
Higher order dualization of the Ramsey theorem and big Ramsey degrees

Jan Hubička

Department of Applied Mathematics
Charles University

Prague

Joint work with Martin Balko, Natasha Dobrinen, David Chodounský, Matěj Konečný, Jaroslav Nešetřil, Stevo Todorcevic,
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Big Ramsey degrees using parameter spaces

In Matěj’s talk we learnt how to apply parameter spaces to give upper bound on big Ramsey degrees:

Example

• Free amalgamation classes in binary language with forbidden triangles.
• Metric spaces
• Ultrametric spaces
• Partial orders
• . . .

(In general method works well for strong amalgamation classes with triangle constraints)

Today talk

Can we generalize the method to the homogeneous universal K4-free graph R4?

Big Ramsey degrees are known to be finite due to Dobrinen (2019+) with simplified proof by Zucker (2020+).
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Gluing enumerations together

Given structure H we say that structure H1 is an enumeration of H iff it is isomorphic to H and its domain is |H|.

Definition (Structure GH)

Let H be a countably-infinite homogeneous structure. Then we denote by GH the structure created from the
disjoint union of all enumerations of H by identifying vertex i of H1 with vertex i of H2 if and only if it holds that for
every j < i the structure induced by H1 on {i, j} is same as the structure induced by H2 on {i, j}.

Observation
This construction applied on R4 produces K4
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Gluing enumerations together

Given structure H we say that structure H1 is an enumeration of H iff it is isomorphic to H and its domain is |H|.

Definition (Structure Gc
H)

Let c > 1 and H be a countably-infinite homogeneous structure. Then we denote by Gc
H the structure created

from the disjoint union of all enumerations of H by identifying vertex i of H1 with vertex i of H2 if and only if for
every ` < c and every i0 < · · · < i`−1 < i the structure induced by H1 on {i0, . . . , i`, i} is same as the structure
induced y H2 on {i0, . . . , i`, i}.

Observation
Vertices of G2

H can be described by words in alphabet consisting of enumerated substructures of H with 2
vertices.
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Ramsey theory on Qberts

Observation
We can apply parameter words on our vertices if we allow some entries to be undefined (gaps)

λ0λ1λ0λ2λ2( ) =

We can consider extension G
3
H of G3

H where vertices are permitted to have gaps ∗. Then substitution is an

embedding G
3
H → G

3
H.

Bad news
The family of embeddings G

3
H → G

3
H corresponding to substitutions is not rich enough to make envelopes finite.
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Category theory and dual Ramsey

N −→ (n)kr

(N,<)

(n,<)

(k ,<)

Ordered embeddings r → n ⇐⇒ monotonous surjections n + 1→ r + 1

Relaxation
It is possible to relax monotonous surjection to rigid surjections.
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Relaxation of order 2

λ0

λ1

λ1

λ2

λ2
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λ2,0
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λ2,0

λ2,1λ2,1

∗

∗

λ1,0

0 7→ 1, 1 7→ 3

1 Choose ordered embedding and interpret it as monotonous surjection.

2 Turn monotonous surjection on diagonal to rigid surjection: preserve first occurrences and adjust other
entries.

3 Keep columns corresponding to first occurrecnes as given by the diagonal. Relax other entries while
preserving fist occurrences.
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Higher order dual Ramsey theorem: Index sets

Index sets
Given a positive integer o and n ∈ ω + 1, we denote by Io

n the set of all vectors (i0, i1, . . . , i`−1) with 0 < ` ≤ o
such that 0 ≤ i0, i` < n, and ij + 2 ≤ ij+1 for every 0 ≤ j < `− 1. The index set of order o is the set Io

ω which we
also denote by Io .

Example

I1 = {(0), (1), (2), . . . }. I2 can be visualized as follows:

...
(5)

(4)
...

(3) (3, 5) · · ·

(2) (2, 4) (2, 5) · · ·

(1) (1, 3) (1, 4) (1, 5) · · ·

(0) (0, 2) (0, 3) (0, 4) (0, 5) · · ·





Higher order dual Ramsey theorem: Words

Given a set R not containing ∗, integers o ≥ 2 and i ≥ 0, and a function W : Io → R ∪ {∗}, the i th slice of W is a
function W [i] : Io−1 → R ∪ {∗} defined by setting, for every~j ∈ Io−1,

W [i](~j) =

{
W (~jai) if~jai ∈ Io ,
∗ otherwise.

Definition (Word)

Given a finite alphabet Σ not containing ∗ and a positive integer o, we define words of order o inductively in the
following way. A function W : Io → Σ ∪ {∗} is a word of order o in the alphabet Σ if W satisfies the following
conditions:

1 For all integers i and j such that j ≥ i ≥ 0 and W (i) = ∗, we have W (j) = ∗.
2 If o > 1, then the following two conditions are satisfied for every i ≥ 2:

1 If W (i) = ∗, then W (0, i) = ∗, and
2 the i th slice W [i] is a word of order o − 1 in the alphabet Σ.



Higher order dual Ramsey theorem: Parameter words

Example

E6 =



λ5
λ4

λ3 λ(3,5)

λ2 λ(2,4) λ(2,5)

λ1 λ(1,3) λ(1,4) λ(1,5)

λ0 λ(0,2) λ(0,3) λ(0,4) λ(0,5)



W =



λ1
λ2

λ2 1
λ1 ∗ 0

1 1 ∗ λ(0,2)

λ0 ∗ λ(0,2) ∗ 1
0 1 0 0 ∗ λ(0,2)

1 ∗ 0 1 1 λ(0,2) 0
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Higher order dual Ramsey theorem: Parameter words

Definition (Parameter word of order one)

Given an alphabet Σ and k ∈ ω + 1, a k -parameter word of order 1 in the alphabet Σ is a word W of order 1 in
the alphabet Σ ∪ {λi : 0 ≤ i < k} such that, for every 0 ≤ i ≤ k , the first occurrence |W |λi of λi is finite and, if
i > 0, we also have |W |λi−1 < |W |λi .

The diagonal subword W D of W is a function W D : Io−1 → Σ ∪ {∗} with entries W D(~j) = W~j for every~j ∈ Io−1.
Given c ∈ Σ, the first occurrence of c in W , denoted by |W |c , is the minimum integer i ≥ 0 satisfying Wi = c or
ω if there is no such i . We abbreviate |W |∗ by |W | and call it the length of the word W .

Definition (Parameter word of order o ≥ 2)

Given an alphabet Σ, an integer o ≥ 2, and k ∈ ω + 1, a k -parameter word of order o in the alphabet Σ is a word
W of order o in the alphabet Σ ∪ {λ~i :~i ∈ Io

k } satisfying the following conditions:

1 W D is a k -parameter word of order o − 1 in the alphabet Σ and

2 W
[
|W |λ0

]
~j = ∗ for every~j ∈ Io−1

|W |λ0
−1.

3 For all integers p, 1 ≤ p < k , for i = |W |λp , and every~j ∈ Io−1
i−1 we have

W [i]~j =


λ~qap if~j ∈ Io−1

|W |λp−1
and W~j = λ~q for some ~q ∈ Io−1

p−1 ,

W~j if~j ∈ Io−1
|W |λp−1

and W~j ∈ Σ,

∗ otherwise.

4 If W~j = λ~p for some~j, ~p ∈ Io , then |~p| = |~j| and~j /∈ Io
|W |λmax~p

.

This precisely describes the words that can be reached by the relaxation process repeated o times.



Higher order dual Ramsey theorem: Substitution

Example

U =

(
λ0

0

)
W =



λ1
λ2

λ2 1
λ1 ∗ 0

1 1 ∗ λ(0,2)

λ0 ∗ λ(0,2) ∗ 1
0 1 0 0 ∗ λ(0,2)

1 ∗ 0 1 1 λ(0,2) 0



W (U) =



λ0
∗

∗ 1
λ0 ∗ 0

1 1 ∗ ∗
0 ∗ ∗ ∗ 1

0 1 0 0 ∗ ∗
1 ∗ 0 1 1 ∗ 1
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Higher order dual Ramsey theorem: Substitution

Definition (Pruning)

Given a finite alphabet Σ, a positive integer o, and a function W : Io → Σ ∪ {∗}, we let p(W ) : Io → Σ ∪ {∗} be
the function such that:

1 For every i ≥ 0,

p(W )i =

{
W (i) if i ≤ |W |
∗ otherwise.

2 For every i ≥ 0 and~j ∈ Io−1
i−1

p(W [i])~j =

{
p(W [i]~j ) if 1 < i < |W |, i 6= |W |λ0

∗ otherwise

Definition (Substitution)

Let Σ be a finite alphabet not containing ∗, o be a positive integer, k ∈ ω + 1, and let W be a k -parameter word
of order o in the alphabet Σ. Consider a parameter word U of order o and of length at most k in the alphabet Σ.
The substitution of U to W produces a parameter word W (U), which is defined as p(W ′) where
W ′ : Io → Σ ∪ {∗} is a function defined by setting

W ′~i =


W~i if W~i ∈ Σ,
U~p if W~i = λ~p for some ~p ∈ Io

k .
∗ otherwise.

for every~i ∈ Io .



