Structural Ramsey Theory Big Ramsey D	egrees of Q Random graph	Random hypergraph
00000 000	00	00000

Big Ramsey degrees of the 3-uniform hypergraph

Jan Hubička

Computer Science Institute of Charles University Charles University Prague

Joint work with Martin Balko, David Chodounský, Matěj Konečný, Lluis Vena

EUROCOMB 2019

Structural Ramsey Theory	Big Ramsey Degrees of Q	Random graph	Random hypergraph
00000	000	00	00000

Ramsey Theorem

Theorem (Finite Ramsey Theorem, 1930)

$$\forall_{n,p,k\geq 1}\exists_N:N\longrightarrow (n)_{k,1}^p.$$

 $N \longrightarrow (n)_{k,t}^{p}$: For every partition of $\binom{\{1,2,\ldots,N\}}{p}$ into *k* classes (colours) there exists $X \subseteq \{1,2,\ldots,N\}, |X| = n$ such that $\binom{X}{p}$ belongs to at most *t* partitions (if t = 1 it is monochromatic)

うして 山田 マイボット ボット シックション

For p = 2, n = 3, k = 2 put N = 6

Random graph

Random hypergraph

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへぐ

Ramsey theorem for finite structures

Denote by $\vec{\mathcal{H}}_{l}$ the class of all finite *l*-uniform hypergraphs endowed with linear order on vertices.

Theorem (Nešetřil-Rödl, 1977; Abramson-Harrington, 1978)

$$\forall_{l\geq 2,\mathbf{A},\mathbf{B}\in \overrightarrow{\mathcal{H}}_{l}}\exists_{\mathbf{C}\in \overrightarrow{\mathcal{H}}_{l}}:\mathbf{C}\longrightarrow (\mathbf{B})_{2,1}^{\mathbf{A}}.$$

Random graph

Random hypergraph

Ramsey theorem for finite structures

Denote by $\vec{\mathcal{H}}_{l}$ the class of all finite *l*-uniform hypergraphs endowed with linear order on vertices.

Theorem (Nešetřil-Rödl, 1977; Abramson-Harrington, 1978)

$$\forall_{l\geq 2,\mathbf{A},\mathbf{B}\in \overrightarrow{\mathcal{H}}_{l}}\exists_{\mathbf{C}\in \overrightarrow{\mathcal{H}}_{l}}:\mathbf{C}\longrightarrow (\mathbf{B})_{2,1}^{\mathbf{A}}.$$

Theorem (Ramsey Theorem, 1930)

$$\forall_{n,p,k\geq 1} \exists_N : N \longrightarrow (n)_{k,1}^p.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Random graph

Random hypergraph

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Ramsey theorem for finite structures

Denote by $\vec{\mathcal{H}}_{l}$ the class of all finite *l*-uniform hypergraphs endowed with linear order on vertices.

Theorem (Nešetřil-Rödl, 1977; Abramson-Harrington, 1978)

$$\forall_{l\geq 2,\mathbf{A},\mathbf{B}\in \overrightarrow{\mathcal{H}}_l} \exists_{\mathbf{C}\in \overrightarrow{\mathcal{H}}_l} : \mathbf{C} \longrightarrow (\mathbf{B})_{2,1}^{\mathbf{A}}.$$

 $\begin{pmatrix} B \\ A \end{pmatrix}$ is the set of all induced sub-hypergraphs of **B** isomorphic to **A**.

 $C \longrightarrow (B)_{k,t}^{A}$: For every k-colouring of $\binom{C}{A}$ there exists $\widetilde{B} \in \binom{C}{B}$ such that $\binom{\widetilde{B}}{A}$ has at most t colours.

Random graph

Random hypergraph

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三里 - のへぐ

Ramsey theorem for finite structures

Denote by $\vec{\mathcal{H}}_{l}$ the class of all finite *l*-uniform hypergraphs endowed with linear order on vertices.

Theorem (Nešetřil-Rödl, 1977; Abramson-Harrington, 1978)

$$\forall_{l\geq 2,\mathbf{A},\mathbf{B}\in \overrightarrow{\mathcal{H}}_l} \exists_{\mathbf{C}\in \overrightarrow{\mathcal{H}}_l} : \mathbf{C} \longrightarrow (\mathbf{B})_{2,1}^{\mathbf{A}}.$$

 $\begin{pmatrix} B \\ A \end{pmatrix}$ is the set of all induced sub-hypergraphs of **B** isomorphic to **A**.

