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Workshop on Homogeneous Structures 2011
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Universal relational structures

By relational structures we mean graphs, oriented graphs,
colored graphs, hypergraphs etc.

We consider only finite or countable relational structures.

Let C be class of relational structures.

Definition
Relational structure U is (embedding-)universal for class C iff
U ∈ C and every structure A ∈ C is induced substructure of U.
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Example

Class: graphs

Universal graph:

Fraïssé: homogeneous universal graph constructed by
Fraïssé limit .
Erdős and Rényi, 1963: The countable random graph.
Rado, 1965: Explicit description:

Vertices: all finite 0–1 sequences (a1, a2, . . . , at), t ∈ N
Edges: {(a1, a2, . . . , at), (b1, b2, . . . , bs)} form edge

⇐⇒

ba = 1 where a =
∑t

i=1 ai2i .

Many variants of Rado’s description are known.
All the description give up to isomorphism unique graph, as
can be shown using the extension property.
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Even more famous example

Class: linear orders
Universal structure: Q.
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Universal partial order

Class: partial orders

Homogeneous universal partial order exists by Fraïssé.

Sketch of explicit description (H., Nešetřil, 2003):
Notation: Pairs M = (ML|MR). ML,MR are sets.

Vertices: Pair M is a vertex iff:
1 (left completeness) AL ⊆ ML for each A ∈ ML,
2 (right completeness) BR ⊆ MR for each B ∈ MR ,
3 (correctness)

1 Elements ML and MR are vertices,
2 ML ∩ MR = ∅,

4 (ordering property) ({A} ∪ AR) ∩ ({B} ∪ BL) 6= ∅ for each
A ∈ ML,B ∈ MR ,

Relation: We put M < N if ({M} ∪MR) ∩ ({N} ∪ NL) 6= ∅.
Correspondence to Conway’s surreal numbers.

Later generalized to rational metric space (in H., Nešetřil, 2008;
in constructive setting Lešnik, 2008).
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Cameron’s question

Peter Cameron (2006): Is there a better explicit construction of
the homogeneous universal partial order?

Answer: I don’t know of any.

However there are positive examples of universal partial order.
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Word order

Definition
{0,1}∗ denote all words over alphabet {0,1}.
W ≤w W ′ iff W ′ is an initial segment (left factor) of W .

Partial order (W,≤W):
Vertices: finite subsets A of {0,1}∗ such that no distinct words
W ,W ′ in A satisfy W ≤w W ′.
Relation: A,B ∈ W we put A ≤W B when for each W ∈ A there
exists W ′ ∈ B such that W ≤w W ′.

Is it homogeneous?
no: A = {0},B = {00,01} form a gap.
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Word order

Lemma (H., J. Nešetřil, 2011)

(W,≤W) is an universal partial order

We give an algorithm for on-line embedding of any partial
order into (W,≤W).

Alice-Bob game:
Bob choose arbitrary partial order on vertices {1,2, . . .N}.
At turn n Bob reveals the relations of vertex n to vertices
1,2, . . .n − 1.
Alice must provide representation of the vertex in (W,≤W).

Sample game:
Alice: Representation of 1 is {0}.
Alice: Representation of 2 is {0,10}.
Alice: Representation of 3 is {000,100}.
Alice: Representation of 4 is {0000}.
We prove by induction that there is winning strategy for
Alice. Basic idea is “Venn diagram” property.
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Universality by embedding

Theorem (H., Nešetřil, 2004)

The quasi order formed by finite oriented paths ordered by
homomorphisms contains universal partial order.

Proof (sketch)
Embed (W,≤W) into homomorphism order.
Assign every word W a path P(W ) such that W ≤W W ′ iff
P(W )→ P(W ′).
Path consist of head H, bodies B0,B1 and the tail T.
For every set of words A ∈ W, P′(A) is disjoint union of
paths P(W ),W ∈ A.
Observation: P′(A) ≤ P′(B) iff A ≤W B.

Little problem: How to glue disjoint paths into single path?
New proof (H., Nešetřil, 2011) by embedding periodic sets of
natural numbers.
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Catalogue of universal partial orders

Words (W,≤W), 6.1Binary tree dominance (B,≤B), 6.2

Sets of intervals (I,≤I), 6.3

Convex sets (C,≤C), 6.4

Piecewise linear functions (F ,≤F ), 6.4

Periodic sets (S,⊆), 6.7

Truncated vectors (T V,≤T V), 6.6

Homomorphism order of oriented paths (P,≤P), 7.1

Homomorphism orders of special classes of structures, 7.2

Order implied by grammars (G,≤G), 6.5.

