
Ramsey Classes by Partite Construction I

Honza Hubička
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Ramsey classes

We consider relational structures in language L without function
symbols.

Definition
A class C (of finite relational structures) is Ramsey iff

∀A,B∈C∃C∈C : C −→ (B)A
2 .

(B
A

)
is set of all substructures of B isomorphic to A.

C −→ (B)A
2 : For every 2-coloring of

(C
A

)
there exists B̃ ∈

(C
B

)
such that

(B̃
A

)
is monochromatic.

A B

C
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Examples of Ramsey classes

Example
The class of all finite linear orders is Ramsey.

. . .

Example (Non-example)
The class of all directed graphs is not Ramsey.

A B

Given C consider arbitrary linear order. Color edges red if they
go forward in the linear order and blue otherwise.
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Ramsey classes are amalgamation classes

Definition (Amalgamation property of class K)

Nešetřil, 1989: Under mild assumptions Ramsey classes have
amalgamation property.

A

A

B

C
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Classification programme

Classification programme

Ramsey classes =⇒ amalgamation classes
⇑ ⇓

lifts of homogeneous ⇐= homogeneous structures

Many amalgamation classes are given by the classification
programme of homogeneous structures.

Can we always find a Ramsey lift?

Theorem (Nešetřil, 1989)
All homogeneous graphs have Ramsey lift.

Theorem (Jasiński,Laflamme,Nguyen Van Thé,Woodrow, 2014)

All homogeneous digraphs have Ramsey lift.
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Map of Ramsey Classes

freerestricted
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Map of Ramsey Classes

freerestricted

linear orders

cyclic orders

unions of complete graphs

interval graphs

permutations
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Nešetřil-Rödl Theorem

A structure A is called complete (or irreducible) if every pair of
distinct vertices belong to a relation of A.

ForbE (E) is a class of all finite structures A such that there is no
embedding from E ∈ E to A.

Theorem (Nešetřil-Rödl Theorem, 1977)
Let L be a finite relational language.
Let E be a set of complete ordered L-structures.
The then class ForbE (E) is a Ramsey class.

Explicitly: For every A,B ∈ ForbE (E) there is C ∈ ForbE (E) such
that C −→ (B)A

2 .
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Examples of Ramsey lifts

Example
Graphs with order are Ramsey.

Example
Acyclic graphs with linear extension are Ramsey.

Example
Bipartite graphs with unary relation identifying bipartition and
with convex linear order are Ramsey.
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Map of Ramsey Classes

freerestricted

linear orders

cyclic orders

graphs

unions of complete graphs

interval graphs

permutations

Kn-free graphs
partial orders

acyclic graphs

metric spaces
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Nešetřil-Rödl: The Partite Construction and Ramsey
Set Systems (1989)
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The Partite Construction

Definition (A-partite system)

Let A be an ordered relational structure on vertices {1,2, . . .a}.
An A-partite system is a tuple (A,XB, B) where B is structure
and XB = {X 1

B,X
2
B, . . . ,X

a
B} partitions vertex set of B into a

classes (X i
B are called parts of B) such that:

1 ordering satisfies X 1
B < X 2

B < . . . < X a
B;

2 mapping (projection) π which maps every x ∈ X i
B to i

(i = 1,2, . . . ,a) is a homomorphism;
3 every tuple in every relation of B meets every class X i

B in
at most one element.

a b

x y z

B =A =

X 1
B

X 2
B

1

2
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The Partite Construction

A = B = C =?

Construction outline:
Put n such

n −→ (|B|)|A|2 .

(For every coloring of |A| tuples in {1,2, . . .n} there exists
monochromatic subset of size |B|). Here n = 6.

Picture 0: |K|n-partite system P0 s.t. for every coloring of copies
of A in P0 where the color of a copy Ã depends only on a
projection π(Ã) there exists a monochromatic copy of B.

Enumerate by A1, . . .AN all possible projections of copies of A in
P0.

