter

/src/quipper/perf_reader.cc:1322] Skipping 264 bytes of

metadata: HEADER_CPU_TOPOLOGY

[WARNING: /home/jh/autofdo/third_party/perf_data_converter

/src/quipper/perf_reader.cc:1069] Skipping unsupported

event PERF_RECORD_ID_INDEX

WARNING: Logging before InitGooglelLogging () is written to

STDERR

V.

J. Hubicka AutoFDO: recent improvements

https://github.com/google/autofdo

Using AutoFDO: Produce GCC readable profile

Compile AutoFDO tools from
https://github.com/google/autofdo
(Good luck!)

Create GCC readable profile

$ create_gcov —--binary a.out -—-gcov_version 2 perf.data \
——gcov test.gcov

[WARNING: /home/jh/autofdo/third_party/perf_data_converter

/src/quipper/perf_reader.cc:1322] Skipping 264 bytes of

metadata: HEADER_CPU_TOPOLOGY

[WARNING: /home/jh/autofdo/third_party/perf_data_converter

/src/quipper/perf_reader.cc:1069] Skipping unsupported

event PERF_RECORD_ID_INDEX

WARNING: Logging before InitGooglelLogging () is written to

STDERR

V.

... Do not panic; the tools are chatty

J. Hubicka AutoFDO: recent improvements

https://github.com/google/autofdo

Using AutoFDO: Dump GCC readable profile

Dump GGG readatie profle | [EXAAETESBrSGAm M

$ dump_gcov test.gcov
test total:274729 head:74
1: 74
2: 74
2.1: 91492
3: 91492
4: 105
main total:215 head:0
1: 0
2: 0
2.1: 71
3: 73 test:74
4: 0
5: 0)

J. Hubicka

[[gnu: :used]] int a[N];
[[gnu: :noipa]] wvoid test ()

1

2 for (int i = 0; 1 < N; i++)
3 afi]l++;

4 }

int main ()

1

2 for (int 1 = 0; 1 < M; i++)
3 test () ;

4 return 1;

5 }

Line numbers are represented as
relative-line.discriminator

AutoFDO: recent improvements

Using AutoFDO: Dump GCC readable profile

Dump GCC readable profile

$ dump_gcov test2.gcov [[gnu: :used]] int a[N];
main total:275074 head:0 static void test ()
1: 0 1 |
2: 0 2 for (int 1 = 0; i < N; 1i++)
2.1: 83 E afil++;
4: 0 I
5: 0 int main ()
3: test total:274908 1 f
2.1: 91636 2 for (int i = 0; i < M; i++)
3: 91636] B test ();
4 return 1;
5 }

Inline functions are recorded as separate instances
(gaining simple context sensitivity)

] [=

J. Hubicka AutoFDO: recent improvements

Using AutoFDO: Reading profile back to GCC

Executing GCC

$ gcc -02 -DN=1000 -DM=1000000 test.c \
—fauto-profile=test.gcov -Wauto-profile

@ -fauto-profile specifies profile

©@ -Wauto-profile enables warnings about profile mismatches
(new in GCC 16)

© You may look into dumps -fdump-ipa-afdo_offline (new in
GCC 16) and -fdump-ipa-afdo-blocks—-details

J. Hubicka AutoFDO: recent improvements

GCC processing: AFDO offline pass

AFDO offline pass is a new pass in GCC 16. It does the following
@ Reads afdo profile into memory

@ Strips symbol suffixes introduced by later optimizations (isra,
constprop, part, cold)

© Removes instance of functions not defined in current unit and
offlines inline instance corresponding to cross-module inlinig

© Merges profile of duplicate instances of the same name; offlines
functions if necessary.

J. Hubicka AutoFDO: recent improvements

GCC processing: AFDO inlining

Auto-FDO inlines all early-inlinable functions inlined during the train
run which have enough samples in them.

