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Big Ramsey Degrees

Theorem (Infinite Ramsey Theorem, 1930)

∀p,k≥1 : ω −→ (ω)p
k,1.

Structural formulation:

Theorem (Infinite Ramsey Theorem, 1930)

Let O be the class of all finite linear orders.

∀(O,≤O)∈O,k≥1 : (ω,≤) −→ (ω,≤)
(O,≤O)
k,1 .

Is the same true for (Q,≤)?

∀(O,≤O)∈O,k≥1 : (Q,≤) −→ (Q,≤)
(O,≤O)
k,1 .

Sierpiński: not true for |O| = 2.
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Big Ramsey Degrees
In late 1960’s Laver developed method of finding copies of Q in Q with bounded number of
colours using Milliken’s tree theorem.

Theorem (Devlin, 1979)

∀(O,≤O)∈O∃T=T (|O|)∈ω∀k≥1 : (Q,≤) −→ (Q,≤)
(O,≤O)
k,T .

T (n) is the big Ramsey degree of n tuple in Q.

T (n) = tan(2n−1)(0).

tan(2n−1)(0) is the (2n − 1)st derivative of the tangent evaluated at 0.

T (1) = 1,T (2) = 2,T (3) = 16,T (4) = 272,

T (5) = 7936,T (6) = 353792,T (7) = 22368256
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Strong subtree
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Definition

A subtree S ⊆ T is a subset closed for meets. It is strong if:

1 S has a root node.

2 ∀s ∈ S either s is leaf or ∀t ∈ ImmSuccT(s) the set ImmSuccS(s) ∩ SuccT(t) is a singleton.

3 Every level of S is a subset of some level of T .

4 S either has no leaves or all are at the same level.
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Strong subtree

Theorem (Milliken tree theorem 1979)

For every infinitely branching tree T with no leaves, k ≥ 1, and every finite colouring of strong
subtrees of depth k there exists infinite strong subtree S ⊆ T which is monochromatic.

Theorem (Laver, late 1969, publised in 1984)

∀(O,≤O)∈O∃T=T (|O|)∈ω∀k≥1 : (Q,≤) −→ (Q,≤)
(O,≤O)
k,T .

Proof of Lavers’s theorem.

1 Consider binary tree B = (B,v). Define order ≤ lexicographically.

2 Fix O and consider finite colouring of
(B

O

)
3 Every copy of O is contained in a strong subtree of bounded height (an envelope). This implies

colouring of strong subtrees

4 By Milliken tree theorem there is infinite monochromatic subtree of B. This subtree ordered by
v contains a copy of Q. Colour of a copy of O depends only on a shape within envelope, the
embedding type.
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For every subset a strong tree envelope needs to be constructed

Many subsets leads to a given strong subtree.

Main observation

Number of sets yielding a given envelope is bounded. Based on finite coloring of subsets
of a given size k it is possible to produce finite coloring of envelopes and apply Milliken
tree theorem to find a copy with bounded number of colors
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Big Ramsey degrees of (P,≤)
Let P be the class of all finite partial orders.

Theorem (J. H. 2020+)

Every (countable) universal partial order (P,≤) has finite big Ramsey degrees:

∀(O,≤)∈P∃T=T (|O|)∈ω∀k≥1 : (P,≤) −→ (P,≤)
(O,≤)
k,T .

Universality: every countable partial order has embedding to (P,≤).

• Proof is based on a new connection between big Ramsey degrees and the
Carlson–Simpson theorem.

• We also get easy proof finite big Ramsey degrees of triangle-free graphs giving a new
proof Dobrinen’s theorem.

• Construction generalizes to large family of classes that are described by forbidden
induced cycles in particular to metric spaces with bounded number of distances (joint
work with M. Balko, D. Chodounský, N. Dobrinen, M. Konečný, J. Nešetřil, L. Vena, A.
Zucker)

• Big Ramsey degrees of posets and triangle-free graphs was fully characterised (joint
work with M. Balko, D. Chodounský, N. Dobrinen, M. Konečný, L. Vena, A. Zucker

• Generalizations to bigger forbidden cliques and higher arities is work in progress
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induced cycles in particular to metric spaces with bounded number of distances (joint
work with M. Balko, D. Chodounský, N. Dobrinen, M. Konečný, J. Nešetřil, L. Vena, A.
Zucker)

• Big Ramsey degrees of posets and triangle-free graphs was fully characterised (joint
work with M. Balko, D. Chodounský, N. Dobrinen, M. Konečný, L. Vena, A. Zucker

• Generalizations to bigger forbidden cliques and higher arities is work in progress
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Parameter words

Definition (Parameter word)

Given a finite alphabet Σ and k ∈ ω + 1, a k -parameter word is a (possibly infinite) word W
in alphabet Σ ∪ {λi : 0 ≤ i < k} such that ∀i ∈ k word W contains λi and for every
j ∈ k − 1, the first occurrence of λj+1 appears after the first occurrence of λj .

