
AutoFDO: recent improvements

Honza Hubička

SuSE ČR s.r.o
Prague

Joint work with Dhruv Chawla, Petr Hodač, Andi Kleen, Eugene Rozenfeld and Kugan
Vivekanandarajah

GNU Cauldron 2025, Porto

J. Hubička AutoFDO: recent improvements

What is CFG profile

CFG profile is an annotation of the control flow graph (CFG) by
expected branch probabilities
expected basic block execution counts (frequences)

Callgraph profile is an annotation of the callgraph by
expected function counts
expected callsites counts

Value profile is additional information on
likely indirect call targets
order of first executions of functions
expected alisnments and sizes of string oprerations
histograms of selected values
(i.e. is division always by power of 2?)

Zdeněk Dvořák, J. H., Pavel Nejdedlý, Josef Zlomek:

Infrastructure for Profile Driven Optimizations in GCC Compiler, April 2002

https://www.ucw.cz/~hubicka/papers/proj.pdf

J. Hubička AutoFDO: recent improvements

https://www.ucw.cz/~hubicka/papers/proj.pdf

What is CFG profile

CFG profile is an annotation of the control flow graph (CFG) by
expected branch probabilities
expected basic block execution counts (frequences)

Callgraph profile is an annotation of the callgraph by
expected function counts
expected callsites counts

Value profile is additional information on
likely indirect call targets
order of first executions of functions
expected alisnments and sizes of string oprerations
histograms of selected values
(i.e. is division always by power of 2?)

Zdeněk Dvořák, J. H., Pavel Nejdedlý, Josef Zlomek:

Infrastructure for Profile Driven Optimizations in GCC Compiler, April 2002

https://www.ucw.cz/~hubicka/papers/proj.pdf

J. Hubička AutoFDO: recent improvements

https://www.ucw.cz/~hubicka/papers/proj.pdf

What is CFG profile

CFG profile is an annotation of the control flow graph (CFG) by
expected branch probabilities
expected basic block execution counts (frequences)

Callgraph profile is an annotation of the callgraph by
expected function counts
expected callsites counts

Value profile is additional information on
likely indirect call targets
order of first executions of functions
expected alisnments and sizes of string oprerations
histograms of selected values
(i.e. is division always by power of 2?)

Zdeněk Dvořák, J. H., Pavel Nejdedlý, Josef Zlomek:

Infrastructure for Profile Driven Optimizations in GCC Compiler, April 2002

https://www.ucw.cz/~hubicka/papers/proj.pdf

J. Hubička AutoFDO: recent improvements

https://www.ucw.cz/~hubicka/papers/proj.pdf

Instrumentation based profile: -fprofile-use

1 Uses data gathered by intrumented binary
(via -fprofile-generate)

1 54% runtme cost.
2 90% code size cost.
3 Need to stream a lot of data at exit (54MB).
4 Fun with additional runtime in Linux kernel or embedded setups.

(Measured on compiling clang binary)

2 Determines profile of single-threaded program precisely
3 Multi-threaded programs need to deal with race conditions

(may have extreme performance impact)
4 Profiles are highly specific to build environemnt

(GCC version, library headers etc.)
5 We do not implement path profiles and context sensitive profiles

Ball T, Larus JR. Optimally profiling and tracing programs. ACM TOPLAS. 1994 Jul 1;16(4):1319-60.

J. Hubička AutoFDO: recent improvements

Instrumentation based profile: -fprofile-use

1 Uses data gathered by intrumented binary
(via -fprofile-generate)

1 54% runtme cost.
2 90% code size cost.
3 Need to stream a lot of data at exit (54MB).
4 Fun with additional runtime in Linux kernel or embedded setups.

(Measured on compiling clang binary)
2 Determines profile of single-threaded program precisely

3 Multi-threaded programs need to deal with race conditions
(may have extreme performance impact)

4 Profiles are highly specific to build environemnt
(GCC version, library headers etc.)

5 We do not implement path profiles and context sensitive profiles
Ball T, Larus JR. Optimally profiling and tracing programs. ACM TOPLAS. 1994 Jul 1;16(4):1319-60.

J. Hubička AutoFDO: recent improvements

Instrumentation based profile: -fprofile-use

1 Uses data gathered by intrumented binary
(via -fprofile-generate)

1 54% runtme cost.
2 90% code size cost.
3 Need to stream a lot of data at exit (54MB).
4 Fun with additional runtime in Linux kernel or embedded setups.

(Measured on compiling clang binary)
2 Determines profile of single-threaded program precisely
3 Multi-threaded programs need to deal with race conditions

(may have extreme performance impact)
4 Profiles are highly specific to build environemnt

(GCC version, library headers etc.)
5 We do not implement path profiles and context sensitive profiles

Ball T, Larus JR. Optimally profiling and tracing programs. ACM TOPLAS. 1994 Jul 1;16(4):1319-60.

J. Hubička AutoFDO: recent improvements

Static profile: -fguess-branch-probability

Set of heuristics to predict branch outcomes

Good on predicting branch outcome:
1 56% of branches executed are predicted by reliable heuristics with

88.4% success rate out of 88.8%.

2 21% of branches executed are predicted by unreliable heuristics
with 72% success rate out of 85%

3 17% of branches executed are not predicted.

Overall 73% sucess rate out of 86% measured on SPEC2017

Good on identifying hot paths in funtions
(basic block reordering)

Good on identifying relative frequences of basic block
(spill code placement)

Unable to determine value profiles

Unable to determine loop iteration counts
(vectorization, unrolling, . . .)

