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Ramsey Theorem

Theorem (Finite Ramsey Theorem, 1930)

∀n,p,k≥1∃N : N −→ (n)p
k,1.

N −→ (n)p
k,t : For every partition of

({1,2,...,N}
p

)
into k classes (colours) there

exists X ⊆ {1, 2, . . . ,N}, |X | = n such that
(X

p

)
belongs to at most t partitions

(if t = 1 it is monochromatic)

For p = 2, n = 3, k = 2 put N = 6
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Ramsey theorem for finite structures

Denote by
−→
H l the class of all finite l-uniform hypergraphs endowed with linear

order on vertices.

Theorem (Nešetřil-Rödl, 1977; Abramson-Harrington, 1978)

∀l≥2,A,B∈
−→
H l
∃C∈
−→
H l

: C −→ (B)A
2,1.

(B
A

)
is the set of all induced sub-hypergraphs of B isomorphic to A.

C −→ (B)A
k,t : For every k -colouring of

(C
A

)
there exists B̃ ∈

(C
B

)
such that

(B̃
A

)
has at most t colours.

A B

C
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Order is necessary

A B

Vertices of C can be linearly ordered and copies of A colored:
• red if middle vertex appear first.

• blue otherwise.

Every ordering of 5-cycle contains minimal and maximal element.
Consequently every 5-cycle in C with contain both blue and red copy of A.
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Hypergraphs have finite small Ramsey degree

Denote by Hl the class of all finite l-uniform hypergraphs endowed with linear
order on vertices.

Theorem (Nešetřil-Rödl, 1977; Abramson-Harrington, 1978)

∀l≥2,k≥2,A,B∈Hl∃C∈Hl : C −→ (B)A
k,t(A).

where t(A), the small Ramsey degree of A in Hl , is the number of
non-isomorphic ordering of vertices of A.
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Ramsey classes

Definition

A class C of finite L-structures is Ramsey iff ∀A,B∈C∃C∈C : C −→ (B)A
2,1.

Example (Linear orders — Ramsey Theorem, 1930)

The class of all finite linear orders is a Ramsey class.

Example (Structures — Nešetřil-Rödl, 76; Abramson-Harrington, 78)

For every relational language L,
−→
Rel(L) is a Ramsey class.

Example (Partial orders — Nešetřil-Rödl, 84; Paoli-Trotter-Walker, 85)

The class of all finite partial orders with linear extension is Ramsey.

Example (Models — H.-Nešetřil, 2016)

For every language L,
−−→
Mod(L) is a Ramsey class.
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Ramsey’s theorem: rationals

Graham Rotschild Theorem: Parametric words

Milliken tree theorem: C-relations

Gower’s Ramsey Theorem

Product arguments
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Graham Rotschild Theorem: Parametric words Boolean algebras

−→
Rel(L)
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Big Ramsey Degrees

Theorem (Infinite Ramsey Theorem)

∀p,k≥1N −→ (N)p
k,1.

By N we denote the order of integers (without arithmetic operations on them)

Theorem (Devlin, 1979)

∀p,k≥1Q −→ (Q)p
k,T (k).

For certain finite T (k). T (k) is the big Ramsey degree of k tuple in Q.

T (k) = tan(2k−1)(0).

tan(2k−1)(0) is the (2k − 1)st derivative of the tangent evaluated at 0.

T (1) = 1,T (2) = 2,T (3) = 16,T (4) = 272,

T (5) = 7936,T (6) = 353792,T (7) = 22368256

Ramseyness is an application of Milliken’s tree theorem on binary tree.
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Big Ramsey degrees of Q as trees

We describe tree using two orders.
1 ≤ is the order of rationals
2 � is the well-order fixed by enumeration

T (X ,≤,�) is the tree built by previous procedure for set (X ,≤) executed in
order given by �. (A binary search tree used in computer science.)

Definition

We say that (X ,≤) and (X ,�) is a compatible pair of orders of X if and only if
≤ and � are linear orders and every vertex of X is either leaf or has 2 sons.

