EPPA	<i>C</i> ₀	C _F	Summary
0	000000	00000	000

On Hrushovski properties of Hrushovski constructions

Jan Hubička

Department of Applied Mathematics Charles University Prague

Joint work with David Evans, Matěj Konečný, and Jaroslav Nešetřil

Logic Colloquium 2019, Prague

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つんぐ

EPPA	C_0	C _F	Summary
•	000000	00000	000

A class C of finite *L*-structures has extension property for partial automorphisms (EPPA or Hrushovski property) iff for every $\mathbf{A} \in C$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへぐ

EPPA	C ₀	C _F	Summary
•	000000	00000	000

A class C of finite *L*-structures has extension property for partial automorphisms (EPPA or Hrushovski property) iff for every $\mathbf{A} \in C$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

PPA	C_0	C _F	Summary
	000000	00000	000

A class C of finite *L*-structures has extension property for partial automorphisms (EPPA or Hrushovski property) iff for every $\mathbf{A} \in C$ there exists EPPA witness $\mathbf{B} \in C$ containing \mathbf{A}

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

PPA	C ₀	C _F	Summary
	000000	00000	000

A class C of finite *L*-structures has extension property for partial automorphisms (EPPA or Hrushovski property) iff for every $A \in C$ there exists EPPA witness $B \in C$ containing A such that every partial automorphism of A

Partial automorphism is any isomorphism between two substructures.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

PA	C ₀	C _F	Summary
	000000	00000	000

A class C of finite *L*-structures has extension property for partial automorphisms (EPPA or Hrushovski property) iff for every $A \in C$ there exists EPPA witness $B \in C$ containing A such that every partial automorphism of A extends to automorphism of B.

Partial automorphism is any isomorphism between two substructures.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

Definition (Extension property for partial automorphisms)

A class C of finite *L*-structures has extension property for partial automorphisms (EPPA or Hrushovski property) iff for every $A \in C$ there exists EPPA witness $B \in C$ containing A such that every partial automorphism of A extends to automorphism of B.

Partial automorphism is any isomorphism between two substructures.

Example (Classes with EPPA)

- Graphs (Hrushovski 1992)
- 2 Relational structures (Herwig 1998)
- Classes described by finite forbidden homomorphisms (Herwig-lascar 2000)
- Free amalgamation classes (Hodkinson and Otto 2003)
- G Metric spaces (Solecki 2005, Vershik 2008)
- G Generalisations and specialisations of metric spaces (Conant 2015)

Definition (Extension property for partial automorphisms)

A class C of finite *L*-structures has extension property for partial automorphisms (EPPA or Hrushovski property) iff for every $A \in C$ there exists EPPA witness $B \in C$ containing A such that every partial automorphism of A extends to automorphism of B.

Partial automorphism is any isomorphism between two substructures.

Example (Classes with EPPA)

- Graphs (Hrushovski 1992) Ramsey with free linear order (Nešetřil-Rödl 1977, Abramson-Harrington 1978)
- Palational structures (Herwig 1998) Ramsey with free linear order (N. R. 1977, A.H. 1978)
- Classes described by finite forbidden homomorphisms (Herwig-lascar 2000) Ramsey with free linear order (H.-Nešetřil 2016)
- Free amalgamation classes (Hodkinson and Otto 2003) Ramsey with free linear order (Nešetřil-Rödl 1977)
- Metric spaces (Solecki 2005, Vershik 2008) Ramsey with free linear order (Nešetřil 2005)
- Generalisations and specialisations of metric spaces (Conant 2015) Ramsey with convex linear order (Nguyen Van Thé 2010, H.-Nešetřil 2016)

EPPA	C ₀	C _F	Summary
C	•00000	00000	000

• Predimension of a graph $\mathbf{G} = (V, E)$ is $\delta(\mathbf{G}) = 2|V| - |E|$.

Example $\delta(K_1) = 2$ $\delta(K_2) = 4 - 1 = 3$ $\delta(K_3) = 6 - 3 = 3$ $\delta(K_4) = 8 - 6 = 2$ $\delta(K_5) = 10 - 10 = 0$ $\delta(K_6) = 12 - 30 = -18.$

< ロ > < 同 > < 三 > < 三 > 、 三 の Q (?)

PPA	<i>C</i> ₀	C _F	Summary
)	00000	00000	000

• Predimension of a graph $\mathbf{G} = (V, E)$ is $\delta(\mathbf{G}) = 2|V| - |E|$.

Example		
$\delta(K_1) = 2$	$\delta(K_2) = 4 - 1 = 3$	$\delta(K_3) = 6 - 3 = 3$
$\delta(K_4) = 8 - 6 = 2$	$\delta(K_5) = 10 - 10 = 0$	$\delta(K_6) = 12 - 30 = -18.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへぐ

• Finite graph **G** is in C_0 iff $\forall_{H \subseteq G} \delta(H) \ge 0$.

EPPA	C ₀	C _F	Summary
D C	00000	00000	000

Hrushovski (predimension) construction

• Predimension of a graph $\mathbf{G} = (V, E)$ is $\delta(\mathbf{G}) = 2|V| - |E|$.

Example		
$\delta(K_1) = 2$	$\delta(K_2) = 4 - 1 = 3$	$\delta(\mathit{K}_3) = 6 - 3 = 3$
$\delta(K_4) = 8 - 6 = 2$	$\delta(K_5) = 10 - 10 = 0$	$\delta(K_6) = 12 - 30 = -18.$

- Finite graph **G** is in C_0 iff $\forall_{H \subseteq G} \delta(H) \ge 0$.
- $\mathbf{G} \subseteq \mathbf{H}$ is self-sufficient iff $\forall_{\mathbf{G} \subseteq \mathbf{G}' \subseteq \mathbf{H}} \delta(\mathbf{G}) \leq \delta(\mathbf{G}')$.

EPPA	C ₀	C _F	Summary
D C	00000	00000	000

• Predimension of a graph $\mathbf{G} = (V, E)$ is $\delta(\mathbf{G}) = 2|V| - |E|$.

Livample		
$\delta(K_1) = 2$ $\delta(K_4) = 8 - 6 = 2$	$\begin{array}{l} \delta(K_2) = 4 - 1 = 3\\ \delta(K_5) = 10 - 10 = 0 \end{array}$	$\begin{array}{l} \delta(K_3) = 6 - 3 = 3 \\ \delta(K_6) = 12 - 30 = -18. \end{array}$

- Finite graph **G** is in C_0 iff $\forall_{H \subseteq G} \delta(H) \ge 0$.
- $\mathbf{G} \subseteq \mathbf{H}$ is self-sufficient iff $\forall_{\mathbf{G} \subseteq \mathbf{G}' \subseteq \mathbf{H}} \delta(\mathbf{G}) \leq \delta(\mathbf{G}')$.

Definition (Amalgamation property of class *K*)

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

EPPA	C ₀	CF	Summary
0	00000	00000	000

• Predimension of a graph $\mathbf{G} = (V, E)$ is $\delta(\mathbf{G}) = 2|V| - |E|$.

Lxample		
$\delta(K_1) = 2 \\ \delta(K_4) = 8 - 6 = 2$	$\begin{array}{l} \delta(K_2) = 4 - 1 = 3\\ \delta(K_5) = 10 - 10 = 0 \end{array}$	$\begin{array}{c} \delta(K_3) = 6 - 3 = 3\\ \delta(K_6) = 12 - 30 = -18. \end{array}$

- Finite graph **G** is in C_0 iff $\forall_{H \subseteq G} \delta(H) \ge 0$.
- $\mathbf{G} \subseteq \mathbf{H}$ is self-sufficient iff $\forall_{\mathbf{G} \subseteq \mathbf{G}' \subseteq \mathbf{H}} \delta(\mathbf{G}) \leq \delta(\mathbf{G}')$.