No inter-procedural profiles at all

Ball T, Larus JR. Branch prediction for free. ACM SIGPLAN Notices. 1993 Jun 1;28(6):300-13.

J. Hubička AutoFDO: recent improvements

Static profile: -fguess-branch-probability

Set of heuristics to predict branch outcomes

Good on predicting branch outcome:
1 56% of branches executed are predicted by reliable heuristics with

88.4% success rate out of 88.8%.
2 21% of branches executed are predicted by unreliable heuristics

with 72% success rate out of 85%

3 17% of branches executed are not predicted.

Overall 73% sucess rate out of 86% measured on SPEC2017

Good on identifying hot paths in funtions
(basic block reordering)

Good on identifying relative frequences of basic block
(spill code placement)

Unable to determine value profiles

Unable to determine loop iteration counts
(vectorization, unrolling, . . .)

No inter-procedural profiles at all

Ball T, Larus JR. Branch prediction for free. ACM SIGPLAN Notices. 1993 Jun 1;28(6):300-13.

J. Hubička AutoFDO: recent improvements

Static profile: -fguess-branch-probability

Set of heuristics to predict branch outcomes

Good on predicting branch outcome:
1 56% of branches executed are predicted by reliable heuristics with

88.4% success rate out of 88.8%.
2 21% of branches executed are predicted by unreliable heuristics

with 72% success rate out of 85%
3 17% of branches executed are not predicted.

Overall 73% sucess rate out of 86% measured on SPEC2017

Good on identifying hot paths in funtions
(basic block reordering)

Good on identifying relative frequences of basic block
(spill code placement)

Unable to determine value profiles

Unable to determine loop iteration counts
(vectorization, unrolling, . . .)

No inter-procedural profiles at all

Ball T, Larus JR. Branch prediction for free. ACM SIGPLAN Notices. 1993 Jun 1;28(6):300-13.

J. Hubička AutoFDO: recent improvements

Static profile: -fguess-branch-probability

Set of heuristics to predict branch outcomes

Good on predicting branch outcome:
1 56% of branches executed are predicted by reliable heuristics with

88.4% success rate out of 88.8%.
2 21% of branches executed are predicted by unreliable heuristics

with 72% success rate out of 85%
3 17% of branches executed are not predicted.

Overall 73% sucess rate out of 86% measured on SPEC2017

Good on identifying hot paths in funtions
(basic block reordering)

Good on identifying relative frequences of basic block
(spill code placement)

Unable to determine value profiles

Unable to determine loop iteration counts
(vectorization, unrolling, . . .)

No inter-procedural profiles at all

Ball T, Larus JR. Branch prediction for free. ACM SIGPLAN Notices. 1993 Jun 1;28(6):300-13.

J. Hubička AutoFDO: recent improvements

Static profile: -fguess-branch-probability

Set of heuristics to predict branch outcomes

Good on predicting branch outcome:
1 56% of branches executed are predicted by reliable heuristics with

88.4% success rate out of 88.8%.
2 21% of branches executed are predicted by unreliable heuristics

with 72% success rate out of 85%
3 17% of branches executed are not predicted.

Overall 73% sucess rate out of 86% measured on SPEC2017

Good on identifying hot paths in funtions
(basic block reordering)

Good on identifying relative frequences of basic block
(spill code placement)

Unable to determine value profiles

Unable to determine loop iteration counts
(vectorization, unrolling, . . .)

No inter-procedural profiles at all

Ball T, Larus JR. Branch prediction for free. ACM SIGPLAN Notices. 1993 Jun 1;28(6):300-13.

J. Hubička AutoFDO: recent improvements

Static profile: -fguess-branch-probability

Set of heuristics to predict branch outcomes

Good on predicting branch outcome:
1 56% of branches executed are predicted by reliable heuristics with

88.4% success rate out of 88.8%.
2 21% of branches executed are predicted by unreliable heuristics

with 72% success rate out of 85%
3 17% of branches executed are not predicted.

Overall 73% sucess rate out of 86% measured on SPEC2017

Good on identifying hot paths in funtions
(basic block reordering)

Good on identifying relative frequences of basic block
(spill code placement)

Unable to determine value profiles

Unable to determine loop iteration counts
(vectorization, unrolling, . . .)

No inter-procedural profiles at all

Ball T, Larus JR. Branch prediction for free. ACM SIGPLAN Notices. 1993 Jun 1;28(6):300-13.

J. Hubička AutoFDO: recent improvements

Static profile: -fguess-branch-probability

Set of heuristics to predict branch outcomes

Good on predicting branch outcome:
1 56% of branches executed are predicted by reliable heuristics with

88.4% success rate out of 88.8%.
2 21% of branches executed are predicted by unreliable heuristics

with 72% success rate out of 85%
3 17% of branches executed are not predicted.

Overall 73% sucess rate out of 86% measured on SPEC2017

Good on identifying hot paths in funtions
(basic block reordering)

Good on identifying relative frequences of basic block
(spill code placement)

Unable to determine value profiles

Unable to determine loop iteration counts
(vectorization, unrolling, . . .)

No inter-procedural profiles at all

Ball T, Larus JR. Branch prediction for free. ACM SIGPLAN Notices. 1993 Jun 1;28(6):300-13.

J. Hubička AutoFDO: recent improvements

Static profile: -fguess-branch-probability

Set of heuristics to predict branch outcomes

Good on predicting branch outcome:
1 56% of branches executed are predicted by reliable heuristics with

88.4% success rate out of 88.8%.
2 21% of branches executed are predicted by unreliable heuristics

with 72% success rate out of 85%
3 17% of branches executed are not predicted.