Pictures 1. . . n: Kn-partite systems P1, . . .PN s.t. for every
coloring of copies of A in Pi there exists a copy of Pi−1 where all
copies of A with projection Ai are monochromatic.
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J. Hubička Ramsey Classes by Partite Construction I



The Partite Construction

A = B = C =?

Construction outline:
Put n such

n −→ (|B|)|A|2 .

(For every coloring of |A| tuples in {1,2, . . .n} there exists
monochromatic subset of size |B|). Here n = 6.

Picture 0: |K|n-partite system P0 s.t. for every coloring of copies
of A in P0 where the color of a copy Ã depends only on a
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The Partite Construction: Picture 0

Picture 0: Kn-partite system P0 s.t. for every coloring of copies
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J. Hubička Ramsey Classes by Partite Construction I



The Partite Construction: Picture 0

Picture 0: Kn-partite system P0 s.t. for every coloring of copies
of A in P0 where the color of a copy Ã depends only on a
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The Partite Construction: Picture 1

Picture 1: Kn-partite system P1 s.t. for every coloring of copies
of A in P1 there exists a copy of P0 where all copies of A with
projection A1 are monochromatic.

A = B =
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J. Hubička Ramsey Classes by Partite Construction I



The Partite Construction: Picture 1

Picture 1: Kn-partite system P1 s.t. for every coloring of copies
of A in P1 there exists a copy of P0 where all copies of A with
projection A1 are monochromatic.

A = B =
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The Partite Construction: Picture 2

Picture 2: Kn-partite system P2 s.t. for every coloring of copies
of A in P2 there exists a copy of P1 where all copies of A with
projection A2 are monochromatic.
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Picture 2: Kn-partite system P2 s.t. for every coloring of copies
of A in P2 there exists a copy of P1 where all copies of A with
projection A2 are monochromatic.
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The Partite Construction: Summary

Ramsey Theorem:
Kn −→ (K|B|)

K|A|
2

Construct P0

Enumerate by A1, . . . ,AN all
possible projections of copies of
A in P0

Construct P1, . . . ,PN
Bi : partite system induced on
Pi−1 by all copies of all with
projection to Ai
Partite lemma: Ci −→ (Bi )

Ai
2

Pi is built repeated free
amalgamation of Pi over all
copies of Bi in Ci

Put C = PN
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J. Hubička Ramsey Classes by Partite Construction I



The Partite Construction: Summary

Ramsey Theorem:
Kn −→ (K|B|)

K|A|
2

Construct P0

Enumerate by A1, . . . ,AN all
possible projections of copies of
A in P0

Construct P1, . . . ,PN
Bi : partite system induced on
Pi−1 by all copies of all with
projection to Ai
Partite lemma: Ci −→ (Bi )

Ai
2

Pi is built repeated free
amalgamation of Pi over all
copies of Bi in Ci

Put C = PN
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The Partite Lemma

Lemma
Let A be a structure s.t. A = {1,2, . . . ,a} and B be an A-partite
system.

Then there exists a A-partite system C s.t.

C −→ (B)A
2 .

a b

x y z

B =A =

X 1
B

X 2
B

1

2
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The Partite Lemma

Proof by application of Hales-Jewett theorem

Theorem (Hales-Jewett theorem)

For every finite alphabet Σ there exists N = HJ(Σ) so that for
every 2-coloring of functions h : {1,2, . . . ,N} → Σ there exists
a monochromatic combinatorial line.

Definition
For non-empty ω ⊆ {1,2, . . . ,N} and f : {1,2, . . . ,N} \ ω → Σ
combinatorial line (ω, f ) is the set of all functions
f ′ : {1,2, . . . ,N} → Σ such that

f ′(i) =

{
constant for i ∈ ω,
f (i) otherwise.
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The Partite Lemma

Proof by application of Hales-Jewett theorem
a b

x y z

B =A =

X 1
B

X 2
B

1

2

Σ = {
(a

x

)
,
(b

y

)
,
(b

z

)
} (alphabet describe all copies of A in B)

N = HJ(Σ)
Build C so that functions h : {1,2, . . . ,N} → Σ correspond
to copies of A and combinatorial lines to copies of B:

Vertices in partition Xi
C: Functions f : {1,2, . . . ,N} → X i

B.
Intended embedding B→ C corresponding the
combinatorial line (ω, f ):

eω,f (v)(i)

{
v for i ∈ ω,
vertex of f (i) in the same partition as v otherwise.