Dump GCC readable profile

main total:275074 head:0
1: 0

2: 0

2.1: 83

4: 0

5: 0

3: test total:274908

2.1: 91636

3: 91636

$ gcc -02 -DN=1000 -DM=1000000 \
—fauto-profile=test2.gcov test2.c -opt-info
test2.c:10:6: optimized: Inlining using auto-profile
test/2 into main/3.
test2.c:4:21: optimized: loop vectorized using 16 byte vectors

J. Hubicka AutoFDO: recent improvements

GCC processing: AFDO offline pass; lookup

Profile verification: a—test.c.019i.afdo_offline

Matching gimple function test/2 with auto profile:

basic block 2

2 74 # DEBUG BEGIN_STMT
2 74 # DEBUG BEGIN_STMT
2 74 i = 0;

basic block 3

3 91492 # DEBUG BEGIN_STMT
3 91492 _1 = alil;
3 91492 _2 = _1 + 1;
3 91492 ali] = _2;
2.1 91492 # DEBUG BEGIN_STMT
2.1 91492 1 = 1i + 1;
basic block 4
2.2 no info # DEBUG BEGIN_STMT
2.2 no info 1if (i <= 999)
basic block 5
4 105 return;

test

J. Hubicka AutoFDO: recent improvements

GCC processing: AFDO pass

AFDO pass estimates the CFG profile from data available

Profile inference:
a-test.c.074i.afdo, step 1
(lookup)

Annotating BB profile of test/2

test total:274729 head:74

2: 74

2.1: 91492
3: 91492
4: 105

Looking up AFDO count of bb 2
count 74 in stmt: # DEBUG BEGIN_STMT

count 74 in stmt: # DEBUG BEGIN_STMT

count 74 in stmt: # DEBUG i => 0

Annotated bb 2 with count 74, scaled to 910643478152
Looking up AFDO count of bb 3

count 91492 in stmt: # DEBUG BEGIN_STMT

count 91492 in stmt: _1 = a[i_3];

count 91492 in stmt: _2 = _1 + 1;

count 91492 in stmt: a[i_3] = _2;

count 91492 in stmt: # DEBUG BEGIN_STMT

count 91492 in stmt: i_7 = i_3 + 1;

count 91492 in stmt: # DEBUG i => i_7

Annotated bb 3 with count 91492, scaled to
1125899906798416

Looking up AFDO count of bb 4

Looking up AFDO count of bb 5

J. Hubicka

AutoFDO:

[2] # DEBUG BEGIN_STMT

[2] # DEBUG BEGIN STMT

[2] # DEBUG i => 0

[2] goto <bb 4>; [100.00%]

100%]

loop 1

<bb 4>:

#1.3 = PHI <[test.c:4:12] 0(2), [test.c:4:27 discrim 1]1_7(3)>

DEBUGi=>13

[2.2] # DEBUG BEGIN STMT

[2.2] if (1.3 1= 1000)
goto <bb 3>; [0.00%]

else
goto <bb 5>; [0.01%]

10%) 0%]

<bb 3>:

[3] # DEBUG BEGIN_STMT

[3]_1 = [test.c:5:6] ali_3);

Bl2=_1+1;

(3] [test.c:5:6] ali 3] = 2;

[2.1] # DEBUG BEGIN STMT

21i7=i3+1;

[2.1] # DEBUG i => 1.7

recent improvements

100!

Annotated edge
Annotated edge
Annotated edge
Annotated edge
Annotated edge

Annotating bb 4 with count 1126810550276568 (auto FDO)
Annotated edge 4->5 with count 910643478152 (auto FDO

2->4
3->4
5->1
0->2
4->3

with
with
with
with
with

count
count
count
count
count

910643478152 (auto FDO
1125899906798416 (auto F!
910643478152 (auto FDO)
910643478152 (auto FDO)
1125899906798416 (auto F!