Lemma

 C_0 is closed for free amalgamation over self-sufficient substructures.

Proof.

$$\delta(\mathbf{C}) = \delta(\mathbf{B}) + \delta(\mathbf{B}') - \delta(\mathbf{A})$$

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

EPPA	C ₀	CF	Summary
0	00000	00000	000

• Predimension of a graph $\mathbf{G} = (V, E)$ is $\delta(\mathbf{G}) = 2|V| - |E|$.

Lxample		
$\delta(K_1) = 2 \\ \delta(K_4) = 8 - 6 = 2$	$\begin{array}{l} \delta(K_2) = 4 - 1 = 3\\ \delta(K_5) = 10 - 10 = 0 \end{array}$	$\begin{array}{c} \delta(K_3) = 6 - 3 = 3\\ \delta(K_6) = 12 - 30 = -18. \end{array}$

- Finite graph **G** is in C_0 iff $\forall_{H \subseteq G} \delta(H) \ge 0$.
- $\mathbf{G} \subseteq \mathbf{H}$ is self-sufficient iff $\forall_{\mathbf{G} \subseteq \mathbf{G}' \subseteq \mathbf{H}} \delta(\mathbf{G}) \leq \delta(\mathbf{G}')$.

Lemma

 C_0 is closed for free amalgamation over self-sufficient substructures.

$$\delta(\mathbf{C}) = \delta(\mathbf{B}) + \delta(\mathbf{B}') - \delta(\mathbf{A}).$$

Summary

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへぐ

Hrushovski property of Hrushovski construction

EPPA (with joint embedding) is a stronger form of amalgamation.

Summary

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへぐ

Hrushovski property of Hrushovski construction

EPPA (with joint embedding) is a stronger form of amalgamation.

Summary

Hrushovski property of Hrushovski construction

EPPA (with joint embedding) is a stronger form of amalgamation.

Question

Does class C_0 have EPPA (or a Hrushovski property) for partial automorphisms of self-sufficient substructures?

Summary

< ロ > < 同 > < 三 > < 三 > 、 三 の Q (?)

Hrushovski property of Hrushovski construction

EPPA (with joint embedding) is a stronger form of amalgamation.

Question

Does class C_0 have EPPA (or a Hrushovski property) for partial automorphisms of self-sufficient substructures?

Simple counter-example appears in disertation of Zaniar Ghadernezhad (2013).

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Hrushovski property of Hrushovski construction

EPPA (with joint embedding) is a stronger form of amalgamation.

Question

Does class C_0 have EPPA (or a Hrushovski property) for partial automorphisms of self-sufficient substructures?

Simple counter-example appears in disertation of Zaniar Ghadernezhad (2013).

In this talk we aim to understand the situation better.

EPPA	<i>C</i> ₀	C _F	Summary
O	00●000	00000	000

Recall:

- Predimension of a graph $\mathbf{G} = (V, E)$ is $\delta(\mathbf{G}) = 2|V| |E|$.
- Finite graph **G** is in C_0 iff $\forall_{\mathbf{H} \subset \mathbf{G}} \delta(\mathbf{H}) \geq 0$.

Lemma (By marriage theorem)

- $G \in C_0$ iff it has 2-orientation (out-degrees at most 2).
- H is self sufficient in G iff G can be 2-oriented with no edge from H to $G \setminus H$.

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つんぐ

EPPA	<i>C</i> ₀	С _F	Summary
O	00●000	00000	

Recall:

- Predimension of a graph $\mathbf{G} = (V, E)$ is $\delta(\mathbf{G}) = 2|V| |E|$.
- Finite graph **G** is in C_0 iff $\forall_{\mathbf{H}\subseteq\mathbf{G}}\delta(\mathbf{H}) \geq 0$.

Lemma (By marriage theorem)

- $\mathbf{G} \in \mathcal{C}_0$ iff it has 2-orientation (out-degrees at most 2).
- H is self sufficient in G iff G can be 2-oriented with no edge from H to $G \setminus H$.

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つんぐ

EPPA	<i>C</i> ₀	С _F	Summary
O	00●000	00000	

Recall:

- Predimension of a graph $\mathbf{G} = (V, E)$ is $\delta(\mathbf{G}) = 2|V| |E|$.
- Finite graph **G** is in C_0 iff $\forall_{\mathbf{H}\subseteq\mathbf{G}}\delta(\mathbf{H}) \geq 0$.

Lemma (By marriage theorem)

- $\mathbf{G} \in \mathcal{C}_0$ iff it has 2-orientation (out-degrees at most 2).
- H is self sufficient in G iff G can be 2-oriented with no edge from H to $G \setminus H$.

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

EPPA	<i>C</i> ₀	С _F	Summary
O	00●000	00000	000

Recall:

- Predimension of a graph $\mathbf{G} = (V, E)$ is $\delta(\mathbf{G}) = 2|V| |E|$.
- Finite graph **G** is in C_0 iff $\forall_{\mathbf{H}\subseteq\mathbf{G}}\delta(\mathbf{H}) \geq 0$.

Lemma (By marriage theorem)

- $\mathbf{G} \in \mathcal{C}_0$ iff it has 2-orientation (out-degrees at most 2).
- H is self sufficient in G iff G can be 2-oriented with no edge from H to $G \setminus H$.

Corollary

 C_0 is, equivalently, created from class \mathcal{D}_0 of all finite 2-orientations by forgetting the orientation.

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

 \mathcal{D}_0 is closed for free amalgamation over successor-closed substructures.

EPPA	C_0	C _F	Summary
0	000000	00000	000

Hrushovski classes has no Hrushovski property

We use:

Theorem (Kechris, Rosendal 2007)

Suppose \mathcal{K} is an amalgamation class of finite structures with (generalised) Fraïssé limit **M**. Let Γ = Aut(**M**). Suppose \mathcal{K} has EPPA then Γ is amenable.

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つんぐ

Hrushovski classes has no Hrushovski property

We use:

Theorem (Kechris, Rosendal 2007)

Suppose \mathcal{K} is an amalgamation class of finite structures with (generalised) Fraïssé limit **M**. Let Γ = Aut(**M**). Suppose \mathcal{K} has EPPA then Γ is amenable.

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

Recall: A topological group Γ is amenable if, whenever *Y* is a Γ -flow, then there is a Borel probability measure μ on *Y* which is invariant under the action of Γ .

Hrushovski classes has no Hrushovski property

We use:

Theorem (Kechris, Rosendal 2007)

Suppose \mathcal{K} is an amalgamation class of finite structures with (generalised) Fraïssé limit **M**. Let Γ = Aut(**M**). Suppose \mathcal{K} has EPPA then Γ is amenable.

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

Recall: A topological group Γ is amenable if, whenever *Y* is a Γ -flow, then there is a Borel probability measure μ on *Y* which is invariant under the action of Γ .

... and show:

Theorem (Evans, H., Nešetřil, 2019)

Let \mathbf{M}_0 be a generalised Fraïssé limit of \mathcal{C}_0 . Aut (\mathbf{M}_0) is not amenable.

As a consequence of the two theorems C_0 has no EPPA.

3

Sac

Summary

Non-amenability of M₀

Theorem (Evans, H., Nešetřil, 2019)

Let **M** be an 2-orientable graph and Γ is a topological group which acts continuously on **M**. Suppose there are adjacent vertices a, b in **M** such that the Γ_a -orbit containing b and the Γ_b -orbit containing a are both infinite. Then Γ is not amenable.