Overall 73% sucess rate out of 86% measured on SPEC2017

Good on identifying hot paths in funtions
(basic block reordering)

Good on identifying relative frequences of basic block
(spill code placement)

Unable to determine value profiles

Unable to determine loop iteration counts
(vectorization, unrolling, . . .)

No inter-procedural profiles at all

Ball T, Larus JR. Branch prediction for free. ACM SIGPLAN Notices. 1993 Jun 1;28(6):300-13.

J. Hubička AutoFDO: recent improvements

Static profile: -fguess-branch-probability

Set of heuristics to predict branch outcomes

Good on predicting branch outcome:
1 56% of branches executed are predicted by reliable heuristics with

88.4% success rate out of 88.8%.
2 21% of branches executed are predicted by unreliable heuristics

with 72% success rate out of 85%
3 17% of branches executed are not predicted.

Overall 73% sucess rate out of 86% measured on SPEC2017

Good on identifying hot paths in funtions
(basic block reordering)

Good on identifying relative frequences of basic block
(spill code placement)

Unable to determine value profiles

Unable to determine loop iteration counts
(vectorization, unrolling, . . .)

No inter-procedural profiles at all

Ball T, Larus JR. Branch prediction for free. ACM SIGPLAN Notices. 1993 Jun 1;28(6):300-13.

J. Hubička AutoFDO: recent improvements

Auto-fdo: -fauto-profile

1 Uses perf to record low-overhead profile. Requires LBR
(x86-64) or BRBE (aarch64) support

2 Debug info is used to infer approximate CFG profile out of perf
profile

3 Small runtime overhead (useful in production setups)
4 May be easier to set up (i.e. for profiling kernel)
5 Profiles are less sensitive to build environment and can be

resused in slightly different setup (i.e. shipped with the source
codes)

J. Hubička AutoFDO: recent improvements

History
1 2014: Contributed by Google in 2014 (Dehao Chen)

Application FDO AutoFDO Ratio
400.perlbench 15.27% 14.99% 98.17%
401.bzip 1.35% 1.00% 74.07%
403.gcc 7.73% 7.52% 97.28%
429.mcf 0.04% 2.75% 100.00%
445.gobmk 3.67% 3.23% 88.01%
456.hmmer -0.73% 1.90% 100.00%
458.sjeng 6.19% 6.03% 97.42%
462.libquantum -10.41% -0.61% 100.00%
464.h264ref 1.61% -1.75% 0.00%
471.omnetpp 4.03% 1.31% 32.51%
473.astar 8.86% 10.12% 114.20%
483.xalancbmk 14.44% 11.98% 82.96%
mean 4.40% 4.87% 112.33%

D. Chen D, D.X. Li, T. Moseley, AutoFDO: Automatic feedback-directed optimization for warehouse-scale applications. CGO 2016.

2 2015: Bitrotting
(Google switched to LLVM; I gave up looking for compatible setup)

3 2016: Andi Kleen contributed autoprofiledbootstrap and testsuite
support; main problem was limited hardware support and
create_gcov requiring specific old version of perf

4 2017: Rewrite of profile representation with AutoFDO in mind (me);
continued testsuite work (Andi Kleen)

5 2018: Bugfixes by Bin Cheng
6 2019–2020: Bitrotting again
7 2021–2024: Eugene Rozenfield started fixing autoFDO, worked on

aarch64 support; appointed as a maintainer
8 2025: I have noticed that my machine supports AutoFDO and Dhruv

Chawla, Kugan Vivekanandarajah started working on aarch64
improvements

J. Hubička AutoFDO: recent improvements

History

1 2014: Contributed by Google in 2014 (Dehao Chen)
2 2015: Bitrotting

(Google switched to LLVM; I gave up looking for compatible
setup)

3 2016: Andi Kleen contributed autoprofiledbootstrap and testsuite
support; main problem was limited hardware support and
create_gcov requiring specific old version of perf

4 2017: Rewrite of profile representation with AutoFDO in mind
(me); continued testsuite work (Andi Kleen)

5 2018: Bugfixes by Bin Cheng
6 2019–2020: Bitrotting again
7 2021–2024: Eugene Rozenfield started fixing autoFDO, worked

on aarch64 support; appointed as a maintainer
8 2025: I have noticed that my machine supports AutoFDO and

Dhruv Chawla, Kugan Vivekanandarajah started working on
aarch64 improvements

J. Hubička AutoFDO: recent improvements

History

1 2014: Contributed by Google in 2014 (Dehao Chen)
2 2015: Bitrotting

(Google switched to LLVM; I gave up looking for compatible
setup)

3 2016: Andi Kleen contributed autoprofiledbootstrap and testsuite
support; main problem was limited hardware support and
create_gcov requiring specific old version of perf

4 2017: Rewrite of profile representation with AutoFDO in mind
(me); continued testsuite work (Andi Kleen)

5 2018: Bugfixes by Bin Cheng
6 2019–2020: Bitrotting again
7 2021–2024: Eugene Rozenfield started fixing autoFDO, worked

on aarch64 support; appointed as a maintainer
8 2025: I have noticed that my machine supports AutoFDO and

Dhruv Chawla, Kugan Vivekanandarajah started working on
aarch64 improvements

J. Hubička AutoFDO: recent improvements

History

1 2014: Contributed by Google in 2014 (Dehao Chen)
2 2015: Bitrotting

(Google switched to LLVM; I gave up looking for compatible
setup)