 $C \longrightarrow (B)_{k,t}^{A}$: For every k-colouring of $\binom{C}{A}$ there exists $\widetilde{B} \in \binom{C}{B}$ such that $\binom{\widetilde{B}}{A}$ has at most t colours.

Random graph

Random hypergraph

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Ramsey theorem for finite structures

Denote by $\vec{\mathcal{H}}_{l}$ the class of all finite *l*-uniform hypergraphs endowed with linear order on vertices.

Theorem (Nešetřil-Rödl, 1977; Abramson-Harrington, 1978)

$$\forall_{l\geq 2,\mathbf{A},\mathbf{B}\in \overrightarrow{\mathcal{H}}_l} \exists_{\mathbf{C}\in \overrightarrow{\mathcal{H}}_l} : \mathbf{C} \longrightarrow (\mathbf{B})_{2,1}^{\mathbf{A}}.$$

 $\begin{pmatrix} B \\ A \end{pmatrix}$ is the set of all induced sub-hypergraphs of **B** isomorphic to **A**.

 $C \longrightarrow (B)_{k,t}^{A}$: For every k-colouring of $\binom{C}{A}$ there exists $\widetilde{B} \in \binom{C}{B}$ such that $\binom{\widetilde{B}}{A}$ has at most t colours.

Structural Ramsey	Theory
000000	

Random graph

Random hypergraph

Order is necessary

Structural Ramsey Theory	Big Ramsey Degrees of Q	Random graph	Random hypergraph
000000	000	00	00000

Order is necessary

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Vertices of C can be linearly ordered and copies of A colored:

• red if middle vertex appear first.

• blue otherwise.

Structural Ramsey Theory	Big Ramsey Degrees of Q	Random graph	Random hypergraph
000000	000	00	00000

Order is necessary

Vertices of C can be linearly ordered and copies of A colored:

• red if middle vertex appear first.

• blue otherwise.

Every ordering of 5-cycle contains minimal and maximal element. Consequently every 5-cycle in **C** with contain both blue and red copy of **A**.

Structural Ramsey Theory	
000000	

Random graph

Random hypergraph

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つんぐ

Hypergraphs have finite small Ramsey degree

Denote by \mathcal{H}_{l} the class of all finite *l*-uniform hypergraphs endowed with linear order on vertices.

Theorem (Nešetřil-Rödl, 1977; Abramson-Harrington, 1978)

$$\forall_{l\geq 2,k\geq 2,\mathbf{A},\mathbf{B}\in\mathcal{H}_l}\exists_{\mathbf{C}\in\mathcal{H}_l}:\mathbf{C}\longrightarrow(\mathbf{B})_{k,t(\mathbf{A})}^{\mathbf{A}}.$$

where $t(\mathbf{A})$, the small Ramsey degree of \mathbf{A} in \mathcal{H}_1 , is the number of non-isomorphic ordering of vertices of \mathbf{A} .

Structural Ramsey Theory	Big Ramsey Degrees of Q	Random graph	Random hypergraph
000000	000	00	00000

Definition

A class C of finite *L*-structures is Ramsey iff $\forall_{A,B\in C} \exists_{C\in C} : C \longrightarrow (B)_{2,1}^{A}$.

Structural Ramsey Theory	Big Ramsey Degrees of Q	Random graph	Random hypergraph
000000	000	00	00000

Definition

A class C of finite L-structures is Ramsey iff $\forall_{A,B\in C} \exists_{C\in C} : C \longrightarrow (B)_{2,1}^{A}$.

Example (Linear orders — Ramsey Theorem, 1930)

The class of all finite linear orders is a Ramsey class.

Structural Ramsey Theory	Big Ramsey Degrees of Q	Random graph	Random hypergraph
000000	000	00	00000

Definition

A class C of finite *L*-structures is Ramsey iff $\forall_{A,B\in C} \exists_{C\in C} : C \longrightarrow (B)_{2,1}^{A}$.

Example (Linear orders — Ramsey Theorem, 1930)

The class of all finite linear orders is a Ramsey class.

Example (Structures — Nešetřil-Rödl, 76; Abramson-Harrington, 78)

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

For every relational language L, $\overrightarrow{Rel}(L)$ is a Ramsey class.

