Locally injective homomorphisms are universal on connected graphs

Jan Hubička

Charles University Prague

Joint work with Jirka Fiala and Yangjing Long

2nd Workshop on Homogeneous Structures 2012

イロト 不得 トイヨト イヨト

-

Let $\ensuremath{\mathcal{C}}$ be class of relational structures.

Definition

Relational structure U is (embedding-)universal for class C iff $U \in C$ and every structure $A \in C$ is induced substructure of U.

・ロト ・ 国 ト ・ 国 ト ・ 国 ト

-

Sac

Let $\ensuremath{\mathcal{C}}$ be class of relational structures.

Definition

Relational structure U is (embedding-)universal for class C iff $U \in C$ and every structure $A \in C$ is induced substructure of U.

Example:

- C is class of countable graphs
- The homogeneous and universal graph can be constructed by Fraïssé limit.

・ロト ・ 国 ト ・ 国 ト ・ 国 ト

-

San

Let $\ensuremath{\mathcal{C}}$ be class of relational structures.

Definition

Relational structure U is (embedding-)universal for class C iff $U \in C$ and every structure $A \in C$ is induced substructure of U.

Example:

- C is class of countable graphs
- The homogeneous and universal graph can be constructed by Fraïssé limit.
- Explicit description by Rado:
 - Vertices: all finite 0–1 sequences $(a_1, a_2, \ldots, a_t), t \in \mathbb{N}$
 - Edges: $\{(a_1, a_2, ..., a_t), (b_1, b_2, ..., b_s)\}$ form edge iff

$$b_a = 1$$
 where $a = \sum_{i=1}^t a_i 2^i$

・ロト ・ 国 ト ・ 国 ト ・ 国 ト

-

Let $\ensuremath{\mathcal{C}}$ be class of relational structures.

Definition

Relational structure U is (embedding-)universal for class C iff $U \in C$ and every structure $A \in C$ is induced substructure of U.

Example:

- C is class of countable graphs
- The homogeneous and universal graph can be constructed by Fraïssé limit.
- Explicit description by Rado:
 - Vertices: all finite 0–1 sequences $(a_1, a_2, \ldots, a_t), t \in \mathbb{N}$
 - Edges: { $(a_1, a_2, \dots, a_t), (b_1, b_2, \dots, b_s)$ } form edge iff $b_a = 1$ where $a = \sum_{i=1}^t a_i 2^i$.
- Number of well established structures imply homogeneous and universal graph.

DQC

Universal partial order

- $\bullet \ \mathcal{C}$ is class of countable partial orders
- The homogeneous and universal partial order can be constructed by Fraïssé limit.

・ロト ・ 同ト ・ ヨト ・ ヨト

-

Sac

Universal partial order

- $\bullet \ \mathcal{C}$ is class of countable partial orders
- The homogeneous and universal partial order can be constructed by Fraïssé limit.
- Explicit description exists (H., Nešetřil, 2003) but it is not satisfactory.

・ロト ・ 国 ト ・ 国 ト ・ 国 ト

-

Universal partial order

- $\bullet \ \mathcal{C}$ is class of countable partial orders
- The homogeneous and universal partial order can be constructed by Fraïssé limit.
- Explicit description exists (H., Nešetřil, 2003) but it is not satisfactory.
- Number of well established structures imply universal (but not homogeneous) partial orders.

・ロト ・ 国 ト ・ 国 ト ・ 国 ト

-

San

Universal partial order

- $\bullet \ \mathcal{C}$ is class of countable partial orders
- The homogeneous and universal partial order can be constructed by Fraïssé limit.
- Explicit description exists (H., Nešetřil, 2003) but it is not satisfactory.
- Number of well established structures imply universal (but not homogeneous) partial orders.

In this talk we a give new one.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

-

San

The homomorphism order

- Denote by \mathcal{G} the class of all finite graphs.
- (Graph) homomorphism $f : G \to H$ is an edge preserving mapping: $\{u, v\} \in E_G \implies \{f(u), f(v)\} \in E_H$.

イロト イボト イヨト イヨト 二日

DQC

The homomorphism order

- Denote by \mathcal{G} the class of all finite graphs.
- (Graph) homomorphism $f : G \to H$ is an edge preserving mapping: $\{u, v\} \in E_G \implies \{f(u), f(v)\} \in E_H$.
- For graphs G and H, we denote the existence of homomorphism f : G → H by G ≤ H.
- Identity is homomorphism, homomorphisms compose
 ⇒ (G, ≤) is a quasi-order.