J1o0%

Starting connected component in bb 1

visiting bb 1 with count 10737416 (estimated locally)
Annotated pred edge to 5 with count 910643478152 (auto FDO)
bb 1 in count 10737416 (estimated locally) should be 910643478152 (auto FDO)
adding scale 84810.3005371093750000, weight 910643478153
accounting scale 84810.3005371093750000, weight 910643478153

Scaling by 84810.3004150390625000
bb 1 count updated 10737416 (estimated locally) -> 910643476480 (guessed)

«0O» «F» « >

> A

basic block 2, loop depth 0, count 910643478152 (auto FDO, freq 1.0000), maybe hot
pred: ENTRY [always] count:910643478152 (auto FDO, freq 1.0000)
succ: 4 [always] count:910643478152 (auto FDO, freq 1.0000)

basic block 3
pred:
succ:

loop depth 1, count 1125899906798416 (auto FDO, freq 1236.3784), maybe hot
[99.9% (auto FDO)] count:1125899910412526 (auto FDO, freq 1236.3784)
[always] count:1125899906798416 (auto FDO, freg 1236.3784)

IS

IS

basic block 4, loop depth 1, count 1126810550276568 (auto FDO, freq 1237.3784), maybe hot
prev block 3, next block 5, flags: (NEW, VISITED)

ii
54 pred: 2 [always] count:910643478152 (auto FDO, freq 1.0000)

I 3 [always] count:1125899906798416 (auto FDO, freq 1236.3784)

T succ: 3 [99.9% (auto FDO)] count:1125899910412526 (auto FDO, freq 1236.3784)
i 5 [0.1% (auto FDO)] count:910639864042 (auto FDO, freq 1.0000)

basic block 5, loop depth 0, count 910643478152 (auto FDO, freq 1.0000), maybe hot
prev block 4, next block 1, flags: (NEW, VISITED)

pred: 4 [0.1% (auto FDO)] count:910639864043 (auto FDO, freq 1.0000)

succ: EXIT [always] count:910643478153 (auto FDO, freq 1.0000)

Comparing AFDO and GCC profile

Compiling with instrumentation and comparing profiles
$ gcc -02 -DN=1000 -DM=1000000 test.c \

—fprofile—-generate
$./a.out

$ gcc -02 -DN=1000 -DM=1000000 test.c \
—fauto-profile=test.gcov —-fprofile-use \

—fdump-ipa-profile

a-test.c.077i.profile

test/2 bb 0 fdo 1000000 afdo 910643478152 (auto FDO)
preds
succs 2
test/2 bb 2 fdo 1000000 afdo 910643478152 (auto FDO)
preds 0
succs 4
test/2 bb 3 fd
preds 4
succs 4
test/2 bb 4 fd
2
3

o

9

preds
succs
test/2 bb 5 fdo 1000000 afdo 910643478152 (auto FDO)
preds 4

succs 1

test/2 bb 1 fdo 1000000 afdo 910643476480 (guessed)
preds 5

succs

(hot) scaled 809427 diff -190573,

(hot) scaled 809427 diff -190573,

(hot) scaled 809427 diff -190573,

(hot) scaled 809427 diff -190573,

-19.06%

-19.06%

1001000000 afdo 1126810550276568 (auto FDO) (very hot) scaled 1001567964 diff 567964,

-19.06%

-19.06%

1000000000 afdo 1125899906798416 (auto FDO) (very hot) scaled 1000758536 diff 758536, +OL

+0.

J. Hubicka

AutoFDO: recent improvements

Benchmarking AutoFDO and AMD EPYC 9755

I modified SPEC scripts to allow —~train_with=refrate which
uses reference data set for training. This makes training to run longer
and reduces training noise.