Structural Ramsey Theory	Big Ramsey Degrees of Q	Random graph	Random hypergraph
000000	000	00	00000

Definition

A class C of finite *L*-structures is Ramsey iff $\forall_{A,B\in C} \exists_{C\in C} : C \longrightarrow (B)_{2,1}^{A}$.

Example (Linear orders — Ramsey Theorem, 1930)

The class of all finite linear orders is a Ramsey class.

Example (Structures — Nešetřil-Rödl, 76; Abramson-Harrington, 78)

For every relational language L, $\overrightarrow{Rel}(L)$ is a Ramsey class.

Example (Partial orders — Nešetřil-Rödl, 84; Paoli-Trotter-Walker, 85)

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

The class of all finite partial orders with linear extension is Ramsey.

Structural Ramsey Theory	Big Ramsey Degrees of Q	Random graph	Random hypergraph
000000	000	00	00000

Definition

A class C of finite *L*-structures is Ramsey iff $\forall_{A,B\in C} \exists_{C\in C} : C \longrightarrow (B)_{2,1}^{A}$.

Example (Linear orders — Ramsey Theorem, 1930)

The class of all finite linear orders is a Ramsey class.

Example (Structures — Nešetřil-Rödl, 76; Abramson-Harrington, 78)

For every relational language L, $\overrightarrow{Rel}(L)$ is a Ramsey class.

Example (Partial orders — Nešetřil-Rödl, 84; Paoli-Trotter-Walker, 85)

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

The class of all finite partial orders with linear extension is Ramsey.

Example (Models — H.-Nešetřil, 2016)

For every language L, $\overrightarrow{Mod}(L)$ is a Ramsey class.

Structural Ramsey Theory	Big Ramsey Degrees of Q	Random graph	Random hypergraph
00000	000	00	00000

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Gower's Ramsey Theorem

Graham Rotschild Theorem: Parametric words

Milliken tree theorem: C-relations

Ramsey's theorem: rationals

Structural Ramsey Theory	Big Ramsey Degrees of Q	Random graph	Random hypergraph
00000	000	00	00000

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Gower's Ramsey Theorem

Graham Rotschild Theorem: Parametric words

Milliken tree theorem: C-relations

Permutations Equivalences Ramsey's theorem: rationals

Product arguments

Structural Ramsey Theory	Big Ramsey Degrees of Q	Random graph	Random hypergraph
00000●	000	00	00000

Gower's Ramsey Theorem

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへぐ

Product arguments Interpretations

ructural Ramsey Theory	Big Ramsey Degrees of Q	Random graph	Random hypergraph
0000●	000	00	00000
0000	000	00	00000

Gower's Ramsey Theorem

Product arguments Interpretations Adding unary functions

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Structural Ramsey Theory	Big Ramsey Degrees of ${\mathbb Q}$	Random graph	Random hypergraph
Gower's Ramsey T	heorem		

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つんぐ

Structural Ramsey Theory	Big Ramsey Degrees of Q	Random graph	Random hypergraph
000000	● ○ ○	00	00000

Theorem (Infinite Ramsey Theorem)

$$\forall_{p,k\geq 1}\mathbb{N}\longrightarrow (\mathbb{N})_{k,1}^{p}.$$

By \mathbb{N} we denote the order of integers (without arithmetic operations on them)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへぐ

Structural Ramsey Theory	Big Ramsey Degrees of Q	Random graph	Random hypergraph
000000	● ○ ○	00	00000

Theorem (Infinite Ramsey Theorem)

$$\forall_{p,k\geq 1}\mathbb{N}\longrightarrow (\mathbb{N})_{k,1}^p.$$

By \mathbb{N} we denote the order of integers (without arithmetic operations on them)

Theorem (Devlin, 1979)

$$\forall_{p,k\geq 1}\mathbb{Q}\longrightarrow (\mathbb{Q})_{k,T(k)}^{p}.$$

For certain finite T(k). T(k) is the big Ramsey degree of k tuple in \mathbb{Q} .

Structural Ramsey Theory	Big Ramsey Degrees of Q	Random graph	Random hypergraph
000000	● ○ ○	00	00000

Theorem (Infinite Ramsey Theorem)

$$\forall_{p,k\geq 1}\mathbb{N}\longrightarrow (\mathbb{N})_{k,1}^{p}.$$

By \mathbb{N} we denote the order of integers (without arithmetic operations on them)

Theorem (Devlin, 1979)

$$\forall_{p,k\geq 1}\mathbb{Q}\longrightarrow (\mathbb{Q})_{k,T(k)}^{p}.$$

For certain finite T(k). T(k) is the big Ramsey degree of k tuple in \mathbb{Q} .

$$T(k)=\tan^{(2k-1)}(0).$$

 $tan^{(2k-1)}(0)$ is the $(2k-1)^{st}$ derivative of the tangent evaluated at 0.