3 2016: Andi Kleen contributed autoprofiledbootstrap and testsuite
support; main problem was limited hardware support and
create_gcov requiring specific old version of perf

4 2017: Rewrite of profile representation with AutoFDO in mind
(me); continued testsuite work (Andi Kleen)

5 2018: Bugfixes by Bin Cheng
6 2019–2020: Bitrotting again
7 2021–2024: Eugene Rozenfield started fixing autoFDO, worked

on aarch64 support; appointed as a maintainer
8 2025: I have noticed that my machine supports AutoFDO and

Dhruv Chawla, Kugan Vivekanandarajah started working on
aarch64 improvements

J. Hubička AutoFDO: recent improvements

History

1 2014: Contributed by Google in 2014 (Dehao Chen)
2 2015: Bitrotting

(Google switched to LLVM; I gave up looking for compatible
setup)

3 2016: Andi Kleen contributed autoprofiledbootstrap and testsuite
support; main problem was limited hardware support and
create_gcov requiring specific old version of perf

4 2017: Rewrite of profile representation with AutoFDO in mind
(me); continued testsuite work (Andi Kleen)

5 2018: Bugfixes by Bin Cheng

6 2019–2020: Bitrotting again
7 2021–2024: Eugene Rozenfield started fixing autoFDO, worked

on aarch64 support; appointed as a maintainer
8 2025: I have noticed that my machine supports AutoFDO and

Dhruv Chawla, Kugan Vivekanandarajah started working on
aarch64 improvements

J. Hubička AutoFDO: recent improvements

History

1 2014: Contributed by Google in 2014 (Dehao Chen)
2 2015: Bitrotting

(Google switched to LLVM; I gave up looking for compatible
setup)

3 2016: Andi Kleen contributed autoprofiledbootstrap and testsuite
support; main problem was limited hardware support and
create_gcov requiring specific old version of perf

4 2017: Rewrite of profile representation with AutoFDO in mind
(me); continued testsuite work (Andi Kleen)

5 2018: Bugfixes by Bin Cheng
6 2019–2020: Bitrotting again

7 2021–2024: Eugene Rozenfield started fixing autoFDO, worked
on aarch64 support; appointed as a maintainer

8 2025: I have noticed that my machine supports AutoFDO and
Dhruv Chawla, Kugan Vivekanandarajah started working on
aarch64 improvements

J. Hubička AutoFDO: recent improvements

History

1 2014: Contributed by Google in 2014 (Dehao Chen)
2 2015: Bitrotting

(Google switched to LLVM; I gave up looking for compatible
setup)

3 2016: Andi Kleen contributed autoprofiledbootstrap and testsuite
support; main problem was limited hardware support and
create_gcov requiring specific old version of perf

4 2017: Rewrite of profile representation with AutoFDO in mind
(me); continued testsuite work (Andi Kleen)

5 2018: Bugfixes by Bin Cheng
6 2019–2020: Bitrotting again
7 2021–2024: Eugene Rozenfield started fixing autoFDO, worked

on aarch64 support; appointed as a maintainer

8 2025: I have noticed that my machine supports AutoFDO and
Dhruv Chawla, Kugan Vivekanandarajah started working on
aarch64 improvements

J. Hubička AutoFDO: recent improvements

History

1 2014: Contributed by Google in 2014 (Dehao Chen)
2 2015: Bitrotting

(Google switched to LLVM; I gave up looking for compatible
setup)

3 2016: Andi Kleen contributed autoprofiledbootstrap and testsuite
support; main problem was limited hardware support and
create_gcov requiring specific old version of perf

4 2017: Rewrite of profile representation with AutoFDO in mind
(me); continued testsuite work (Andi Kleen)

5 2018: Bugfixes by Bin Cheng
6 2019–2020: Bitrotting again
7 2021–2024: Eugene Rozenfield started fixing autoFDO, worked

on aarch64 support; appointed as a maintainer
8 2025: I have noticed that my machine supports AutoFDO and

Dhruv Chawla, Kugan Vivekanandarajah started working on
aarch64 improvements

J. Hubička AutoFDO: recent improvements

Using AutoFDO: Compile and train
Example (Test program)
[[gnu::used]] int a[N];
[[gnu::noipa]] void test()
{

for (int i = 0; i < N; i++)
a[i]++;

}
int main()
{

for (int i = 0; i < M; i++)
test();

return 1;
}

Compile and train
$ gcc -O2 test.c -g -DN=1000 -DM=1000000
$ perf record -e ex_ret_brn_tkn:Pu -b -c 100003 -- ./a.out

I additionally used -fno-tree-vectorize -fno-unroll-loops
to simplify the assembly.

J. Hubička AutoFDO: recent improvements

Using AutoFDO: Compile and train
Example (Test program)
[[gnu::used]] int a[N];
[[gnu::noipa]] void test()
{

for (int i = 0; i < N; i++)
a[i]++;

}
int main()
{

for (int i = 0; i < M; i++)
test();

return 1;
}

Compile and train
$ gcc -O2 test.c -g -DN=1000 -DM=1000000
$ perf record -e ex_ret_brn_tkn:Pu -b -c 100003 -- ./a.out

I additionally used -fno-tree-vectorize -fno-unroll-loops
to simplify the assembly.