Example (2-parameter word)

Σ = {L,X,R}.
LRLλ0λ0Xλ1λ0R

Definition (Substitution)

LRLλ0λ0Xλ1λ0R(LR) = LRLLLXRLR
LRLλ0λ0Xλ1λ0R(X) = LRLXXX

For set S of parameter words and a parameter word W :

W (S) = {W (U) : U ∈ S}.
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Ramsey theorem for parameter words

The following infinitary version of Graham–Rothschild Theorem is a direct consequence of
the Carlson–Simpson theorem. It was also independently proved by Voight in 1983
(apparently unpublished):

Theorem (Ramsey theorem for parameter words)

Let Σ be a finite alphabet and k ≥ 0 a finite integer. If the set of all finite k-parameter
words in alphabet Σ is coloured by finitely many colours, then there exists a
monochromatic infinite-parameter word W.

By W being monochromatic we mean that for every pair of k -parameter words U,V the
colour of W (U) is the same as colour of W (V ).
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Definition

Given a finite alphabet Σ, a finite integer k ≥ 0 and a finite set k -parameter words, an
envelope of S is every n-parameter word W (for some n ≥ k ) such that

∀w∈S∃uW (u) = w .

Example

Envelopes of {0,000} are: 0λ0λ0, 0λ00, 0λ00λ1, . . . .

Proposition (Envelopes are bounded)

Let Σ be a finite alphabet, and k , s ≥ 0 be a finite integers. Then there exists T (|Σ|, s, k)
such that for every set S of size s of k -parameter words in alphabet Σ there exists an
envelope of S with at most T (|Σ|, s, k) parameters.

Proof.

U = 0 1 1 0 1
V = 0 0 1 1 0 1

Envelope: 0 λ0 1 λ1 λ0 λ2
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Triangle-free graph on 1-parameter words

λ

0λ λ0 λλ

00λ 0λ0 0λλ λ00 λ0λ λλ0 λλλ

Put Σ = {0}.

Definition (Triangle-free graph G)

• Vertices of G are all finite 1-parameter words in alphabet Σ.

• For 1-parameter words u, v satisfying |u| < |v | we put u ∼ v (u adjacent to v ) iff
1 V|U| = λ and
2 for no i ∈ |u| it holds that Ui = Vi = λ.

Key observation 1: G is universal triangle-free graph.
Key observation 2: For every pair of 1-parmeter words U and V and every ω-parameter W

U ∼ V ⇐⇒ W (U) ∼W (V ).
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Observation

G is a universal triangle-free graph.

Observation

For every infinite-parameter word W it holds that u ∼ v ⇐⇒ W (u) ∼ W (v).
(Substitution is also graph embedding on G→ G.)

Theorem (Ramsey theorem for parameter words)

Let Σ be a finite alphabet and k ≥ 0 a finite integer. If the set of all finite k-parameter words in
alphabet Σ is coloured by finitely many colours, then there exists a monochromatic
infinite-parameter word W.

Proposition (Envelopes are bounded)

There exists T (|Σ|, s, k) such that for every set S of size s of k -parameter words in alphabet Σ there
exists an envelope of S with at most T (|Σ|, s, k) parameters.

Theorem (Dobrinen 2020)

The big Ramsey degrees of universal triangle-free graph are finite.

Proof.

Fix graph A and a finite coloring of
(G

A

)
. Because envelopes of copies of A are bounded, apply the

theorem above for every embedding type and obtain a copy of G with bounded number of colors.



Partial order on infinite ternary tree

x0

L RX

Put Σ = {L,X,R} and order L <lex X <lex R.

Definition (Partial order (Σ∗,�))

For w ,w ′ ∈ Σ∗ we put w ≺ w ′ if and only if there exists 0 ≤ i < min(|w |, |w ′|) such that
1 (wi ,w ′i ) = (L,R) and
2 for every 0 ≤ j < i it holds that wj ≤lex w ′j .

Key observations: � is universal partial order and is stable for substitution.
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Lower bounds



Devlin-type
Given n, the big Ramsey degree of linear order of size n is to the number of Devlin-types.

Notation:
• Σ∗ is the set of all finite words in alphabet Σ.
• Given S ⊆ Σ∗ by S we denote the set of all initial segments of words in S.
• By Si we denote the set of all initial segments of S of length i .
• By w_c we denote word w extended by character c (concatenation).
• S_c = {w_c : w ∈ S}.

Definition (Devlin-type)

A Devlin-type is any subset S of {0,1}∗ such that for every
` ≤ maxw∈S |w | precisely one of the following happens:

1 Leaf: There is w ∈ S` such that S`+1 = (S` \ {w})_0.
2 Branching: There is w ∈ S` such that S`+1 = w_1 ∪ (S`)

_0.

00

110

1000

t1 = 1, tn =
n−1∑
`=1

(
2n − 2
2`− 1

)
t` · tn−`.
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Level-structures

Definition

Given level ` of the tree of types, we can consider its level-structure:
1 Vertices are nodes (types) of level `.
2 We write a � b if it is true that a′ ≤ b′ for every successor a′ of a and b′ of b.
3 We write a E b if it is true that a′ ≤ b′ for some successor a′ of a and b′ of b.
4 We write a ⊥ b if it is true that a′ ⊥ b′ for every successor a′ of a and b′ of b.