Structural Ramsey Theory	Big Ramsey Degrees of Q	Random graph	Random hypergraph
000000	● ○ ○	00	00000

Theorem (Infinite Ramsey Theorem)

$$\forall_{p,k\geq 1}\mathbb{N}\longrightarrow (\mathbb{N})_{k,1}^{p}.$$

By \mathbb{N} we denote the order of integers (without arithmetic operations on them)

Theorem (Devlin, 1979)

$$\forall_{p,k\geq 1}\mathbb{Q}\longrightarrow (\mathbb{Q})_{k,T(k)}^{p}.$$

For certain finite T(k). T(k) is the big Ramsey degree of k tuple in \mathbb{Q} .

$$T(k)=\tan^{(2k-1)}(0).$$

 $tan^{(2k-1)}(0)$ is the $(2k-1)^{st}$ derivative of the tangent evaluated at 0.

$$T(1) = 1, T(2) = 2, T(3) = 16, T(4) = 272,$$

T(5) = 7936, T(6) = 353792, T(7) = 22368256

Structural Ramsey Theory	Big Ramsey Degrees of Q	Random graph	Random hypergraph
000000	● ○ ○	00	00000

Theorem (Infinite Ramsey Theorem)

$$\forall_{p,k\geq 1}\mathbb{N}\longrightarrow (\mathbb{N})_{k,1}^p.$$

By \mathbb{N} we denote the order of integers (without arithmetic operations on them)

Theorem (Devlin, 1979)

$$\forall_{p,k\geq 1}\mathbb{Q}\longrightarrow (\mathbb{Q})_{k,T(k)}^{p}.$$

For certain finite T(k). T(k) is the big Ramsey degree of k tuple in \mathbb{Q} .

$$T(k)=\tan^{(2k-1)}(0).$$

 $tan^{(2k-1)}(0)$ is the $(2k-1)^{st}$ derivative of the tangent evaluated at 0.

$$T(1) = 1, T(2) = 2, T(3) = 16, T(4) = 272,$$

T(5) = 7936, T(6) = 353792, T(7) = 22368256

Ramseyness is an application of Milliken's tree theorem on binary trees, and a source

Structural Ramsey Theory	Big Ramsey Degrees of Q	Random graph	Random hypergraph
000000	000	00	00000

Structural Ramsey Theory	Big Ramsey Degrees of Q	Random graph	Random hypergraph
000000	000	00	00000

Structural Ramsey Theory	Big Ramsey Degrees of Q	Random graph	Random hypergraph
000000	000	00	00000

Structural Ramsey Theory	Big Ramsey Degrees of Q	Random graph	Random hypergraph
000000	000	00	00000

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Structural Ramsey Theory	Big Ramsey Degrees of Q	Random graph	Random hypergraph
000000	000	00	00000

▲□▶▲□▶▲□▶▲□▶ □ ● ● ●

Structural Ramsey Theory	Big Ramsey Degrees of Q	Random graph	Random hypergraph
000000	000	00	00000

Structural Ramsey Theory	Big Ramsey Degrees of Q	Random graph	Random hypergraph
000000	000	00	00000

Structural Ramsey Theory	Big Ramsey Degrees of Q	Random graph	Random hypergraph
000000	000	00	00000

Structural Ramsey Theory	Big Ramsey Degrees of Q	Random graph	Random hypergraph
000000	000	00	00000

▲ロト ▲理 ト ▲ ヨ ト ▲ 国 ト ▲ 日 ト

Structural Ramsey Theory	Big Ramsey Degrees of Q	Random graph	Random hypergraph
000000	000	00	00000

Structural Ramsey Theory	Big Ramsey Degrees of Q	Random graph	Random hypergraph
000000	000	00	00000

Structural Ramsey Theory	Big Ramsey Degrees of Q	Random graph	Random hypergraph
000000	000	00	00000

Structural Ramsey Theory	Big Ramsey Degrees of Q	Random graph	Random hypergraph
000000	000	00	00000

Structural Ramsey Theory	Big Ramsey Degrees of Q	Random graph	Random hypergraph
000000	000	00	00000

Big Ramsey degrees of Q as trees

We describe tree using two orders.