・ロト ・ 同ト ・ ヨト ・ ヨト

The homomorphism order

- Denote by \mathcal{G} the class of all finite graphs.
- (Graph) homomorphism $f : G \to H$ is an edge preserving mapping: $\{u, v\} \in E_G \implies \{f(u), f(v)\} \in E_H$.
- For graphs G and H, we denote the existence of homomorphism f : G → H by G ≤ H.
- Identity is homomorphism, homomorphisms compose
 ⇒ (G, ≤) is a quasi-order.
- Graphs *G* and *H* are **hom-equivalent**, $G \simeq H$, iff $G \leq H \leq G$.
- The core of graph is the minimal graph (in number of vertices) in equivalency class of \simeq
- The homomorphism order is partial order induced by ≤ on the class of all isomorphism types of cores.

Universality of the homomorphism order

- Homomorphisms on *G* are universal in categorical sense (Pultr, Trnková, 1980)
- Homomorphism order remain universal on the class of oriented paths (H. Nešetřil, 2003)

・ロト ・ 同ト ・ ヨト ・ ヨト

Universality of the homomorphism order

- Homomorphisms on *G* are universal in categorical sense (Pultr, Trnková, 1980)
- Homomorphism order remain universal on the class of oriented paths (H. Nešetřil, 2003)

 \implies homomorphism order is universal on following classes

- the class of all finite planar cubic graphs
- the class of all connected series parallel graphs of girth $\geq l$
- ...
- Homomorphism order is universal on partial orders and lattices (Lehtonen, 2008)

・ロト ・ 同ト ・ ヨト ・ ヨト

San

Universality of the homomorphism order

- Homomorphisms on *G* are universal in categorical sense (Pultr, Trnková, 1980)
- Homomorphism order remain universal on the class of oriented paths (H. Nešetřil, 2003)

 \implies homomorphism order is universal on following classes

- the class of all finite planar cubic graphs
- the class of all connected series parallel graphs of girth $\geq l$
- ...
- Homomorphism order is universal on partial orders and lattices (Lehtonen, 2008)
- Dichotomy results on classes of graphs specified by chromatic and achromatic numbers (Nešetřil, Nigussie, 2007)

Sac

The arrow (indicator) construction

Main tool: start with oriented paths and transform it to new class by arrow construction

◆□ ▶ ◆□ ▶ ◆臣 ▶ ◆臣 ▶ ○

э

Sac

Locally injective homomorphism order

• Denote by \mathcal{G}_c the class of all finite connected graphs.

イロト 不得 トイヨト イヨト 二日

Dac

- Denote by \mathcal{G}_c the class of all finite connected graphs.
- Denote by $N_G(u)$ the **neighborhood of vertex** u in G.
- A graph homomorphism *f* : *G* → *H* is locally injective. if its restriction to any *N_G(u)* and *N_H(f(u))* is injective.

・ロト ・ 国 ト ・ 国 ト ・ 国 ト

-

- Denote by \mathcal{G}_c the class of all finite connected graphs.
- Denote by $N_G(u)$ the **neighborhood of vertex** u in G.
- A graph homomorphism *f* : *G* → *H* is locally injective. if its restriction to any *N_G(u)* and *N_H(f(u))* is injective.
- For graphs *G* and *H*, we denote the existence of locally injective homomorphism *f* : *G* → *H* by *G* ≤_{*i*} *H*.
- Identity is locally injective, I. i. homomorphisms compose $\implies (\leq_i, \mathcal{G}_c)$ is a quasi-order.

・ロト ・ 同ト ・ ヨト ・ ヨト

Sar

- Denote by \mathcal{G}_c the class of all finite connected graphs.
- Denote by $N_G(u)$ the **neighborhood of vertex** u in G.
- A graph homomorphism *f* : *G* → *H* is locally injective. if its restriction to any *N_G(u)* and *N_H(f(u))* is injective.
- For graphs *G* and *H*, we denote the existence of locally injective homomorphism *f* : *G* → *H* by *G* ≤_{*i*} *H*.
- Identity is locally injective, I. i. homomorphisms compose $\implies (\leq_i, \mathcal{G}_c)$ is a quasi-order.
- Nešetřil 1971: Every locally injective homomorphism $f: G \rightarrow G$ is an automorphism of G

・ロト ・ 同ト ・ ヨト ・ ヨト

Sar

- Denote by \mathcal{G}_c the class of all finite connected graphs.
- Denote by $N_G(u)$ the **neighborhood of vertex** u in G.
- A graph homomorphism *f* : *G* → *H* is locally injective. if its restriction to any *N_G(u)* and *N_H(f(u))* is injective.
- For graphs *G* and *H*, we denote the existence of locally injective homomorphism *f* : *G* → *H* by *G* ≤_{*i*} *H*.
- Identity is locally injective, I. i. homomorphisms compose $\implies (\leq_i, \mathcal{G}_c)$ is a quasi-order.
- Nešetřil 1971: Every locally injective homomorphism
 - $f: G \rightarrow G$ is an automorphism of G

 \implies The locally injective homomorphism order is partial order induced by \leq_i on the class of all isomorphism types of connected graphs.