SPEC 2017 configuration

OPTIMIZE = -Ofast -march=native -flto=auto
fdo_pre0 = rm -rf ${benchmark}.data ${benchmark}.gcov
fdo_runl = perf record -e ex_ret_brn_tkn:Pu -c 100003 -b -o ${benchmark}.data -- ${command} || exit 1;
create_gcov --suffix_elision_policy=none --binary=${baseexe} --profile=${benchmark}.data
--gcov=current.gcov -gcov_version=2 || exit 1;
if test —e ${benchmark}.gcov ; then
profile_merger current.gcov ${benchmark}.gcov —-output_file ${benchmark}.gcov || exit 1 ;
else mv current.gcov §{benchmark).gcov || exit 1 ; fi
PASS1_OPTIMIZE = —g -fno-reorder-blocks-and-partition \
-fno-ipa-icf -fno-partial-inlining
PASS2_OPTIMIZE = -fauto-profile=${benchmark}.gcov

Daily testing is now done at https://1nt.opensuse.org/db_
default/v4/SPEC/recent_activity

J. Hubicka AutoFDO: recent improvements

https://lnt.opensuse.org/db_default/v4/SPEC/recent_activity
https://lnt.opensuse.org/db_default/v4/SPEC/recent_activity

Bench

GCC 15 relative to trunk -Ofast -march=native -flto

500.perlbench_r
502.gcc_r
505.mcf_r
520.omnetpp_r
523.xalancbmk_r
525.x264_r
531.deepsjeng_r
541 .leela_r
548.exchange2_r
557.xz r

geomavg

0.00%

B nofeedback [AutoFDO [FDO

25.00%

99.80%
£ 110 0% o)
100.99% 116
08479015,

0.00%
9319%0115?

238657 05 450,
99.44%
107.04%
97.17%
96.70%
=% +390.00%
gF e
oS8

84.80%,

59.91%

45.48%,

98.71%

50.00%

97.42%
Qa 5o

88588 50

99.19%

858 o 102.64%

75.00% 100.00%

] [=

12N G4

Bench

Google GCC 4.9 relative to trunk -Ofast -march=native -flto

B nofeedback [AutoFDO [FDO
100.00%
500.perlbench_r 11"100(.16\35/(:
95.50%.
502.gcc_r 1100"1 98”(;/%
81,41%
s0smets s
70 209
520.omnetpp_r 80 gé‘ é"g%
82,35%,
523.xalancbmk_r 8A8761°/.5 o
38.589%
224N
525.x264_r 3822‘0"//0
) 75.64%
531.deepsjeng_r ;338%
541.leela_r g%'ﬂg;;
- 82.51%
55752 1 85855
= 98.35%
79 18%
geomavg w/o fortran 8801 15;5/%
0.00% 25.00% 50.00%

75.00%

100.00%

[m]

=

12N G4

trunk

Benchmarking AutoFDO and AMD EPYC 9755

500.perlbench_r
502.gcc_r
505.mcf_r
520.omnetpp_r
523.xalancbmk_r
525.X264_r
531.deepsjeng_r

541.leela_r

548.exchange2_r

557.xz r

geomavg
0.00%

yesterday

B AutoFDO [FDO

99.60%

115.00%
100.90%

709.91%
97,92%

101.15%
100.00%

108.48%
97.65%

107.04%

101.98%
98.02%
86.45%
97.42%
98.15%
103.50%
97.56%
102.64%
100.00%

25.00% 50.00% 75.00%

=}
J. Hubicka

& =
AutoFDO: recent improvements

12N G4

Benchmarking AutoFDO and AMD EPYC 9755

trunk

500.perlbench_r
502.gcc_r
505.mcf_r
520.omnetpp_r
523.xalancbmk_r
525.x264_r
531.deepsjeng_r
541.leela_r
548.exchange2_r
557.xz_r
geomavg

0.00%

this morning

B AutoFDO [FDO

103.00%
115.00%

104.50%
109.91%

96.65%
101.15%

101.37%
108.48%

100.34%
107.04%

96.91%
103.50%

98.68%
102.64%

25.00% 50.00% 75.00% 100.00%

] [=

J. Hubicka AutoFDO: recent improvements

12N G4

Bench

LLVM 21 -Ofast -flto=thin -march=native

500.perlbench_r
502.gcc_r
505.mcf_r
520.omnetpp_r
523.xalancbmk_r
525.x264_r
531.deepsjeng_r
541.leela_r

557.xz r

geomavg w/o fortran

0.00%

94:20%
75.00% 100.00%

50.00%

B nofeedback [AutoFDO [FDO

92.40%
N8 %
T00.00200%
98.20%

108

ToPo e
7250% v

oo 09-38%
98.36%
2001 %59 189

=)
<]

1N~ 27%
0%
F0€60%

[m]

=

12N G4

Benchmarking AutoFDO and AMD EPYC 9755

Clang22 built with GCC trunk and LLVM21 with -03 -flto.
ThinLTO was used for LLVM.
Trained by building tramp3d.