- $\mathbf{1} \leq \mathbf{1}$ is the order of rationals
- **2** \leq is the well-order fixed by enumeration

 $T(X, \leq, \preceq)$ is the tree built by previous procedure for set (X, \leq) executed in order given by \preceq . (A binary search tree used in computer science.)

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Structural Ramsey Theory	Big Ramsey Degrees of Q	Random graph	Random hypergraph
000000	000	00	00000

Big Ramsey degrees of \mathbb{Q} as trees

We describe tree using two orders.

- $\mathbf{1} \leq \mathbf{1}$ is the order of rationals
- $\mathbf{2} \preceq \mathbf{1}$ is the well-order fixed by enumeration

 $T(X, \leq, \preceq)$ is the tree built by previous procedure for set (X, \leq) executed in order given by \preceq . (A binary search tree used in computer science.)

Definition

We say that (X, \leq) and (X, \leq) is a compatible pair of orders of X if and only if \leq and \leq are linear orders and every vertex of X is either leaf or has 2 sons.

T(3) = 16

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Structural Ramsey Theory	Big Ramsey Degrees of Q	Random graph	Random hypergraph
000000	000	00	00000

Big Ramsey degrees of \mathbb{Q} as trees

We describe tree using two orders.

- $\mathbf{1} \leq \mathbf{1}$ is the order of rationals
- $\mathbf{2} \preceq \mathbf{is}$ the well-order fixed by enumeration

 $T(X, \leq, \preceq)$ is the tree built by previous procedure for set (X, \leq) executed in order given by \preceq . (A binary search tree used in computer science.)

Definition

We say that (X, \leq) and (X, \leq) is a compatible pair of orders of X if and only if \leq and \leq are linear orders and every vertex of X is either leaf or has 2 sons.

T(3) = 16

The big Ramsey degree of *n* tuples is precisely given by number of compatible pair of orders on an *n*-tuple.

Structural Ramsey Theory	Big Ramsey Degrees of Q	Random graph	Random hypergraph
000000	000	•0	00000

R

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

Structural Ramsey Theory	Big Ramsey Degrees of Q	Random graph	Random hypergraph
000000	000	•0	00000

R

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

Structural Ramsey Theory	Big Ramsey Degrees of Q	Random graph	Random hypergraph
000000	000	•0	00000

Structural Ramsey Theory	Big Ramsey Degrees of Q	Random graph	Random hypergraph
000000	000	●O	00000

R

Structural Ramsey Theory	Big Ramsey Degrees of Q	Random graph	Random hypergraph
000000	000	●O	00000

Structural Ramsey Theory	Big Ramsey Degrees of Q	Random graph	Random hypergraph
000000	000	•0	00000

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = 釣�(♡

Structural Ramsey Theory	Big Ramsey Degrees of Q	Random graph	Random hypergraph
000000	000	●O	00000

Structural Ramsey Theory	Big Ramsey Degrees of Q	Random graph	Random hypergraph
000000	000	●O	00000

Colour of a subgraph = shape of meet closure in the tree

Structural Ramsey Theory	Big Ramsey Degrees of Q	Random graph	Random hypergraph
000000	000	•0	00000

Colour of a subgraph = shape of meet closure in the tree Given well order \leq (bottom-up) one can define dense order by listing the tree from left to right

Structural Ramsey Theory	Big Ramsey Degrees of Q	Random graph	Random hypergraph
000000	000	00	00000

Big Ramsey degrees of graphs are given by Devlin's trees annotated by graph edges.

Structural Ramsey Theory	Big Ramsey Degrees of Q	Random graph	Random hypergraph
000000	000	00	00000

Big Ramsey degrees of graphs are given by Devlin's trees annotated by graph edges.

Structural Ramsey Theory	Big Ramsey Degrees of Q	Random graph	Random hypergraph
000000	000	00	00000

Big Ramsey degrees of graphs are given by Devlin's trees annotated by graph edges.

Definition

Let (\leq, \preceq) be a pair of compatible orders of a set V', let V be the set of leaf vertices of $T(V', \leq, \preceq)$, and let G = (V, E) be a graph. We say that G is compatible with $T(V', \leq, \preceq)$ if, for every triple $a, b, c \in V$ of distinct vertices satisfying $c \preceq (a \land b)$, we have $\{a, c\} \in E$ if and only if $\{b, c\} \in E$.