Order implied by clones on boolean functions, 7.3
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Universal but not homogeneous

Hajnal, Pach, 1981:
Nonexistence of universal 4-cycle-free graph.

Komjáth, Mekler, Pach, 1988:
Existence of universal graph Pl -free graph (Pl is graph of
length l).
Existence of universal graph for classes without short odd
cycles (fixed proof appears in 1999).

Covington, 1989:
Existence of universal graph for class of graphs without
induced path on 4 vertices.
Notion of amalgamation failure.

Komjáth, 1999:
Existence of universal bowtie-free graph.

Cherlin, Shelah, Shi, 1999:
Characterization of universal ω-categorical F-free graphs
via algebraic closure.
Existence of universal graph for classes defined by
forbidden homomorphisms.
New examples
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Universal graph without odd cycles of length at most
2l + 1

M-Structure is structure M = (V ,G,F1, . . . ,F2l+1) such that:
1 G is graph on V without loops;
2 F1, . . .F2l+1 graph on V with loops;
3 F1 = G;
4 xy ∈ Fa, yz ∈ Fb,a + b ≤ 2s + 1, then xz ∈ Fa+b;
5 if a + b ≤ 2s + 1 odd, then Fa ∪Gb = ∅.

Universal graph:

Retract of Fraïssé limit of M structures.

Retract of generic even-odd metric space with forbidden
loop of length ≤ 2l + 1.
Metric graph
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Universal graph with forbidden induced path on 4
vertices

Covington’s construction of a universal structure for class C:
1 Identification of finite set of amalgamation failures
2 Extending language by new relations (homogenization),

class C′
3 Universal structure is then reduct of the Fraïssé limit of C′

Amalgamation failures:

Language of graphs needs to be extended by single ternary
relation.
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Forbidden homomorphisms

F family of connected finite relational structures.
Class Forbh(F) consists of all relational structures A such that
there is no homomorphism F→ A,F ∈ F .

Corollary (Cherlin, Shelah, Shi 1999)

There is universal graph for class Forbh(F).

Proof by finiteness of the algebraic closure.

Cherlin, Shelah, Shi give an condition on existence of universal
ω categorical structure for F-free graphs.
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Explicit amalgamation argument for existence of
universal graph for Forbh(F )

Definition
For relational structure A and inclusion minimal vertex cut C in
its Gaifman graph of A, a piece of relational structure A is pair
P = (P,

−→
C ).

Here P is structure induced on A by union of C and vertices of
some connected component of A \ C.
Tuple

−→
C consist of the vertices of cut C in (arbitrary) linear

order.
Vertices C are roots of piece P.
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Examples

The pieces of Petersen graph

Pieces of cycles of length n = paths of length 2, . . . ,n − 2
rooted at both ends.
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Examples

Pieces of a relational tree T = branches of T.

A

B C

A
B

C
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Proof (sketch)

Enumerate all pieces of all forbidden structures F ∈ F as
P1 = (P1,

−→
C 1), . . . ,PN = (PN ,

−→
C N).

Expansion R′ of structure R ∈ Forbh(F):
For every piece Pi , i = 1,2, . . . ,N add new relation Xi of
arity

−→
C i .

Existence of homomorphism f : Pi → R imply f (
−→
C i) ∈ Xi .

Let Pi1 , . . .Pin be all pieces generated by cut
−→
C .

There is no tuple
−→
T of vertices of R such that−→

T ∈ Xi1 , . . .C
′ ∈ Xin .

Substructures of expansions of all R ∈ Forbh(F) form an
amalgamation class.
Reduct of the Fraïssé limit of this class is an universal
graph for Forbh(F).
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Study of specific examples

The arity of new relation depend on the size of inclusion
minimal vertex cuts of Gaifman graph.

The construction is optimal: expansions with smaller arities will
not give amalgamation class.

Arity 1 (monadic expansion)
Expansion equivalent to a vertex coloring
(Relational) trees:

Expansion is axiomatized by forbidden edges.
Universal graph retracted by unifying vertices of the same
color is homomorphism-universal graph.
Can be seen as a new construction of homomorphism duals.
Universal graph is “blown up” finite graph: explicit description
is easy.

Relations F such that their Gaifman graph is simple:
Forbidden irreducible structures.
No finite homomorphism universal object
Blown up finite graph, with forbidden cliques.
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Study of specific examples

Arity 2: forbidden cycles, etc.
Representation translate to a metric space
Explicit construction of metric space can be directly used to
represent these.

Beyond arity 2 explicit representation still possible, but
impractical to describe in full generality.
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Thank you. . .

. . . Questions?
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