Summary

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

Non-amenability of M₀

Theorem (Evans, H., Nešetřil, 2019)

Let **M** be an 2-orientable graph and Γ is a topological group which acts continuously on **M**. Suppose there are adjacent vertices a, b in **M** such that the Γ_a -orbit containing b and the Γ_b -orbit containing a are both infinite. Then Γ is not amenable.

- **1** Suppose, for a contradiction, that μ is a Γ -invariant Borel probability measure on the Γ -flow $X_{\mathbf{M}}$ of 2-orientations. Let a, b be as in the statement.
- **2** Consider the open set $S_{ab} = \{S \in X_{\mathbb{M}} : \text{there is an edge oriented } a \to b\}.$

Summary

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

Non-amenability of **M**₀

Theorem (Evans, H., Nešetřil, 2019)

Let **M** be an 2-orientable graph and Γ is a topological group which acts continuously on **M**. Suppose there are adjacent vertices a, b in **M** such that the Γ_a -orbit containing b and the Γ_b -orbit containing a are both infinite. Then Γ is not amenable.

- **1** Suppose, for a contradiction, that μ is a Γ -invariant Borel probability measure on the Γ -flow $X_{\mathbf{M}}$ of 2-orientations. Let a, b be as in the statement.
- **2** Consider the open set $S_{ab} = \{S \in X_{\mathbb{M}} : \text{there is an edge oriented } a \to b\}.$
- **3** As $S_{ab} \cup S_{ba} = X_{\mathbf{M}}$ we may assume that $\mu(S_{ab}) = p \neq 0$.

Non-amenability of \mathbf{M}_0

Theorem (Evans, H., Nešetřil, 2019)

Let **M** be an 2-orientable graph and Γ is a topological group which acts continuously on **M**. Suppose there are adjacent vertices a, b in **M** such that the Γ_a -orbit containing b and the Γ_b -orbit containing a are both infinite. Then Γ is not amenable.

Proof.

- **1** Suppose, for a contradiction, that μ is a Γ -invariant Borel probability measure on the Γ -flow $X_{\mathbf{M}}$ of 2-orientations. Let a, b be as in the statement.
- **2** Consider the open set $S_{ab} = \{S \in X_{\mathbb{M}} : \text{there is an edge oriented } a \to b\}$.
- 3 As $S_{ab} \cup S_{ba} = X_{\mathbf{M}}$ we may assume that $\mu(S_{ab}) = p \neq 0$.
- **(2**) For *r* ∈ \mathbb{N} , let *b*₁,..., *b*_{*r*} be distinct elements of the *G*_a-orbit containing *b*. So $\mu(S_{ab_i}) = p$ for each *i* ≤ *r*. Let *s*_{*i*} be the characteristic function of *S*_{ab_i}.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Summary

Non-amenability of M₀

Theorem (Evans, H., Nešetřil, 2019)

Let **M** be an 2-orientable graph and Γ is a topological group which acts continuously on **M**. Suppose there are adjacent vertices a, b in **M** such that the Γ_a -orbit containing b and the Γ_b -orbit containing a are both infinite. Then Γ is not amenable.

Proof.

- **1** Suppose, for a contradiction, that μ is a Γ -invariant Borel probability measure on the Γ -flow $X_{\mathbf{M}}$ of 2-orientations. Let a, b be as in the statement.
- **2** Consider the open set $S_{ab} = \{S \in X_{\mathbb{M}} : \text{there is an edge oriented } a \to b\}$.
- 3 As $S_{ab} \cup S_{ba} = X_{\mathbf{M}}$ we may assume that $\mu(S_{ab}) = p \neq 0$.
- **(2**) For *r* ∈ \mathbb{N} , let *b*₁,..., *b*_{*r*} be distinct elements of the *G*_a-orbit containing *b*. So $\mu(S_{ab_i}) = p$ for each *i* ≤ *r*. Let *s*_{*i*} be the characteristic function of *S*_{ab_i}.
- **5** Then for every 2-orientation $S \in X_{\Gamma}$ we have $\sum_{i \leq r} s_i(S) \leq 2$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Non-amenability of M₀

Theorem (Evans, H., Nešetřil, 2019)

Let **M** be an 2-orientable graph and Γ is a topological group which acts continuously on **M**. Suppose there are adjacent vertices a, b in **M** such that the Γ_a -orbit containing b and the Γ_b -orbit containing a are both infinite. Then Γ is not amenable.

- **1** Suppose, for a contradiction, that μ is a Γ -invariant Borel probability measure on the Γ -flow $X_{\mathbf{M}}$ of 2-orientations. Let a, b be as in the statement.
- **2** Consider the open set $S_{ab} = \{S \in X_{\mathbb{M}} : \text{there is an edge oriented } a \to b\}$.
- 3 As $S_{ab} \cup S_{ba} = X_{\mathbf{M}}$ we may assume that $\mu(S_{ab}) = p \neq 0$.
- **(2**) For *r* ∈ \mathbb{N} , let *b*₁,..., *b*_{*r*} be distinct elements of the *G*_a-orbit containing *b*. So $\mu(S_{ab_i}) = p$ for each *i* ≤ *r*. Let *s*_{*i*} be the characteristic function of *S*_{ab_i}.
- **5** Then for every 2-orientation $S \in X_{\Gamma}$ we have $\sum_{i \leq r} s_i(S) \leq 2$.

Thus
$$\int_{S \in X_{\mathbf{M}}} \sum_{i \leq r} s_i(S) d\mu(S) \leq 2.$$

Non-amenability of M_0

Theorem (Evans, H., Nešetřil, 2019)

Let **M** be an 2-orientable graph and Γ is a topological group which acts continuously on **M**. Suppose there are adjacent vertices a, b in **M** such that the Γ_a -orbit containing b and the Γ_b -orbit containing a are both infinite. Then Γ is not amenable.

- **1** Suppose, for a contradiction, that μ is a Γ -invariant Borel probability measure on the Γ -flow $X_{\mathbf{M}}$ of 2-orientations. Let a, b be as in the statement.
- **2** Consider the open set $S_{ab} = \{S \in X_{\mathbf{M}} : \text{there is an edge oriented } a \to b\}$.
- 3 As $S_{ab} \cup S_{ba} = X_{\mathbf{M}}$ we may assume that $\mu(S_{ab}) = p \neq 0$.
- **④** For $r \in \mathbb{N}$, let $b_1, ..., b_r$ be distinct elements of the G_a -orbit containing *b*. So $\mu(S_{ab_i}) = p$ for each *i* ≤ *r*. Let s_i be the characteristic function of S_{ab_i} .
- **5** Then for every 2-orientation $S \in X_{\Gamma}$ we have $\sum_{i < r} s_i(S) \le 2$.

Thus
$$\int_{S \in X_{\mathsf{M}}} \sum_{i \leq r} s_i(S) \, d\mu(S) \leq 2$$
. However $\int_{S \in X_{\mathsf{M}}} s_i(S) d\mu(S) = p$.

Non-amenability of M₀

Theorem (Evans, H., Nešetřil, 2019)

Let **M** be an 2-orientable graph and Γ is a topological group which acts continuously on **M**. Suppose there are adjacent vertices a, b in **M** such that the Γ_a -orbit containing b and the Γ_b -orbit containing a are both infinite. Then Γ is not amenable.

Proof.