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

Structural Ramsey Theory	Big Ramsey Degrees of Q	Random graph	Random hypergraph
000000	000	00	00000

Big Ramsey degrees of graphs are given by Devlin's trees annotated by graph edges.

Definition

Let (\leq, \preceq) be a pair of compatible orders of a set V', let V be the set of leaf vertices of $T(V', \leq, \preceq)$, and let G = (V, E) be a graph. We say that G is compatible with $T(V', \leq, \preceq)$ if, for every triple $a, b, c \in V$ of distinct vertices satisfying $c \preceq (a \land b)$, we have $\{a, c\} \in E$ if and only if $\{b, c\} \in E$.

Theorem (Sauer 2006)

Let R be the random graph.

$$\forall_{\text{finite graph } Gk \geq 1} R \longrightarrow (R)^G_{k,T(H)}.$$

Where T(G) is the Ramsey degree of a graph Ramsey degree of a graph G = ([n], E) in R.

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

Structural Ramsey Theory	Big Ramsey Degrees of Q	Random graph	Random hypergraph
000000	000	00	00000

Big Ramsey degrees of graphs are given by Devlin's trees annotated by graph edges.

Definition

Let (\leq, \preceq) be a pair of compatible orders of a set V', let V be the set of leaf vertices of $T(V', \leq, \preceq)$, and let G = (V, E) be a graph. We say that G is compatible with $T(V', \leq, \preceq)$ if, for every triple $a, b, c \in V$ of distinct vertices satisfying $c \preceq (a \land b)$, we have $\{a, c\} \in E$ if and only if $\{b, c\} \in E$.

Theorem (Sauer 2006)

Let R be the random graph.

$$\forall_{\textit{finite graph } Gk \geq 1} R \longrightarrow (R)^G_{k, T(H)}.$$

Where T(G) is the Ramsey degree of a graph Ramsey degree of a graph G = ([n], E) in R.

T(G) is the number of non-isomorphic structures $([2n - 1], E, \leq, \preceq)$ where (\leq, \preceq) is a pair of compatible linear orders of [2n - 1] and G is compatible with $T([2n - 1], \leq, \preceq)$.

Proved again by the application of Milliken tree theorem on binary tree.

Structural Ramsey Theory	Big Ramsey Degrees of Q	Random graph	Random hypergraph
000000	000	00	0000

H₃

Structural Ramsey Theory	Big Ramsey Degrees of Q	Random graph	Random hypergraph
000000	000	00	0000

H₃

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

Structural Ramsey Theory	Big Ramsey Degrees of Q	Random graph	Random hypergraph
000000	000	00	00000

▲□▶▲□▶▲□▶▲□▶ □ つへで

Structural Ramsey Theory	Big Ramsey Degrees of Q	Random graph	Random hypergraph
000000	000	00	0000

Structural Ramsey Theory	Big Ramsey Degrees of Q	Random graph	Random hypergraph
000000	000	00	00000

Colour of a subgraph = shape of meet closure in the tree Problem: Ramsey theorem for this type of tree does not hold

Structural Ramsey Theory	Big Ramsey Degrees of Q	Random graph	Random hypergraph
000000	000	00	00000

Sac

Colour of a subgraph = shape of meet closure in the tree Problem: Ramsey theorem for this type of tree does not hold Year later we observed that neighbourhood of a vertex is the Random graph!

Structural Ramsey Theory	Big Ramsey Degrees of Q	Random graph	Random hypergraph
000000	000	00	0000

Colour of a subgraph = shape of meet closure in both trees Problem: Ramsey theorem for this type of tree does not hold Year later we observed that neighbourhood of a vertex is the Random graph!

Sac

Structural Ramsey Theory	Big Ramsey Degrees of Q	Random graph	Random hypergraph
000000	000	00	00000

Big Ramsey degrees of 3-uniform hypergraphs are pairs of trees

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □豆 − のへで

Structural Ramsey Theory	Big Ramsey Degrees of Q	Random graph	Random hypergraph
000000	000	00	00000

Big Ramsey degrees of 3-uniform hypergraphs as product trees

Definition

Let (\leq, \leq) be a pair of compatible orders of a set V', let V be the set of leaf vertices of $T(V', \leq, \leq)$, and let $\mathcal{G} = (V, \mathcal{E})$ be a 3-uniform hypergraph. We say that \mathcal{G} is compatible with $T(V', \leq, \leq)$ if for every 4-tuple a, b, c, d of distinct vertices of V satisfying $d \leq c \leq (a, b)$ we have $\{a, c, d\} \in \mathcal{E}$ if and only if $\{b, c, d\} \in \mathcal{E}$.