T (3) = 16

The big Ramsey degree of n tuples is precisely given by number of
compatible pair of orders on an n-tuple.
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Rich colouring of the countable random graph

R

Colour of a subgraph = shape of meet closure in the tree
Given well order � (bottom-up) one can define dense order by listing the tree
from left to right
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Sauer’s theorem

Big Ramsey degrees of graphs are given by Devlin’s trees annotated by graph edges.

NO:
c

b
a

a ∧ b

Definition
Let (≤,�) be a pair of compatible orders of a set V ′, let V be the set of leaf vertices of
T (V ′,≤,�), and let G = (V ,E) be a graph. We say that G is compatible with
T (V ′,≤,�) if, for every triple a, b, c ∈ V of distinct vertices satisfying c � (a ∧ b), we
have {a, c} ∈ E if and only if {b, c} ∈ E .

Theorem (Sauer 2006)

Let R be the random graph.

∀finite graph Gk≥1R −→ (R)G
k,T (H).

Where T (G) is the Ramsey degree of a graph Ramsey degree of a graph G = ([n],E)
in R.
T (G) is the number of non-isomorphic structures ([2n − 1],E ,≤,�) where (≤,�) is a
pair of compatible linear orders of [2n − 1] and G is compatible with T ([2n − 1],≤,�).

Proved again by the application of Milliken tree theorem on binary tree.
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NO:
c

b
a

a ∧ b

Definition
Let (≤,�) be a pair of compatible orders of a set V ′, let V be the set of leaf vertices of
T (V ′,≤,�), and let G = (V ,E) be a graph. We say that G is compatible with
T (V ′,≤,�) if, for every triple a, b, c ∈ V of distinct vertices satisfying c � (a ∧ b), we
have {a, c} ∈ E if and only if {b, c} ∈ E .

Theorem (Sauer 2006)

Let R be the random graph.

∀finite graph Gk≥1R −→ (R)G
k,T (H).

Where T (G) is the Ramsey degree of a graph Ramsey degree of a graph G = ([n],E)
in R.

T (G) is the number of non-isomorphic structures ([2n − 1],E ,≤,�) where (≤,�) is a
pair of compatible linear orders of [2n − 1] and G is compatible with T ([2n − 1],≤,�).

Proved again by the application of Milliken tree theorem on binary tree.
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Rich colouring of the countable random 3-uniform hyper-graph

H3

Colour of a subgraph = shape of meet closure in the tree
Problem: Ramsey theorem for this type of tree does not hold
Year later we observed that neighbourhood of a vertex is the Random graph!
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Colour of a subgraph = shape of meet closure in the tree
Problem: Ramsey theorem for this type of tree does not hold
Year later we observed that neighbourhood of a vertex is the Random graph!



Structural Ramsey Theory Big Ramsey Degrees of Q Random graph Random hypergraph

Rich colouring of the countable random 3-uniform hyper-graph
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Colour of a subgraph = shape of meet closure in the tree
Problem: Ramsey theorem for this type of tree does not hold
Year later we observed that neighbourhood of a vertex is the Random graph!



Structural Ramsey Theory Big Ramsey Degrees of Q Random graph Random hypergraph

Rich colouring of the countable random 3-uniform hyper-graph
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Colour of a subgraph = shape of meet closure in the tree
Problem: Ramsey theorem for this type of tree does not hold
Year later we observed that neighbourhood of a vertex is the Random graph!
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Rich colouring of the countable random 3-uniform hyper-graph
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Colour of a subgraph = shape of meet closure in the tree
Problem: Ramsey theorem for this type of tree does not hold
Year later we observed that neighbourhood of a vertex is the Random graph!
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Rich colouring of the countable random 3-uniform hyper-graph

H3

v0

v1

v2

R

v0

v1

v2

Colour of a subgraph = shape of meet closure in both trees
Problem: Ramsey theorem for this type of tree does not hold
Year later we observed that neighbourhood of a vertex is the Random graph!
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Big Ramsey degrees of 3-uniform hypergraphs are pairs of trees

a

b
c

d

(a, e)
e

(b, c)

(c, d)

(b, d)

(a, d)
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Big Ramsey degrees of 3-uniform hypergraphs as product trees

a

b
c

d

(a, e)
e

(b, c)

(c, d)

(b, d)

(a, d)

Definition
Let (≤,�) be a pair of compatible orders of a set V ′ , let V be the set of leaf vertices of T (V ′,≤,�), and let G = (V, E) be a
3-uniform hypergraph. We say that G is compatible with T (V ′,≤,�) if for every 4-tuple a, b, c, d of distinct vertices of V satisfying
d � c � (a ∧ b) we have {a, c, d} ∈ E if and only if {b, c, d} ∈ E.