J. Hubička AutoFDO: recent improvements

Using AutoFDO: Compile and train

Compile and train
$ gcc -O2 test.c -g -DN=1000 -DM=1000000 \

-fno-tree-vectorize -fno-unroll-loops
$ perf record -e ex_ret_brn_tkn:Pu -b -c 100003 -- ./a.out

1 -e ex_ret_brn_tkn:Pu enables recording of retired taken
branches in userland on AMD Zen 3, 4 and 5.

1 Use -e br_inst_retired.near_taken:pu for Intel cores
2 Do not specify -e for Aarch 64

2 -b enables branch stack sampling (LBR or BRBE). Each sample
captures a sequences of 32 branches.

3 -c enables sampling count. It is better to be prime.

J. Hubička AutoFDO: recent improvements

Using AutoFDO: verify data (optional)

Example (Test program)
[[gnu::used]] int a[N];
[[gnu::noipa]] void test()
{

for (int i = 0; i < N; i++)
a[i]++;

}

N=1000, M=1000000, sample each 100003

perf report of function test

74
94339 10:

94339
106

mov $0x404040,%eax
addl $0x1,(%rax)
add $0x4,%rax
cmp $0x404fe0,%rax
jne 10
ret

J. Hubička AutoFDO: recent improvements

Using AutoFDO: Produce GCC readable profile

Compile AutoFDO tools from
https://github.com/google/autofdo
(Good luck!)

Create GCC readable profile
$ create_gcov --binary a.out --gcov_version 2 perf.data \

--gcov test.gcov
[WARNING:/home/jh/autofdo/third_party/perf_data_converter
/src/quipper/perf_reader.cc:1322] Skipping 264 bytes of
metadata: HEADER_CPU_TOPOLOGY
[WARNING:/home/jh/autofdo/third_party/perf_data_converter
/src/quipper/perf_reader.cc:1069] Skipping unsupported
event PERF_RECORD_ID_INDEX
WARNING: Logging before InitGoogleLogging() is written to
STDERR

. . . Do not panic; the tools are chatty

J. Hubička AutoFDO: recent improvements

https://github.com/google/autofdo

Using AutoFDO: Produce GCC readable profile

Compile AutoFDO tools from
https://github.com/google/autofdo
(Good luck!)

Create GCC readable profile
$ create_gcov --binary a.out --gcov_version 2 perf.data \

--gcov test.gcov
[WARNING:/home/jh/autofdo/third_party/perf_data_converter
/src/quipper/perf_reader.cc:1322] Skipping 264 bytes of
metadata: HEADER_CPU_TOPOLOGY
[WARNING:/home/jh/autofdo/third_party/perf_data_converter
/src/quipper/perf_reader.cc:1069] Skipping unsupported
event PERF_RECORD_ID_INDEX
WARNING: Logging before InitGoogleLogging() is written to
STDERR

. . .

Do not panic; the tools are chatty

J. Hubička AutoFDO: recent improvements

https://github.com/google/autofdo

Using AutoFDO: Produce GCC readable profile

Compile AutoFDO tools from
https://github.com/google/autofdo
(Good luck!)

Create GCC readable profile
$ create_gcov --binary a.out --gcov_version 2 perf.data \

--gcov test.gcov
[WARNING:/home/jh/autofdo/third_party/perf_data_converter
/src/quipper/perf_reader.cc:1322] Skipping 264 bytes of
metadata: HEADER_CPU_TOPOLOGY
[WARNING:/home/jh/autofdo/third_party/perf_data_converter
/src/quipper/perf_reader.cc:1069] Skipping unsupported
event PERF_RECORD_ID_INDEX
WARNING: Logging before InitGoogleLogging() is written to
STDERR

. . . Do not panic; the tools are chatty

J. Hubička AutoFDO: recent improvements

https://github.com/google/autofdo

Using AutoFDO: Dump GCC readable profile

Dump GCC readable profile
$ dump_gcov test.gcov
test total:274729 head:74
1: 74
2: 74
2.1: 91492
3: 91492
4: 105

main total:215 head:0
1: 0
2: 0
2.1: 71
3: 73 test:74
4: 0
5: 0

Example (Test program)
[[gnu::used]] int a[N];
[[gnu::noipa]] void test()

1 {
2 for (int i = 0; i < N; i++)
3 a[i]++;
4 }

int main()
1 {
2 for (int i = 0; i < M; i++)
3 test();
4 return 1;
5 }

Line numbers are represented as
relative-line.discriminator

J. Hubička AutoFDO: recent improvements

Using AutoFDO: Dump GCC readable profile

Dump GCC readable profile
$ dump_gcov test2.gcov
main total:275074 head:0
1: 0
2: 0
2.1: 83
4: 0
5: 0
3: test total:274908
2.1: 91636
3: 91636

Example (Test program)
[[gnu::used]] int a[N];
static void test()

1 {
2 for (int i = 0; i < N; i++)
3 a[i]++;
4 }

int main()
1 {
2 for (int i = 0; i < M; i++)
3 test();
4 return 1;
5 }

Inline functions are recorded as separate instances
(gaining simple context sensitivity)

J. Hubička AutoFDO: recent improvements

Using AutoFDO: Reading profile back to GCC

Executing GCC
$ gcc -O2 -DN=1000 -DM=1000000 test.c \

-fauto-profile=test.gcov -Wauto-profile

1 -fauto-profile specifies profile
2 -Wauto-profile enables warnings about profile mismatches

(new in GCC 16)
3 You may look into dumps -fdump-ipa-afdo_offline (new in

GCC 16) and -fdump-ipa-afdo-blocks-details

J. Hubička AutoFDO: recent improvements

GCC processing: AFDO offline pass

AFDO offline pass is a new pass in GCC 16. It does the following
1 Reads afdo profile into memory
2 Strips symbol suffixes introduced by later optimizations (isra,
constprop, part, cold)

3 Removes instance of functions not defined in current unit and
offlines inline instance corresponding to cross-module inlinig

4 Merges profile of duplicate instances of the same name; offlines
functions if necessary.

J. Hubička AutoFDO: recent improvements

GCC processing: AFDO inlining

Auto-FDO inlines all early-inlinable functions inlined during the train
run which have enough samples in them.