Binary size of clang22 compile time, tramp3d -O3 -S

trunk

trunk
AutoFDO

AutoFDO

trunk FDO trunk FDO

Ivm22 nofdo Ilvm22 nofdo

time

Ilvm22

Ivm22
AutoFDO

AutoFDO

Ivm22 FDO Ivm22 FDO

0.00% 25.00% 50.00% 75.00% 100.00% 0.00% 25.00% 50.00% 75.00%

time

Reported copmile time is a compile time of resulting clang22 binary
building tramp3d again.

=] =

J. Hubicka AutoFDO: recent improvements

Changes upstreamed to trunk

@ Testsuite support for aarch64

@ Stripping of late suffixes (isra, constprop, part, cold)
@ -Wauto-profile warning

© AFDO offline pass (to not lose profile with LTO)

@ Significant changes to profile inference algorithm

@ Better handling of zeros in AutoFDO profiles

@ Scaling of AutoFDO profile to reduce roundoff errors

© Infrasructure to compare AutoFDO and FDO data

© Discriminator support rewrite

Approx 70 patches overall.
Regular testing using LNT

J. Hubicka AutoFDO: recent improvements

GCC:

@ Hiearchical discriminator support
(discriminator,copy-id,multiplicity)

it
v

«0O0>» «F» «E)» « Q>

In progress

GCC:

@ Hiearchical discriminator support
(discriminator,copy-id,multiplicity)

© Make dwarf2out to save linkage name of inline functions

J. Hubicka AutoFDO: recent improvements

In progress

GCC:

@ Hiearchical discriminator support
(discriminator,copy-id,multiplicity)

© Make dwarf2out to save linkage name of inline functions
© Handle ipa-split clones correctly

J. Hubicka AutoFDO: recent improvements

In progress

GCC:

@ Hiearchical discriminator support
(discriminator,copy-id,multiplicity)

@ Make dwarf2out to save linkage name of inline functions
© Handle ipa-split clones correctly
© Improvements to autorpofiledbootstrap
AutoFDO tool:
@ Handle multiple locations per single statement
© Switch to 64bit format to save hiearchical discriminators

© Save file names of translation units to distinguish static functions
of the same name

J. Hubicka AutoFDO: recent improvements

@ Get performance of AutoFDO generated code closer to FDO

it
v

«0O0>» «F» «E)» « Q>

What needs to be done

@ Get performance of AutoFDO generated code closer to FDO

© Redesign datastructures used to hold auto-fdo profile; speed up
loading

J. Hubicka AutoFDO: recent improvements

What needs to be done

@ Get performance of AutoFDO generated code closer to FDO

© Redesign datastructures used to hold auto-fdo profile; speed up
loading

@ Can we extend dwarf to handle multiple call stacks per single
address?

J. Hubicka AutoFDO: recent improvements

What needs to be done

@ Get performance of AutoFDO generated code closer to FDO

© Redesign datastructures used to hold auto-fdo profile; speed up
loading

@ Can we extend dwarf to handle multiple call stacks per single
address?

© Extend gcov-tool to handle merging of sample profiles

J. Hubicka AutoFDO: recent improvements

What needs to be done

@ Get performance of AutoFDO generated code closer to FDO

© Redesign datastructures used to hold auto-fdo profile; speed up
loading

@ Can we extend dwarf to handle multiple call stacks per single
address?

© Extend gcov-tool to handle merging of sample profiles

@ Rewrite create_gcov
Support streaming profiles from perf; improve scalability and
stability of the tool

J. Hubicka AutoFDO: recent improvements