- **1** Suppose, for a contradiction, that μ is a Γ -invariant Borel probability measure on the Γ -flow $X_{\mathbf{M}}$ of 2-orientations. Let a, b be as in the statement.
- **2** Consider the open set $S_{ab} = \{S \in X_{\mathbb{M}} : \text{there is an edge oriented } a \to b\}$.
- 3 As $S_{ab} \cup S_{ba} = X_{\mathbf{M}}$ we may assume that $\mu(S_{ab}) = p \neq 0$.
- **④** For $r \in \mathbb{N}$, let $b_1, ..., b_r$ be distinct elements of the G_a -orbit containing *b*. So $\mu(S_{ab_i}) = p$ for each *i* ≤ *r*. Let s_i be the characteristic function of S_{ab_i} .
- **5** Then for every 2-orientation $S \in X_{\Gamma}$ we have $\sum_{i < r} s_i(S) \le 2$.

Thus
$$\int_{S \in X_{\mathsf{M}}} \sum_{i \leq r} s_i(S) \, d\mu(S) \leq 2$$
. However $\int_{S \in X_{\mathsf{M}}} s_i(S) d\mu(S) = p$.

therefore $rp \leq 2$. As $p \neq 0$ and r is unbounded, this is a contradiction.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

= √Q (~

Non-amenability of M₀

Theorem (Evans, H., Nešetřil, 2019)

Let **M** be an 2-orientable graph and Γ is a topological group which acts continuously on **M**. Suppose there are adjacent vertices a, b in **M** such that the Γ_a -orbit containing b and the Γ_b -orbit containing a are both infinite. Then Γ is not amenable.

Proof.

- **1** Suppose, for a contradiction, that μ is a Γ -invariant Borel probability measure on the Γ -flow $X_{\mathbf{M}}$ of 2-orientations. Let a, b be as in the statement.
- **2** Consider the open set $S_{ab} = \{S \in X_{\mathbb{M}} : \text{there is an edge oriented } a \to b\}$.
- 3 As $S_{ab} \cup S_{ba} = X_{\mathbf{M}}$ we may assume that $\mu(S_{ab}) = p \neq 0$.
- **④** For $r \in \mathbb{N}$, let $b_1, ..., b_r$ be distinct elements of the G_a -orbit containing *b*. So $\mu(S_{ab_i}) = p$ for each *i* ≤ *r*. Let s_i be the characteristic function of S_{ab_i} .
- **5** Then for every 2-orientation $S \in X_{\Gamma}$ we have $\sum_{i < r} s_i(S) \leq 2$.

Thus
$$\int_{S \in X_{\mathsf{M}}} \sum_{i \leq r} s_i(S) \, d\mu(S) \leq 2$$
. However $\int_{S \in X_{\mathsf{M}}} s_i(S) d\mu(S) = p$.

therefore $rp \le 2$. As $p \ne 0$ and r is unbounded, this is a contradiction.

This is David Evans' argument generalised by Todor Tsankova 🖉 🖕 🖉 🖡 🖉 👘

Summary

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへぐ

Does \mathcal{D}_0 have EPPA?

Question

Does class \mathcal{D}_0 (of all 2-orientations) have EPPA for partial automorphisms of successor-closed substructures?
Summary

Does \mathcal{D}_0 have EPPA?

Question

Does class \mathcal{D}_0 (of all 2-orientations) have EPPA for partial automorphisms of successor-closed substructures?

Summary

< ロ > < 同 > < 三 > < 三 > 、 三 の Q (?)

Does \mathcal{D}_0 have EPPA?

Question

Does class \mathcal{D}_0 (of all 2-orientations) have EPPA for partial automorphisms of successor-closed substructures?

Yes!

We generalise notion of *L*-structures to represent self-sufficient substructures by functions.

Summary

Does \mathcal{D}_0 have EPPA?

Question

Does class \mathcal{D}_0 (of all 2-orientations) have EPPA for partial automorphisms of successor-closed substructures?

Yes!

We generalise notion of *L*-structures to represent self-sufficient substructures by functions.

Let *L* be a language and **A** *L*-structure with domain *A*. Then function F_A is from *n*-tuples of elements of *A* to subsets of *A*.

$$F_A: A^a \to \mathcal{P}(A).$$

Summary

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

Does \mathcal{D}_0 have EPPA?

Question

Does class \mathcal{D}_0 (of all 2-orientations) have EPPA for partial automorphisms of successor-closed substructures?

Yes!

We generalise notion of *L*-structures to represent self-sufficient substructures by functions.

Let *L* be a language and **A** *L*-structure with domain *A*. Then function F_A is from *n*-tuples of elements of *A* to subsets of *A*.

$$F_A: A^a \to \mathcal{P}(A).$$

In this context D_0 is a free amalgamation class of structures in language with single unary function F mapping every vertex to set of its successors in the 2-orientation.

Summary

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

Does \mathcal{D}_0 have EPPA?

Question

Does class \mathcal{D}_0 (of all 2-orientations) have EPPA for partial automorphisms of successor-closed substructures?

Yes!

We generalise notion of *L*-structures to represent self-sufficient substructures by functions.

Let *L* be a language and **A** *L*-structure with domain *A*. Then function F_A is from *n*-tuples of elements of *A* to subsets of *A*.

$$F_A: A^a \to \mathcal{P}(A).$$

In this context D_0 is a free amalgamation class of structures in language with single unary function F mapping every vertex to set of its successors in the 2-orientation.

Summary

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

Does \mathcal{D}_0 have EPPA?

Question

Does class \mathcal{D}_0 (of all 2-orientations) have EPPA for partial automorphisms of successor-closed substructures?

Yes!

We generalise notion of *L*-structures to represent self-sufficient substructures by functions.

Let *L* be a language and **A** *L*-structure with domain *A*. Then function F_A is from *n*-tuples of elements of *A* to subsets of *A*.

$$F_A: A^a \to \mathcal{P}(A).$$

In this context D_0 is a free amalgamation class of structures in language with single unary function F mapping every vertex to set of its successors in the 2-orientation.

Summary

Does \mathcal{D}_0 have EPPA?

Question

Does class \mathcal{D}_0 (of all 2-orientations) have EPPA for partial automorphisms of successor-closed substructures?

Yes!

We generalise notion of *L*-structures to represent self-sufficient substructures by functions.

Let *L* be a language and **A** *L*-structure with domain *A*. Then function F_A is from *n*-tuples of elements of *A* to subsets of *A*.

 $F_A: A^a \to \mathcal{P}(A).$

In this context D_0 is a free amalgamation class of structures in language with single unary function F mapping every vertex to set of its successors in the 2-orientation.

Theorem (Evans, H., Nešetřil 2018+)

Let L be a language consisting of relations and unary functions and \mathcal{K} a free amalgamation class of L-structures. Then \mathcal{K} has EPPA.

This is a strengthening of earlier result of Hodkinson and Otto for relational languages. Open for functions of arbitrary arity.

Summary

Does \mathcal{D}_0 have EPPA?

Question

Does class \mathcal{D}_0 (of all 2-orientations) have EPPA for partial automorphisms of successor-closed substructures?

Yes!

We generalise notion of *L*-structures to represent self-sufficient substructures by functions.

Let *L* be a language and **A** *L*-structure with domain *A*. Then function F_A is from *n*-tuples of elements of *A* to subsets of *A*.

 $F_A: A^a \to \mathcal{P}(A).$

In this context D_0 is a free amalgamation class of structures in language with single unary function F mapping every vertex to set of its successors in the 2-orientation.

Theorem (Evans, H., Nešetřil 2018+)

Let L be a language consisting of relations and unary functions and \mathcal{K} a free amalgamation class of L-structures. Then \mathcal{K} has EPPA.

This is a strengthening of earlier result of Hodkinson and Otto for relational languages. Open for functions of arbitrary arity.

Question

What is maximal amenable subgroup of $Aut(M_0)$?