Dump GCC readable profile
main total:275074 head:0

1: 0
2: 0
2.1: 83
4: 0
5: 0
3: test total:274908

2.1: 91636
3: 91636

$ gcc -O2 -DN=1000 -DM=1000000 \
-fauto-profile=test2.gcov test2.c -opt-info

test2.c:10:6: optimized: Inlining using auto-profile
test/2 into main/3.
test2.c:4:21: optimized: loop vectorized using 16 byte vectors and unroll factor 4

J. Hubička AutoFDO: recent improvements

GCC processing: AFDO offline pass; lookup

Profile verification: a-test.c.019i.afdo_offline
Matching gimple function test/2 with auto profile: test
basic block 2

2 74 # DEBUG BEGIN_STMT
2 74 # DEBUG BEGIN_STMT
2 74 i = 0;

basic block 3
3 91492 # DEBUG BEGIN_STMT
3 91492 _1 = a[i];
3 91492 _2 = _1 + 1;
3 91492 a[i] = _2;
2.1 91492 # DEBUG BEGIN_STMT
2.1 91492 i = i + 1;

basic block 4
2.2 no info # DEBUG BEGIN_STMT
2.2 no info if (i <= 999)

basic block 5
4 105 return;

J. Hubička AutoFDO: recent improvements

GCC processing: AFDO pass

AFDO pass estimates the CFG profile from data available

Profile inference:
a-test.c.074i.afdo, step 1
(lookup)
Annotating BB profile of test/2

test total:274729 head:74
2: 74
2.1: 91492
3: 91492
4: 105

Looking up AFDO count of bb 2
count 74 in stmt: # DEBUG BEGIN_STMT
count 74 in stmt: # DEBUG BEGIN_STMT
count 74 in stmt: # DEBUG i => 0

Annotated bb 2 with count 74, scaled to 910643478152
Looking up AFDO count of bb 3
count 91492 in stmt: # DEBUG BEGIN_STMT
count 91492 in stmt: _1 = a[i_3];
count 91492 in stmt: _2 = _1 + 1;
count 91492 in stmt: a[i_3] = _2;
count 91492 in stmt: # DEBUG BEGIN_STMT
count 91492 in stmt: i_7 = i_3 + 1;
count 91492 in stmt: # DEBUG i => i_7

Annotated bb 3 with count 91492, scaled to
1125899906798416
Looking up AFDO count of bb 4
Looking up AFDO count of bb 5

test ()

loop 1

<bb 4>:

i_3 = PHI <[test.c:4:12] 0(2), [test.c:4:27 discrim 1] i_7(3)>

DEBUG i => i_3

[2.2] # DEBUG BEGIN_STMT

[2.2] if (i_3 != 1000)
 goto <bb 3>; [0.00%]
else
 goto <bb 5>; [0.01%]

<bb 3>:

[3] # DEBUG BEGIN_STMT

[3] _1 = [test.c:5:6] a[i_3];

[3] _2 = _1 + 1;

[3] [test.c:5:6] a[i_3] = _2;

[2.1] # DEBUG BEGIN_STMT

[2.1] i_7 = i_3 + 1;

[2.1] # DEBUG i => i_7

[0%]

<bb 5>:

[4] return;

[0%] [100%]

ENTRY

EXIT

<bb 2>:

[2] # DEBUG BEGIN_STMT

[2] # DEBUG BEGIN_STMT

[2] # DEBUG i => 0
[2] goto <bb 4>; [100.00%]

[100%]

[100%]

[100%]

J. Hubička AutoFDO: recent improvements

GCC processing: AFDO pass

Profile inference:
a-test.c.074i.afdo, step 2
(kihroff laws)
Annotated edge 2->4 with count 910643478152 (auto FDO)
Annotated edge 3->4 with count 1125899906798416 (auto FDO)
Annotated edge 5->1 with count 910643478152 (auto FDO)
Annotated edge 0->2 with count 910643478152 (auto FDO)
Annotated edge 4->3 with count 1125899906798416 (auto FDO)
Annotating bb 4 with count 1126810550276568 (auto FDO)
Annotated edge 4->5 with count 910643478152 (auto FDO)

test ()

loop 1

<bb 4>:

i_3 = PHI <[test.c:4:12] 0(2), [test.c:4:27 discrim 1] i_7(3)>

DEBUG i => i_3

[2.2] # DEBUG BEGIN_STMT

[2.2] if (i_3 != 1000)
 goto <bb 3>; [0.00%]
else
 goto <bb 5>; [0.01%]

<bb 3>:

[3] # DEBUG BEGIN_STMT

[3] _1 = [test.c:5:6] a[i_3];

[3] _2 = _1 + 1;

[3] [test.c:5:6] a[i_3] = _2;

[2.1] # DEBUG BEGIN_STMT

[2.1] i_7 = i_3 + 1;

[2.1] # DEBUG i => i_7

[0%]

<bb 5>:

[4] return;

[0%] [100%]