Higher order dual Ramsey theorem: Statement

1 For k ≤ n ∈ ω + 1, let
[Σ]o

(n
k

)
be the set of all k -parameter words of order o and length n in an alphabet Σ.

2 For a finite k we also write
[Σ]∗o

(∞
k

)
=
⋃
i<ω

[Σ]o

( i
k

)
.

3 Given a k -parameter word W ∈ [Σ]o
(n

k

)
and a set S ⊆

⋃
`≤k [Σ]∗o

(k
`

)
, we put

W (S) = {W (U) : U ∈ S}

.

Theorem (Balko, Chodounský, H., Konečný, Vena, 2020+)

Let Σ be a finite alphabet, o be a positive integer, and k ∈ ω. If the set [Σ]∗o
(ω

k

)
is coloured by finitely many

colours, then there exists W ∈ [Σ]o
(ω
ω

)
such that W

(
[Σ]∗o

(ω
k

))
is monochromatic.

For o = 1 this is known as Voight (or Carlson-Simpson) Lemma.
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Let Σ be a finite alphabet, o be a positive integer, and k ∈ ω. If the set [Σ]∗o
(ω

k

)
is coloured by finitely many

colours, then there exists W ∈ [Σ]o
(ω
ω

)
such that W

(
[Σ]∗o

(ω
k

))
is monochromatic.

For o = 1 this is known as Voight (or Carlson-Simpson) Lemma.



Higher order dual Ramsey theorem: Statement

1 For k ≤ n ∈ ω + 1, let
[Σ]o

(n
k

)
be the set of all k -parameter words of order o and length n in an alphabet Σ.

2 For a finite k we also write
[Σ]∗o

(∞
k

)
=
⋃
i<ω

[Σ]o

( i
k

)
.

3 Given a k -parameter word W ∈ [Σ]o
(n

k

)
and a set S ⊆

⋃
`≤k [Σ]∗o

(k
`

)
, we put

W (S) = {W (U) : U ∈ S}

.

Theorem (Balko, Chodounský, H., Konečný, Vena, 2020+)
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Corollaries

Theorem (Zucker 2020)

Fraïssé limits of free amalgamation classes in finite binary language with finitely many constraints have finite big
Ramsey degrees.

Theorem (Balko, Chodounský, H., Nešetřil, Vena, 2019+; Coulson, Dobrinen, Patel 2020+)

Fraïssé limits of unrestricted amalgamation classes in finite relational language.

Theorem (Balko, Chodounský, H., Konečný, Nešetřil, Vena, 2020+)

Metrically homogeneous graphs of finite diameter from Cherlin’s catalogue have finite big Ramsey degrees.

Big Ramsey degrees for some structures in non-binary languages.
It is possible to define Ramsey space similar to one given by Carlson-Simpson. This is joint work in progress with
Stevo Todrocevic.
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Proof outline for free amalgamation classes in binary language

Let H be a binary free amalgamation structure, c > 1. Denote by K the age of H. For simplicity assume that all
substructures of size 1 are isomorphic. Let Σ be the class of all enumerated structures in K with at most c
vertices.

Definition (Structure G
c
H)

1 Vertex set G
c
H consists of all words U ∈ [Σ]∗c−1

(ω
0

)
such that:

1 |U| > 0.
2 For every~i ∈ Ic−1 such that Ui 6= ∗ it holds that |Ui | = |~i| − 1.

2 For R ∈ L of arity 2 and vertices U0,U1 ∈ GHc we put (U0,U1) ∈ R
GHc

if the following is satisfied:

1 Presence: Either |U1| < |U0| and (0, 1) ∈ R
U0
|U1|

or |U0| < |U1| and (1, 0) ∈ R
U1
|U0|

.

2 Diagonal projection: Denote by U the shorter word in {U0, U1} and by U′ the longer. For every~i ∈ Ic−2
|U|−1 it holds that

(U~i = ∗) =⇒ (U′[|U|]~i = ∗)

and if both are not ∗ then
1 U~i is created from structure U′[|U|]~i by removing maximal vertex and
2 U′[|U|]~i extends U′~i by next-to-last vertex.

3 Slice consistency: For every~i ∈ Ic−2
|U|−1 it holds that

(U′[|U|]~i 6= ∗) =⇒ (U′~i 6= ∗)

and if both are not ∗ then mapping 0 7→ |~i|, 1 7→ |~i| + 1 is an embedding of U′|U| → U′[|U|]~i .
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