Given a tree $T(V^0, \leq, \preceq)$ and a compatible 3-uniform hypergraph $\mathcal{G} = (V, \mathcal{E})$, we define the *neighbourhood graph* of \mathcal{G} with respect to $T(V^0, <, \prec)$ as the graph $G^1 = (V'', E^1)$ constructed as follows:

- V'' consists of all pairs (a, b) such that a ∈ V (by compatibility V ⊆ V⁰) and b ∈ V⁰, a ≺ b and there is no c ∈ V⁰, c ⊏ b such that a ≺ c ≺ b.
- {(a, b), (c, d)} ∈ E¹ for a ≤ c iff there exists e □ d such that {a, c, e} ∈ E. (This is well defined because of the compatibility of T(V⁰, ≤, ≤) and G.)

For $(a, b) \in V'$, we define its projection $\pi : V \times V^0 \to V$ by putting $\pi((a, b)) = a$.

Definition

The tuple $(V^0, V^1, \leq, \leq^0, \leq^1)$ is compatible with the 3-uniform hypergraph $\mathcal{G} = (V, \mathcal{E})$ iff:

- $V^0 \cap V^1 = \emptyset$,
- (\leq^0, \leq_{V_0}) is a compatible pair of orders of V^0 and $T(V^0, \leq^0, \leq_{V_0})$ is compatible with \mathcal{G} ,
- $(\leq^1, \perp_{\uparrow V1})$ is a compatible pair of orders of V^1 and $T(V^1, \leq^1, \perp_{V1})$ is compatible with the neighbourhood graph $G^1 = (V^1, E^1)$ of \mathcal{G} with respect to $T(V^0, \leq^0, \perp_{V0})$.
- ≤ is a well pre-order which satisfies a ≠ b, a ≤ b, b ≤ a ⇒ π(a) = π(b), and both projections are defined. Moreover, whenever π(a) and π(b) are defined, π(a) ≤ π(b) ⇒ a ≤ b. Finally, for (a, b), (c, d) ∈ V¹, we have ((a, b) ∧ (c, d) < (b ∧ d).

Structural Ramsey Theory	Big Ramsey Degrees of Q	Random graph	Random hypergraph
000000	000	00	00000

Big Ramsey degrees of 3-uniform hypergraphs are finite

Theorem (Balko, Chodounský, H., Konečný 2019+)

Let H_3 be the random 3-uniform hypergraph.

 $\forall_{\text{finite hypergraph } G,k\geq 1}H_3 \longrightarrow (H_3)^G_{k,T(G)}.$

The big Ramsey degree of a 3-uniform hypergraph $G = ([n], \mathcal{E})$ in \mathcal{H}_3 is the number of non-isomorphic structures $([2n - 1] \cup V^1, \preceq, \leq^0, \leq^1, \mathcal{E}, \mathcal{P})$ such that $([2n - 1], V^1, \preceq, \leq^0, \leq^1)$ is compatible with $\mathcal{E}, \preceq \upharpoonright_{[2n-1]}$ is a linear order and \mathcal{P} consists of all triples $\{a, b, (a, b)\}$ such that (a, b) is a vertex of the neighbourhood graph G^1 .

うして 山田 マイボット ボット シックション

Structural Ramsey Theory	Big Ramsey Degrees of Q	Random graph	Random hypergraph
000000	000	00	00000

Big Ramsey degrees of 3-uniform hypergraphs are finite

Theorem (Balko, Chodounský, H., Konečný 2019+)

Let H_3 be the random 3-uniform hypergraph.

 $\forall_{\text{finite hypergraph } G,k\geq 1}H_3 \longrightarrow (H_3)^G_{k,T(G)}.$

The big Ramsey degree of a 3-uniform hypergraph $G = ([n], \mathcal{E})$ in \mathcal{H}_3 is the number of non-isomorphic structures $([2n-1] \cup V^1, \preceq, \leq^0, \leq^1, \mathcal{E}, \mathcal{P})$ such that $([2n-1], V^1, \preceq, \leq^0, \leq^1)$ is compatible with $\mathcal{E}, \preceq \upharpoonright_{[2n-1]}$ is a linear order and \mathcal{P} consists of all triples $\{a, b, (a, b)\}$ such that (a, b) is a vertex of the neighbourhood graph G^1 .