ENTRY

EXIT

<bb 2>:

[2] # DEBUG BEGIN_STMT

[2] # DEBUG BEGIN_STMT

[2] # DEBUG i => 0
[2] goto <bb 4>; [100.00%]

[100%]

[100%]

[100%]

J. Hubička AutoFDO: recent improvements

GCC processing: AFDO pass

Profile inference: a-test.c.074i.afdo, step 3 (scaling guessed
profile)
Starting connected component in bb 1

visiting bb 1 with count 10737416 (estimated locally)
Annotated pred edge to 5 with count 910643478152 (auto FDO)
bb 1 in count 10737416 (estimated locally) should be 910643478152 (auto FDO)
adding scale 84810.3005371093750000, weight 910643478153
accounting scale 84810.3005371093750000, weight 910643478153

Scaling by 84810.3004150390625000
bb 1 count updated 10737416 (estimated locally) -> 910643476480 (guessed)

J. Hubička AutoFDO: recent improvements

GCC processing: AFDO pass

Profile inference: a-test.c.074i.afdo, final profile
;; basic block 2, loop depth 0, count 910643478152 (auto FDO, freq 1.0000), maybe hot
;; pred: ENTRY [always] count:910643478152 (auto FDO, freq 1.0000)
;; succ: 4 [always] count:910643478152 (auto FDO, freq 1.0000)

;; basic block 3, loop depth 1, count 1125899906798416 (auto FDO, freq 1236.3784), maybe hot
;; pred: 4 [99.9% (auto FDO)] count:1125899910412526 (auto FDO, freq 1236.3784)
;; succ: 4 [always] count:1125899906798416 (auto FDO, freq 1236.3784)

;; basic block 4, loop depth 1, count 1126810550276568 (auto FDO, freq 1237.3784), maybe hot
;; prev block 3, next block 5, flags: (NEW, VISITED)
;; pred: 2 [always] count:910643478152 (auto FDO, freq 1.0000)
;; 3 [always] count:1125899906798416 (auto FDO, freq 1236.3784)
;; succ: 3 [99.9% (auto FDO)] count:1125899910412526 (auto FDO, freq 1236.3784)
;; 5 [0.1% (auto FDO)] count:910639864042 (auto FDO, freq 1.0000)

;; basic block 5, loop depth 0, count 910643478152 (auto FDO, freq 1.0000), maybe hot
;; prev block 4, next block 1, flags: (NEW, VISITED)
;; pred: 4 [0.1% (auto FDO)] count:910639864043 (auto FDO, freq 1.0000)
;; succ: EXIT [always] count:910643478153 (auto FDO, freq 1.0000)

J. Hubička AutoFDO: recent improvements

Comparing AFDO and GCC profile

Compiling with instrumentation and comparing profiles
$ gcc -O2 -DN=1000 -DM=1000000 test.c \

-fprofile-generate
$./a.out
$ gcc -O2 -DN=1000 -DM=1000000 test.c \

-fauto-profile=test.gcov -fprofile-use \
-fdump-ipa-profile

a-test.c.077i.profile
test/2 bb 0 fdo 1000000 afdo 910643478152 (auto FDO) (hot) scaled 809427 diff -190573, -19.06%
preds
succs 2

test/2 bb 2 fdo 1000000 afdo 910643478152 (auto FDO) (hot) scaled 809427 diff -190573, -19.06%
preds 0
succs 4

test/2 bb 3 fdo 1000000000 afdo 1125899906798416 (auto FDO) (very hot) scaled 1000758536 diff 758536, +0.08%
preds 4
succs 4

test/2 bb 4 fdo 1001000000 afdo 1126810550276568 (auto FDO) (very hot) scaled 1001567964 diff 567964, +0.06%
preds 2 3
succs 3 5

test/2 bb 5 fdo 1000000 afdo 910643478152 (auto FDO) (hot) scaled 809427 diff -190573, -19.06%
preds 4
succs 1

test/2 bb 1 fdo 1000000 afdo 910643476480 (guessed) (hot) scaled 809427 diff -190573, -19.06%
preds 5
succs

J. Hubička AutoFDO: recent improvements

Benchmarking AutoFDO and AMD EPYC 9755

I modified SPEC scripts to allow -train_with=refrate which
uses reference data set for training. This makes training to run longer
and reduces training noise.

SPEC 2017 configuration
OPTIMIZE = -Ofast -march=native -flto=auto
fdo_pre0 = rm -rf ${benchmark}.data ${benchmark}.gcov
fdo_run1 = perf record -e ex_ret_brn_tkn:Pu -c 100003 -b -o ${benchmark}.data -- ${command} || exit 1;\

create_gcov --suffix_elision_policy=none --binary=${baseexe} --profile=${benchmark}.data \
--gcov=current.gcov -gcov_version=2 || exit 1; \

if test -e ${benchmark}.gcov ; then \
profile_merger current.gcov ${benchmark}.gcov --output_file ${benchmark}.gcov || exit 1 ; \

else mv current.gcov ${benchmark}.gcov || exit 1 ; fi
PASS1_OPTIMIZE = -g -fno-reorder-blocks-and-partition \

-fno-ipa-icf -fno-partial-inlining
PASS2_OPTIMIZE = -fauto-profile=${benchmark}.gcov

Daily testing is now done at https://lnt.opensuse.org/db_
default/v4/SPEC/recent_activity

J. Hubička AutoFDO: recent improvements

https://lnt.opensuse.org/db_default/v4/SPEC/recent_activity
https://lnt.opensuse.org/db_default/v4/SPEC/recent_activity

Benchmarking AutoFDO and AMD EPYC 9755

J. Hubička AutoFDO: recent improvements

Benchmarking AutoFDO and AMD EPYC 9755

J. Hubička AutoFDO: recent improvements

Benchmarking AutoFDO and AMD EPYC 9755

yesterday

J. Hubička AutoFDO: recent improvements

Benchmarking AutoFDO and AMD EPYC 9755

this morning

J. Hubička AutoFDO: recent improvements

Benchmarking AutoFDO and AMD EPYC 9755

J. Hubička AutoFDO: recent improvements

Benchmarking AutoFDO and AMD EPYC 9755

Clang22 built with GCC trunk and LLVM21 with -O3 -flto.
ThinLTO was used for LLVM.
Trained by building tramp3d.