Fact: It is possible to add tuples to relations as needed to
make this work
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J. Hubička Ramsey Classes by Partite Construction I



The Partite Lemma

Proof by application of Hales-Jewett theorem
a b

x y z

B =A =

X 1
B

X 2
B

1

2

Σ = {
(a

x

)
,
(b

y

)
,
(b

z

)
} (alphabet describe all copies of A in B)

N = HJ(Σ)
Build C so that functions h : {1,2, . . . ,N} → Σ correspond
to copies of A and combinatorial lines to copies of B:

Vertices in partition Xi
C: Functions f : {1,2, . . . ,N} → X i

B.

Intended embedding B→ C corresponding the
combinatorial line (ω, f ):

eω,f (v)(i)

{
v for i ∈ ω,
vertex of f (i) in the same partition as v otherwise.

Fact: It is possible to add tuples to relations as needed to
make this work
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Intended embedding B→ C corresponding the
combinatorial line (ω, f ):

eω,f (v)(i)

{
v for i ∈ ω,
vertex of f (i) in the same partition as v otherwise.

Fact: It is possible to add tuples to relations as needed to
make this work
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Uses of the partite construction

Let class K be a class of structures satisfying given axioms. To
show that K is Ramsey one can show that the partite
construction preserve the axioms.

1 Nešetřil, Rödl, 1977: Classes with forbidden
(amalgamation) irreducible structures

2 Nešetřil, Rödl, 1984: Acyclic graphs and partial orders with
linear extension

3 Nešetřil, 2005: Metric spaces
4 Nešetřil, 2010–: Classes with finitely many forbidden

homomorphisms
5 H., Nešetřil, 2014: Classes with unary algebraic closure
6 H., Nešetřil, 2015–: (some) classes non-unary algebraic

closure
7 H., Nešetřil, 2014–: Classes with infinitely many forbidden

homomorphisms.
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5 H., Nešetřil, 2014: Classes with unary algebraic closure
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4 Nešetřil, 2010–: Classes with finitely many forbidden

homomorphisms
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4 Nešetřil, 2010–: Classes with finitely many forbidden

homomorphisms
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The Partite Construction

Ramsey Theorem:
Kn −→ (K|B|)

K|A|
2

Construct P0

Enumerate by A1, . . . ,AN all
possible projections of copies of
A in P0

Construct P1, . . . ,PN
Bi : partite system induced on
Pi−1 by all copies of all with
projection to Ai
Partite lemma: Ci −→ (Bi )

Ai
2

Pi is built repeated free
amalgamation of Pi over all
copies of Bi in Ci

Put C = PN
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The Induced Partite Construction

Nešetřil-Rödl Theorem:
C0 −→ (B)A

2

Construct C0-partite P0
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A in P0
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Put C = PN

If K is irreducible and A, B are K-free, then so is C.
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An exotic example

Bow-tie graph:

Amalgamation of two triangles must unify vertices.

Wrong!
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Structure of bow-tie-free graphs

Structure of bow-tie-free graphs

Edges in no triangles Edges in 1 triangle Edges in 2+ triangles

Definition
Chimney is a graph created by gluing multiple triangles over one
edge.

Definition
Graph is good if every vertex is either in a chimney or K4.
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Structure of bow-tie-free graphs

Graph is good if every vertex is either in a chimney or K4.

Every bowtie-free graph G is a subgraph of some good graph G′.

For every good graph G = (V ,E) the graph G∆ = (V ,E∆) (E∆

are edges in triangles) is a disjoint union of copies of chimneys
and K4.