Fun fact

It turns out that both � and E are partial orders and whenever a � b also a E b. One can
think of the level structure (A,�,E) as of an finite approximation of the infinite partial order
located above the given level.
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Definition (Poset-type)

A set S ⊆ {L,X,R}∗ is called a poset-type if precisely one of the following four conditions is satisfied
for every level ` with 0 ≤ ` < maxw∈S |w |:

1 Leaf: There is w ∈ S` related to every u ∈ S` \ {w} and S`+1 = (S` \ {w})_X.

2 Branching: There is w ∈ S` such that

S`+1 = {z ∈ S` : z <lex w}_X ∪ {w_X,w_R} ∪ {z ∈ S` : w <lex z}_R.

3 New ⊥: There are unrelated words v <lex w ∈ S` such that

S`+1 = {z ∈ S` : z <lex v}_X ∪ {v_R} ∪ {z ∈ S` : v <lex z <lex w and z ⊥ v}_X

∪ {z ∈ S` : v <lex z <lex w and z 6⊥ v}_R ∪ {w_X} ∪ {z ∈ S` : w <lex z}_R.

Moreover for every u ∈ S`, v <lex u <lex w implies that at least one of u ⊥ v or u ⊥ w holds.

4 New ≺: There are unrelated words v <lex w ∈ S` such that

S`+1 = {z ∈ S` : z <lex v and z ⊥ v}_X ∪ {z ∈ S` : z <lex v and z 6⊥ v}_L ∪ {v_L}

∪ {z ∈ S` : v <lex z <lex w}_X ∪ {w_R} ∪ {z ∈ S` : w <lex z and w ⊥ z}_X

∪ {z ∈ S` : w <lex z and w 6⊥ z}_R.

Moreover for every u ∈ S` such that u <lex v , at least one of u � w or u ⊥ v holds.
Symmetrically for every u ∈ S` such that w <lex u, at least one of v � u or w ⊥ u holds.



Definition (Devlin-type)

A Devlin-type is any subset S of {0,1}∗ such that for every
` ≤ maxw∈S |w | precisely one of the following happens:

1 Leaf: There is w ∈ S` such that S`+1 = (S` \ {w})_0.
2 Branching: There is w ∈ S` such that S`+1 = w_1 ∪ (S`)

_0.

00

110

1000

Definition (Poset-type)

A Poset-type is any subset S of {L,X,R}∗ such that for every ` ≤ maxw∈S |w | precisely
one of the following happens:

w

XRX R

w

X

v

R XR/X

S` w

L/X

v

L RX R/X

w

X X

Leaf Branching New ⊥ New ≺



Main result

Given a finite partial order (A,≤), we let T (A,≤) be the set of all poset-types S such that
(S,�) is isomorphic to (A,≤).

Theorem (M. Balko, D. Chodounský, N. Dobrinen, J. H., M. Konečný, L. Vena, A. Zucker)

For every finite partial order (O,≤), the big Ramsey degree of (O,≤) in the universal
partial order (P,≤) equals |T (O,≤)| · |Aut(O,≤)|.

Example

Denote by An the anti-chain with with n vertices and by Cn the chain with n vertices.

T (A1) = T (C1) = {∅} T (A2) = {{XR,RXX}, {XRX,RX}}
T (C2) = {{XL,RRX}, {XLX,RR}}

|T (C3)| = 52, |T (C4)| = 11000,

|T (A3)| = 84, |T (A4)| = 75642
Overall there are:
• 1 poset-types a vertex,
• 4 poset-types of posets of size 2,

• 464 poset-types of posets of size 3,
• 1874880 poset-types of posets of size 4.
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Approximating posets

Definition (Approximate poset)

An approximate poset is a structure (A,�,E,P) where
1 both � and E are partial order.
2 P is an unary predicate denoting “finished vertices”.
3 �⊆E (whenever a � b also a E b).
4 a � b E c =⇒ a � c and a E b � c =⇒ a � c.
5 If a ∈ p then for every b ∈ A, b 6= a it holds one of a � b,

b � a or a ⊥ b (a ⊥ b is a shortcut for a 6E b, b 6E a.)

Definition

Poset-type of a poset (B,≤) is equivalently sequence of approximations of (B,≤) where
on each step one of the following happens:

1 Leaf: New vertex is added to predicate P.
2 Branching: A vertex u is split into vertices u1 E u2.
3 New ⊥: A pair is removed from relation E.
4 New ≺: A new pair is added to relation �.
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Proof outline (brief):
• New Ramsey theorem for shape-preserving functions

(somewhere in between Milliken Tree theorem and the Carlson-Simpson Theorem)
• Lower bounds are obtained by similar techniques as used by

Laflamme–Sauer–Vuskanovic

Work in progress
1 Generalizations to metric spaces and other strong amalgamation classes
2 Abstract theorem for trees with successor operations
3 New proof of upper bounds of big Ramsey degrees of free amalgamation classes in

binary language
4 Generalizations to higher arity
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