Reported copmile time is a compile time of resulting clang22 binary
building tramp3d again.

J. Hubička AutoFDO: recent improvements

Changes upstreamed to trunk

1 Testsuite support for aarch64
2 Stripping of late suffixes (isra, constprop, part, cold)
3 -Wauto-profile warning
4 AFDO offline pass (to not lose profile with LTO)
5 Significant changes to profile inference algorithm
6 Better handling of zeros in AutoFDO profiles
7 Scaling of AutoFDO profile to reduce roundoff errors
8 Infrasructure to compare AutoFDO and FDO data
9 Discriminator support rewrite

Approx 70 patches overall.
Regular testing using LNT

J. Hubička AutoFDO: recent improvements

In progress

GCC:
1 Hiearchical discriminator support

(discriminator,copy-id,multiplicity)

2 Make dwarf2out to save linkage name of inline functions
3 Handle ipa-split clones correctly
4 Improvements to autorpofiledbootstrap

AutoFDO tool:
1 Handle multiple locations per single statement
2 Switch to 64bit format to save hiearchical discriminators
3 Save file names of translation units to distinguish static functions

of the same name

J. Hubička AutoFDO: recent improvements

In progress

GCC:
1 Hiearchical discriminator support

(discriminator,copy-id,multiplicity)
2 Make dwarf2out to save linkage name of inline functions

3 Handle ipa-split clones correctly
4 Improvements to autorpofiledbootstrap

AutoFDO tool:
1 Handle multiple locations per single statement
2 Switch to 64bit format to save hiearchical discriminators
3 Save file names of translation units to distinguish static functions

of the same name

J. Hubička AutoFDO: recent improvements

In progress

GCC:
1 Hiearchical discriminator support

(discriminator,copy-id,multiplicity)
2 Make dwarf2out to save linkage name of inline functions
3 Handle ipa-split clones correctly

4 Improvements to autorpofiledbootstrap
AutoFDO tool:

1 Handle multiple locations per single statement
2 Switch to 64bit format to save hiearchical discriminators
3 Save file names of translation units to distinguish static functions

of the same name

J. Hubička AutoFDO: recent improvements

In progress

GCC:
1 Hiearchical discriminator support

(discriminator,copy-id,multiplicity)
2 Make dwarf2out to save linkage name of inline functions
3 Handle ipa-split clones correctly
4 Improvements to autorpofiledbootstrap

AutoFDO tool:
1 Handle multiple locations per single statement
2 Switch to 64bit format to save hiearchical discriminators
3 Save file names of translation units to distinguish static functions

of the same name

J. Hubička AutoFDO: recent improvements

What needs to be done

1 Get performance of AutoFDO generated code closer to FDO

2 Redesign datastructures used to hold auto-fdo profile; speed up
loading

3 Can we extend dwarf to handle multiple call stacks per single
address?

4 Extend gcov-tool to handle merging of sample profiles
5 Rewrite create_gcov

Support streaming profiles from perf; improve scalability and
stability of the tool

J. Hubička AutoFDO: recent improvements

What needs to be done

1 Get performance of AutoFDO generated code closer to FDO
2 Redesign datastructures used to hold auto-fdo profile; speed up

loading

3 Can we extend dwarf to handle multiple call stacks per single
address?

4 Extend gcov-tool to handle merging of sample profiles
5 Rewrite create_gcov

Support streaming profiles from perf; improve scalability and
stability of the tool

J. Hubička AutoFDO: recent improvements

What needs to be done

1 Get performance of AutoFDO generated code closer to FDO
2 Redesign datastructures used to hold auto-fdo profile; speed up

loading
3 Can we extend dwarf to handle multiple call stacks per single

address?

4 Extend gcov-tool to handle merging of sample profiles
5 Rewrite create_gcov

Support streaming profiles from perf; improve scalability and
stability of the tool

J. Hubička AutoFDO: recent improvements

What needs to be done

1 Get performance of AutoFDO generated code closer to FDO
2 Redesign datastructures used to hold auto-fdo profile; speed up

loading
3 Can we extend dwarf to handle multiple call stacks per single

address?
4 Extend gcov-tool to handle merging of sample profiles

5 Rewrite create_gcov
Support streaming profiles from perf; improve scalability and
stability of the tool

J. Hubička AutoFDO: recent improvements

What needs to be done

1 Get performance of AutoFDO generated code closer to FDO
2 Redesign datastructures used to hold auto-fdo profile; speed up

loading
3 Can we extend dwarf to handle multiple call stacks per single

address?
4 Extend gcov-tool to handle merging of sample profiles
5 Rewrite create_gcov

Support streaming profiles from perf; improve scalability and
stability of the tool

J. Hubička AutoFDO: recent improvements