EPPA	C ₀	C _F	Summary
0	000000	00000	000

• $F: \mathbb{R}^{\geq 0} \to \mathbb{R}^{\geq 0}$

▲ロト ▲園 ▶ ▲ 国 ▶ ▲ 国 ▶ ● のへで

EPPA	C_0	C _F	Summary
0	000000	00000	000

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The ω -categorical case

- $F: \mathbb{R}^{\geq 0} \to \mathbb{R}^{\geq 0}$
- $C_0 = \{ \mathbf{B} : \delta(\mathbf{A}) \ge 0 \text{ for all } \mathbf{A} \subseteq \mathbf{B} \}.$ $C_F = \{ \mathbf{B} : \delta(\mathbf{A}) \ge F(|\mathbf{A}|) \text{ for all } \mathbf{A} \subseteq \mathbf{B} \}.$

EPPA	C ₀	C _F	Summary
0	000000	00000	000

- $F: \mathbb{R}^{\geq 0} \to \mathbb{R}^{\geq 0}$
- $C_0 = \{ \mathbf{B} : \delta(\mathbf{A}) \ge 0 \text{ for all } \mathbf{A} \subseteq \mathbf{B} \}.$ $C_F = \{ \mathbf{B} : \delta(\mathbf{A}) \ge F(|\mathbf{A}|) \text{ for all } \mathbf{A} \subseteq \mathbf{B} \}.$
- A is self-sufficient in B iff $\delta(A) \le \delta(B')$ for all finite B' with $A \subset B' \subseteq B$. A is *d*-closed in B iff $\delta(A) < \delta(B')$ for all finite B' with $A \subset B' \subseteq B$.

EPPA	<i>C</i> ₀	<i>CF</i>	Summary
O	000000	●0000	000

- $F: \mathbb{R}^{\geq 0} \to \mathbb{R}^{\geq 0}$
- $C_0 = \{ \mathbf{B} : \delta(\mathbf{A}) \ge 0 \text{ for all } \mathbf{A} \subseteq \mathbf{B} \}.$ $C_F = \{ \mathbf{B} : \delta(\mathbf{A}) \ge F(|\mathbf{A}|) \text{ for all } \mathbf{A} \subseteq \mathbf{B} \}.$
- A is self-sufficient in B iff $\delta(A) \leq \delta(B')$ for all finite B' with $A \subset B' \subseteq B$. A is *d*-closed in B iff $\delta(A) < \delta(B')$ for all finite B' with $A \subset B' \subseteq B$.

Lemma

Put $F(x) = \ln(x)$. Then C_F is a free amalgamation class over d-closed substructures.

EPPA	C ₀	C _F	Summary
	000000	●0000	000

- $F: \mathbb{R}^{\geq 0} \to \mathbb{R}^{\geq 0}$
- $C_0 = \{ \mathbf{B} : \delta(\mathbf{A}) \ge 0 \text{ for all } \mathbf{A} \subseteq \mathbf{B} \}.$ $C_F = \{ \mathbf{B} : \delta(\mathbf{A}) \ge F(|\mathbf{A}|) \text{ for all } \mathbf{A} \subseteq \mathbf{B} \}.$
- A is self-sufficient in B iff $\delta(A) \leq \delta(B')$ for all finite B' with $A \subset B' \subseteq B$. A is *d*-closed in B iff $\delta(A) < \delta(B')$ for all finite B' with $A \subset B' \subseteq B$.

Lemma

Put $F(x) = \ln(x)$. Then C_F is a free amalgamation class over *d*-closed substructures.

▲ロト ▲□ ト ▲ ヨ ト ▲ ヨ ト つくぐ

Again there exists a generalized Fraïssé limit \mathbf{M}_{F} .

EPPA	<i>C</i> ₀	C _F	Summary
5	000000	00000	000

- $F: \mathbb{R}^{\geq 0} \to \mathbb{R}^{\geq 0}$
- $C_0 = \{ \mathbf{B} : \delta(\mathbf{A}) \ge 0 \text{ for all } \mathbf{A} \subseteq \mathbf{B} \}.$ $C_F = \{ \mathbf{B} : \delta(\mathbf{A}) \ge F(|\mathbf{A}|) \text{ for all } \mathbf{A} \subseteq \mathbf{B} \}.$
- A is self-sufficient in B iff $\delta(A) \le \delta(B')$ for all finite B' with $A \subset B' \subseteq B$. A is *d*-closed in B iff $\delta(A) < \delta(B')$ for all finite B' with $A \subset B' \subseteq B$.

Lemma

Put $F(x) = \ln(x)$. Then C_F is a free amalgamation class over *d*-closed substructures.

▲ロト ▲□ ト ▲ ヨ ト ▲ ヨ ト つくぐ

Again there exists a generalized Fraïssé limit \mathbf{M}_{F} .

PPA	<i>C</i> ₀	C _F	Summary
>	000000	0●000	000

Successor-d-closure

Denote by $roots_{A}(B)$ the set of all roots of A reachable from $B \subseteq A$.

Lemma (H., Evans, Nešetřil, 2019) Let $\mathbf{B} \subseteq \mathbf{A}$ be 2-orientations. Then \mathbf{B} is both d-closed and successor-closed in \mathbf{A} iff $\mathbf{B} = \{v : \operatorname{roots}_{\mathbf{A}}(v) \subseteq \operatorname{roots}_{\mathbf{A}}(\mathbf{B})\}.$

▲ロト ▲□ ト ▲ ヨ ト ▲ ヨ ト つくぐ

Recall: **B** is d-closed in **A** iff $\delta(\mathbf{B}) < \delta(\mathbf{B}')$ for all **B**' s.t. **B** \subset **B**' \subseteq **A**.

Summary

Successor-d-closure

EPPA

Denote by $roots_A(B)$ the set of all roots of A reachable from $B \subseteq A$.

Lemma (H., Evans, Nešetřil, 2019) Let $B \subseteq A$ be 2-orientations. Then B is both d-closed and successor-closed in A iff $B = \{v : roots_A(v) \subseteq roots_A(B)\}.$

Recall: **B** is d-closed in **A** iff $\delta(\mathbf{B}) < \delta(\mathbf{B}')$ for all **B**' s.t. **B** \subset **B**' \subseteq **A**.

Proof.

- Given B ⊑_s A, δ(B) is the number of roots of out-degree 1 + twice number of roots of out-degree 0.
- Extending B by all vertices v such that roots_A(v) ⊆ roots_A(B) does not affect δ.
- Extending **B** by any other vertex increases δ .

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

EPPA	c_0	C _F	Summary
0	000000	00000	000

Denote by D_F the class of all 2-orientations. It is an amalgamation class for successor-d-closed substructures.

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Denote by D_F the class of all 2-orientations. It is an amalgamation class for successor-d-closed substructures.
- **2** D_F is a free amalgamation class in language with functions:

Language L^+ consists of a function symbol F of arity 1 and function symbols F_i of arity *i* for every $i \ge 1$.

● For every vertex v we put F(v) to be the set of all vertices v' such that there is edge v → v'.

- Denote by D_F the class of all 2-orientations. It is an amalgamation class for successor-d-closed substructures.
- **2** D_F is a free amalgamation class in language with functions:

Language L^+ consists of a function symbol F of arity 1 and function symbols F_i of arity *i* for every $i \ge 1$.

● For every vertex v we put F(v) to be the set of all vertices v' such that there is edge v → v'.

- Denote by D_F the class of all 2-orientations. It is an amalgamation class for successor-d-closed substructures.
- **2** D_F is a free amalgamation class in language with functions:

Language L^+ consists of a function symbol F of arity 1 and function symbols F_i of arity *i* for every $i \ge 1$.