Closure of a vertex v = all endpoints of red edges contained in
triangles containing v .

Lemma
Bow-tie-free graphs have free amalgamation over closed structures.
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Ramsey property of bow-tie free graphs

3 types of vertices and their closures:

To describe lift of bowtie graphs we only need to forbid all
triangles except for B-B-R and R-R-R.

Theorem (H., Nešetřil, 2014)
The class of graphs not containing bow-tie as non-induced
subgraph have Ramsey lift.
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Unary closures = relations with out-degree 1

Unary closure description C is a set of pairs (RU ,RB) where RU

is unary relation and RB is binary relation.

We say that structure A is C-closed if for every pair (RU ,RB)
the B-outdegree of every vertex of A that is in U is 1.

Theorem (H., Nešetřil, 2015)
Let E be a family of complete ordered structures and U an
unary closure description. Then the class of all C-closed
structures in ForbE (E) has Ramsey lift.

All Cherlin Shelah Shi classes with unary closure can be
described this way!
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The Induced Partite Construction with unary closure

Nešetřil-Rödl Theorem: C0 −→ (B)A
2

Construct C0-partite P0

Enumerate by A1, . . . ,AN all
possible projections of copies of A in
P0

Construct C0-partite P1, . . . ,PN :

Bi : partite system induced on
Pi−1 by all copies of all with
projection to Ai
Partite lemma: Ci −→ (Bi )

Ai
2

Pi is built by repeated free
amalgamation of Pi over all
copies of Bi in Ci

Put C = PN
A, B, Bi are C-closed. Only potential problem is the partite
construction.
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The Partite Lemma

Easy description of C:
a b

x y z

B =A =

X 1
B

X 2
B

Vertices in partition Xi
C: Functions f : {1,2, . . . ,N} → X i

B
Add as many tuples to relations as possible such that all
the evaluation maps gi(f ) = f (i) are homomorphisms from
C to B.

out-degree 1 is preserved:

f (1) = x , f (2) = y , f (3) = z, f (4) = x , . . .

If there is edge from f to f ′ then:

f ′(1) = a, f ′(2) = b, f ′(3) = b, f ′(4) = a, . . .
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Map of Ramsey Classes

freerestricted

linear orders

cyclic orders

graphs

unions of complete graphs

interval graphs

permutations

Kn-free graphs
partial orders

acyclic graphs

metric spaces

boolean algebras
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Map of Ramsey Classes

freerestricted

linear orders

cyclic orders

graphs

unions of complete graphs

interval graphs

permutations

Kn-free graphs
partial orders

acyclic graphs

metric spaces

boolean algebras Unary CSS classes
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Generalizing Partite Construction to non-unary closure

Nešetřil-Rödl Theorem:
C0 −→ (B)A

2 .
Construct C0-partite P0

Enumerate by A1, . . . ,AN all
possible projections of copies of
A in P0

Construct C0-partite P1, . . . ,PN :
Bi : partite system induced on
Pi−1 by all copies of all with
projection to Ai
Partite lemma: Ci −→ (Bi )

Ai
2

Pi is built by repeated
amalgamation of Pi over
selected copies of Bi in Ci
unify vertices to preserve
out-degree 1 of non-unary
closure edges
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Example: QQ

Definition
Denote by QQ the structure with binary relation ≤ and ternary
relation ≺ with the following properties

1 relation ≤ forms the generic linear order

2 for every vertex a ∈ QQ the relation {(b, c) : (a,b, c) ∈≺} forms
the generic linear oder on QQ \ {a} that is free to ≤.

Use alternative representation with binary relations and closures to
show that the age of QQ is a Ramsey class:
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The End

Forb homo and degrees

freerestricted

linear orders

cyclic orders

graphs

unions of complete graphs

interval graphs

permutations

Kn-free graphs
partial orders

acyclic graphs

metric spaces

boolean algebras Unary CSS classes

T HANK YOU !
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