・ロト ・ 国 ト ・ 国 ト ・ 国 ト

3

Sac

- Jiří Fiala, Daniël Paulusma, and Jan Arne Telle. Matrix and graph orders derived from locally constrained graph homomorphisms. In J. Jedrzejowicz and A. Szepietowski, editors, *MFCS*, volume 3618 of *Lecture Notes in Computer Science*, pages 340–351. Springer, 2005.
- Jiří Fiala and Jan Kratochvíl. Locally constrained graph homomorphisms — structure, complexity, and applications. Computer Science Review, 2(2):97–111, 2008.

・ロト ・ 同ト ・ ヨト ・ ヨト

- Jiří Fiala, Daniël Paulusma, and Jan Arne Telle. Matrix and graph orders derived from locally constrained graph homomorphisms. In J. Jedrzejowicz and A. Szepietowski, editors, *MFCS*, volume 3618 of *Lecture Notes in Computer Science*, pages 340–351. Springer, 2005.
- Jiří Fiala and Jan Kratochvíl. Locally constrained graph homomorphisms — structure, complexity, and applications. Computer Science Review, 2(2):97–111, 2008.
- Pavol Hell and Jaroslav Nešetřil. Graphs and homomorphisms. Oxford lecture series in mathematics and its applications. Oxford University Press, 2004

・ロト ・ 国 ト ・ 国 ト ・ 国 ト

-

Locally injective homomorphisms are different

Nontrivial homomorphisms of oriented paths involve folding.

・ロト ・ 同ト ・ ヨト ・ ヨト

DQC

Locally injective homomorphisms are different

Nontrivial homomorphisms of oriented paths involve folding.

Locally injective homomorphisms never fold

 \implies need for "folding" gadget *G* to replace vertices.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Locally injective homomorphisms are different

Nontrivial homomorphisms of oriented paths involve folding.

Locally injective homomorphisms never fold

 \implies need for "folding" gadget *G* to replace vertices.

Nešetřil 1971: Every locally injective homomorphism $f: G \rightarrow G$ is an automorphism of G.

Jan Hubička Locally injective homomorphisms are universal

Locally injective homomorphisms are different

Nontrivial homomorphisms of oriented paths involve folding.

Locally injective homomorphisms never fold

 \implies need for "folding" gadget *G* to replace vertices.

Nešetřil 1971: Every locally injective homomorphism $f: G \to G$ is an automorphism of G. \implies no "folding" gadget.

Jan Hubička

Locally injective homomorphisms are universal

Revisiting argument for universality

- \mathbb{P} is any countably infinite set.
- $P_f(\mathbb{P})$ is a class of finite subsets of \mathbb{P} .
- Well known: Every finite partial order (A, ≤_A) can be represented as a suborder of (P_f(ℙ), ⊆).
 - Assign $a \in A$ unique $p(a) \in \mathbb{P}$.
 - Represent $a \in A$ by $\{p(b) | b \in A, b \leq_A a\}$.

・ロト ・ 同ト ・ ヨト ・ ヨト

Revisiting argument for universality

- \mathbb{P} is any countably infinite set.
- $P_f(\mathbb{P})$ is a class of finite subsets of \mathbb{P} .
- Well known: Every finite partial order (A, ≤_A) can be represented as a suborder of (P_f(ℙ), ⊆).
 - Assign $a \in A$ unique $p(a) \in \mathbb{P}$.
 - Represent $a \in A$ by $\{p(b) | b \in A, b \leq_A a\}$.
- Partial order is **past-finite** if every down-set is finite.

Lemma

Every past-finite partial order can be represented as a suborder of $(P_f(\mathbb{P}), \subseteq)$.

$(P_f(\mathbb{P}),\subseteq)$ is past-finite-universal.

ヘロン 人間 とくほ とくほう

Cycles are past-finite-universal

- P is now set of all odd primes.
- $A, B \in P_f(\mathbb{P})$ we have $A \subseteq B$ iff

$$\prod_{b \in B} b \text{ is divisible by } \prod_{a \in A} a$$

Lemma

The divisibility order is past-finite-universal.

Jan Hubička Locally injective homomorphisms are universal

・ロト ・ 同ト ・ ヨト ・ ヨト

э

Sac

Cycles are past-finite-universal

- P is now set of all odd primes.
- $A, B \in P_f(\mathbb{P})$ we have $A \subseteq B$ iff

$$\prod_{b\in B} b \text{ is divisible by } \prod_{a\in A} a$$

Lemma

The divisibility order is past-finite-universal.

- C_l is oriented cycle of length l.
- $C_l \leq_i C_k$ iff *l* is divisible by *k*.

イロト 不得 トイヨト イヨト

Э

Cycles are past-finite-universal

- \mathbb{P} is now set of all odd primes.
- $A, B \in P_f(\mathbb{P})$ we have $A \subseteq B$ iff

$$\prod_{b\in B} b \text{ is divisible by } \prod_{a\in A} a$$

Lemma

The divisibility order is past-finite-universal.

- C₁ is oriented cycle of length *I*.
- $C_l \leq_i C_k$ iff *l* is divisible by *k*.

Partial order is future-finite if every up-set is finite.

Lemma

Locally injective homomorphism order on the class of all cycles is future-finite-universal.

200

For partial order (F, \leq_F) we denote by $(P_f(F), \leq_F^{\text{dom}})$ the **subset partial order** where

 $A \leq_F^{\text{dom}} B \iff$ for every $a \in A$ there exists $b \in B$ such that $a \leq_F b$.

Lemma

If (F, \leq_F) is future-finite-universal then $(P_f(F), \leq_F^{dom})$ is universal.

イロト イロト イヨト イヨト 二日

DQC

 $A \leq_P^{\text{dom}} B \iff$ for every $a \in A$ there exists $b \in B$ such that $a \leq_P b$.

Lemma

If (F, \leq_F) is future-finite-univ. then $(P_f(F), \leq_F^{\text{dom}})$ is universal.

 $A \leq_P^{\text{dom}} B \iff$ for every $a \in A$ there exists $b \in B$ such that $a \leq_P b$.

Lemma

If (F, \leq_F) is future-finite-univ. then $(P_f(F), \leq_F^{dom})$ is universal.

Proof.

- Partial order (P, \leq_P) with $P \subseteq \mathbb{N}$
- Forwarding p.o. (P, ≤_f) and backwarding p.o. (P, ≤_b)

 $A \leq_P^{\text{dom}} B \iff$ for every $a \in A$ there exists $b \in B$ such that $a \leq_P b$.

Lemma

If (F, \leq_F) is future-finite-univ. then $(P_f(F), \leq_F^{dom})$ is universal.

Proof.

- Partial order (P, \leq_P) with $P \subseteq \mathbb{N}$
- Forwarding p.o. (P, ≤_f) and backwarding p.o. (P, ≤_b)
- Embedding $F : (P, \leq_b) \to (F, \leq_F)$

 $A \leq_P^{\text{dom}} B \iff$ for every $a \in A$ there exists $b \in B$ such that $a \leq_P b$.

Lemma

If (F, \leq_F) is future-finite-univ. then $(P_f(F), \leq_F^{dom})$ is universal.

Proof.

- Partial order (P, \leq_P) with $P \subseteq \mathbb{N}$
- Forwarding p.o. (*P*, ≤_f) and backwarding p.o. (*P*, ≤_b)
- Embedding $F : (P, \leq_b) \to (F, \leq_F)$
- Embedding $E : (P, \leq_P) \rightarrow (P_f(F), \leq_F^{\text{dom}})$ For $p \in P$ put $E(p) = \{F(p) | p \in P, p \leq_f p\}$.

Putting things together

■ Embedding $F_1 : (P, \leq_b) \to (P_f(\mathbb{P}), \supseteq)$ $F_1(3) = \{3\}, F_1(5) = \{5\}, F_1(7) = \{3, 5, 7\}, F_1(11) = \{5, 11\}$

Jan Hubička Locally injective homomorphisms are universal

イロト 不得 トイヨト イヨト

э

Sac

Putting things together

- Embedding $F_1 : (P, \leq_b) \to (P_f(\mathbb{P}), \supseteq)$ $F_1(3) = \{3\}, F_1(5) = \{5\}, F_1(7) = \{3, 5, 7\}, F_1(11) = \{5, 11\}$
- ² Embedding F_2 from $(P, ≤_b)$ to the divisibility p.o. $F_2(3) = 3, F_2(5) = 5, F_2(7) = 105, F_2(11) = 55$

イロト 不得 トイヨト イヨト

-

SAR

Putting things together

- Embedding $F_1 : (P, \leq_b) \to (P_f(\mathbb{P}), \supseteq)$ $F_1(3) = \{3\}, F_1(5) = \{5\}, F_1(7) = \{3, 5, 7\}, F_1(11) = \{5, 11\}$
- ² Embedding F_2 from $(P, ≤_b)$ to the divisibility p.o. $F_2(3) = 3, F_2(5) = 5, F_2(7) = 105, F_2(11) = 55$
- Solution E from (P, \leq_P) to the subset order of the div. p.o. $E(3) = \{3\}, E(5) = \{5,3\}, E(7) = \{105\}, R(11) = \{105, 55\}$

・ロト ・ 国 ト ・ 国 ト ・ 国 ト

1

Putting things together

- Embedding $F_1 : (P, \leq_b) \to (P_f(\mathbb{P}), \supseteq)$ $F_1(3) = \{3\}, F_1(5) = \{5\}, F_1(7) = \{3, 5, 7\}, F_1(11) = \{5, 11\}$
- ² Embedding F_2 from $(P, ≤_b)$ to the divisibility p.o. $F_2(3) = 3, F_2(5) = 5, F_2(7) = 105, F_2(11) = 55$
- Solution E from (P, \leq_P) to the subset order of the div. p.o. $E(3) = \{3\}, E(5) = \{5, 3\}, E(7) = \{105\}, R(11) = \{105, 55\}$
- Represent divisibility by locally injective homomorphisms on cycles

Putting things together

- Embedding $F_1 : (P, \leq_b) \to (P_f(\mathbb{P}), \supseteq)$ $F_1(3) = \{3\}, F_1(5) = \{5\}, F_1(7) = \{3, 5, 7\}, F_1(11) = \{5, 11\}$
- ² Embedding F_2 from $(P, ≤_b)$ to the divisibility p.o. $F_2(3) = 3, F_2(5) = 5, F_2(7) = 105, F_2(11) = 55$
- Solution E from (P, \leq_P) to the subset order of the div. p.o. $E(3) = \{3\}, E(5) = \{5, 3\}, E(7) = \{105\}, R(11) = \{105, 55\}$
- Represent divisibility by locally injective homomorphisms on cycles

Universality

Theorem

Locally injective homomorphisms are universal on the class of disjoint unions of cycles.

イロト 不得 トイヨト イヨト

3

DQC

Universality

Theorem

Locally injective homomorphisms are universal on the class of disjoint unions of cycles.

Corollary

Homomorphism order is universal on the class of disjoint unions of cycles oriented clockwise.

Jan Hubička Locally injective homomorphisms are universal

イロト 不得 トイヨト イヨト

э

Sac

Universality

Theorem

Locally injective homomorphisms are universal on the class of disjoint unions of cycles.

Corollary

Homomorphism order is universal on the class of disjoint unions of cycles oriented clockwise.

→ E → → E → ...

Э

Sac

< 🗇 🕨

Universality

Theorem

Locally injective homomorphisms are universal on the class of disjoint unions of cycles.

Corollary

Homomorphism order is universal on the class of disjoint unions of cycles oriented clockwise.

→ E → → E → ...

э

SAR

< 🗇 🕨

Universality

Theorem

Locally injective homomorphisms are universal on the class of disjoint unions of cycles.

Corollary

Homomorphism order is universal on the class of disjoint unions of cycles oriented clockwise.

Can not introduce universal vertex to connect components.

Sac

Universality

Theorem

Locally injective homomorphisms are universal on the class of disjoint unions of cycles.

Corollary

Homomorphism order is universal on the class of disjoint unions of cycles oriented clockwise.

Need connecting gadget G_n for *n* cycles.

Jan Hubička Loca

Locally injective homomorphisms are universal

医下颌 医下

Sac

Connecting gadget

Jan Hubička Locally injective homomorphisms are universal

990

Connecting gadget

Nešetřil 1971: Every locally injective homomorphism $f: G \rightarrow G$ is an automorphism of G

 \implies no universal connecting gadget

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Э

Sac

Fractal like structure

bička Locally injective homomorphisms are universal

Fractal like structure

čka Locally injective homomorphisms are universal

Fractal like structure

čka Locally injective homomorphisms are universal

Homomorphism order Locally injective homomorphisms

Fractal like structure

Locally injective homomorphisms are universal

Fractal like structure

Jan Hubička Locally injective homomorphisms are universal

Thank you...

Jan Hubička Locally injective homomorphisms are universal

900