● For every vertex v we put F(v) to be the set of all vertices v' such that there is edge v → v'.

- Denote by D_F the class of all 2-orientations. It is an amalgamation class for successor-d-closed substructures.
- **2** D_F is a free amalgamation class in language with functions:

Language L^+ consists of a function symbol *F* of arity 1 and function symbols F_i of arity *i* for every $i \ge 1$.

- For every vertex v we put F(v) to be the set of all vertices v' such that there is edge v → v'.
- **2** For every *n*-tuple \bar{r} of distinct root vertices we define $F_n(\bar{r})$ to be the set of all vertices *v* such that roots(*v*) is precisely \bar{r} .

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

- Denote by D_F the class of all 2-orientations. It is an amalgamation class for successor-d-closed substructures.
- **2** D_F is a free amalgamation class in language with functions:

Language L^+ consists of a function symbol *F* of arity 1 and function symbols F_i of arity *i* for every $i \ge 1$.

- For every vertex v we put F(v) to be the set of all vertices v' such that there is edge v → v'.
- **2** For every *n*-tuple \bar{r} of distinct root vertices we define $F_n(\bar{r})$ to be the set of all vertices *v* such that roots(*v*) is precisely \bar{r} .

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

3 Functions $F_n(\bar{r}) = \emptyset$ otherwise

(set valued functions give free amalgamation good meaning).

- Denote by D_F the class of all 2-orientations. It is an amalgamation class for successor-d-closed substructures.
- **2** D_F is a free amalgamation class in language with functions:

Language L^+ consists of a function symbol *F* of arity 1 and function symbols F_i of arity *i* for every $i \ge 1$.

- For every vertex v we put F(v) to be the set of all vertices v' such that there is edge v → v'.
- **2** For every *n*-tuple \bar{r} of distinct root vertices we define $F_n(\bar{r})$ to be the set of all vertices *v* such that roots(*v*) is precisely \bar{r} .
- **3** Functions $F_n(\bar{r}) = \emptyset$ otherwise

(set valued functions give free amalgamation good meaning).

Can we prove EPPA for a special case of free amalgamation class with non-unary functions?

C_0	C _F	Summary
000000	00000	000

Symmetric version of *L*-structures with partial functions and permutation of the language

EPPA

- Let *L* be a language with relation symbols and function symbols each with arity denoted by *a*(*R*) and *a*(*F*).
- We consider multiple-valued functions: for function symbol $F \in L$, *L*-structure **A**, $x \in A$ we put $F^{\mathbf{A}}(x) \subseteq A$.

<ロト < 回 > < 三 > < 三 > < 三 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Symmetric version of *L*-structures with partial functions and permutation of the language

- Let *L* be a language with relation symbols and function symbols each with arity denoted by *a*(*R*) and *a*(*F*).
- We consider multiple-valued functions: for function symbol $F \in L$, *L*-structure **A**, $x \in A$ we put $F^{\mathbf{A}}(x) \subseteq A$.
- Let Γ_L be a permutation group on L which preserves types and arities of all symbols. We will say that Γ_L is a language equipped with a permutation group. (This generalise Herwig's notion of a permomorphism.)

Symmetric version of *L*-structures with partial functions and permutation of the language

- Let L be a language with relation symbols and function symbols each with arity denoted by a(R) and a(F).
- We consider multiple-valued functions: for function symbol $F \in L$, L-structure **A**, $x \in A$ we put $F^{\mathbf{A}}(x) \subseteq A$.
- Let Γ_{l} be a permutation group on L which preserves types and arities of all symbols. We will say that Γ_l is a language equipped with a permutation group. (This generalise Herwig's notion of a permomorphism.)

We consider Γ_l -structures which are essentially *L*-structures with the following definition of homomorphism:

Definition

A homomorphism $f: \mathbf{A} \to \mathbf{B}$ is a pair $f = (f_l, f_A)$ where $f_l \in \Gamma_l$ and f_A is a mapping $A \rightarrow B$ such that for every $R \in L_{\mathcal{R}}$ and $F \in L_{\mathcal{F}}$ we have:

(a)
$$(x_1, x_2, \dots, x_{a(R)}) \in R_{\mathbf{A}} \implies (f_A(x_1), f_A(x_2), \dots, f_A(x_{a(R)})) \in f_L(R)_{\mathbf{B}}$$
, and,

(b) $f_A(F_{\mathbf{A}}(x_1, c_2, \dots, x_{a(F)})) \subseteq f_L(F)_{\mathbf{B}}(f_A(x_1), f_A(x_2), \dots, f_A(x_{a(F)})).$

- Let *L* be a language with relation symbols and function symbols each with arity denoted by *a*(*R*) and *a*(*F*).
- We consider multiple-valued functions: for function symbol $F \in L$, *L*-structure **A**, $x \in A$ we put $F^{\mathbf{A}}(x) \subseteq A$.
- Let Γ_L be a permutation group on L which preserves types and arities of all symbols. We will say that Γ_L is a language equipped with a permutation group. (This generalise Herwig's notion of a permomorphism.)

We consider Γ_L -structures which are essentially *L*-structures with the following definition of homomorphism:

Definition

A homomorphism $f : \mathbf{A} \to \mathbf{B}$ is a pair $f = (f_L, f_A)$ where $f_L \in \Gamma_L$ and f_A is a mapping $A \to B$ such that for every $R \in L_R$ and $F \in L_F$ we have:

(a)
$$(x_1, x_2, \dots, x_{a(R)}) \in R_{\mathbf{A}} \implies (f_A(x_1), f_A(x_2), \dots, f_A(x_{a(R)})) \in f_L(R)_{\mathbf{B}}$$
, and,

(b)
$$f_A(F_{\mathbf{A}}(x_1, c_2, ..., x_{a(F)})) \subseteq f_L(F)_{\mathbf{B}}(f_A(x_1), f_A(x_2), ..., f_A(x_{a(F)})).$$

Notion of embedding, homomorphism-embedding, substructure generalise naturally to this category.

< ロ > < 同 > < 三 > < 三 > 、 三 の Q (?)

Summary

<ロト < 回 > < 三 > < 三 > < 三 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

EPPA for \mathcal{D}_F

Theorem (H., Konečný, Nešetřil 2019+)

Let Γ_L be a language equipped with a permutation group consisting of relations and unary functions and \mathcal{K} a free amalgamation class of Γ_L -structures. Then \mathcal{K} has EPPA. Moreover for every $\mathbf{A} \in \mathcal{K}$ the EPPA witness $\mathbf{B} \in \mathcal{K}$ can be constructed such that every irreducible substructure of \mathbf{B} is isomorphic to a substructure of \mathbf{A} .

Summary

EPPA for \mathcal{D}_F

Theorem (H., Konečný, Nešetřil 2019+)

Let Γ_L be a language equipped with a permutation group consisting of relations and unary functions and \mathcal{K} a free amalgamation class of Γ_L -structures. Then \mathcal{K} has EPPA. Moreover for every $\mathbf{A} \in \mathcal{K}$ the EPPA witness $\mathbf{B} \in \mathcal{K}$ can be constructed such that every irreducible substructure of \mathbf{B} is isomorphic to a substructure of \mathbf{A} .

Theorem (H., Konečný, Nešetřil 2019+)

The class \mathcal{D}_F has EPPA for the successor-d-closed substructures

Summary

EPPA for \mathcal{D}_F

Theorem (H., Konečný, Nešetřil 2019+)

Let Γ_L be a language equipped with a permutation group consisting of relations and unary functions and \mathcal{K} a free amalgamation class of Γ_L -structures. Then \mathcal{K} has EPPA. Moreover for every $\mathbf{A} \in \mathcal{K}$ the EPPA witness $\mathbf{B} \in \mathcal{K}$ can be constructed such that every irreducible substructure of \mathbf{B} is isomorphic to a substructure of \mathbf{A} .