Big Ramsey degree bounds are known for the following:

- Order of integers (Ramsey 1930)
- **2** Order of rationals (Devlin 1979)
- 3 Random graph (Sauer 2006)
- Ø Dense local order (Laflamme, Nguyen Van Thé, Sauer 2010)
- **6** Ultrametric spaces (Nguyen Van Thé 2010)
- **6** Universal K_k -free graphs for $k \ge 2$ (Dobrinen 2018+)
- Structures with unary functions only (H., Nešetřil, 2019)
- (3) Some structures with equivalence relations (Howe 2019+, H.+)

Structural Ramsey Theory	Big Ramsey Degrees of Q	Random graph	Random hypergraph
000000	000	00	00000

Big Ramsey degrees of 3-uniform hypergraphs are finite

Theorem (Balko, Chodounský, H., Konečný 2019+)

Let H_3 be the random 3-uniform hypergraph.

 $\forall_{finite hypergraph G,k\geq 1} H_3 \longrightarrow (H_3)^G_{k,T(G)}.$

The big Ramsey degree of a 3-uniform hypergraph $G = ([n], \mathcal{E})$ in \mathcal{H}_3 is the number of non-isomorphic structures $([2n-1] \cup V^1, \preceq, \leq^0, \leq^1, \mathcal{E}, \mathcal{P})$ such that $([2n-1], V^1, \preceq, \leq^0, \leq^1)$ is compatible with $\mathcal{E}, \preceq \upharpoonright_{[2n-1]}$ is a linear order and \mathcal{P} consists of all triples $\{a, b, (a, b)\}$ such that (a, b) is a vertex of the neighbourhood graph G^1 .

Big Ramsey degree bounds are known for the following:

- 1 Order of integers (Ramsey 1930)
- **2** Order of rationals (Devlin 1979)
- 3 Random graph (Sauer 2006)
- Ø Dense local order (Laflamme, Nguyen Van Thé, Sauer 2010)
- **6** Ultrametric spaces (Nguyen Van Thé 2010)
- **6** Universal K_k -free graphs for $k \ge 2$ (Dobrinen 2018+)
- Structures with unary functions only (H., Nešetřil, 2019)
- (3) Some structures with equivalence relations (Howe 2019+, H.+)

Kechris, Pestov and Todorcevic linked big Ramsey degrees to topological dynamics. This was recently developed by Andy Zucker to the notion of Big Ramsey structures.

nac

Structural Ramsey Theory	Big Ramsey Degrees of Q	Random graph	Random hypergraph
000000	000	00	00000

Thank you for the attention

- D. Devlin: Some partition theorems and ultrafilters on *ω*, PhD thesis, Dartmouth College, 1979.
- N. Sauer: Coloring subgraphs of the Rado graph, Combinatorica 26 (2) (2006), 231–253.
- C. Laflamme, L. Nguyen Van Thé, N. W. Sauer, Partition properties of the dense local order and a colored version of Milliken's theorem, Combinatorica 30(1) (2010), 83–104.
- L. Nguyen Van Thé, Big Ramsey degrees and divisibility in classes of ultrametric spaces, Canadian Mathematical Bulletin, Bulletin Canadien de Mathematiques, 51 (3) (2008),413–423.
- N. Dobrinen, The Ramsey theory of the universal homogeneous triangle-free graph, arXiv:1704.00220 (2017).
- N. Dobrinen, The Ramsey Theory of Henson graphs, arXiv:1901.06660 (2019).
- A. Zucker, Big Ramsey degrees and topological dynamics, Groups Geom. Dyn., to appear (2019).
- J.H., J. Nešetřil: All those Ramsey classes (Ramsey classes with closures and forbidden homomorphisms), To appear in Advances in Mathematics (arXiv:1606.07979), 2016, 92 pages.
- M. Balko, D. Chodounský, J.H., L. Vena, M. Konečný: Big Ramsey degrees of 3-uniform hypergraphs, EUROCOMB 2019 abstract, full paper in preparation.

<ロト < 回 > < 三 > < 三 > < 三 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <