Big Ramsey degrees of the 3-uniform hypergraph

Jan Hubička

Computer Science Institute of Charles University
Charles University
Prague

Joint work with Martin Balko, David Chodounský, Matěj Konečný, Lluis Vena

EUROCOMB 2019
Ramsey Theorem

Theorem (Finite Ramsey Theorem, 1930)

∀n,p,k ≥ 1 ∃N : N → (n)_k,1.

N → (n)_k,t : For every partition of (1,2,...,N) into k classes (colours) there exists X ⊆ {1,2,...,N}, |X| = n such that (X)_p belongs to at most t partitions (if t = 1 it is monochromatic)

For p = 2, n = 3, k = 2 put N = 6
Ramsey theorem for finite structures

Denote by \vec{H}_l the class of all finite l-uniform hypergraphs endowed with linear order on vertices.

Theorem (Nešetřil-Rödl, 1977; Abramson-Harrington, 1978)

$$\forall l \geq 2, A, B \in \vec{H}_l \exists C \in \vec{H}_l : C \rightarrow (B)^A_{2,1}.$$
Ramsey theorem for finite structures

Denote by $\overrightarrow{\mathcal{H}}_l$ the class of all finite l-uniform hypergraphs endowed with linear order on vertices.

Theorem (Nešetřil-Rödl, 1977; Abramson-Harrington, 1978)

$$\forall l \geq 2, A, B \in \overrightarrow{\mathcal{H}}_l \exists C \in \overrightarrow{\mathcal{H}}_l : C \rightarrow (B)^A_{2,1}.$$

Theorem (Ramsey Theorem, 1930)

$$\forall n, p, k \geq 1 \exists N : N \rightarrow (n)^p_{k,1}.$$
Denote by \mathcal{H}_l the class of all finite l-uniform hypergraphs endowed with linear order on vertices.

Theorem (Nešetřil-Rödl, 1977; Abramson-Harrington, 1978)

\[
\forall _{l \geq 2, A, B \in \mathcal{H}_l} \exists _{C \in \mathcal{H}_l} : C \rightarrow (B)^A_{2,1}.
\]

$\binom{B}{A}$ is the set of all induced sub-hypergraphs of B isomorphic to A.

$C \rightarrow (B)^A_{k,t}$: For every k-colouring of $\binom{C}{A}$ there exists $\tilde{B} \in \binom{C}{B}$ such that $\binom{\tilde{B}}{A}$ has at most t colours.
Ramsey theorem for finite structures

Denote by $\overrightarrow{\mathcal{H}_l}$ the class of all finite l-uniform hypergraphs endowed with linear order on vertices.

Theorem (Nešetřil-Rödl, 1977; Abramson-Harrington, 1978)

$$\forall_{l \geq 2, A, B \in \overrightarrow{\mathcal{H}_l}} \exists_{C \in \overrightarrow{\mathcal{H}_l}} : \ C \rightarrow (B)^A_{2,1}.$$

(^B_A) is the set of all induced sub-hypergraphs of B isomorphic to A.

$C \rightarrow (B)^A_{k,t}$: For every k-colouring of (^C_A) there exists $\tilde{B} \in (^C_B)$ such that $(^\tilde{B}_A)$ has at most t colours.
Ramsey theorem for finite structures

Denote by \mathcal{H}_l the class of all finite l-uniform hypergraphs endowed with linear order on vertices.

Theorem (Nešetřil-Rödl, 1977; Abramson-Harrington, 1978)

$$\forall l \geq 2, A, B \in \mathcal{H}_l \exists C \in \mathcal{H}_l : C \rightarrow (B)_2,1^A.$$

(^B_A) is the set of all induced sub-hypergraphs of B isomorphic to A.

$C \rightarrow (B)_k,t^A$: For every k-colouring of (^C_A) there exists $\tilde{B} \in (^C_B)$ such that $(\tilde{B})^A$ has at most t colours.
Order is necessary

Vertices of C can be linearly ordered and copies of A colored:

- red if middle vertex appears first.
- blue otherwise.

Every ordering of 5-cycle contains minimal and maximal element. Consequently, every 5-cycle in C contains both blue and red copies of A.
Order is necessary

Vertices of \mathbf{C} can be linearly ordered and copies of \mathbf{A} colored:

- **red** if middle vertex appear first.

- **blue** otherwise.
Order is necessary

Vertices of C can be linearly ordered and copies of A colored:
- **red** if middle vertex appear first.
- **blue** otherwise.

Every ordering of 5-cycle contains minimal and maximal element. Consequently every 5-cycle in C with contain both blue and red copy of A.
Hypergraphs have finite small Ramsey degree

Denote by \mathcal{H}_l the class of all finite l-uniform hypergraphs endowed with linear order on vertices.

Theorem (Nešetřil-Rödl, 1977; Abramson-Harrington, 1978)

$$\forall l \geq 2, k \geq 2, A, B \in \mathcal{H}_l \exists C \in \mathcal{H}_l : C \rightarrow (B)_k, t(A).$$

where $t(A)$, the small Ramsey degree of A in \mathcal{H}_l, is the number of non-isomorphic ordering of vertices of A.
Definition

A class C of finite L-structures is **Ramsey** iff $\forall_{A,B \in C} \exists_{C \in C} : C \rightarrow (B)^A_{2,1}$.
Ramsey classes

Definition

A class C of finite L-structures is **Ramsey** iff $\forall A, B \in C \exists C \in C : C \rightarrow (B)^A_{2,1}$.

Example (Linear orders — Ramsey Theorem, 1930)
The class of all finite linear orders is a Ramsey class.
Ramsey classes

Definition
A class C of finite L-structures is **Ramsey** iff $\forall_{A,B \in C} \exists_{C \in C} : C \twoheadrightarrow (B)^A_{2,1}$.

Example (Linear orders — Ramsey Theorem, 1930)
The class of all finite linear orders is a Ramsey class.

Example (Structures — Nešetřil-Rödl, 76; Abramson-Harrington, 78)
For every relational language L, $Rel(L)$ is a Ramsey class.
Ramsey classes

Definition

A class C of finite L-structures is **Ramsey** iff $\forall_{A,B \in C} \exists_{C \in C} : C \rightarrow (B)^A_{2,1}$.

Example (Linear orders — Ramsey Theorem, 1930)

The class of all finite linear orders is a Ramsey class.

Example (Structures — Nešetřil-Rödl, 76; Abramson-Harrington, 78)

For every relational language L, $\overrightarrow{Rel}(L)$ is a Ramsey class.

Example (Partial orders — Nešetřil-Rödl, 84; Paoli-Trotter-Walker, 85)

The class of all finite partial orders with linear extension is Ramsey.
Ramsey classes

Definition

A class \mathcal{C} of finite L-structures is **Ramsey** iff $\forall A, B \in \mathcal{C} \exists C \in \mathcal{C} : C \rightarrow (B)^A_{2,1}$.

Example (Linear orders — Ramsey Theorem, 1930)

The class of all finite linear orders is a Ramsey class.

Example (Structures — Nešetřil-Rödl, 76; Abramson-Harrington, 78)

For every relational language L, $\overrightarrow{Rel}(L)$ is a Ramsey class.

Example (Partial orders — Nešetřil-Rödl, 84; Paoli-Trotter-Walker, 85)

The class of all finite partial orders with linear extension is Ramsey.

Example (Models — H.-Nešetřil, 2016)

For every language L, $\overrightarrow{Mod}(L)$ is a Ramsey class.
Gower's Ramsey Theorem

Graham Rotschild Theorem: Parametric words

Milliken tree theorem: C-relations

Ramsey’s theorem: rationals
Gower's Ramsey Theorem

Graham Rotschild Theorem: Parametric words

Milliken tree theorem: C-relations

Ramsey's theorem: rationals
Equivalences
Graham Rotschild Theorem: Parametric words
Milliken tree theorem: C-relations
Gower's Ramsey Theorem
Permutations
Product arguments
Gower's Ramsey Theorem

Graham Rotschild Theorem: Parametric words → Boolean algebras

Semilattices

Milliken tree theorem: C-relations

Permutations

Interval graphs

Equivalences → Cyclic orders

Ramsey's theorem: rationals

Product arguments

Interpretations
Gower's Ramsey Theorem

Graham Rotschild Theorem: Parametric words → Boolean algebras
Semilattices

Milliken tree theorem: C-relations
Permutations
Interval graphs
Unary functions
Equivalences
Cyclic orders
Ramsey's theorem: rationals

Product arguments
Interpretations
Adding unary functions
Gower's Ramsey Theorem

Graham Rotschild Theorem: Parametric words → Boolean algebras
Semilattices

Milliken tree theorem: C-relations
Permutations
Interval graphs
Unary functions
Equivalences
Cyclic orders
Ramsey's theorem: rationals

Free amalgamation classes
→ Rel(L)

Product arguments Interpretations Adding unary functions Partite construction
Gower's Ramsey Theorem

Graham Rotschild Theorem: Parametric words

Dual structural Ramsey theorem

Boolean algebras

Semilattices

Partial Steiner systems

Milliken tree theorem: C-relations

Permutations

Interval graphs

Unary functions

Equivalences

Cyclic orders

Ramsey's theorem: rationals

Rel(L)

Free amalgamation classes

Metric spaces

Product arguments

Interpretations

Adding unary functions

Partite construction
Big Ramsey Degrees

Theorem (Infinite Ramsey Theorem)

\[\forall p, k \geq 1 \mathbb{N} \rightarrow (\mathbb{N})_{k,1}^p. \]

By \(\mathbb{N} \) we denote the order of integers (without arithmetic operations on them).
Big Ramsey Degrees

Theorem (Infinite Ramsey Theorem)

\[\forall p, k \geq 1 \mathbb{N} \rightarrow (\mathbb{N})^{p}_{k,1}. \]

By \(\mathbb{N} \) we denote the order of integers (without arithmetic operations on them)

Theorem (Devlin, 1979)

\[\forall p, k \geq 1 \mathbb{Q} \rightarrow (\mathbb{Q})^{p}_{k,T(k)}. \]

For certain finite \(T(k) \). \(T(k) \) is the big Ramsey degree of \(k \) tuple in \(\mathbb{Q} \).
Big Ramsey Degrees

Theorem (Infinite Ramsey Theorem)

\[\forall p, k \geq 1 \quad \mathbb{N} \longrightarrow (\mathbb{N})_k^p. \]

By \(\mathbb{N} \) we denote the order of integers (without arithmetic operations on them)

Theorem (Devlin, 1979)

\[\forall p, k \geq 1 \quad \mathbb{Q} \longrightarrow (\mathbb{Q})_k^{T(k)}. \]

For certain finite \(T(k) \). \(T(k) \) is the big Ramsey degree of \(k \) tuple in \(\mathbb{Q} \).

\[T(k) = \tan^{(2k-1)}(0). \]

tan\(^{(2k-1)}(0)\) is the \((2k - 1)\)st derivative of the tangent evaluated at 0.
Big Ramsey Degrees

Theorem (Infinite Ramsey Theorem)

\[\forall p, k \geq 1 \mathbb{N} \rightarrow (\mathbb{N})^p_{k,1}. \]

By \(\mathbb{N} \) we denote the order of integers (without arithmetic operations on them)

Theorem (Devlin, 1979)

\[\forall p, k \geq 1 \mathbb{Q} \rightarrow (\mathbb{Q})^p_{k, T(k)}. \]

For certain finite \(T(k) \). \(T(k) \) is the big Ramsey degree of \(k \) tuple in \(\mathbb{Q} \).

\[T(k) = \tan^{(2k-1)}(0). \]

\(\tan^{(2k-1)}(0) \) is the \((2k - 1)^{st}\) derivative of the tangent evaluated at 0.

\[T(1) = 1, \ T(2) = 2, \ T(3) = 16, \ T(4) = 272, \]

\[T(5) = 7936, \ T(6) = 353792, \ T(7) = 22368256 \]
Big Ramsey Degrees

Theorem (Infinite Ramsey Theorem)

\[\forall p,k \geq 1 \mathbb{N} \rightarrow (\mathbb{N})^p_{k,1}. \]

By \(\mathbb{N} \) we denote the order of integers (without arithmetic operations on them)

Theorem (Devlin, 1979)

\[\forall p,k \geq 1 \mathbb{Q} \rightarrow (\mathbb{Q})^p_{k,T(k)}. \]

*For certain finite \(T(k) \). \(T(k) \) is the **big Ramsey degree of \(k \) tuple in \(\mathbb{Q} \).***

\[T(k) = \tan^{(2k-1)}(0). \]

tan\(^{(2k-1)}\)(0) is the \((2k - 1)^{st}\) derivative of the tangent evaluated at 0.

\[T(1) = 1, \quad T(2) = 2, \quad T(3) = 16, \quad T(4) = 272, \]
\[T(5) = 7936, \quad T(6) = 353792, \quad T(7) = 22368256 \]

Ramseyness is an application of Milliken’s tree theorem on binary tree.
Rich colouring of \mathbb{Q}
Rich colouring of \mathbb{Q}
Rich colouring of \mathbb{Q}

$\leq x_0$ $\geq x_0$
Rich colouring of \mathbb{Q}
Rich colouring of \mathbb{Q}

$\leq x_0$ $\geq x_0$

x_0 x_1
Rich colouring of \(\mathbb{Q} \)
Rich colouring of \mathbb{Q}

- $\leq x_0$
- $\geq x_0, \leq x_1$
- $\geq x_1$

Diagram:
- x_2
- x_0
- x_1
Rich colouring of \mathbb{Q}

The image shows a diagram with three nodes labeled x_0, x_1, and x_2. The nodes are connected in a tree-like structure, with x_0 as the root, x_1 and x_2 as intermediate nodes, and the edges indicating the meet closure in the tree.
Rich colouring of \mathbb{Q}

- x_0
- x_1
- x_2
- x_3
- x_4
- x_5
- x_6

The colour of a k-tuple corresponds to the shape of the meet closure in the tree.
Rich colouring of \mathbb{Q}

Colour of k-tuple = shape of meet closure in the tree
Rich colouring of \mathbb{Q}

Colour of k-tuple = shape of meet closure in the tree
Rich colouring of \mathbb{Q}

Colour of k-tuple = shape of meet closure in the tree
Rich colouring of \mathbb{Q}

Colour of k-tuple = shape of meet closure in the tree
Big Ramsey degrees of \mathbb{Q} as trees

We describe tree using two orders.

1. \leq is the order of rationals
2. \preceq is the well-order fixed by enumeration

$T(X, \leq, \preceq)$ is the tree built by previous procedure for set (X, \leq) executed in order given by \preceq. (A binary search tree used in computer science.)
Big Ramsey degrees of \mathbb{Q} as trees

We describe tree using two orders.

1. \leq is the order of rationals
2. \preceq is the well-order fixed by enumeration

$T(X, \leq, \preceq)$ is the tree built by previous procedure for set (X, \leq) executed in order given by \preceq. (A binary search tree used in computer science.)

Definition

We say that (X, \leq) and (X, \preceq) is a compatible pair of orders of X if and only if \leq and \preceq are linear orders and every vertex of X is either leaf or has 2 sons.

$T(3) = 16$
Big Ramsey degrees of \(\mathbb{Q} \) as trees

We describe tree using two orders.

1. \(\leq \) is the order of rationals
2. \(\preceq \) is the well-order fixed by enumeration

\(T(X, \leq, \preceq) \) is the tree built by previous procedure for set \((X, \leq)\) executed in order given by \(\preceq \). (A binary search tree used in computer science.)

Definition

We say that \((X, \leq)\) and \((X, \preceq)\) is a **compatible pair of orders** of \(X \) if and only if \(\leq \) and \(\preceq \) are linear orders and every vertex of \(X \) is either leaf or has 2 sons.

\[T(3) = 16 \]

The big Ramsey degree of \(n \) tuples is precisely given by number of compatible pair of orders on an \(n \)-tuple.
Rich colouring of the countable random graph

\[
R
\]
Rich colouring of the countable random graph

R

ν_0
Rich colouring of the countable random graph

\[R \]

\[v_0 \]
Rich colouring of the countable random graph

\[R \]

\[v_0 \quad v_1 \quad v_2 \]

Colour of a subgraph = shape of meet closure in the tree

Given well order \(\preceq \) (bottom-up) one can define dense order by listing the tree from left to right.
Rich colouring of the countable random graph

Colour of a subgraph = shape of meet closure in the tree
Rich colouring of the countable random graph

Colour of a subgraph = shape of meet closure in the tree
Given well order \preceq (bottom-up) one can define dense order by listing the tree from left to right
Sauer’s theorem

Big Ramsey degrees of graphs are given by Devlin’s trees annotated by graph edges.
Sauer’s theorem

Big Ramsey degrees of graphs are given by Devlin’s trees annotated by graph edges.

\[
\begin{align*}
\text{NO:} & & \quad \text{NO:} \\
\end{align*}
\]
Sauer’s theorem

Big Ramsey degrees of graphs are given by Devlin’s trees annotated by graph edges.

Definition

Let \((\leq, \preceq)\) be a pair of compatible orders of a set \(V'\), let \(V\) be the set of leaf vertices of \(T(V', \leq, \preceq)\), and let \(G = (V, E)\) be a graph. We say that \(G\) is compatible with \(T(V', \leq, \preceq)\) if, for every triple \(a, b, c \in V\) of distinct vertices satisfying \(c \preceq (a \land b)\), we have \(\{a, c\} \in E\) if and only if \(\{b, c\} \in E\).
Sauer’s theorem

Big Ramsey degrees of graphs are given by Devlin’s trees annotated by graph edges.

Definition

Let (\leq, \preceq) be a pair of compatible orders of a set V', let V be the set of leaf vertices of $T(V', \leq, \preceq)$, and let $G = (V, E)$ be a graph. We say that G is compatible with $T(V', \leq, \preceq)$ if, for every triple $a, b, c \in V$ of distinct vertices satisfying $c \preceq (a \land b)$, we have $\{a, c\} \in E$ if and only if $\{b, c\} \in E$.

Theorem (Sauer 2006)

Let R be the random graph.

\[\forall_{\text{finite graph } G \geq 1} R \rightarrow (R)^G_{k,T(H)}. \]

Where $T(G)$ is the Ramsey degree of a graph Ramsey degree of a graph $G = ([n], E)$ in R.

\[\forall_{\text{finite graph } G \geq 1} R \rightarrow (R)^G_{k,T(H)}. \]
Sauer’s theorem

Big Ramsey degrees of graphs are given by Devlin’s trees annotated by graph edges.

Definition
Let \((\leq, \preceq)\) be a pair of compatible orders of a set \(V'\), let \(V\) be the set of leaf vertices of \(T(V', \leq, \preceq)\), and let \(G = (V, E)\) be a graph. We say that \(G\) is compatible with \(T(V', \leq, \preceq)\) if, for every triple \(a, b, c \in V\) of distinct vertices satisfying \(c \preceq (a \land b)\), we have \(\{a, c\} \in E\) if and only if \(\{b, c\} \in E\).

Theorem (Sauer 2006)

Let \(R\) be the random graph.

\[
\forall_{\text{finite graph } G, k \geq 1} \quad R \rightarrow (R)^G_{k, T(H)}.
\]

Where \(T(G)\) is the Ramsey degree of a graph Ramsey degree of a graph \(G = ([n], E)\) in \(R\).

\(T(G)\) is the number of non-isomorphic structures \(([2n - 1], E, \leq, \preceq)\) where \((\leq, \preceq)\) is a pair of compatible linear orders of \([2n - 1]\) and \(G\) is compatible with \(T([2n - 1], \leq, \preceq)\).

Proved again by the application of Milliken tree theorem on binary tree.
Rich colouring of the countable random 3-uniform hyper-graph

$$H_3$$
Rich colouring of the countable random 3-uniform hyper-graph

Colour of a subgraph = shape of meet closure in the tree

Problem: Ramsey theorem for this type of tree does not hold
Rich colouring of the countable random 3-uniform hyper-graph

Colour of a subgraph = shape of meet closure in the tree

Problem: Ramsey theorem for this type of tree does not hold

Year later we observed that neighbourhood of a vertex is the Random graph!
Rich colouring of the countable random 3-uniform hyper-graph

Colour of a subgraph = shape of meet closure in both trees

Problem: Ramsey theorem for this type of tree does not hold

Year later we observed that neighbourhood of a vertex is the Random graph!
Big Ramsey degrees of 3-uniform hypergraphs are pairs of trees
Big Ramsey degrees of 3-uniform hypergraphs as product trees

Definition

Let (\leq, \preceq) be a pair of compatible orders of a set V', let V be the set of leaf vertices of $T(V', \leq, \preceq)$, and let $G = (V, E)$ be a 3-uniform hypergraph. We say that G is compatible with $T(V', \leq, \preceq)$ if for every 4-tuple a, b, c, d of distinct vertices of V satisfying $d \preceq c \preceq (a \wedge b)$ we have $\{a, c, d\} \in E$ if and only if $\{b, c, d\} \in E$.

Given a tree $T(V^0, \leq, \preceq)$ and a compatible 3-uniform hypergraph $G = (V, E)$, we define the neighbourhood graph of G with respect to $T(V^0, \leq, \preceq)$ as the graph $G^1 = (V^1, E^1)$ constructed as follows:

- V^1 consists of all pairs (a, b) such that $a \in V$ (by compatibility $V \subseteq V^0$) and $b \in V^0$, $a \prec b$ and there is no $c \in V^0, c \sqsubset b$ such that $a \prec c \prec b$.
- $\{(a, b), (c, d)\} \in E^1$ for $a \preceq c$ if there exists $e \sqsupseteq d$ such that $\{a, c, e\} \in E$. (This is well defined because of the compatibility of $T(V^0, \leq, \preceq)$ and G.)

For $(a, b) \in V'$, we define its projection $\pi : V \times V^0 \to V$ by putting $\pi((a, b)) = a$.

Definition

The tuple $(V^0, V^1, \preceq, \leq^0, \leq^1)$ is compatible with the 3-uniform hypergraph $G = (V, E)$ iff:

- $V^0 \cap V^1 = \emptyset$,
- $(\leq^0, \preceq \upharpoonright V^0)$ is a compatible pair of orders of V^0 and $T(V^0, \leq^0, \preceq \upharpoonright V^0)$ is compatible with G,
- $(\leq^1, \preceq \upharpoonright V^1)$ is a compatible pair of orders of V^1 and $T(V^1, \leq^1, \preceq \upharpoonright V^1)$ is compatible with the neighbourhood graph $G^1 = (V^1, E^1)$ of G with respect to $T(V^0, \leq^0, \preceq \upharpoonright V^0)$,
- \preceq is a well pre-order which satisfies $a \neq b, a \preceq b, b \preceq a \Rightarrow \pi(a) = \pi(b)$, and both projections are defined. Moreover, whenever $\pi(a)$ and $\pi(b)$ are defined, $\pi(a) \preceq \pi(b) \Rightarrow a \preceq b$. Finally, for $(a, b), (c, d) \in V^1$, we have $((a, b) \wedge (c, d)) \prec (b \wedge d)$.
Structural Ramsey Theory

Big Ramsey Degrees of \mathbb{Q}

Random graph

Random hypergraph

Big Ramsey degrees of 3-uniform hypergraphs are finite

Theorem (Balko, Chodounský, H., Konečný 2019+)