Theorem (H., Konečný, Nešetřil 2019+)

The class \mathcal{D}_F has EPPA for the successor-d-closed substructures

Summary

EPPA for \mathcal{D}_F

Theorem (H., Konečný, Nešetřil 2019+)

Let Γ_L be a language equipped with a permutation group consisting of relations and unary functions and \mathcal{K} a free amalgamation class of Γ_L -structures. Then \mathcal{K} has EPPA. Moreover for every $\mathbf{A} \in \mathcal{K}$ the EPPA witness $\mathbf{B} \in \mathcal{K}$ can be constructed such that every irreducible substructure of \mathbf{B} is isomorphic to a substructure of \mathbf{A} .

Theorem (H., Konečný, Nešetřil 2019+)

The class \mathcal{D}_F has EPPA for the successor-d-closed substructures

Proof.

② Define language L⁺ adding for every root vertex v ∈ B and every ordering r̄ of |roots(v)| a new relational symbol R^{v,r̄} of arity |roots(v)|.

Summary

EPPA for \mathcal{D}_F

Theorem (H., Konečný, Nešetřil 2019+)

Let Γ_L be a language equipped with a permutation group consisting of relations and unary functions and \mathcal{K} a free amalgamation class of Γ_L -structures. Then \mathcal{K} has EPPA. Moreover for every $\mathbf{A} \in \mathcal{K}$ the EPPA witness $\mathbf{B} \in \mathcal{K}$ can be constructed such that every irreducible substructure of \mathbf{B} is isomorphic to a substructure of \mathbf{A} .

Theorem (H., Konečný, Nešetřil 2019+)

The class \mathcal{D}_F has EPPA for the successor-d-closed substructures

- ② Define language L⁺ adding for every root vertex v ∈ B and every ordering r̄ of |roots(v)| a new relational symbol R^{v,r̄} of arity |roots(v)|.
- **3** Define Γ_{L^+} using the automorphism group of **B**.

Summary

EPPA for \mathcal{D}_F

Theorem (H., Konečný, Nešetřil 2019+)

Let Γ_L be a language equipped with a permutation group consisting of relations and unary functions and \mathcal{K} a free amalgamation class of Γ_L -structures. Then \mathcal{K} has EPPA. Moreover for every $\mathbf{A} \in \mathcal{K}$ the EPPA witness $\mathbf{B} \in \mathcal{K}$ can be constructed such that every irreducible substructure of \mathbf{B} is isomorphic to a substructure of \mathbf{A} .

Theorem (H., Konečný, Nešetřil 2019+)

The class \mathcal{D}_F has EPPA for the successor-d-closed substructures

0	Given $\bm{A}\in\mathcal{D}_F\subseteq\mathcal{D}_0$ construct $\bm{B}\in\mathcal{D}_0$ such that every partial automorphism of
	successor-closed substructures extend to an automorphism of B .
	(This is done by the easy construction shown earlier)

- ② Define language L⁺ adding for every root vertex v ∈ B and every ordering r̄ of |roots(v)| a new relational symbol R^{v,r̄} of arity |roots(v)|.
- **3** Define Γ_{L^+} using the automorphism group of **B**.
- **2** Construct Γ_{L^+} structure \mathbf{A}^+ by removing all non-root vertices and putting $\overline{r} \in R_{\mathbf{A}}^{v,\overline{r}}$ for every non-root $v \in A$ and \overline{r} an ordering of roots(v).

Summary

EPPA for \mathcal{D}_F

Theorem (H., Konečný, Nešetřil 2019+)

Let Γ_L be a language equipped with a permutation group consisting of relations and unary functions and \mathcal{K} a free amalgamation class of Γ_L -structures. Then \mathcal{K} has EPPA. Moreover for every $\mathbf{A} \in \mathcal{K}$ the EPPA witness $\mathbf{B} \in \mathcal{K}$ can be constructed such that every irreducible substructure of \mathbf{B} is isomorphic to a substructure of \mathbf{A} .

Theorem (H., Konečný, Nešetřil 2019+)

The class \mathcal{D}_F has EPPA for the successor-d-closed substructures

- Given A ∈ D_F ⊆ D₀ construct B ∈ D₀ such that every partial automorphism of successor-closed substructures extend to an automorphism of B.
 (This is done by the easy construction shown earlier)
- ② Define language L⁺ adding for every root vertex v ∈ B and every ordering r̄ of |roots(v)| a new relational symbol R^{v,r̄} of arity |roots(v)|.
- **3** Define Γ_{L^+} using the automorphism group of **B**.
- **3** Construct Γ_{L^+} structure \mathbf{A}^+ by removing all non-root vertices and putting $\overline{r} \in R_{\mathbf{A}}^{v,\overline{r}}$ for every non-root $v \in A$ and \overline{r} an ordering of roots(v).
- **6** A⁺ has only unary functions! Construct EPPA witness B⁺.

Summary

EPPA for \mathcal{D}_F

Theorem (H., Konečný, Nešetřil 2019+)

Let Γ_L be a language equipped with a permutation group consisting of relations and unary functions and \mathcal{K} a free amalgamation class of Γ_L -structures. Then \mathcal{K} has EPPA. Moreover for every $\mathbf{A} \in \mathcal{K}$ the EPPA witness $\mathbf{B} \in \mathcal{K}$ can be constructed such that every irreducible substructure of \mathbf{B} is isomorphic to a substructure of \mathbf{A} .

Theorem (H., Konečný, Nešetřil 2019+)

The class \mathcal{D}_F has EPPA for the successor-d-closed substructures

- Given A ∈ D_F ⊆ D₀ construct B ∈ D₀ such that every partial automorphism of successor-closed substructures extend to an automorphism of B.
 (This is done by the easy construction shown earlier)
- ② Define language L⁺ adding for every root vertex v ∈ B and every ordering r̄ of |roots(v)| a new relational symbol R^{v,r̄} of arity |roots(v)|.
- **3** Define Γ_{L^+} using the automorphism group of **B**.
- **3** Construct Γ_{L^+} structure \mathbf{A}^+ by removing all non-root vertices and putting $\overline{r} \in R_{\mathbf{A}}^{v,\overline{r}}$ for every non-root $v \in A$ and \overline{r} an ordering of roots(v).
- **5** A⁺ has only unary functions! Construct EPPA witness B⁺.
- 6 Construct **B**' corresponding to **B**⁺ by adding the non-root vertices.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ < つ < ○</p>

Summary and open problems

 We can describe amenable subgroup of both Aut(M₀) and Aut(M_F) by means of orientations and show EPPA. Our constructions generalise to some other variants of classes obtained by Hrushovski predimension constructions.
C_F 00000 Summary

<ロト < 回 > < 三 > < 三 > < 三 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Summary and open problems

- We can describe amenable subgroup of both Aut(M₀) and Aut(M_F) by means of orientations and show EPPA. Our constructions generalise to some other variants of classes obtained by Hrushovski predimension constructions.
- For related class of acyclic orientations we know that such subgroup is maximal amenable subgroup. Maximality for Aut(M₀) and Aut(M_F) are open.

EPPA

 We can describe amenable subgroup of both Aut(M₀) and Aut(M_F) by means of orientations and show EPPA. Our constructions generalise to some other variants of classes obtained by Hrushovski predimension constructions.

CE

- For related class of acyclic orientations we know that such subgroup is maximal amenable subgroup. Maximality for Aut(M₀) and Aut(M_F) are open.
- Techniques developed here can be applied to solve several other cases, such as EPPA for two-graphs, antipodal metric spaces, *n*-partite tournaments, semigeneric tournaments, ...