Given a tree T (V0,≤,�) and a compatible 3-uniform hypergraph G = (V, E), we define the neighbourhood graph of G with respect to

T (V0,≤,�) as the graph G1 = (V ′′, E1) constructed as follows:
• V ′′ consists of all pairs (a, b) such that a ∈ V (by compatibility V ⊆ V0) and b ∈ V0, a ≺ b and there is no c ∈ V0, c @ b

such that a ≺ c ≺ b.
• {(a, b), (c, d)} ∈ E1 for a � c iff there exists e w d such that {a, c, e} ∈ E. (This is well defined because of the

compatibility of T (V0,≤,�) and G.)

For (a, b) ∈ V ′ , we define its projection π : V × V0 → V by putting π((a, b)) = a.

Definition
The tuple (V0, V1,�,≤0,≤1) is compatible with the 3-uniform hypergraph G = (V, E) iff:

• V0 ∩ V1 = ∅,

• (≤0,��
V0 ) is a compatible pair of orders of V0 and T (V0,≤0,��

V0 ) is compatible with G,

• (≤1,��
V1 ) is a compatible pair of orders of V1 and T (V1,≤1,��

V1 ) is compatible with the neighbourhood graph

G1 = (V1, E1) of G with respect to T (V0,≤0,��
V0 ),

• � is a well pre-order which satisfies a 6= b, a � b, b � a ⇒ π(a) = π(b), and both projections are defined. Moreover,

whenever π(a) and π(b) are defined, π(a) � π(b) ⇒ a � b. Finally, for (a, b), (c, d) ∈ V1, we have
((a, b) ∧ (c, d)) ≺ (b ∧ d).
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Big Ramsey degrees of 3-uniform hypergraphs are finite

Theorem (Balko, Chodounský, H., Konečný 2019+)

Let H3 be the random 3-uniform hypergraph.

∀finite hypergraph G,k≥1H3 −→ (H3)
G
k,T (G).

The big Ramsey degree of a 3-uniform hypergraph G = ([n], E) in H3 is the number of
non-isomorphic structures ([2n − 1] ∪ V 1,�,≤0,≤1, E,P) such that
([2n− 1],V 1,�,≤0,≤1) is compatible with E , ��[2n−1] is a linear order and P consists
of all triples {a, b, (a, b)} such that (a, b) is a vertex of the neighbourhood graph G1.

Big Ramsey degree bounds are known for the following:
1 Order of integers (Ramsey 1930)
2 Order of rationals (Devlin 1979)
3 Random graph (Sauer 2006)
4 Dense local order (Laflamme, Nguyen Van Thé, Sauer 2010)
5 Ultrametric spaces (Nguyen Van Thé 2010)
6 Universal Kk -free graphs for k ≥ 2 (Dobrinen 2018+)
7 Structures with unary functions only (H., Nešetřil, 2019)
8 Some structures with equivalence relations (Howe 2019+, H.+)

Kechris, Pestov and Todorcevic linked big Ramsey degrees to topological dynamics.
This was recently developed by Andy Zucker to the notion of Big Ramsey structures.
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• J.H., J. Nešetřil: All those Ramsey classes (Ramsey classes with closures and

forbidden homomorphisms),
To appear in Advances in Mathematics (arXiv:1606.07979), 2016, 92 pages.

• M. Balko, D. Chodounský, J.H., L. Vena, M. Konečný: Big Ramsey degrees of
3-uniform hypergraphs, EUROCOMB 2019 abstract, full paper in preparation.


	Structural Ramsey Theory
	Big Ramsey Degrees of Q
	Random graph
	Random hypergraph