Let H_3 be the random 3-uniform hypergraph.

\[\forall \text{finite hypergraph } G, k \geq 1 \quad H_3 \rightarrow (H_3)_k, T(G) \cdot \]

The big Ramsey degree of a 3-uniform hypergraph $G = ([n], \mathcal{E})$ in H_3 is the number of non-isomorphic structures $([2n - 1] \cup V^1, \preceq, \preceq^0, \preceq^1, \mathcal{E}, \mathcal{P})$ such that $([2n - 1], V^1, \preceq, \preceq^0, \preceq^1)$ is compatible with \mathcal{E}, $\preceq|_{[2n-1]}$ is a linear order and \mathcal{P} consists of all triples $\{a, b, (a, b)\}$ such that (a, b) is a vertex of the neighbourhood graph G^1.
Big Ramsey degrees of 3-uniform hypergraphs are finite

Theorem (Balko, Chodounský, H., Konečný 2019+)

Let H_3 be the random 3-uniform hypergraph.

\[\forall \text{ finite hypergraph } G, k \geq 1 \quad H_3 \rightarrow (H_3)^G_{k, T(G)}. \]

The **big Ramsey degree** of a 3-uniform hypergraph $G = ([n], E)$ in H_3 is the number of non-isomorphic structures $([2n-1] \cup V^1, \leq, \leq^0, \leq^1, E, P)$ such that $([2n-1], V^1, \leq, \leq^0, \leq^1)$ is compatible with E, $\leq|_{[2n-1]}$ is a linear order and P consists of all triples $\{a, b, (a, b)\}$ such that (a, b) is a vertex of the neighbourhood graph G^1.

Big Ramsey degree bounds are known for the following:

1. **Order of integers** (Ramsey 1930)
2. **Order of rationals** (Devlin 1979)
3. **Random graph** (Sauer 2006)
4. **Dense local order** (Laflamme, Nguyen Van Thé, Sauer 2010)
5. **Ultrametric spaces** (Nguyen Van Thé 2010)
6. **Universal K_k-free graphs for $k \geq 2$** (Dobrinen 2018+)
7. **Structures with unary functions only** (H., Nešetřil, 2019)
8. **Some structures with equivalence relations** (Howe 2019+, H.+)
Big Ramsey degrees of 3-uniform hypergraphs are finite

Theorem (Balko, Chodounský, H., Konečný 2019+)

Let H_3 be the random 3-uniform hypergraph.

\[\forall \text{finite hypergraph } G, k \geq 1 \quad H_3 \rightarrow (H_3)^G_{k, T(G)}. \]

The big Ramsey degree of a 3-uniform hypergraph $G = ([n], \mathcal{E})$ in H_3 is the number of non-isomorphic structures $([2n - 1] \cup V^1, \preceq, \preceq^0, \preceq^1, \mathcal{E}, \mathcal{P})$ such that $([2n - 1], V^1, \preceq, \preceq^0, \preceq^1)$ is compatible with \mathcal{E}, $\preceq | [2n-1]$ is a linear order and \mathcal{P} consists of all triples $\{a, b, (a, b)\}$ such that (a, b) is a vertex of the neighbourhood graph G^1.

Big Ramsey degree bounds are known for the following:

1. Order of integers (Ramsey 1930)
2. Order of rationals (Devlin 1979)
3. Random graph (Sauer 2006)
4. Dense local order (Laflamme, Nguyen Van Thé, Sauer 2010)
5. Ultrametric spaces (Nguyen Van Thé 2010)
6. Universal K_k-free graphs for $k \geq 2$ (Dobrinen 2018+)
7. Structures with unary functions only (H., Nešetřil, 2019)
8. Some structures with equivalence relations (Howe 2019+, H. +)

Kechris, Pestov and Todorcevic linked big Ramsey degrees to topological dynamics. This was recently developed by Andy Zucker to the notion of Big Ramsey structures.
Thank you for the attention