Summary

000

 We can describe amenable subgroup of both Aut(M₀) and Aut(M_F) by means of orientations and show EPPA. Our constructions generalise to some other variants of classes obtained by Hrushovski predimension constructions.

CE

- For related class of acyclic orientations we know that such subgroup is maximal amenable subgroup. Maximality for Aut(M₀) and Aut(M_F) are open.
- Techniques developed here can be applied to solve several other cases, such as EPPA for two-graphs, antipodal metric spaces, *n*-partite tournaments, semigeneric tournaments, ...
- We can also give simpler proofs for EPPA for metric spaces and other strong amalgamation classes

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Summary

000

EPPA

 We can describe amenable subgroup of both Aut(M₀) and Aut(M_F) by means of orientations and show EPPA. Our constructions generalise to some other variants of classes obtained by Hrushovski predimension constructions.

CE

- For related class of acyclic orientations we know that such subgroup is maximal amenable subgroup. Maximality for Aut(M₀) and Aut(M_F) are open.
- Techniques developed here can be applied to solve several other cases, such as EPPA for two-graphs, antipodal metric spaces, *n*-partite tournaments, semigeneric tournaments, ...
- We can also give simpler proofs for EPPA for metric spaces and other strong amalgamation classes
- Γ_L -languages and functions combine well with conditions given by Herwig-Lascar theorem leading to so far strongest sufficient structural condition for EPPA.

EPPA

 We can describe amenable subgroup of both Aut(M₀) and Aut(M_F) by means of orientations and show EPPA. Our constructions generalise to some other variants of classes obtained by Hrushovski predimension constructions.

CE

- For related class of acyclic orientations we know that such subgroup is maximal amenable subgroup. Maximality for Aut(M₀) and Aut(M_F) are open.
- Techniques developed here can be applied to solve several other cases, such as EPPA for two-graphs, antipodal metric spaces, *n*-partite tournaments, semigeneric tournaments, ...
- We can also give simpler proofs for EPPA for metric spaces and other strong amalgamation classes
- Γ_L -languages and functions combine well with conditions given by Herwig-Lascar theorem leading to so far strongest sufficient structural condition for EPPA.

However many open questions remain

• does the class of all finite tournaments have EPPA? This is a classical open question in the are asked by Herwig and Lascar Summary

000

EPPA

 We can describe amenable subgroup of both Aut(M₀) and Aut(M_F) by means of orientations and show EPPA. Our constructions generalise to some other variants of classes obtained by Hrushovski predimension constructions.

CE

- For related class of acyclic orientations we know that such subgroup is maximal amenable subgroup. Maximality for Aut(M₀) and Aut(M_F) are open.
- Techniques developed here can be applied to solve several other cases, such as EPPA for two-graphs, antipodal metric spaces, *n*-partite tournaments, semigeneric tournaments, ...
- We can also give simpler proofs for EPPA for metric spaces and other strong amalgamation classes
- Γ_L -languages and functions combine well with conditions given by Herwig-Lascar theorem leading to so far strongest sufficient structural condition for EPPA.

However many open questions remain

- does the class of all finite tournaments have EPPA? This is a classical open question in the are asked by Herwig and Lascar
- Does the class of all finite partial Steiner systems (or structures with non-unary functions in general) have EPPA?

EPPA

 We can describe amenable subgroup of both Aut(M₀) and Aut(M_F) by means of orientations and show EPPA. Our constructions generalise to some other variants of classes obtained by Hrushovski predimension constructions.

CE

- For related class of acyclic orientations we know that such subgroup is maximal amenable subgroup. Maximality for Aut(M₀) and Aut(M_F) are open.
- Techniques developed here can be applied to solve several other cases, such as EPPA for two-graphs, antipodal metric spaces, *n*-partite tournaments, semigeneric tournaments, ...
- We can also give simpler proofs for EPPA for metric spaces and other strong amalgamation classes
- Γ_L -languages and functions combine well with conditions given by Herwig-Lascar theorem leading to so far strongest sufficient structural condition for EPPA.

However many open questions remain

- does the class of all finite tournaments have EPPA? This is a classical open question in the are asked by Herwig and Lascar
- Does the class of all finite partial Steiner systems (or structures with non-unary functions in general) have EPPA?
- Does the class of all finite structures with one quaternary relation defining two equivalence classes on pairs have EPPA?

EPPA

 We can describe amenable subgroup of both Aut(M₀) and Aut(M_F) by means of orientations and show EPPA. Our constructions generalise to some other variants of classes obtained by Hrushovski predimension constructions.

CE

- For related class of acyclic orientations we know that such subgroup is maximal amenable subgroup. Maximality for Aut(M₀) and Aut(M_F) are open.
- Techniques developed here can be applied to solve several other cases, such as EPPA for two-graphs, antipodal metric spaces, *n*-partite tournaments, semigeneric tournaments, ...
- We can also give simpler proofs for EPPA for metric spaces and other strong amalgamation classes
- Γ_L -languages and functions combine well with conditions given by Herwig-Lascar theorem leading to so far strongest sufficient structural condition for EPPA.

However many open questions remain

- does the class of all finite tournaments have EPPA? This is a classical open question in the are asked by Herwig and Lascar
- Does the class of all finite partial Steiner systems (or structures with non-unary functions in general) have EPPA?
- Does the class of all finite structures with one quaternary relation defining two equivalence classes on pairs have EPPA?
- Can we obtain general structural condition for the existence of EPPA?

EPPA	C ₀	C _F	Summary
0	00000	00000	000

Original class

▲□▶▲□▶▲≡▶▲≡▶ ≡ のへの

EPPA	C ₀	C _F	Summary
0	000000	00000	000

◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ● ● ●

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つんぐ

Thank you for the attention

- D. Evans, J.H., J. Nešetřil: Automorphism groups and Ramsey properties of sparse graphs. Proceedings of the London Mathematical Society 119 (2) (2019), 515-546.
- J.H., J. Nešetřil: All those EPPA classes (A strengthening of the Herwig-Lascar theorem). arXiv:1902.03855 (2019).
- D. Evans, J. H., J. Nešetřil: Ramsey properties and extending partial automorphisms for classes of finite structures. Submitted (arXiv:1705.02379).
- I. Hodkinson, M. Otto: Finite conformal hypergraph covers and Gaifman cliques in finite structures, Bulletin of Symbolic Logic 3 (9) (2013), 387–405.
- J.H., J. Nešetřil: All those Ramsey classes (Ramsey classes with closures and forbidden homomorphisms). Accepted to Advances in Mathematics (arXiv:1606.07979), 2019.
- J.H., M. Konečný, J. Nešetřil: A combinatorial proof of the extension property for partial isometries. Commentationes Mathematicae Universitatis Carolinae 60 (1) 2019, 39–47
- A. Aranda, D. Bradley-Williams, J. H., M. Karamanlis, M. Kompatscher, M. Konečný, M. Pawliuk: Ramsey expansions of metrically homogeneous graphs. Submitted (arXiv:1706.00295), 57 pages.
- J.H., M. Konečný, J. Nešetřil: Conant's generalised metric spaces are Ramsey. To appear in Contributions to Discrete Mathematics (arXiv:1710.04690), 20 pages.
- D. Evans, J.H., M. Konečný, J. Nešetřil: EPPA for two-graphs and antipodal metric spaces. arXiv:1812.11157 (2018).
- J. Hubička, C. Jahel, M. Konečný, M. Sabok: Extension property for partial automorphisms of the n-partite and semi-generic tournaments. To appear.